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Exact Differential Equations: 

Def: Let M(x,y)dx +N(x,y) dy =0 be a first order and first degree Differential Equation 

where M & N are real valued functions of x,y . Then the equation Mdx + Ndy =0 is said to 

be an exact Differential equation if a function f . 

d[f (x, y)] = 
f 

dx  
f 

dy 

x y 
 

Condition for Exactness: If M(x,y) & N (x,y) are two real functions which have 

continuous partial derivatives then the necessary and sufficient condition for the Differential 

equation Mdx+ Ndy =0 is to be exact is that         =  

Hence solution of the exact equation M(x,y)dx +N(x,y) dy =0. Is 

       +    = c. 

(y constant) (terms free from x). 

  ********   
 

 

PROBLEMS:  

x 
x
 

1 )Solve dx + e y (1


 x 

) .dy =0 
y 

x 
x
 

Sol: Hence M = 1  e y 

 
 x 

&   N = e y (1 ) 
y 

x  1 




x  
1
 

= e y ( & = e 
y 

  + ) e y ( ) 
 

 

x x 
 

 

& = e y ( 

 y  y 

 

 
 

General solution is 
 

 

equation is exact 

 

 
+ = c. 

 

(y constant) (terms free from x) 

+ = c. 

x 
 

ey 

=> 
1 

= c 

y 

= >  = C 

= e y ( 
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2.   ( +1) .cosx dx +    =0. 

Ans: ( +1) . sinx =c   = cosx 

3. (r+sin cas  + r (sin  d 

Ans:  r2+2r(sin 

M 
 
N 

 

= sin . 
r 

4. Solve [y( ) +cos y] dx+ [ x +logx –xsiny]dy =0. 

Sol: hence M = y( ) +cos y N = x +logx –xsiny. 

 = 1+  -siny  = 1 +     -siny

 so the equation is exact 

General sol        +       

= c. (y constant)  (terms free from 

x) 

       +     = c. 

Y(x+ logx) +x cosy = c. 

5. ysin2xdx – ( +cosx) .dy =0. 

6. (cosx-xcosy)dy – (siny+(ysinx))dx =0 

Sol: N = cosx-x cosy & M = -siny-ysinx 

 = -sinx - cosy  = -cosy - sinx 

     the equation is exact. 

General sol        +       

= c. (y constant)  (terms free from 

x) 

=>        +     = c 

=> -xsiny+ ycos x =c 

=> ycosx – xsiny =c. 

7. ( sinx . siny - x  ) dy = ( cosx-cosy) dx 

Ans: x sinx.cosy =c. 

8. (x2+y2-a2) x dx +(x2-y2-b2) . y .dy =0 
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Ans: x4+2x2y2-2a2x2-2b2y2 =c . 



ADVANCED CALCULUS                                                                                                                   MA1201BS  
 

5  

 

REDUCTION OF NON-EXACT DIFFERENTIAL EQUATIONS TO 

EXACT USING INTEGRATING FACTORS 

Definition: If the Differential Equation M(x,y) dx + N (x,y ) dy = 0. Can be made exact by 

multiplying with a suitable function u (x,y)  0. Then this function is called an Integrating 

factor(I.F). 

Note: there may exits several integrating factors. 

 
 

Some methods to find an I.F to a non-exact Differential Equation Mdx+N dy =0 

Case -1:  Integrating factor by inspection/ (Grouping of terms). 

 
Some useful exact differentials 

1 . d (xy) = xdy +y dx 

2. d (                        = 

3. d (                        =  

4. d( ) = x dx + y dy 

5. d(log(  ) =  

6. d(log( ) =  

7. d( (  ) =  

8. d ( (  ) =  

9. d(log(xy)) =  

10.   d(log( )) =  

11. d(                       =  

 
PROBLEMS: 

1 . Solve xdx +y dy +     = 0. 

Sol: Given equation  x dx + y dy +     = 0 

d( ) + d( 
1 

( 
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on Integrating 

   + 
1 

(   = c. 

2 . Solve y(x3. ) dx + x (y + x3.  dy = 0. 

Sol: Given equation is on Regrouping 

We get yx3 - dx+ x2y dy +x4 dy =0. 

X3  (ydx+ xdy)+ y (x dy – ydx ) = 0 

Dividing by x3 

(ydx + xdy) +(   . ( ) =0 

d ( ) +(   .d +(   = 0 

on Integrating 

 y 2 
exy  ½ 

 x 
 C is required G.S. 

3. (1+xy) x dy + (1- yx ) y dx = 0 

Sol: given equation is (1+xy) x dy +(1-yx ) y dx =0. 

(xdy + y dx ) + xy ( xdy – y dx ) = 0. 

Divided by x2y2 => ( ) + (  =0 

( ) +   dy - dx =0. 

On integrating => + log y – log x =log c 

-  - logx +log y =log c. 

4. Solve ydx –x dy = a (   dx 
 

Ans:   = a dx 

d (   = a dx 

integrating on  = ax +c 

 

Method -2: If M(x,y) dx + N (x,y) dy =0 is a homogeneous differential equation and 

 
Mx +Ny 0, then 

1 
is an integrating factor of Mdx+ Ndy =0. 

Mx  Ny 
 

 

1 . Solve x2y dx – ( x3+ y3 ) dy = 0 
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Sol : x2y dx – ( x3+ y3 ) dy = 0 ---------------- (1) 

Where M = x2y & N = (-x3- y3 ) 

Consider   = x2 &  = -3x2 

     equation is not exact . 

But given equation(1) is homogeneous D.Equation then 

So Mx+ Ny = x(x2y) – y (x3+ y3) = - y4 0. 

 

I.F = 1 
 
1 

  

Mx  Ny y4 

Multiplying equation (1) by 
 

x2 y 
= > 

 y4
 

 

dx - 
x3  y3 

 y4 

 

dy = 0 ------------------------- (2) 

 

= > - dx - 
 

This is of the form M1dx + N1dy = 0 

x3  y3 
For M1 =    & N1 = 

 
3x2 

 
 

y4 

3x2 
= > = 

y4 
& = 

y4 
 

= >  =   equation (2) is an exact D.equation. 

General sol       +     = c. 

(y constant) (terms free from x in N) 

=>       +     = c. 

=>   + log |y| = c.// 

 
2. Solve  dx + ( 

Ans: (x-y) .   = (x+y ). 

 

 
3. Solve y(  + x (2  dy =0 ----------- (1) 

Sol: it is the form Mdx +Ndy =0 

Where M = y( N= x (2 
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Consider   = 3y2-2x2 &  = 2y2-3x2 

      equation is not exact . 

Since equation(1) is homogeneous D.Equation then 

Consider Mx+ N y= x[y(   ] +y [x (2  

= 3xy ( 0. 
 

=> I.F. = 
 

Multiplying equation (1) by   we get 

=   =  dy =0 

=> now it is exact (check) 

     dx +  dy =0. 

+ =0. 
 

( + 
2 ydy 2xdx 

= 0
 

 

2( y
2 
 x

2 
) 2( y

2 
 x

2 
) 

Log x +log y +  log (  -  log (      xy = c 

4. r ( + ) d  – ( + ) dr =0 

Ans:  + log + log =c. 

 
Method- 3: If the equation Mdx + N dy =0 is of the form y. f (xy) .dx + x . g ( xy) dy = 0 & 

Mx- Ny then  is an integrating factor of Mdx+ Ndy =0. 

Problems: 

1 . solve (xy sinxy +cosxy) ydx + ( xy sinxy –cosxy )x dy =0. 

Sol:   (xy sinxy +cosxy) ydx + ( xy sinxy –cosxy )x dy =0 ------ (1). 

=> this is the form y. f(xy) .dx + x . g ( xy) dy =0. 

=> consider Mx-Ny 

Here M =(xy sinxy + cos xy ) y 

N= (xy sinxy- cos xy) x 

Consider Mx-Ny =2xycosxy 

Integrating factor = 



ADVANCED CALCULUS                                                                                                                   MA1201BS  
 

9  

So equation (1) x I.F 

 
( xy sin xy  cos xy )x 

dx +
 

2xy cos xy 

( xy sin xy  cos xy )y 
dy

 

2xy cos xy 

 

= 0. 

 

 ( y tan xy +  ) dx + ( y tan xy -  ) dy =0 

 M1 dx + N1 dx =0 

Now the equation is exact. 

General sol   M1 dx   +  N1 dy = c. 

(y constant) (terms free from x in N1) 
-1 

=> +  y 
dy = c. 

 

=>  +logx + (-logy) = log c 

=> log|sec(xy)| +log    =log c. 

=>  . seexy =c. 

2. Solve (1+xy) y dx + (1-xy) x dy =0 

Sol : I.F = 

=>  +    =c 

=>  +  logx -  log y =c. 

=>  +log( ) =       where c1 = 2c. 

3. Solve ( 2xy+1) y dx + ( 1+ 2xy-x3y3) x dy =0 

Ans: log y +  +  =c. 

4. solve (x2y2 +xy +1 ) ydx +( x2y2- xy+1 ) xdy =0 

Ans: xy - + log( ) =c . 

 

 

Method -4: If there exists a single variable function 
 

=f(x), then I.F. of Mdx + N dy =0 is e 

PROBLEMS: 

1 . Solve ( 3xy – 2a ) dx + (  dy =0 

Sol: given equation is the form Mdx+ Ndy = 0 

 f (x) dx such that 
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=>  M = 3xy – 2a        & N =  
 

   = 3x-4ay &   = 2x-2ay 

equation not exact . 

 

Now consider = 
 

=>    = = f(x). 

=> 
 = x 

is an Integrating factor of (1) 

=> equation (1) x I.F  = equation (1) X x 

=>      x dx +      x dy = 0 

=> (3x2y -2ay2x) dx + (x3-2ax2y) dy =0 

It is the form M1dx + N1dy =0 

General sol  M1dx  +   N1dy  = c. 

= > ( 3x2  2ay2 x )dx od y = c 

= > x3y –ax2y2 =c .// 

2 . Solve ydx-xdy+(1+  

Sol : given equation is (y+1+  (  dy =0. 

M= y+1+      & N = 

 = 1  = 2x sin y -1 

    = > the equation is not exact. 

So consider   = =   = 

I.F = =     = =  

Equation (1) X I.F =>  dy =0 

It is the form of M1dx+ N1 dy =0. 

Gen soln => + =0 

=>  -  +x- cosy =c. 

=> // 
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3. Solve 2xy dy – (x2+y2+1)dx =0 

Ans:   -x +  +  

4. Solve (x2+y2) dx -2xy dy =0 

Ans: x2-y2=cx. 

 

Method -5:   For   the equation   Mdx + N dy = 0 if     = g(y) (is a function of y alone) 

then  is the Integrating factor of M dx + N dy =0. 

Problems: 

1 . Solve (3x2y4+2xy)dx +(2x3y3-x2) dy =0 

Sol: (3x2y4+2xy)dx +(2x3y3-x2) dy =0 ----------------- (1). 

Here M dx + N dy =0. 

Where M =3x2y4+2xy & N = 2x3y3-x2 

      equation (1) not exact. 

So consider   = = g(y) 

I.F = =     = = . 

Equation (1) x I.F => ) dy =0 

It is the form M1dx + N1 dy =0 

General sol       +     = c. 

(y constant) (terms free from x in N1) 

=>  +     =c. 

=>  +  =c. 

=> =c.// 

 
2 . Solve (xy3+y) dx + 2(x2y2+x+y4) dy =0 

Sol:   =     = = g(y). 

I.F = =       =y. 
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2 

Gen sol:  + 

    + x +   =c . 

3 . solve (y4+2y)dx + ( xy3 +2 y4 – 4x) dy =0 

Sol:   =     = = g(y). 

I.F = =       = 
 

 
Gen soln : 

 
y 

2  
dx y 2 ydy  c . 

 

 + // 

4 Solve (3x2 y4 +2xy)dx + (2x3y3 –x2) dy = 0 

Ans : x3y3+x2=cy 

5. Solve (y+ y2)dx + xy dy =0 

Ans: x + xy =c . 

6. Solve (xy3+y) dx + 2(x2y2+x+y4)dy =0. 

Ans: (x2+y4-1)   =c. 

LINEAR DIFFERENTIAL EQUATION’S OF FIRST ORDER: 

Def: An equation of the form 

of first order in y. 

dy 
 P(x).y  Q(x) 

dx 

 

is called a linear differential equation 

Working Rule: To solve the liner equation 

first find the Integrating factor I.F = 

dy 
 P(x).y  Q(x) 

dx 

General solution is y x I.F =  Q( x ) I.F.dx  c 
 

Note: An equation of the form 

 
of first order in x. 

Then Integrating factor = 

Q(y) is called a linear Differential equation 

 

Gen soln is = x X I.F =  Q( y ) I.F.dy  c 

PROBLEMS: 

1 . Solve (1+ y2) dx=( y –x ) dy 

Sol: (1+ y2)  = (  y –x ) 

+ ) . x = 


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It is the form of  + p(y).x = Q(y) 

I.F = =     = 

=> Gen sol is x. = + c. 

= > x.    =  

[ put tan-1 y = t 

 
1 

1 y
2

 

 

dy  dt ] 

 

 x.    = t . -  +c 

= > x. = -   +c 

= > x =  + c/   is the required solution 

2. Solve (x+y+1)  = 1. 

Sol: g iven equation is (x+y+1)  = 1. 

= >  = y+1. 

It is of the form  + p(y).x = Q(y) 

Where p(y) = -1 ; Q(y) = 1+y 

= > I.F = =     = 
 

Gen soln = x X I.F =  Q( y ) I.F.dy  c 
 

= > x . =  

= > x . 

= > 

= 

x 

 
 

= - 

 
 

y x 

 
 

- +c 

= > x = -  +c .// 
 

3. Solve  

Sol: this is of the form 
 

Where p(x) =1 Q(x) =  

=> I.F =     =    = 

Gen soln is is y x I.F =  Q( x ) I .F.dx  c 

=> y. = 

Q(x) 
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Q(y) 

=> y. =                      put 

=> y. = t +c 

=> y. = ( 

4. Solve x.   + y =log x 

Sol : this is of the form   +p(x)y = 

Where p(x) =   & 

i.e ,   +  . y =  

=> I.F = =    = =x. 
 

Gen soln is is y x I.F = 

=> y.x = 

 Q( y ) I.F.dy  c 

 

=> y .x = x (logx-1) +c.// 

5 . Solve (1+y2) + (x- = 0. 

 

Sol : Given equation is 
 

It is of the form  + p(y) .x = 

Where p (y) = 

 

I.F =     = =   

General solution is is x x I.F = 

 
 

 Q( y ) I.F.dy  c . 

=   > x . =                       dy +c 

= > x .     =             dt +c 

[ Note: put   = t 

= >  = dt ] 

= > x .     =        dt +c 

= > x . = + c 

= > x .       = + c // 
 

6. solve + 
y 

= 
xlog x 

Q(y) 
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Q(x) 

 

Ans: ylogx = 
cos 2x 

+ c.
 

2 

7 .  + (y-1). Cox = x 

Ans: y.  = + +   +c // 
 

8. + . y= 
1 

 

 

(1  x
2 
)

2
 

given y = 0 , where x= 1. 

Ans : y( ) =  



4 
 

 

9. Solve    = (1+x) . sec y 

Sol : the above equation can be written as 

Divided by sec y => cos y   -   = (1+x) ---------------- (1) 

Put sin y = u 

= > cos y   = 

D. Equation (1) is  –  . u = (1+x) 

this is of the form 

Where p(x) =        Q(x) =(1+x) 

=> I.F = =    = = 
 

Gen soln is is u x I.F =  Q( y ) I.F.dy  c 
 

=> u.  =  

=> u. = 
 

=> (sin y )  = c 

( Or) 

= > sin y = (1+x) c . (1+x) is required solution. 

10. Solve  - ytan = 
 

Ans : =  +c . 

11 .Solve – yx =  
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Ans:               = cosx + c. 

12. .   = 2xy2 + y 

Ans :             = + c. 

13.  + ycos x = sin x 

Ans :   :   = (1+ 2 sinx ) + c (or) 

                     = -(1+ 2 sinx ) + c . 

14.   + y cot x = 

Ans: ysinx (c +  =3. 

15. Solve     = ( 

Ans:  =  
 

 

 

 

 
 

 

 

BERNOULI’S EQUATION : 

(EQUATION’S REDUCIBLE TO LINEAR EQUATION) 

Def: An equation of the form + p(x) .y = Q(x) ----- --------(1) 
 

Is called Bernoulli’s Equation, where p & Q are function of x and n is a real constant. 

Working Rule: 

Case -1 : if n=1 then the above equation becomes + p. y = Q. 
 

=> Gen soln of 
dy 

 ( p  Q )y  0 is 
dx 

dy 



dx 

 

( p  Q )dx  c 

 

by variable separation method. 

Case -2: if 1 then divide the given equation (1) by  

 .  + p(x) . = Q --------- (2) 

Then take  = u 

(1-n) 


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           = 
 

Then equation (2) becomes 

  
 + p(x) . u =Q 

 + (1-n) p.u = (1-n)Q which is linear and hence we can solve it. 

 

Problems: 

1 . Solve x  + y = x3 

Sol: given equation can be written as  =x2+y6 

Which is of the form  + p(x).y =Q 

Where p(x) =     Q(x) = & n=6 

Divided by =>   .   + = ---------------------- (2) 

Take    = u 

 
  

  =                     }----------------(3) 

 
   

 = }----------------(3) 

(3) in (2) =>  -  u = -5x2 

Which is a L.D equation in u 

I.F = =    =   =  

Gensol  u .I.F =  Q( y ) I.F.dy  c 

u.  =  +c 

 =  +c (or)   + c 

2. Solve ( xy ) =1 
 

Sol:  
dx 

dy 
-x .y=     => . -   .y =  ---------------------(1) 

 

Put   = u 

  . =        ---------------(2). 

(2) in (1)  u .y = 
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(Or)  + u .y = - . 

Is a L.D Equation in ‘ u’ 

 
I.F = e 

P(y)dy 

= =
 

 

Gensol  u .I.F =  Q( y ) I.F.dy  c 

 u .     =    + c 

 
y2 

 

e 2 

 
x 

= -2( . +c 

(or) 

X(2- )+ cx =1. 

 

3. Solve  -y tanx = sec x 

Ans: I.F =      =    = 

Gen sol  cos x= -x +c . 

4. (1- )  + xy = x 

Sol: given equation can be written as 

  +   y = x 

Which is a Bernoulli’s equation  in ‘ y ‘ 

Divided by     . + 
  

   =  -----------(1). 

Let   = u 

 =    = > = -------------(2) 

(2) in (1)       + =  

Which is a L.D equation in u 

 I.F = =    =     = 

Gensol  u .I.F =  Q( x ) I.F.dx  c 

          = - 

= > = -2 [ x + ] +c 
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5 .    = 2xy2 + 

y . Ans:  =   . 

NEWTON’S LAW OF COOLING 

STATEMENT: The rate of change of the temp of a body is proportional to the difference 

of the temp of the body and that of the surroundings medium. 

Let be the temp of the body at time ‘t’ and be the temp of its surroundings 

medium(usually air). By the Newton’s low of cooling , we have 

  (       = k(       k is +ve constant 

  

 log   = -kt +c. 

If initially   = is the temp of the body at time t=0 then 

c = log     log  =-kt+ log  

 log (   = -kt. 

     = 

= + 

Which gives the temp of the body at time ‘t’  . 

1. Find the O.T of the co focal and coaxial parabolas r =  

Ans: r =  

 
Problems: 

1 A body is originally at   and cools dowm to  c in 20 min . if the temp of the air is 

  c. Find the temp of body after 40 min. 

Sol: By Newton’s low of cooling we have 

   = k( is the temp of the air. 

              = c 

 log(  = -kt + log c 

 log( )  =-kt 

. 
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

 



 =   

--------------(1) 

When t=0 , 

When t=20 , 

= 

= 

 c 

c 

 80 = 40 +c ----------- (2). 

 60 = 40 +c   ------------(3). 
 

Solving (2) & (3)  c  

C=40  40  =20 

=> k = log2 
 

When t= c => equation (1) is  

= 40 +40  

= 40 + ( 40 x ) 
 

 =    c 

2 . An object when temp is 750c cools in an atmosphere of constant temp. 250 c, at the rate k 

    being the excess temp of the body over that of the temp. If after 10min , the temp of 

the object falls to 660 c , find its temp after 20 min . also find the time required to cool down 

to 550c . 

Sol : we will take one as unit of time. 

It is given that  = - k 

 sol is c  ------------(1). 

Initially when t=0  = 

 c=    (2) 

When t= 10 min  = 

 40= 50  

 =  ---------------------(3). 

The value of when t=20  c  

50 
 

50  

50  

when t=20  =  c. 
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3.   A body kept in air with temp   cools from  c to  in 20 min. Find when the 

body cools down in . 

Sol : here o =                = -k dt 

 log  = -kt +c ------------ (1). 

When t=0 , =  c  log (115) =c 

 c =log (115). 

 kt = - log + log 115 -------- (2) 
 

When t=20 , =  c 

 

 

 

 
(2)/ (3)  => = 

 

 log(  c) = -20k + log 115 

 20 k =log (115) - log(55) --------- (3) 

 

  
 

When =  c 



 
        

       = 3. 31 

 t = 20  3.31 = 66.2 

The temp will be  c after 66.2 min. 

4 . If the temp of the air is  c and the temp of the body drops from  c to  c 

in 10 min. What will be the its temp after 20min. When will be the temp  c . 

Sol: log  = -kt + log c 

c =  c   and =  . 

t =  . 

5. the temp of the body drops from   c   to    c is temp in 10 min. When the 

surrounding air is at  c temp. What will be its temp after half an hour, when will the temp 

be  c . 

Sol :   = -k( 

log = -kt + log c 
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when t=0 , =    => c=80 

when t=10 , =  = > =  . 

when t =30min  =>  = 20 +80 ( ) = 46OC 

when = c = > t = 10 ( ) = 74.86 min 

 
LAW OF NATURAL GROWTH OR DECAY 

(STATEMENT: Let x(t) or x be the amount of a substance at time ‘ t’ and let the substance 

be getting converted chemically . A law of chemical conversion states that the rate of change 

of amount x(t) of a chemically changed substance is proportional to the amount of the 

substance available at that time 

(or) = - kt ; ( k >0) 
 

Where k is a constant of proportionality 

Note: In case of Natural growth we take 

      = k .x ) 

PROBLEMS 

1 The number N of bacteria in a culture grew at a rate proportional to N . The value of N 

was initially 100 and increased to 332 in one hour. What was the value of N after 1hrs 

Sol: The D. Equation to be solved is   = kN 

        = k dt 

  

 log N = kt + log e 

 N = c  ------------(1). 

When t= 0sec , N =100  100 = c  c =100 

When t =3600 sec , N =332  332 =100 

 =  

Now when t =  hors = 5400 sec then N=? 

 N =100  

 N =100 

 N = 100    = 605. 

 N = 605. 
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2 . In a chemical reaction a given substance is being converted into another at a 

rate proportional to the amount of substance converted. If   of the original 

amount has been transformed in 4 min, how much time will be required to 

transform one half. 

Ans: t= 13 mins. 

3. The temp of cup of coffie is c   . in which freshly period   the room temp being c . 

in one min it was cooled to c . how long a period must elspse , before the temp of the 

cup becomes c . 

Sol:   :   By Newton’s Law of Cooling, 

   = -k( ; k>0 

= c  log (    ) = -kt + log c ------------- (1). 

When t=0 ; = 92  c =68 

When t =1 ; c  =  

 k = log ( ). 

When c , t =? 

Ans: t =  min. 

RATE OF DECAY OR RADIO ACTIVE MATERIALS STATEMENT: 

The disintegration at any instance is propositional to the amount of material present in it. 

If u is the amount of the material at any time ‘t’ , then  = - ku , where k is any constant (k 

>0). 

Problems: 

1). if 30% of a radioactive substance disappears in 10days flow long will it take for 90% of it 

to disappear. 

Ans: 64.5 days 

2). In a chemical reaction a gives substance is being converted into another at a rate 

proportional to the amount of substance unconverted. If  Of the original amount has been 

transformed to required to transform one-half. 

Ans: 

 
 

3 The radioactive material disintegrator at a rate proportional to its mass. When mass is 10 

mgm , the rate of disintegration is 0.051 mg per day . how long will it take for the mass to be 

reduced from 10 mg to 5 mg. 
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Ans: 136 days. 

 
 

4. uranium disintegrates at a rate proportional to the amount present at any instant . if m1 and 

M2 are grms of uranium that are present at times T1 and T2 respectively find the half=cube of 

uranium. 

Ans: T = . 

 
5. The rate at which bacteria multiply is proportional to the instance us number 

present. If the original number double in 2 hrs, in how many hours will it be triple. 

Ans:   hrs. 

6. a) if the air is maintained at c   and the temp of the body cools from c to 

c in 12 min . find the temp of the body after 24 min. 

Ans: c 

b) If the air is maintained at c and the temp of the body cools from c 

to c in 10 min. Find the temp after 30 min. 

 

 

 

 

 

FIRST-ORDER DIFFERENTIAL EQUATIONS OF HIGHER DEGREE 
 

Equations of the First-order and not of First Degree 

 
First-Order Equations of Higher Degree Solvable for Derivative 

 

 
dy 

 p 
dx 

 

Equations Solvable for y 

Equations Solvable for x 

Equations of the First Degree in x and y - Lagrange and Clairant Equations 

Exercises 

 
 

Equations of the first-Order and not of First Degree 
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 

dx 

In this Chapter we discuss briefly basic properties of differential equations of first-order 

and higher degree. In general such equations may not have solutions. We confine 

ourselves to those cases in which solutions exist. 

The most general form of a differential equation of the first order and of 

higher degree say of nth degree can be written as 

 

 dy 
n
 

 
dx 


 dy 

n 1
 a1(x, y ) 

dx 


 dy 
n 2

 a2(x, y ) 
dx 

 

... 

 
... 

     




… … …  an 1(x, y ) 
dy 

 an (x, y )  0 

 

or pn+a1pn-1+a2pn-2+ …….+an-1 p+an=0 (1) 
 
 

 
 

where p  
dy 

dx 

 

and a1, a2, . . , an are functions of x and y. 

 

(1) can be written as 
 

F(x, y, p) = 0 (2) 
 

First-Order Equations of Higher Degree Solvable for p 

 

Let (2) can be solved for p and can be written as 

(p-q1(x,y)) (p-q2(x,y)) ............... (p-qn(x,y)) = 0 

Equating each factor to zero we get equations of the first order and first degree. 

One can find solutions of these equations by the methods discussed in the 

previous chapter. Let their solution be given as: 

i(x,y,ci)=0, i=1,2,3 ………n (3) 
 

Therefore the general solution of (3.1) can be expressed in the form 

 

1(x,y,c) 2(x,y,c)………n(x,y,c) = 0 (4) 

where c in any arbitrary constant. 
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c2 

It can be checked that the sets of solutions represented by (3) and (4) are 

identical because the validity of (4) in equivalent to the validity of (3) for at least one i 

with a suitable value of c, namely c=ci 

 

 dy 
2 

dy 
Example 1 Solve xy   (x

2 
 y 

2 
)  xy  0 (1) 

 dx  dx 

Solution: This is first-order differential equation of degree 2. Let p  
dy 

dx 
 

Equation (1) can be written as 
 

xy p2+(x2+y2) p+xy=0 (2) 
 

(xp+y)(yp+x)=0 

 

This implies that 
xp+y=0, yp+x=0 (3) 

 
By solving equations in (3) we get 

xy=c1 and 

x2+y2=c2 respectively 
 

[ x 
dy 

 y  0 or 
dy 

 
1 

y  0,Integrating factor 
dx dx x 

 

 
1
dx 

(x)  e x
 

 

 elog x . 
 

This gives 
 

y.x = o.x dx +c1 or xy=c1] 
 

[ y 
dy 

 x  0, 
dx 

or ydy  xdx  0 

 

By integration we get 
1 

y 
2 
 1 x 

2 
 c 

  

2 

 
or x2+y2 = c2, c2 >0, 

2 

 
 x  ] 

 
 

The general solution can be written in the form 
(x2+y2-c2) (xy-c1)=0 

c2 
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1 p2 

It can be seen that none of the nontrivial solutions belonging to xy=c1 or 

x2+y2=c2 is valid on the whole real line. 

Equations Solvable for y 
 

Let the differential equation given by F(x, y, p) = 0 be solvable for y. Then y can be 

expressed as a function x and p, that is, 

y= f (x, p) (1) 
 

Differentiating (1) with respect to x we get 

 

dy 
 
f 

 
f 

. 
dp 

    

 
(2)  

dx x p dx 

 

(2) is a first order differential equation of first degree in x and p. It may be solved by 

 

(x, p,c)  0 (3) 
 

The solution of equation (1) is obtained by eliminating p between (1) and (2). If 

elimination of p is not possible then (1) and (3) together may be considered parametric 

equations of the solutions of (1) with p as a parameter. 

Example 2: Solve y2-1-p2=o 

 
Solution: It is clear that the equation is solvable for y, that is 

 

 

y  (1) 

 
By differentiating (1) with respect to x we get 

 

dy 



dx 
 
 

or 

 

 

 

 
p 

.2p 
dp

 
dx 

1 1 

2 
1 p2 

p dp 

1 p2 dx
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p dp 

1 p2 dx
 

1 dp 

1 p2 dx 



 
1 dp 




or p1      0 (2) 
 

1 p2 
dx 





(2) gives p=o or 1  0 
 
 
 

By solving p=0 in (1) we get 

y=1 

By  1  0 
 
 

 

we get a separable equation in variables p and x. 

 

dp 



dx 
 

By solving this we get 

 
p=sinh (x+c) (3) 

 
By eliminating p from (1) and (3) we obtain 

y=cos h (x+c) (4) 

(4) is a general solution. 

 
Solution y=1 of the given equation is a singular solution as it cannot be obtained by 

giving a particular value to c in (4). 

Equations Solvable for x 

 

Let equation F(x, y, p) = 0 be solvable for x, 

that is x=f(y,p)  .. (1) 

Then as argued in the previous section for y we get a function  such that 

1 p2 
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


p3 



(y, p, c) = 0 (2) 

 
By eliminating p from (1) and (2) we get a general solution of F(x, y, p) = 0 .If 

elimination of p with the help of (1) and (1) is combursome then these equations may be 

considered parametric equations of the solutions of (1) with p as a parameter. 

Example 3 

 

 dy 
3 

dy 
Solve x   12  8  0 

 dx  dx 

 
 

Solution: Let p  
dy 

, 
dx 

 

then 

 

xp3-12p-8=0 

 
It is solvable for x, that is, 

 

x  
12p  8 

 
12 

 
8 

   

 
… (1) 

p3 p2 p3 

 

Differentiating (1) with respect to y, we get 

 

dx 
 2

12 dp 
 3 

8 dp 

dy p3 dy p4 dy 
 

or 
1 
  

24 dp 
 

24 dp 

p p3 dy p4 dy 
 

or dy   
24 



 p2 

24 
dp 





or y   
24 

 
12 

 c 
  

 
… (2) 

p p2 

 

(1) and (2) constitute parametric equations of solution of the given differential equation. 
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Equations of the First Degree in x and y – Lagrange’s and Clairaut’s Equation. 

 
Let Equation F(x, y, p) = 0 be of the first degree in x and y, then 

y = x1(p) + 2 (p)  … (1) 

Equation (1) is known as Lagrange’s equation. 

 
If 1(p) = p then the equation 

 
y = xp + 2 (p) .. (2) 

is known as Clairaut’s equation 

By differentiating (1) with respect to x, we get 

 

dy 
 






(p)  x' (p) 
dp 

 '  (p) 
dp

 
 

  

dx 1 1 dx 2 dx 

 

or p  1(p)  (x 
' 
(p)  

' 
(p)) 

dp
 

 
 

 … (3) 

1 2 
dx 

 

From (3) we get 

 
(x   ' (p)) 

dp 
 0 

 

 

 

 
 

for 1(p)=p 
2 dx 

 

This gives 

 
dp 

 0 or x+ ' (p) =0 

dx 2 

dp 
 0 gives p = c and 

dx 

by putting this value in (2) we get 

y=cx+2(c) 

This is a general solution of Clairaut’s equation. 
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2 

 
dx 


dx 








The elimination of p between 

 

x+ ' (p) = 0 and (2) gives a singular solution. 

 
If 1(p)  p for any p, then we observe from (3) that 

 

dp 
 0 everywhere. Division by 

dx 

 

[p   (p)] 
dp

 
 

 
in (3) gives 

1 dx 
 

 
' 

dx 
 1 x

 

dp p  1(p) 

 ' (p) 

= 2  

p  1(p) 

 

which is a linear equation of first order in x and thus can be solved for x as a function of 

p, which together with (1) will form a parametric representation of the general solution of (1) 

Example 4 Solve 
 dy 






1 y x 


dy  
 

dy 

 dx 

 
 

Solution: Let p  
dy 

dx 

 

then, 

 

(p-1)(y-xp)=p 

 
This equation can be written as 

 

y  xp 
p 

p  1 

 

Differentiating both sides with respect to x we get 

 

dp 
x 

dx 


1 

(p  1) 



2 

 
 0 
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 

 dx dx 

Thus either 
dp 

 0 or 
dx 

 

x   
1 

 0 

(p 1)2 
 

dp 
 0 gives p=c 

dx 

 

Putting p=c in the equation we get 

 

y  cx 
c 

 
 

c  1 

 

(y-cx)(c-1)=c 

 
which is the required solution. 

 
Exercises 

 
Solve the following differential equations 

 

 dy 
3 
 

dy 2x 
1.  

dx 
 

dx 
e 

 



2.y(y-2)p2 - (y-2x+xy)p+x=0 
 

 dy 
2

 3.  
dx 




4y x 
2 
 0 

 


4. 
 dy 

 y  x 
 

x 
dy 

 y  x 
 dy 

 2x 
 
 0 

 

 
dx 

  
  

dy 4  dy 
2
 

 5. y  x  x    0 
dx 

 
 
x 

dy 
 






 dx 


dy 






2 dy 
 

6. 
 dx 

y  y 
 dx 

 x   h
 dx 
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 y 



dx 



 dy 
2 

dy 
7. y    (x  y )  x 

 dx  dx 

 
 dy 

2 
dy 

8. x   2y  ax  0 

 dx  dx 

 

 dy 
2
 9.  

dx 
 x 

 




10. xy  y  x 


dy  
 x  y 

dy 

 dx 
 

Multiple choice 

 

The order of  + 2  - 3y = x is 

a) 2 b) 3 c) 1 d) None 

1) The order of  =  is 

a) 2 b) 1 c) 3 d)None 

2) The degree of Differential Equation  = a  is 

a) 3 b) 2 c) 1 d) 9 

3) The degree of Differential Equation   =  is 

a) 4 b) 3 c) 2 d) None 

4) The general solution of  = e x+y is 

a) ex + ey = c b) ex + e- y = c c) e- x + ey = c d) e- x + e- y = c 

5) Find the differential equation corresponding to y = a ex + b e2x + c e3x 

a) y111 – 6y11 + 11y1 – 6y = 0  b) y111 + y11 - 3y1 = 0 

c) y11 + 2y1 + y = 0 d) y111 – 2y11 + 3y1 + y = 0 

7) Find the differential equation of the family of curves y = ex (Acosx + Bsinx) 

a) y11 - 2y1 + 3y = 0 b) y11 - 3y1 + y = 0 

c) y11 - 2y1 + 3y = 0 d) None 

8) Form the differential equation by eliminating the arbitary constant : y2 = (x – c) 

2 
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a) (y1) 2 = 1 b) y11 + 2y1 = 2 c) (y1) 2 = 0 d) None 

9) Find the differential equation of the family of parabolas having vertex at 

the origin and foci on y -axis 

a) xy1 = 2x b) xy1 = 2y c) xy1 = 4y d) None 

10) Form the differential equation by eliminating the arbitary constant 

tanx + tany = c 

a) y1(tany + sec2x) =0 b) y1(tany sec2y) + tany sec2x =0 

c)   y1(tanx sec2x) + tany sec2y =0 d) None 

11) Obtain the differential equation of the family of ellipse is  +  = 1 

a) xyy11 + xy1 = 0 b) xy11 + xy = 0 

c) xyy11 + x (y1) 2 - yy1 = 0 d) None 

12) The solution of the differential equation  +  = under the condition that y = 1 

when x=1 is 

a) 4xy= x3+3 b) 4xy= x4+3 c) 4xy= y4+3 d) None 

13) The family of straight lines passing through the origin is represented by 

the differential equation 

a) ydx + xdy=0 b) xdy – ydx = 0 c) xdx + ydx = 0 d) ydy – xdx = 0 

14) The differential equation of a family of circles having the radius ‘r’ and 

centre on the x – axis is 

a) y2   = r2 b) x2   = r2 

c) (x2 + y2     = r2 d) r2    = x2 

 
15) The differential equation satisfying the relation x = A cos(mt - ) is 

a)  = 1 - x2 b)   = 2x 

c)      = 2x d)  = - m2x 

16) The equation  +  = 0 is 

a) Homogeneous b) Variable separable c) Exact d) None 

 
17) Find the differential equation of the family of cardioids r = a(1+cos ) 
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a)   + rsinx = 0 b)    + r tan( ) = 0 

c)       + r sin( ) = 0 d) 

18) The equation  +  = 0 is 

a) Variable separableb) Exact c) Homogeneous d) None 

19) The solution of the differential equation is  = e (x – y) + x2e –y 

a) ey =  + ex + c b) ey = ex + 3x + c c) ex =  + ey + c d) None 

20) The general solution of  = (4x + y+1) 2 is 

a) tan-1(  = c b)  tan-1(  = y + c 

c)  tan-1(  = x + c  d) None 

21) The solution of of the Differential equation (x2+1) y1 + y2+ 1 = 0, y(0) = 1 is 

a)                        b)                              c)                    d)  

22) The solution of  = 0 is 

a) xy = c b) y = cx c) x = cy d) x = c 

23) The general solution of  = 0 is 

a) log(x+y) = c b) log( ) = c c)log(xy) = c d) None 

 

24) The equation of the form  + p(x)y = q(x) is 

a) Homogeneous b) Exact c) Linear d) None 

25) Integral factor of  + p(x)y = q(x) is 

a)     b)                   c)                     d)  

 
26) The general solution of + ycotx = cosx is 
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a) y =  sinx + c cosx b) y =  cosx + c sinx 

c) y =  sinx + c cosecx d) None 

27) The form of Bernoulli’s Equation is 

a) + px = b) + py =  

 

c)  + = d)  + py = 

28) The equation of the form M(x,y)dx + N(x,y)dy = 0 is called if 

 

m 
 
n 

  

y x 

a) Linear b) Bernoulli’s c) Exact d) Homogeneous 

29) Integrating factor of the homogenous de Mdx + Ndy = 0 is 

a)               b)                   c)                     d) None 

30) If (  - ) is a function of x alone say f(x) then the integrating factor of Mdx + Ndy 

= 0 is 

a)           b)               c)                d)  

31) The integrating factor of (x2 – 3xy + 2y2)dx + x(3x-2y)dy = c is 

a)                       b)                            c)                                d)  

32) The given differential equation y(x+y)dx + (x+2y-1)dy = 0 is 

a) Exact b) Not Exact c) We can’t say d) None 

 
OBJECTIVE 

1) The order of + 2 - 3y = x is . 

 

2) The differential equation  +   = x sinx is is . 

3) The integrating factor of x  - y = 2x2 cosec2x is . 

4) The integrating factor of (1 – x2) y + xy = ax is . 

5) The general solution of the differential equation  =  + tan ( ) is . 

6) The integrating factor of (x2 – 3xy + 2y2)dx + x(3x-2y)dy = c is . 

7) The newton law of cooling is . 

8) Mdx+Ndy is exact if . 
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9) statement of law of Natural growth or decay is    

10)Solution of linear differential equation of first order in y is (independent variable 

x) . 

11)Bernoulli’s equation is . 

12 ) )If (  - ) is a function of y alone then the integrating factor is 

  . 

13) The general solution of (1 + x2) dy – (1+y2) dx = 0 is . 

 
 

14) The general solution of  + xy = x is . 

15) The integrating factor of the equation y f1(xy)dx + x f2(xy)dy is . 
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UNIT-II 
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HOMOGENEOUS LINEAR EUATIONS (OR) CAUCHY’S EULAR EUATIONS 
 

 
 

Definition: An equation of the form P0 xn + P1(x) xn-1 +--------- + Pn(x) .y = 

Q(x) ............... (1) 

Where P0 (x) P1(x), P2(x), P3(x) ......... Pn(x) are real constant , 

Q(x) (functions of x) continuous eq(1) of operator form is (xn Dn + P1 x
n-1 Dn-1 +----------- 

+Pn )y= Q(x) is called a linear differential equation of order n. 

 
 

LINEAR DIFFERENTIAL EQUN’ WITH CONSTANT COEFFICIENTS: 

Def: An equation of the form  + P1   + P2   + -------- + Pn .y = Q(x) where 

P1, P2, P3, .........Pn, are real constants and Q(x) is a continuous functions of x is called an L.D 

equation of order ‘ n’ with constant coefficients. 

Note: 

1. operator D =   ; D2 =  ; ................................ Dn = 

Dy =   ; D2 y=  ; …………………… Dn y=  

2. operator Q =     i e D-1Q is called the integral of Q. 

 
To find the general solution of f(D).y = 0 : 

Where f(D) = Dn + P1 D
n-1 + P2 D

n-2 + ---------- +Pn is a polynomial in D. 

Now consider the auxiliary equation : f(m) = 0 

i.e f(m) = mn + P1 m
n-1 + P2 m

n-2 +-----------+Pn = 0 

where p1,p2,p3 ................................ pn are real constants. 

Let the roots of f(m) =0 be m1, m2, m3, ......... mn. 

Depending on the nature of the roots we write the complementary function 

as follows: 
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Consider the following table 
 

E.no Roots of A.E f(m) =0 Complementary function(C.F) 

1. m1, m2, ..mn are real and distinct. Yc = c1e
m

1
x + c2e m x +…+ cne

m
n
x

 
2 

2. m1, m2, ..mn are : m1, m2 are equal and 

real(i.e repeated twice) &the rest are real 

and different. 

 
Yc = (c1+c2x)em

1
x+ c3e

m
3
x +…+ cne

m
1
x

 

3. m1, m2, ..mn are : m1, m2 , m3 are equal 

and real(i.e repeated thrice) &the rest are 

real and different. 

Yc = (c1+c2x+c3x2)em
1
x + c4e

m
4
x +…+ cne

m
n
x

 

4. Two roots of A & B are complex say +i 

-i  and rest are real and distinct. 

Yc = (c1 cos x + c2sin x)+ c3e
m

3
x +…+ 

cnemnx 

5. If ±i are repeated twice & rest are real 

and distinct 
Yc = [(c1+c2x)cos x + (c3+c4x) sin x)]+ 

c5e
m

5
x +…+ cne

m
n
x

 

6. If ±i are repeated thrice & rest are real 

and distinct 

Yc = [(c1+c2x+ c3x
2)cos x + (c4+c5x+ 

c6x
2) sin x)]+ c7e

m
7
x +……… + cne

m
n
x

 

7. ±i Yc = (c1 cos x + c2sin x) 

 
Solve the following Differential equations : 

1.  - 3  + 2y = 0 

: Given equation is of the form f(D).y = 0 

Where f(D) = (D3 -3D +2) Y = 0 

Now consider the auxillary equation f(m) = 0 

f(m) = m3 -3m +2 = 0  (m-1)(m-1)(m+2) = 0 

 m = 1 , 1 ,-2 

Since m1 and m2 are equal and m3 is -2 

We have Yc = (c1+c2x)ex + c3e
-2x

 

2. (D4 -2 D3 - 3 D2 + 4D +4)Y = 0 

Sol: Given f(D) = (D4 -2 D3 - 3 D2  + 4D +4) Y = 0 

 A.equation f(m) = (m4 -2 m3 - 3 m2 + 4m +4) 

 (m + 1)2 (m – 2)2 = 0 

 m= -1 , -1 , 2 , 2 

 Yc = (c1+c2x)e-x +(c3+c4x)e2x
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3. (D4 +8D2 + 16) Y = 0 

Sol: Given f(D) = (D4 +8D2 + 16) Y = 0 

Auxillary equation f(m) = (m4 +8 m2 + 16) Y = 0 

 (m2 + 4)2 = 0 

 (m+2i)2 (m+2i)2 = 0 

 m= 2i ,2i , -2i , -2i 

Yc = [(c1+c2x)cos x + (c3+c4x) sin x)] 

 
4. y11+6y1+9y = 0 ; y(0) = -4 , y1(0) = 14 

Sol: f(D) y = 0  (D2 +6D +9) Y = 0 

A.equation f(m) = 0  (m2 +6m +9) = 0 

 m = -3 ,-3 

Yc = (c1+c2x)e-3x -------------------- > (1) 

D. of (1) w.r.to x  y1 =(c1+c2x)(-3e-3x ) + c2(e
-3x ) 

Given y1 (0) =14  c1 = -4 & c2 =2 

Hence we get y =(-4 + 2x) (e-3x ) 

5. Solve 4y111 + 4y11 +y1 = 0 

Sol: equation f(m) = 0 

4m3 +4m2 + m = 0 

m(4m2 +4m + 1) = 0 

m(  = 0 

m = 0 , -1/2 ,-1/2 

y =c1 + (c2 + c3x) e-x/2
 

6. (D2 - 3D +4) Y = 0 

Sol: equation f(m) = 0 

m2-3m + 4 = 0 

m = = 

 

 = 

y = (c1 cos x + c2sin x) 

General solution of f(D) y = Q(x) 

Is given by y = yc + yp 

i.e. y = C.F+P.I 

Where the P.I consists of no arbitrary constants and P.I of f (D) y = Q(x) 
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Is evaluated as   P.I =  . Q(x) 

Depending on the type of function of Q(x). 

P.I is evaluated as follows: 

1. P.I of f (D) y = Q(x) where Q(x) =eax for (a) ≠ 0 

Case1: P.I =  . Q(x) =  eax =  eax 

Provided f(a) ≠ 0 

Case 2: If f(a) = 0 then the above method fails. Then 

if f(D) = (D-a)k (D) 

(i.e ‘ a’ is a repeated root k times). 

Then P.I =  eax .  xk provided (a) ≠ 0 

2) P.I of f(D) y =Q(x) where Q(x) = sin ax or Q(x) = cos ax where ‘ a ‘ is constant 

then P.I =  . Q(x). 

Case 1: In f(D) put D2 = - a2 f(-a2) ≠ 0 then P.I =  sin ax 

Case 2: If f(-a2) = 0 then D2 + a2 is a factor of (D2) and hence it is a factor of f(D). 

Then let f(D) = (D2 + a2) .f(D2). 

Then  (sin ax) =  

&  (cos ax) =  

1) P.I for f(D) y = Q(x) where Q(x) = xk where k is a positive integer 

Then express f(D) =[1± ] 

Express  =   = [1± ] -1 

Hence P.I =  Q(x). 

= [1± ] -1 .xk 

2) P.I of f(D) y = Q(x) when Q(x) = eax V where ‘a’ is a constant and V is function 

of x. where V =sin ax or cos ax or xk 

Then P.I =  Q(x) 

= eax V 
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= eax [ (V)] 

&  V is evaluated depending on V. 

3) P.I of f(D) y = Q(x) when Q(x) = x V where V is function of x. 

Then P.I =  Q(x) 

=   x V 

= [x -  f1(D)]  V 

 
Formulae 

1.  = (1 – D)-1 = 1 + D + D2 + D3 + ------------------ 

2.  = (1 + D)-1 = 1 - D + D2 - D3 + ------------------ 

3. = (1 – D)-2 = 1 + 2D + 3D2 + 4D3 + ------------------ 

4.  = (1 + D)-2 = 1 - 2D + 3D2 - 4D3 + ------------------ 

5. = (1 – D)-3 = 1 + 3D + 6D2 + 10D3 + ------------------ 

6. = (1 + D)-3 = 1 - 3D + 6D2 - 10D3 + ------------------ 

I. HIGHER ORDER LINEAR DIFFERENTIAL EQUATIONS: 

1. Find the Particular integral of f(D) y = when f(a) ≠0 

2. Solve the D.E (D2 + 5D +6) Y = ex 

3. Solve y11+4y1+4y = 4 e3x ; y(0) = -1 , y1(0) = 3 

4. Solve y11 + 4y1 +4y= 4cosx+3sinx , y(0) = 1 , y1(0) = 0 

5. Solve (D2+9) y = cos3x 

6. Solve y111 + 2y11 - y1 – 2y = 1-4x3 

7. Solve the D.E (D3 - 7 D2 + 14D - 8) Y = ex cos2x 

8. Solve the D.E (D3 - 4 D2 -D + 4) Y = e3x cos2x 

9. Solve (D2 - 4D +4) Y =x2sinx + e2x + 3 

10. Solve x2D2 – xD + y = logx 

 
11. Solve the D.E (x2D2 –3xD + 1) y = 
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12. Apply the method of variation parameters to solve + y = cosecx 
 

13. Solve  = 3x + 2y ,  + 5x + 3y =0 

14. Solve (D2 + D - 3) Y =x2e-3x 

15. Solve (D2 - D - 2) Y =3e2x ,y(0) = 0 , y1 (0) = -2 

 

SOLUTIONS: 

1) Particular integral of f(D) y =  when f(a) ≠0 

Working rule: 

Case (i): 

In f(D), put D=a and Particular integral will be calculated. 

Particular integral= =   provided f(a) ≠0 

Case (ii) : 

If f(a)= 0 , then above method fails. Now proceed as below. 

If f(D)= (D-a)K (D) 

i.e. ‘a’ is a repeated root k times, then 

Particular integral=  .  provided (a) ≠0 

2. Solve the Differential equation(D2+5D+6)y=ex 

Given equation is (D2+5D+6)y=ex 

Here Q( x) =e x 

f(m) = (m2+5m+6) 

Auxiliary equation is f(m) = m2+5m+6=0 

m2+3m+2m+6=0 

m(m+3)+2(m+3)=0 

m=-2 or m=-3 

the roots are real and distinct 

C.F = yc = c1e
-2x +c2 e

-3x
 

Particular Integral = yp=  . Q(x) 

=  ex =  ex 

Put D = 1 in f(D) 
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P.I. =  ex 

Particular Integral = yp=  . ex 

General equation is y=yc+yp 

Y=c1e
-3x+c2 e

-2x +  

3). Solve y11-4y1+3y=4e3x, y(0) = -1, y1(0) = 3 

Given equation is y11-4y1+3y=4e3x 

i.e.  - 4  +3y=4e3x 

it can be expressed as 

D2y-4Dy+3y=4e3x 

(D2-4D+3)y=4e3x 

Here Q(x)=4e3x; f(D)= D2-4D+3 

Auxiliary equation is f(m)=m2-4m+3 = 0 

m2-3m-m+3 = 0 

m(m-3) -1(m-3)=0 => m=3 or 1 

The roots are real and distinct. 

C.F= yc=c1e
3x+c2e

x ---- 
 (2) 

P.I.= yp=  . Q(x) 

= yp=  . 4e3x
 

= yp=  . 4e3x
 

Put D=3 

yp=  = 2xe3x
 

General solution is y = yc+yp 

y=c1e
3x + c2 e

x + 2xe3x ------------------------- 
 (3) 

Differentiating with respect to ‘x’ 

y1=3c1e
3x+c2e

x+2e3x+6xe3x ------------------ 
 (4) 

By data, y(0) = -1 , y1(0)=3 

From (3), -1=c1+c2 --------------------------------------------  (5) 

From (4), 3=3c1+c2+2 

3c1+c2=1 -------------------------  (6) 
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Solving (5) and (6) we get c1=1 and c2 = -2 

y=-2e x +(1+2x) e3x 

(4). Solve y11+4y1+4y= 4cosx + 3sinx, y(0) = 0, y1(0) = 0 

Sol: Given differential equation in operator form 

( )y= 4cosx +3sinx 

A.E is m2+4m+4 = 0 

(m+2)2=0 then m=-2, -2 

C.F is yc= (c1 + c2x)  

P.I is = yp=                     put = -1 

yp=  =  

=  

Put  = -1 

yp=  

=  =  = sinx 

general equation is y = yc+ yp 

Y = (c1 + c2x)  + sinx ---------------- (1) 

By given data, y(0) = 0 c1 = 0 and 

Diff (1) w.r.. t. y1 = (c1 + c2x)  + (c2) +cosx -------------- (2) 

given y1(0) = 0 

(2)  -2c1 + c2+1=0 c2 = -1 

required solution is y = +sinx 

5. Solve (D2+9)y = cos3x 

Sol:Given equation is (D2+9)y = cos3x 

A.E is m2+9 = 0 

m =  3i 

Yc = C.F = c1 cos3x+ c2sin3x 

Yc =P.I =  =  

= sin3x = sin3x 
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General equation is y = yc+ yp 

Y = c1cos3x + c2cos3x +  sin3x 

6. y111+2y11 - y1-2y= 1-4 

Sol:Given equation can be written as 

 = 1-4 

A.E is  = 0 

( (m+2) = 0 

 m=- 2 

m = 1, -1, -2 
 

C.F =c1 

 
P.I = 

+ c2 + c3 

(1-4 ) 

  

= 
 

1-4 ) 
 

 
= 

  
1-4 

 
) 

= [ 1 + 
 

+  + + …..] 1-4 
 

) 

= [ 1+ + + 1-4 ) 
 

= [ 1 - +  -  D] 1-4 ) 
  

= [(1-4 ) -  +  -  (-12 
  

= [-4 +6  -30x +16] = 
   

= [2 -3 +15x -8] 
   

The general solution is 

y= C.F + P.I 

y= c1 + c2 + c3   + [2 -3 +15x -8] 

7. Solve  -8)y =   cos2x 

Given equation is 

 -8)y =   cos2x 

A.E is = 0 

(m-1) (m-2)(m-4) = 0 
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Then m = 1,2,4 

C.F = c1   + c2   + c3 

P.I =  

= . . Cos2x 

= .  .cos2x 

= .  .cos2x 

= .  .cos2x 

= . .cos2x 

 
= . .cos2x 

= . .cos2x 

 
 = (16cos2x – 2sin2x) G.S. is y = yc + yp 

8. Solve 

Sol: 

 +4)y = +3 

Given  +4)y = +3 

A.E is  = 0  

(  = 0 then m=2,2    

C.F. = (c1 + c2x)     

P.I = = +  (3) 

Now ) = ) (I.P of ) 

= I.P of ) ) 
  

= I.P of . ) 

On simplification, we get 

 =  [(220x+244)cosx+(40x+33)sinx] 

) = ), 

 
P.I =  [(220x+244)cosx+(40x+33)sinx] + ) +  

y = yc+ yp 

y= (c1 + c2x) + [(220x+244)cosx+(40x+33)sinx] + ) + 

and 

) = 
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= - dx = - = - x 

10. Apply the method of variation of parameters to solve + y = cosecx 

Sol: Given equation in the operator form is ( -------------------------------------------- (1) 

A.E is  = 0 

 

The roots are complex conjugate numbers. 

C.F. is yc=c1cosx + c2sinx 

Let yp = Acosx + Bsinx be P.I. of (1) 

u  - v  = =1 

A and B are given by 

A= -  

B = = = log(sinx) 
 

yp= -xcosx +sinx. log(sinx) 

General solution is y = yc+ yp. 

y = c1cosx + c2sinx-xcosx +sinx. log(sinx) 

11. Solve (  +1)y = 100 

Sol: A.E is  = 0 

( then m = 
 

C.F = (c1+c2x)  

P.I =  =  =  = 100 

Hence the general solution is y = C.F +P.I 

y= (c1+c2x)  + 100 

HOMOGENEOUS L.E (OR) CAUCHY’S-EULAR 

EQ’S:-An equation of the form 
𝑝 . 𝑥𝑛 

𝑑2𝑦 
+ 𝑝 . 𝑥𝑛−1 

𝑑𝑛−1𝑦 
+ − − − + 𝑝 

  

. 𝑦 = 𝑄(𝑥)—(1) 
0 𝑑𝑥2 0 𝑑𝑥𝑛−1 𝑛 

Where P0,P1,P2,……….Pn are real constants. Q(x) is a function of ‘x’ is called C-E 

Eq-(1) of the operator form is 
(𝑥𝑛𝐷𝑛 + 𝑝1𝑥𝑛−1𝐷𝑛−1 + − − − + 𝑝𝑛)𝑦 = 𝑄(𝑥)-(2) 

Cauchy’s linear differential equation can be transformed in to L.D.E. with constant co- 

efficients by the change of independent variable with the substitution 

Let x=ez so that Z=logX --- (a) 
𝑑𝑧 

= 
1 (b) 

𝑑𝑥 𝑥 

Now  
𝑑𝑦 

𝑑𝑥 
=

 

 
𝑑𝑦 

 
 

𝑑𝑧 

 
𝑑𝑧 

. 
𝑑𝑥 

. 
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Again 

𝑑𝑦 
∴ 

𝑑𝑥 

1 
= 

𝑥 
. 
𝑑𝑦 
 

 

𝑑𝑧 
− −(𝑐) 𝑖. 𝑒. , 𝑥. 

𝑑𝑦 

𝑑𝑥 
=

 

𝑑𝑦 
 

 

𝑑𝑧 

 

− − − (𝑐) 

 

𝑑 
 

 

𝑑𝑥 

𝑑𝑦 
(
𝑑𝑥

) = 
𝑑 

 
 

𝑑𝑥 

1 
(
𝑥

 
𝑑𝑦 

. 
𝑑𝑧

) 
 

𝑑2𝑥 

𝑑𝑥2 
=

 

1 

𝑥 
. 

𝑑 
 

 

𝑑𝑥 

𝑑𝑦 
(
𝑑𝑧

) + 
𝑑𝑦 

 
 

𝑑𝑧 

−1 
. 

𝑥2 

1 𝑑 
= 

𝑥 𝑑𝑧 

𝑑𝑦 
(
𝑑𝑥

) − 
1 𝑑𝑦 

 
 

𝑥2 𝑑𝑧 
1 

= 
𝑥
 

𝑑 
. 
𝑑𝑥 

𝑑𝑦 
(
𝑑𝑧 

𝑑𝑧 
)(

𝑑𝑥
) − 

1 

𝑥2 . 
𝑑𝑦 
 

 

𝑑𝑧 
 

1 𝑑2𝑦   1 
= . 2 . − 

 
 

1 𝑑𝑦 
 

 2 
𝑥   𝑑𝑧 𝑥 

 
1 𝑑2𝑦 

𝑥 
 

𝑑𝑦 

𝑑𝑧 

 
∴  𝑥2 

𝑑2𝑦  
=  

𝑑2𝑦 
− 

𝑑𝑦 --------- 
(d)

 
𝑥 

. (
𝑑𝑧2 − 𝑑𝑥

)
 

𝑑𝑥2 𝑑𝑧2 𝑑𝑧 

Let us denote 𝑑 
𝑑𝑥 

= 𝐷 & 
𝑑

 
𝑑𝑧 

= 𝜃 

(c) &(d) can be written as 

XD= 𝜃; x2 D2 =𝜃(𝜃-1) 

Llly, x3D3 = 𝜃(𝜃-1)(𝜃-2) ; x4D4=𝜃(𝜃-1)(𝜃-2)(𝜃-3) 

& soon 

Formula’s XD=𝜃 
X2D2 =(𝜃-1) 

X3D3=𝜃(𝜃-1)(𝜃-2) & Soon 

 

Problem: 

1. Solve 

 
G.T ( x2D2 – 4XD+6)y = (log x)2-------- (1) 

This is a homogenous D.E 

Let x=ez (or) z= log x then we have 

X2D2=𝜃(𝜃-1) 

XD=𝜃----- (2) 

Now from (1),(2) we have 

= (𝜃(𝜃 − 1) − 4𝜃 + 6)y = ( log x)2 

=(𝜃2−𝜃 − 4𝜃 + 6)y=(log x)2 

=(𝜃2−5𝜃 + 6)y=( logx)2 

 
(𝜃2−5𝜃 + 6)y = Z2 

This is in the form of f(𝜃)y = Q(z) 

: . The general solution is Y=Yc+Yp 

To find Yc :- 
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6 

( 2) 

Take A.E f(m)=0 
= m2-5m+6=0 
=m2-2m-3m+6=0 
=m(m-2)-3(m-2)=0 

=(m-2)(m-3)=0 
: . m=2,3 

: . The complementary function is 
Y=Yc=C1 e2z=C2 e3z ------------ (a) 

 
 

To find Yp :- 
 

 
 
 

 
Then 

Let  
(𝜃2-5𝜃+6)y=Z2 

 

 
1 

𝑌 = 
𝜃2 − 5𝜃 + 6 

1 
= 

 
 

. 𝑍2 

 
 

. 𝑍2 

6 (1 + 
𝜃2 − 5𝜃

) 

 

= 
1 

(1 − ( 
6 

𝜃2−5𝜃
) +

 
6 

(𝜃2−5𝜃)
2 

36 

 

) 𝑍2 

 

1 
= (1 − 

6 

1 
(2 − 5.2𝑧) + 

6 

1 
(0 + 25.2 − 0)) 

36 
 

1 
= (𝑍2 

6 

2 10𝑍 
− + + 

6  6 

1 
. 50) 

36 
 

1 1 
= (𝑍2 − + 

6  3 

5 25 
𝑍 +  ) 

3 18 
 

1 
=  (𝑍2 + 

6 

5 19 
𝑍 +  ) 

3 18 
 

: . The particular integral Y = 
1 

(𝑍2 + 
5 

𝑍 + 
19

) ------ (b) 
   

p 
6 3 18 

: . The general solution is 

Y=𝐶 𝑒2𝑧 + 𝐶 𝑒3𝑧 1 
(  2 5 

 
  

19
)

 
 

 

1 1 6   
𝑍 

+   𝑍 + 
3 18 

 

(: . from (a) (b) ) 
 
 

: . Y = C1 e2 log x +C2
 e3 log x 

1 5 19 
+ ( log 𝑥 + log 𝑥 + 

6 3 18 
 

=  𝐶 𝑒log 𝑥
2  

+  𝐶 𝑒𝑙𝑜𝑔𝑥
2  

+  
1 

((log 𝑥 )2 
5 19

) 
1 2 6 

+ log 𝑥 + 
3 18 
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𝑧 

 

= 𝐶1 𝑥2 + 𝐶2𝑥3 + 
1 

((log 𝑥 )2 
6 

5 19 
+ log 𝑥 + 

3 18 
 

Which is the required solution 
 

2.    G.T (x2D2-3XD+1) =
log 𝑥 .sin(log 𝑥 )+1----------- 

(1) 
𝑥 

 

This is a homoheneous L.D.E 
 

Let x=ez (or) Z = logx Then we have 

X2D2 = 𝜃(𝜃 − 1) 

XD= 𝜃 (a) 
 

Now substituting (a) in (1) we get 

 

= (𝜃(𝜃 − 1) − 3𝜃 + 1)y = 
log 𝑥 .sin(log 𝑥)+1 

𝑥 
 

= (𝜃2−𝜃 − 3𝜃 + 1)y = 
𝑍.𝑠𝑖𝑛𝑍+1

 
𝑒 

 

= (𝜃2−4𝜃 + 1)y = e- z. (Z.sin Z+1) 

This is in the form of F(𝜃)y = Q(Z) 

: . The general solution is Y=Yc + Yp 

To find Yc :- 

Take A.E f(m) =0 
 

𝑚2 − 4𝑚 + 1 = 0 
 
 

 

𝑚 = 
4 ± √16 − 4.1.1 

 
 

2.1 
 

 

4 ± √12 
= 

2 
 
 
 

  

= 2 + √3, 2 − √3 

 

 

4 ± 2√3 
= = 

2 

 

 

2(2 ± √3) 
 

2 

 

 
: . The complementary function is Yc=e2z (C1 cos h √3x+C2 sin h √3x) 

(or) 

 
Yc = C1𝑒(2+√3)𝑍 + 𝐶2𝑒(2−√3)𝑍 ---------- (a1) 
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2 

2 

2 

2 

2 

To find Yp :- 

 
Let (𝜃2-4𝜃+1)Y = e-z(Z sin Z+1) 

 
1 

Y= 
𝜃2−4𝜃+1 

Then 

. 𝑒−𝑍 (𝑍 sin 𝑍 + 1) 

Y = e-Z 1 (𝑍. 𝑠𝑖𝑛𝑍 + 1) 
p 

(𝜃−1)2−4(𝜃−1)+1 

=e-z 1 
𝜃   +1−2𝜃−4𝜃+4+1 

𝑍 𝑠𝑖𝑛𝑍 + 1 

= 𝑒−𝑧. 
1

 
𝜃2 − 6𝜃 + 6 

1 
. 𝑍 sin 𝑍 + 

𝜃2 − 6𝜃 + 6
 . 𝑒

0.𝑍 

= e-z{ 
1

 
𝜃 −6𝜃+6 

. 𝑍 𝑖𝑚 𝑒𝑖𝑧 + 
1

 
0−0+6 

. 1} 

=e-z{𝑖𝑚 𝑒𝑖𝑧 1
 

(𝜃−1 )−6(𝜃+𝑖)+6 
. 𝑍 + 

1
} 

6 

= e-z{𝑖𝑚 𝑒𝑖𝑧 1
 

𝜃 −1+2𝜃𝑖−6𝜃−6𝑖+6 
. 𝑍 + 1/6} 

=e-z{𝑖𝑚 𝑒𝑖𝑧 . 
1

 
𝜃 −1+2𝜃𝑖−6𝜃−6𝑖+ 

. 𝑍 + 
1
} 

6 

=e-z{𝑖𝑚 𝑒𝑖𝑧 . 
1

 
(5−6𝑖)(1+

𝜃2+2𝜃𝑖−6𝜃
) 

5−6𝑖 

. 𝑍 + 
1
} 

6 

=e-z{𝑖𝑚 𝑒𝑖𝑧   
1

 (1 + 
𝜃2+2𝜃𝑖−6𝜃) 𝑍 + 

1} 
5−6𝑖 5−6𝑖 6 

= e-z{𝑖𝑚 𝑒𝑖𝑧   
1

 (1 − 
𝜃2+2𝜃𝑖−6𝜃) 𝑍 + 

1} 
5−6𝑖 5−6𝑖 6 

=e-z{𝑖𝑚 𝑒𝑖𝑧   
1

 (5−6𝑖−𝜃2−2𝜃𝑖+6𝜃) 𝑍 + 
1} 

5−6𝑖 5−6𝑖 6 

=e-z{𝑖𝑚 𝑒𝑖𝑧  
1 

(5−6𝑖) 
{5𝑧 − 𝑖6𝑧 − 0 − 2𝑖 + 6} + 

1
} 

6 

=e-z{𝑖𝑚 𝑒𝑖𝑧 (𝑧(5−6𝑖) 
+ 

6−2𝑖 ) +  
1
} 

5−6𝑖2 (5−6𝑖)2 6 

=e-z{𝑖𝑚 𝑒𝑖𝑧 (   
𝑧
 ∗ 

5+6𝑖 
+ 

6−2𝑖 ) +  
1
} 

5−6𝑖 5+6𝑖 25−35−60𝑖 6 

=e-z{𝑖𝑚𝑒𝑖𝑧 (
(5+6𝑖)𝑧 

+ 
6−2𝑖 ) + 

1
} 

25+36 −11−60𝑖 6 

=e-z{𝑖𝑚 𝑒𝑖𝑧 (5𝑧+𝑖6𝑧 
+ 

6−2𝑖 
∗ 

11−60𝑖) + 
1} 

6𝑖 −(11+60𝑖) 11−60𝑖 6 

2 
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=e-z{(𝑐𝑜𝑠𝑍 + 𝑖 sin 𝑍) (
5𝑍 

+ 𝑖. 
6𝑧 

− (
66−360𝑖−22𝑖−120

)) + 
1
} 

61 61 3721 6 

 

=e-z{(cos 𝑍 + 𝑖 𝑠𝑖𝑛𝑍) (
5𝑍  

+ 𝑖. 
6𝑍 

− (
−54−382𝑖

)) + 
1
} 

61 61 3721 6 

 
 

 

Compare in part we get 
 

=e-z{ 
5 

𝑍 sin 𝑍 + 
6

 

 

𝑍𝑐𝑜𝑠 𝑍 +   
54

 

 

𝑠𝑖𝑛𝑍 + 
382 

𝑐𝑜𝑠𝑧 + 
1
}382 

61 61 3721 3721 6 
 

=
𝑒−𝑧 

{5𝑍 𝑠𝑖𝑛𝑧 + 6𝑍 cos 𝑍 + 
54 

𝑠𝑖𝑛𝑍 + 
382 

𝑐𝑜𝑠𝑍 + 
1
} 

61 61 61 6 
 

: . The general solution is 
 

Y=C 𝑒(2+√3)𝑙𝑜𝑔𝑥 + 𝐶 𝑒(2−√3)𝑙𝑜𝑔𝑥 + 
𝑒−𝑙𝑜𝑔𝑥 

{5𝑙𝑜𝑔𝑥. 𝑠𝑖𝑛(𝑙𝑜𝑔𝑥) + 6𝑙𝑜𝑔𝑥. 𝑐𝑜𝑠(𝑙𝑜𝑔𝑥) + 
 1 2 61 

 

54 𝑠𝑖𝑛(𝑙𝑜𝑔𝑥) + 
382 

𝑐𝑜𝑠(𝑙𝑜𝑔𝑥) + 
1
} 

61 61 6 

 
 
 

3.    Solve 𝑥2 
𝑑2𝑦 

− 3𝑥 
𝑑𝑦 

+4y =(1 + 𝑥)2 -------------- (1) 
𝑑𝑥2 𝑑𝑥 

 

Sol: This is a homogeneous L.D.E. 
 

Given equation of operator from is 
 

(𝑥2𝐷2 − 3𝑥𝐷 + 4)𝑦 = (1 + 𝑥)2-------- (2) 

Let x=𝑒𝑧 => Z=logx Then we have 

XD = ; x2 D2 =𝜃(𝜃 − 1) ---- (a) 
 

Now substituting (a) in (2) we get 
 

 (𝜃(𝜃 − 1) − 3𝜃 + 4𝜃)𝑦 = (1 + 𝑒𝑧)2 
 

 (𝜃2 − 𝜃 − 3𝜃 + 4)𝑦 = 1 + 𝑒2𝑧 + 2𝑒𝑧 
 

 (𝜃2 − 4𝜃 + 4)𝑦 = 1 + 𝑒2𝑧 + 2𝑒𝑧 
 

This is in the form of 𝐹(𝜃)𝑦 = 𝑄(𝑧) 

 
: . The general solution is Y=Yc + Yp 

To find Yc :- 

Take A.E f(m)=0 
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2 

 𝑚2 − 4𝑚 + 4 = 0 
 

 𝑚2 − 2𝑚 − 2𝑚 + 4=0 
 

 𝑚(𝑚 − 2) − 2(𝑚 − 2) = 0 
 

 (𝑚 − 2)(𝑚 − 2) = 0 
 

 M=2,2 
 

: . The complementary function is 

Yc =(𝐶1 + 𝐶2𝑍)𝑒2𝑧 

=(𝐶1 + 𝐶2 𝑙𝑜𝑔𝑥)𝑒2𝑙𝑜𝑔𝑥 

 
: . Yc = (𝐶1 + 𝐶2 𝑙𝑜𝑔𝑥)𝑥2 

 
To find Yp :- 

 

Let (𝜃2 − 4𝜃 + 4)𝑦 = 1 + 𝑒2𝑧 + 2𝑒𝑧 
 

 Y= 
1

 
𝜃 −4𝜃+4 

. 1 + 𝑒2𝑧 + 2𝑒𝑧 

 

Then 
 

1 
Yp =

𝜃2−4𝜃+4 𝑒
𝑜.𝑧 + 

1 
𝜃2−4𝜃+4 𝑒

2𝑧 + 
1 

𝜃2−4𝜃+4 
. 2𝑒1.𝑧 

 

1 
= 

0−0+4 
. 1 + 

1
 

4−8+4 
𝑒2𝑧 +  

1 

1−4+4 
2𝑒𝑧 

 

=
1 

+ 
𝑧𝑒2𝑧 

+ 2𝑒𝑧 
4 2𝜃−4 

 

=
1 

+ 𝑧 
𝑒2𝑧 

+ 2𝑒𝑧 
4 4−4 

 

=
1 

+ 𝑧2 
𝑒2𝑧 

+ 2𝑒𝑧 
4 2 

 
=

1 
( )2 

1
 

 
  

 

 
2𝑙𝑜𝑔𝑥 

 

 
𝑙𝑜𝑔𝑥 

+ 𝑙𝑜𝑔𝑥 
4 

.   . 𝑒 
2 

+ 2𝑒 
 

=
1 

+ 
4 

(𝑙𝑜𝑔𝑥)2. 1 . 𝑥2 
2. 

+ 2. 𝑥 

 

The general solution of (1) is Y=Yc+Yp 

 
4. G.T 

 
(x2D2+4xD+2)y=𝑒𝑥 ------- (1) 

 
This is a H.L.D.E. 
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z 
 𝑑 𝑑 

Let x=e   => Z=logx& = 𝐷 & = 𝜃 Then 
𝑑𝑥 𝑑𝑧 

 

We have 
 

xD=𝜃 ; 𝑥2𝐷2 = 𝜃(𝜃 − 1) -------------- (a) 
 

From (1) (a) we have 
 

 (𝜃(𝜃 − 1) + 4𝜃 + 2)𝑦 = 𝑒𝑒
𝑧

 

 (𝜃2 − 𝜃 + 4𝜃 + 2)𝑦 = 𝑒𝑒
𝑧

 

 (𝜃2 + 3𝜃 + 2)𝑦 = 𝑒𝑒
𝑧

 

 
This is in the form of F(𝜃)y=Q(Z) 

 
: . The general solution is Y=Yc+Yp 

To find Yc:- 

Take A.E. F(m)=0 
 

 𝑚2 + 3𝑚 + 2 = 0 
 

 𝑚2 + 2𝑚 + 𝑚 + 2 = 0 
 

 𝑚(𝑚 + 2) + 1(𝑚 + 2) = 0 
 

 (𝑚 + 2)(𝑚 + 1) = 0 
 

 m=-1,-2 
 

The complementary function is 

Yc =𝐶1𝑒−𝑧 + 𝐶2𝑒−2𝑧
 

= 𝐶1𝑒−𝑙𝑜𝑔𝑥 + 𝐶2𝑒−2𝑙𝑜𝑔𝑥 

 
: . Yc =𝐶1𝑥−1 + 𝐶2𝑥−2 -------------- (2) 

To find Yp :- 
 

Let (𝜃2 + 3𝜃 + 2)𝑦 = 𝑒𝑒
𝑧

 

 

1 
Y= 

𝜃2+3𝜃+2 
. 𝑒𝑒

𝑧
 

 

Then Yp 

1 
= 

(𝜃+2)(𝜃+1) 
. 𝑒𝑒

𝑧
 

 

1 
= 

𝜃+2 
[  1 

𝜃+1 
. 𝑒𝑒

𝑧 
] 
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2 

1 
= 

𝜃+2 
[𝑒−𝑧 ∫ 𝑒𝑒

𝑧  
. 𝑒𝑧.  𝑑𝑧] 

 

1 
= 

𝜃+2 
[𝑒−𝑧 . 𝑒𝑒

𝑧 
] 

 

(∴  ∫ 𝑒𝑓(𝑥).  𝑓|(𝑥). 𝑑𝑥  =  𝑒𝑓(𝑥)) 

 

=𝑒−2𝑧 ∫ 𝑒−𝑧𝑒𝑒𝑧
𝑒2𝑧 𝑑𝑧 

=𝑒−2𝑧 ∫ 𝑒𝑒
𝑧 
𝑒𝑧 𝑑𝑧 

=𝑒−2𝑧𝑒𝑒𝑧 

=𝑒−2𝑙𝑜𝑔𝑥. 𝑒𝑥 

 
1 . 𝑒𝑥 

𝑥2 

 

∴ 𝑌 𝑒𝑥  𝑝 = 
𝑥 2−−−−−(𝑐) 

 

The general solution is Y=Yc+Yp( from (b) &(c)) 

Home work : 

Solve 1) (x2D2-4xD+6)y=x2 
 

2) (x2D2-xD+1)y = log x 
 
 3    3 2   2 1 → (𝑢𝑠𝑒  𝑥3𝐷3 = 𝜃(𝜃 − 1)(𝜃 − 2)) 

 
 3) (x D +2x D +2)y = 10 (x+ ) 

𝑥 
 

4) (x3D3+3x2D2+xD+8)y=65 cos (logx) 
 

5) (x2D2-xD+2)y = x log x 
 

𝑑2𝑦    1 𝑑𝑦 
6) + = 

𝑑𝑥 𝑥 𝑑𝑥 

12 log 𝑥 
 

𝑥2 

 

Ans: 𝑥2. 
𝑑2𝑦 

+ 𝑥. 
𝑑𝑦

= 12 log x 
𝑑𝑥2 𝑑𝑥 

 

i.e., (x2D2+xD)y = 12 log x 
 

7) (x2D2+xD+4)y= log x . cos (2 log x ) 
 

8) (x2D2-3xD+1)y= log x .(
sin(log 𝑥 )+1

) 
𝑥 

 

i.e., (x2D2-3xD+1)y = 
log 𝑥 .sin(log 𝑥 ) 

+ 
log 𝑥 

𝑥 𝑥 
 

LEGENDRE’S LINEAR EQUATION :- 

= 



ADVANCED CALCULUS                                                                                                                   MA1201BS  
 

58  

0 1 

An equation of the  form 
 

𝑑𝑛𝑦 
𝑝 (𝑎 + 𝑏𝑥)𝑛 + (𝑎 + 𝑏𝑥)𝑛−1𝑝 

𝑑𝑥𝑛 

𝑑𝑛−1𝑦 
 

 

𝑑𝑥𝑛−1 

 
+ − − +𝑝𝑛𝑦 = 𝑄(𝑥) 

 

Where P0,P1,P2………Pn are constant & Q(x) is function of ‘x’ is called LEGENDRE’S LINEAR EQUATION . 

This can be solved by the substitution a+bx = ez (or) log (a+bx) =z 

 
 

1. G.T. 
 

(x+1)2𝑑2𝑦 
− 3(𝑥 + 1) 

𝑑𝑦 
+ 4𝑦 = 𝑥2 + 𝑥 + 1 ----- (1) 

𝑑𝑥2 𝑑𝑥 
 

This is a legendre’s L.D.E 

Put x+1 = u 

 X = u – 1 
 

 dx = du 

 
 𝑑𝑢 = 1 

𝑑𝑥 

 

∴ 
𝑑𝑦 

= 
𝑑𝑦 

. 
𝑑𝑢 

=  
𝑑𝑦 

. 1 =  
𝑑𝑦 

𝑑𝑥 𝑑𝑢 𝑑𝑥 𝑑𝑢 𝑑𝑢 
 

𝑓𝑟𝑜𝑚 (1)𝑤𝑒 ℎ𝑎𝑣𝑒 
 

𝑑2𝑦 
𝑢2 − 3𝑢 

𝑑𝑢2 

𝑑𝑦 
 

 

𝑑𝑢 

 

+ 4𝑦 = (𝑢 − 1)2 + 4 

 

 (𝑢2𝐷2 − 3𝑢𝐷 + 4)𝑦 = 𝑢2 + 1 − 2𝑢 + 4 
 

 (𝑢2𝐷2 − 3𝑢𝐷 + 4)𝑦 = 𝑢2 − 4 + 1 
 

Which is a homogeneous L.D.E ---- (2) 
 

Let u= ez 
 

Z = log u & also 
𝑑 

 

𝑑𝑢 
= 𝐷 ; 

𝑑 
 

𝑑𝑧 
= 𝜃 

 

Then we have 𝑈𝐷 = 𝜃 
 

𝑢2𝐷2 = 𝜃(𝜃 − 1) 
 

From (2) we have 
 

 (𝜃(𝜃 − 1) − 3𝜃 + 4)𝑦 = 𝑒2𝑧 − 𝑒𝑧 + 1 



ADVANCED CALCULUS                                                                                                                   MA1201BS  
 

59  

 (𝜃2 − 𝜃 − 3𝜃 + 4)𝑦 = 𝑒2𝑧 − 𝑒𝑧 + 1 
 

 (𝜃2 − 4𝜃 + 4)𝑦 = 𝑒2𝑧 − 𝑒𝑧 + 1 
 

This is in the form of F(𝜃)𝑦 = 𝑄(𝑍) 
 

To find Yc : 
 

Take A.E f(m) =0 
 

→ 𝑚2 − 4𝑚 + 4 = 0 
 

→ (𝑚 − 2)2 = 0 
 

→ 𝑚 = 2 ,2 

 
∴   𝐶. 𝐹 (𝑦 ) = (𝐶 + 𝐶 

 
 

𝑍 )𝑒2𝑧 

𝑐 1 2 
 

∴ 𝑦𝑐 = (𝐶1 + 𝐶2 log 𝑢)𝑒2 log 𝑢  
 

= (𝐶1 + 𝐶2 𝑙𝑜𝑔(𝑥 + 1))(𝑥 + 1)2 
 

= (𝐶1 + 𝐶2 log(𝑥 + 1))(𝑥 + 1)2 
 

To find Yp: 
 

Let (𝜃2 − 4𝜃 + 4)𝑦 = 𝑒2𝑧 − 𝑒𝑧 + 1 
 

1 
Y= 

𝜃2−4𝜃+4 
. 𝑒2𝑧 − 𝑒𝑧 + 1 

 

Then Yp 

1 
:
𝜃2−4𝜃+4 𝑒

2𝑧  − 
1 

𝜃2−4𝜃+4 
. 𝑒𝑧 + 

1
 

𝜃2−4𝜃+4. 
𝑒0.𝑧 

 

1 
= 

4 − 8 + 4 
𝑒2𝑧 − 

1 
1 − 4 + 4 

𝑧𝑒2𝑧 

𝑒𝑧 + 
1 

. 1 
0 − 0 + 4 

 
1 

= 
2𝜃 − 4 

𝑧𝑒2𝑧 

− 𝑒𝑧 + 
4 

 
1 

 
 
 
 
 

(log 𝑢 )2𝑒2 log 𝑢 
= 

2 

 
 

 
− 𝑒log 𝑢 + 

1 
4 

= 
4 − 4 

 
𝑧2𝑒2𝑧 

= 
2 

− 𝑒𝑧 + 
4 

 

− 𝑒𝑧 + 
1

 
4 

 

(𝑙𝑜𝑔(𝑢))
2
. 𝑒𝑙𝑜𝑔𝑢

2
 

= 
2 

1 
− 𝑢 + 

4 
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(𝑙𝑜𝑔𝑢)2. 𝑒log 𝑢
2 

1 
∴ 𝑌𝑝 = − 𝑢 + 

2 4 

∴ 𝑇ℎ𝑒 𝑔𝑒𝑛𝑒𝑟𝑎𝑙 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑖𝑠 𝑌 = 𝑌𝑐 + 𝑌𝑝 

 
 
 

2) G.T 
 

(2𝑥 − 1)3 
𝑑3𝑦 

+ (2𝑥 − 1) 
𝑑𝑦 

-2y = x ----- (1) 
𝑑𝑥3 𝑑𝑥 

 

Eq (1) can be written as 
 

23 (𝑥 − 
1
)

3 𝑑3𝑦 
+ 2 (𝑥 − 

1
) 

𝑑𝑦 
− 2𝑦 = 𝑥 

2 𝑑𝑥3 2   𝑑𝑥 
-------(2) 

 

𝑛 𝑛−1 
This is in the form of 𝑝  (𝑎𝑥 + 𝑏)𝑛 

𝑑  𝑦 
+ 𝑝  (𝑎𝑥 + 𝑏)𝑛−1 

𝑑 𝑦 
+ ----- +𝑝 

  

. 𝑦 = 𝑄(𝑥) 
0. 𝑑𝑥2 1. 𝑑𝑥𝑛−1 𝑛 

 

(or) 
 

Which is a legendre’s L.D.E. 
 

Put   𝑥 − 
1

 
2 

= 𝑢   => 𝑥 = 𝑢 + 
1

 
2 

 

𝑑𝑥 = 𝑑𝑢 
 

From (2) we have 
 

 8𝑢3 
𝑑3𝑦 

+ 2𝑢 
𝑑𝑦 

− 2𝑦 = 𝑢 + 
1

 

𝑑𝑢3 𝑑𝑢 

----------(3) 
2 

 

Which is a homogeneous L.D.E. 
 

𝑑 
Put 

𝑑𝑢 
= 𝐷 ; 

𝑑
 

𝑑𝑧 
= 𝜃; 𝑢 = 𝑒𝑧 => 𝜃𝑍 = log 𝑢 𝑇ℎ𝑒𝑛 

 

We have   𝑢3𝐷3 = 𝜃(𝜃 − 1)(𝜃 − 2) 

 
𝑢𝐷 = 𝜃 ------- (a) 

 

𝑓𝑟𝑜𝑚 (3)&(4)𝑤𝑒 ℎ𝑎𝑣𝑒 
 

 (8𝑢3𝐷3 + 2𝑢𝐷 − 2)𝑦 = 𝑢 + 
1

 
2 

 

 (8𝜃(𝜃 − 1)(𝜃 − 2) + 2𝜃 − 2)𝑦 = 𝑒𝑧 + 
1

 
2 

 

 (8𝜃(𝜃2 − 3𝜃 + 2) + 2𝜃 − 2)𝑦 = 𝑒𝑧 + 
1

 
2 

 

 (8𝜃3 − 24𝜃2 + 16𝜃 + 2𝜃 − 2)𝑦 = 𝑒𝑧 + 
1

 
2 
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Y= 

 (8𝜃3 − 24𝜃2 + 18𝜃 − 2)𝑦 = 𝑒𝑧 + 
1

 
2 

 

This is in the form of F(𝜃)𝑦 = 𝑄(𝑍) 
 

∴ 𝑇ℎ𝑒 𝑔𝑒𝑛𝑒𝑟𝑎𝑙 𝑠𝑜𝑙 𝑖𝑠 𝑌 = 𝑌𝑐 + 𝑌𝑝 

 
To Find Yc : Take A.E F(m)=0 

 
 8𝑚3 − 24𝑚2 + 18𝑚 − 2 = 0 

 

 𝑚 = 1 (𝑜𝑟) 8𝑚2 − 16𝑚 + 2 = 0 
 

 𝑚 = 1 (𝑜𝑟)8𝑚2 − 16𝑚 + 2 = 0 
 

 
𝑚 = 1 (𝑜𝑟)𝑚 =

 8±√64−4.4.1 

2.4 

 
  

8 ± √48 
= = 

8 

8 ± √4 × 2 × 2 × 3 
 

 

8 
 

 

8 ± 4√3 
= 

8 
 

(2 ± √3) 
= 4 

8 
 

 
 

 
∴Y =𝑐 𝑒𝑥 + 𝑒𝑥(𝐶 

 
 
 
 

cosh √
3 

𝑥 + 𝐶 

√3 
= 1 ± 

2 
 
sin ℎ √

3 
𝑥) 

c 1 2 2 3 2 

 
To Find Yp : 

 

Let (8𝜃3 − 24𝜃2 − 18𝜃 − 2)𝑦 = 𝑒𝑧 + 
1

 
2 

 

 
  1 . 𝑒𝑧 

8𝜃3−24𝜃2−18𝜃−2 

1 
+   . 𝑒 

2 
0.𝑧 

 

1 
Then Yp= 

8.1−24.1−18.1−2 
𝑒𝑧 + 

1 
. 

2 

1 
 

0−0−0−2 
 

 1 
−36 

. 𝑒𝑧 − 
1

 
4 

 

−1 
1 

1 
   𝑙𝑜𝑔(𝑥− )     

 . 𝑒 2    − 
36 4 

 

 −1 (𝑥 − 
1
) − 

1
 

36 2 4 
 

∴ 𝑇ℎ𝑒 𝑔𝑒𝑛𝑒𝑟𝑎𝑙 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑖𝑠 𝑌 = 𝑌𝑐 + 𝑌𝑝 

 
FILL IN THE BLANKS; 
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1 .The general solution of (4𝑫𝟐+4D+1)y=0 is …………………… 

2.The C.F of (D+1)(𝑫 − 𝟐)𝟐y=𝒆𝟑𝒙 is…………………… 

3.The P.I of 𝒅
𝟑𝒚 

+ y =𝒆−𝒙 is…………………….. 
𝒅𝒙𝟑 

4.The P.I of (𝑫𝟐 + 𝒂𝟐)y = cosax is…………………… 

5. The P.I of (𝑫𝟐-5D+6)y = 𝒆𝟐𝒙 is……………. 

6. The P.I of (𝑫 + 𝟏)𝟐 y = x is……………. 

7. 𝟏 Sinx = ………………. 
𝑫𝟐+𝑫+𝟏 

8. The P.I of (𝑫 − 𝟏)𝟒y=𝒆𝒙 is………………. 

9. The value of 𝟏 Sinx is ………………. 
𝑫−𝟐 

10. The value of 𝟏 
𝑫𝟐+𝟒 

Sin2x is……………….. 

11. 𝟏 𝒆𝒙 =…………………. 
𝑫𝟐−𝟏 

12. 𝟏   (x+𝒆𝒙)=……………………….. 
(𝑫+𝟐) 

13. The C.F of the equation (𝑫𝟑-D)y=x is……………………. 

14. The C.F of the equation (𝑫𝟐+4D+5)y=13𝒆𝒙 is……………………… 

15.C.F of (𝑫 − 𝟏)𝟐y=Sin2x is…………………………. 

16.The equation 𝒆𝟒dx+(x𝒆𝒚+2y)dy=0 is………….. 

a.Homogeneous b.Variable Separable c. Exact d.Non homogeneous 

17.P.I of (𝑫𝟐-2D+1)y=Coshx is……………… 

 

 

 

MULTIPLE CHOICE QUESTIONS; 

1. The general solution of (4𝑫𝟐+4D+1)y=0 is………….. 
−𝒙 −𝒙 −𝒙 

a. y=𝒄𝟏𝒆 𝟐 +𝒄𝟐𝒆 𝟐 b. y=(𝒄𝟏x+𝒄𝟐) 𝒆 𝟐 
𝒙 𝒙 𝒙 

c. y=𝒄𝟏𝒆𝟐+𝒄𝟐𝒆𝟐 d. y=(𝒄𝟏+𝒄𝟐𝒙) 𝒆𝟐 

 
2.The C.F of (D+1)(𝑫 − 𝟐)𝟐y=𝒆𝟑𝒙 is…………………… 

a.   (𝒄𝟏+𝒄𝟐𝒙)𝒆−𝒙+𝒄𝟑𝒆𝟑𝒙 b. (𝒄𝟏+𝒄𝟐𝒙)𝒆𝟐𝒙+𝒄𝟑𝒆−𝒙 
c. 𝒄𝟏𝒆−𝒙+𝒄𝟐𝒆𝟐𝒙 d.None 

3.P.I of (𝑫𝟑+1)y=𝒆−𝒙 is………………….. 
−𝒙 −𝒙 −𝒙 

a. x𝒆 𝟑 b. 𝒆 𝟑      c. -x𝒆 𝟑 d.None 

4.The P.I of (𝑫𝟐+𝒂𝟐)y=cosax is…………….. 

a. - 𝒙 
𝟐𝒂 

cosax b. 𝒙 
𝟐𝒂 

sinax c. x cosax d. xsinax 

5.The P.I of (𝑫𝟐-5D+6)y=𝒆𝟐𝒙 is……………… 

a. –x𝒆𝟐𝒙 b. x𝒆𝟐𝒙 c. 𝒆𝟐𝒙 d.0 

6.P.I of (𝑫 + 𝟏)𝟐y=x is……………………… 

a. x b. x-2 c. (𝒙 + 𝟏)𝟐 d. (𝒙 + 𝟐)𝟐 
7. 𝟏 

𝑫𝟐+𝑫+ 𝟏 
sin x=………………. 

a. sin x b. cos x c. 𝟏 sin x d. 1-cos x 
𝟑 

8. P.I of (𝑫 − 𝟏)𝟒y= 𝒆𝒙 is………………….. 

a. 𝒙
𝟒

 

𝟒 
𝒆𝒙 b. 𝒙𝟒𝒆𝒙 c. 𝒆𝒙 d. 𝒆

𝒙

 

𝟒 
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9. The value of 𝟏 
𝑫−𝟐 

sin x is ……………. 

a. −𝟏(cos x+sin x) b. 𝟏cos x c. 𝟏sin x d. 𝟏(cos x+sin x) 
𝟓 𝟓 𝟓 𝟓 

10. The value of 𝟏 
𝑫𝟐+𝟒 

sin 2x is………………. 

a. 𝟏sin 2x b. −𝟏 𝒔𝒊𝒏𝟐𝒙 c. 𝟏cos 2x d. −𝟏cos 2x 
𝟓 𝟓 𝟓 𝟓 

11. 𝟏 
𝑫𝟐−𝟏 

𝒆𝒙=…………………………… 

a. 𝟏x𝒆𝒙 b. −𝟏x𝒆𝒙 c. 𝒙
𝟐 

𝒆𝒙 d.None 
𝟐 𝟐 𝟐 

12. 𝟏 
𝑫+𝟐 

(x+𝒆𝒙)=…………………… 

a. 
−𝒙 

− 
𝟏 

+ 
𝒆𝒙 

 b. 𝒙 + 
𝟏
 − 

𝒆𝒙 
 c. 𝒙 − 

𝟏
 + 𝒆𝒙 d.None 

𝟒 𝟏𝟔 𝟑 𝟒 𝟏𝟔 𝟑 𝟒 𝟏𝟔 

13.The C.F of the equation (𝑫𝟑-D)y=x is ……………………………. 

a. 𝒄𝟏+𝒄𝟐𝒙 + 𝒄𝟑 𝒆𝒙 b. 𝒄𝟏+𝒄𝟐𝒆𝒙 + 𝒄𝟑 𝒆−𝒙 c. (𝒄𝟏+𝒄𝟐𝒙)𝒆𝒙+𝒄𝟑𝒆−𝒙 d.None 

14.The C.F of (𝑫𝟐+4D+5)y=13𝒆𝒙 is………………………… 

a. 𝒆−𝟐𝒙(𝒄𝟏cosx+𝒄𝟐sinx) b. 𝒆𝟐𝒙(𝒄𝟏cosx+𝒄𝟐sinx) c. 𝒆𝒙(𝒄𝟏cos2x+𝒄𝟐sin2x) d. None 

15.C.F of (𝑫 − 𝟏)𝟐y=Sin 2x is………………. 

a. (𝒄𝟏+𝒄𝟐𝒙)𝒆𝒙    b. (𝒄𝟏+𝒄𝟐𝒙)𝒆−𝒙 c. 𝒄𝟏𝒙+𝒄𝟐𝒆𝒙 d.None 

16. The substitution to transform homogeneous linear equation into a linear equation with 

constant coefficient is…………. 

a. x= 𝒆𝒛 b. z= 𝒆𝒙 c. x=logz d. x=y 

17. By eliminating y from the simultaneous equation (D-1)x+2y=0, (D-3)y-5x=0 where 

D= 𝒅 
𝒅𝒕 

the differential equation obtained is …………… 

a. (𝑫𝟐+4D-13)x=0 b. (𝑫𝟐-4D+13)x=0 

c. (𝑫𝟐-4D-13)x=0 d. (𝑫𝟐+4D+13)x=0 
18) If m1, m2,m3 are real and distinct roots then the complementary function is 

(a) c1 e(m1x+m2x+m3x) (b) c1em1x + c1em2x +c3em3x 

(b) (c) c1e
m1x + c2e

m2x +c3e
m3x (d) None 

19)  If m1, m2,m3 are roots are real & equal and m4, m5 are real and different 

Then complementary function is 

(a) c1e
m1x + c2e

m2x +(c3+c4) em3x (b) (c1+c2x)em1x + c4em3x +c5e
m4x

 

(c) (c1+c2x+ c3x
2+c4x

3) em1x (d) none 

20) If two roots of auxiliary equation are complex say +i , -i  then the 

complementary function is 

(a) (c1cos   x+ c2sin x) (b) (c1cos x+ c2sin x) 

(c). (c1+c2x)cos x+ (c3+c4x)sin x) (d) None
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vector Calculus and Vector Operators 
 

INTRODUCTION 

In this chapter, vector differential calculus is considered, which extends the basic 

concepts of differential calculus, such as, continuity and differentiability to vector functions 

in a simple and natural way. Also, the new concepts of gradient, divergence and curl are 

introduced. 

DIFFERENTIATION OF A VECTOR FUNCTION 

Let S be a set of real numbers. Corresponding to each scalar t ε S, let there be 

associated a unique vector f . Then f  is said to be a vector (vector valued) function. S is 

called the domain of f . We write f = f (t). 

 

Let i , j, k be three mutually perpendicular unit vectors in three dimensional space. We 
 

  

can write f = f (t)= 

 
 

f1 (t)i  f2 (t) j  f3 (t) k , where f1(t), f2(t), f3(t) are real valued functions 
 

  

(which are called components of f ). (we shall assume that i , j, k are constant vectors). 

 

1. Derivative: 
 

Let f be a vector function on an interval I and a є I. Then 

 

Lt
ta 

 
 

f (t)  f (a) 
, if

 

t  a 
 

  

exists, is called the derivative of f at a and is denoted by f 
 df 

1(a) or  dt at t = a. We also 

 

say that f is differentiable at t =a if f 1(a) exists. 
 

2. Higher order derivatives 
 

Let f be differentiable on an interval I and f 1= 

 
 

df 
be the derivative of f . If 

dt 

Lt
ta 

 
  

f 1(t)  f 1(a) 

t  a 

 
 

exists for every a Є I1  I . It is denoted by f 
11= 

 
 

d 2 f 
. 

dt 2 
 

 

Similarly we can define f 111(t) etc. 

 
We now state some properties of differentiable functions (without proof) 

(1) Derivative of a constant vector is a . 

If a and b are differentiable vector functions, then 
 

(2). 
d 

(a  b )  
da 

 
db

 

dt dt dt 
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(3). 
d 

(a.b )  
da 

.b  a. 
db

 
dt dt dt 

 

(4). 
d 

(a  b )  
da 

 b  a  
db

 

dt dt dt 
 

(5). If f is a differentiable vector function and  is a scalar differential function, then 
 

 d 
( f )   

df
  d 

f


dt dt dt 
 

 

(6). If f = f1 (t)i  f 2 (t) j  f3 (t) k where f1(t), f2(t), f3(t) are cartesian components of 
 

 

the vector f , then 
df

  
df1 i  

df 2 j  
df3  k 

dt dt dt dt 

(7). The necessary and sufficient condition for f (t) to be constant vector function is 
 

df 
= 0 . 

dt 
 

3. Partial Derivatives 

Partial differentiation for vector valued functions can be introduced as was done in the 

case of functions of real variables. Let f be a vector function of scalar variables p, q, t. Then 

we write f = f (p,q,t). Treating t as a variable and p,q as constants, we define 

Ltt 0 

 f ( p, q,t  t)  f ( p, q,t) 

t 
 

 

if exists, as partial derivative of f w.r.t. t and is denot by 
f

 
t 

Similarly, we can define 

differentiation. 

4. Properties 

 
  

f 
, 
f 

p q 
also. The following are some useful results on partial 

 

1) 
 

(a )  
 

a   
a

 
   

t t t 

2). If λ is a constant, then 

 
  

(a )   
a

 
t t 

3). If c is a constant vector, then 
 

(c )  c 



t t 
 

 

4). 
 

(a  b )  
a 

 
b

 
   

t t t 

5). 
 

(a.b )  
a 

.b  a. 
b

 
   

t t t 

6). 
 

(a  b )  
a 

 b  a  
b

 
   

t t t 
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7). Let f = f1i  f 2 
 

 

j  f3 k , where f1, f2, f3are differential scalar functions of more then one 
 

 

variable, Then 
f 

 i 
f1  j 

f 2    k 
f3 (treating i , j, k 

    

as fixed directions) 
t t t t 

 

 

5. Higher order partial derivatives 
 

 2 f 
 

  

 
 

  f 



2 f 

 
 

  f 
Let f = f (p,q,t). Then   , 

 
   

   etc. 
 

   t 2 t  t  pt p  t 
   

6.Scalar and vector point functions: Consider a region in three dimensional space. To each 

point p(x,y,z), suppose we associate a unique real number (called scalar) say . This (x,y,z) 

is called a scalar point function. Scalar point function defined on the region. Similarly if to 

each point p(x,y,z)we associate a unique vector f (x,y,z), f is called a vector point function. 

Examples: 

For example take a heated solid. At each point p(x,y,z)of the solid, there will be 

temperature T(x,y,z). This T is a scalar point function. 

Suppose a particle (or a very small insect) is tracing a path in space. When it occupies 

a position p(x,y,z) in space, it will be having some speed, say, v. This speedv is a scalar point 

function. 

Consider a particle moving in space. At each point P on its path, the particle will be 

having a velocity v which is vector point function. Similarly, the acceleration of the particle 

is also a vector point function. 

In a magnetic field, at any point P(x,y,z) there will be a magnetic force f (x,y,z). This 

is called magnetic force field. This is also an example of a vector point function. 

7. Tangent vector to a curve in space. 

Consider an interval [a,b]. 

Let x = x(t),y=y(t),z=z(t)be continuous and derivable for a t b. 

Then the set of all points (x(t),y(t),z(t)) is called a curve in a space. 

Let A = (x(a),y(a),z(a)) and B = (x(b),y(b),z(b)). These A,B are called the end points of the 

curve. If A =B, the curve in said to be a closed curve. 

Let P and Q be two neighbouring points on the curve. 

Let  

 
Then 

r 
is along the vector PQ. As Q→P, PQ and hence 

t 

 
 

PQ 
tends to be along the 

t 

tangent to the curve at P. 
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Hence lt 

r 
= 

dr 
 

 

will be a tangent vector to the curve at P. (This 
dr

 
 

may not be a unit 

 
vector) 

t 0 t dt dt 

Suppose arc length AP = s. If we take the parameter as the arc length parameter, we 
 

 

can observe that 
dr

 
ds 

 
is unit tangent vector at P to the curve. 

 

 

VECTOR DIFFERENTIAL OPERATOR 

Def. The vector differential operator (read as del) is defined as 

 i 



x 


j 
y 

 k 
 

. This operator possesses properties analogous to those of ordinary 
z 

vectors as well as differentiation operator. We will define now some quantities known as 

“gradient”, “divergence” and “curl” involving this operator . We must note that this 

operator has no meaning by itself unless it operates on some function suitably. 

 

GRADIENT OF A SCALAR POINT FUNCTION 

Let (x,y,z) be a scalar point function of position defined in some region of space. 

Then the vector function i 
 

 j 
 

 k 



is known as the gradient of  or 

x y z 

= ( i 
 
 j 

 
 k 

  
) = i 

 
 j 

 
 k 




     

x y z 

Properties: 

x y z 

(1) If f and g are two scalar functions then grad(f g)= grad f  grad g 

(2) The necessary and sufficient condition for a scalar point function to be constant is that f = 



0 

(3) grad(fg) = f(grad g)+g(grad f) 

(4) If c is a constant, grad (cf) = c(grad f) 

 f (5) grad  g 
  g(grad f )  f (grad g) 

 

 

g 2 

 
, (g  0) 

 

   




  



(6) Let r = x i y j z k . Then dr  dx i dy j dz k if   is any scalar point function, then 

d  
x 

dx  
y 

dy  
z 

dz   i 
x 

 j 
y 

 k 
 

  

 
     

.idx  jdy  kdz .dr 

z 
      


 


DIRECTIONAL DERIVATIVE 


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

Let (x,y,z) be a scalar function defined throughout some region of space. Let this function 

have a value  at a point P whose position vector referred to the origin O is OP = r . Let 

+Δ be the value of the function at neighbouring point Q. If  Δ r . Let Δr be the 

length of Δ 

  gives a measure of the rate at which  change when we move from P to Q. The limiting 

value of  is called the derivative of  in the direction of PQ or simply 

directional derivative of  at P and is denoted by d/dr. 

Theorem 1: The directional derivative of a scalar point function  at a point P(x,y,z) in the 

direction of a unit vector e is equal to e . grad = e . . 

Level Surface 
 

If a surface (x,y,z)= c be drawn through any point P( r ), such that at each point on it, 

function has the same value as at P, then such a surface is called a level surface of the 

function  through P. 

e.g : equipotential or isothermal surface. 

Theorem 2:  at any point is a vector normal to the level surface (x,y,z)=c through that 

point, where c is a constant. 

The physical interpretation of 

The gradient of a scalar function (x,y,z) at a point P(x,y,z) is a vector along the normal to the 

level surface (x,y,z) = c at P and is in increasing direction. Its magnitude is equal to the greatest rate 

of increase of . Greatest value of directional derivative of  at a point P = |grad | at that point. 

SOLVED PROBLEMS 

1: If a=x+y+z, b= x2+y2+z2 , c = xy+yz+zx, prove that [grad a, grad b, grad c] = 0. 

Sol:- Given a=x+y+z 

There fore 
a 

 1, 
a 

 1, 
a 

 1 
   

x y z 

Grad a = a = i 
a 

 i  j  k 
x 

Given b= x2+y2+z2 

Therefore 
b 

 2x, 
b 

 2 y, 
b 

 2z 
   

x y z 

Grad b = b = i 
b 

 j 
b 

 z 
b 

 2xi  2 yj  2zk 
   

x y z 
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12  22  22 



 

  

Again c = xy+yz+zx 

Therefore 
c 

 y  z, 
c 

 z  x, 
c 

 y  x 
   

x y z 

Grad c = i 
c 

 j 
c 

 z 
c 

 ( y  z)i  (z  x) j  (x  y)k 
   

x y z 

1 1 1 

[grad a, grad b, grad c] = 

 
[grad a, grad b, grad c] =0 

2x 

y  z 

2 y 

z  x 

2z 

x  y 

 0, (on simplification) 

 

f i (r) 
  

2: Show that [f(r)] = r where r = 
r 

 
 

xi  yj  zk . 
 

 

Sol:- Since r = xi  yj  zk , we have r2= x2+y2+z2 
Differentiating w.r.t. ‘x’ partially, we get 

2r 
r 

 2x  
r 

 
x 

.Similarly 
r 

 
y
 

     , 
r 

 
z 

  

x x r y r z r 
     1 r 1 x 

[f(r)] =i 
x 

 j 
y 

 k 
z 
 f (r)  if 

f 1 (r) f 1 (r) 
 

 
 

(r) 
x 

 if (r) 
r 

= 
r 
 ix  

r 
.r 

Note : From the above result, (log r) = 
1 

r 
r 2 

3: Prove that (rn)= nrn-2 r . 

Sol:- Let r = 
 

 

xi  yj  zk and r = r . Then we have r2 = x2+y2+z2 Differentiating w.r.t. x 

partially, we have 

2r 
r 

 2x  
r 

 
x 

.Similarly  
r 

 
y 

and 
r 

 
z
 

       

x x r y r z r 

(rn)= i 
 

(r n ) i nr n1 
r 

i nr n1 
x 
nrn2 ix  nrn2  (r ) 

x x r 

Note : From the above result, we can have 

(1). 
 1  

  
r
 r r 3 , taking n = -1 (2) grad r = 

r 
, taking n = 1 r 

  

4: Find the directional derivative of f = xy+yz+zx in the direction of vector i  2 j  2k 

point (1,2,0). 

Sol:- Given f = xy+yz+zx. 

at the 

Grad f = i 
f 



x 
j 
f 

y 
 z 

f 

z 

 
 

 ( y  z)i  (z  x) j  (x  y)k 

 
 

If e is the unit vector in the direction of the vector i  2 j  2k , then 
 
 

 

e    
i  2 j  2k 

 
1 

(i  2 j  2k ) 
3 
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e 
1 22  32 14 

1 

14 

3 

14 

21 

1 

21 

Directional derivative of f along the given direction =  

 
1 i  2 j  2k .y  zi  z  x j  x  yk at (1,2,0) 
3 

 

 

5: Find the directional derivative of the function xy2+yz2+zx2 along the tangent to the curve x 

=t, y = t2, z = t3 at the point (1,1,1). 

Sol: - Here f = xy2+yz2+zx2 

f = i 
f 
 j 

f 
 k 

f 
= y 2  2xzi  z 2  2xyj  x2  2 yzk 

x y z 

At (1,1,1) , f = 3i  3 j  3k 
 

Let r be the position vector of any point on the curve x =t , y = t2, z = t3. then 
  

r = xi  y j  z k  ti  t 2 j  t 3 k 

 

 

We know that 

r 
 i  2tj  3t 2k  (i  2 j  3k ) at (1,1,1) 

t 
 

 r 
is the vector along the tangent to the curve. 

t 

Unit vector along the tangent = 

 
   

 
i  2 j  3k 

 
   

 
i  2 j  3k 

 
 
 

 

Directional derivative along the tangent = f .e 

= (i  2 j  3k ) .3 (i  j  k ) (1  2  3) 


6: Find the directional derivative of the function f = x2-y2+2z2 at the point P =(1,2,3) in the 

direction of the line PQ where Q = (5,0,4). 

 

 
  

Sol:- The position vectors of P and Q with respect to the origin are OP = i  2 j  3k 
 

OQ = 5i  4k 
 

PQ = OQ – OP = 4i  2 j  k 

 

and 

 
 

Let e be the unit vector in the direction of PQ . Then e  
4i  2 j  k 

grad f = i 
f

 

x 

 
j 
f

y 

 
k 
f

z 

 
 

 2xi  2 yj  4zk 

 
 

 

The directional derivative of f at P (1,2,3) in the direction of PQ = e .f 
 

  

= (4i  2 j  k ) . (2xi  2 yj  4zk ) (8x  4 y  4z) at(1,2,3)  
 (28) 

 

7: Find the greatest value of the directional derivative of the function f = x2yz3 at (2,1,-1). 

 

e 

18 

14 

1 

21 

1 

21 
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16 16 144 

n 

n 9  1  1 11 

11 11 11 

1  4  9 a 

14 



14 



Sol: we have 

grad f = i 
f

 
x 

 
j 
f

y 

 
k 
f

z 

 
 2xyz3i  x2 z3 j  3x2 yz 2k =  4i  4 j 12k 

 

at (2,1,-1). 

Greatest value of the directional derivative of f = f  = 4 
 

 

8: Find the directional derivative of xyz2+xz at (1, 1 ,1) in a direction of the normal to the 

surface 3xy2+y= z at (0,1,1). 

Sol:- Let f(x, y, z)  3xy2+y- z = 0 

Let us find the unit normal e to this surface at (0,1,1). Then 
f 

 3y 2 , 

x 

f 
 6xy  1, 

f
 

y z 
 1. 

f = 3y2i+(6xy+1)j-k 

(f)(0,1,1) = 3i+j-k = n 

e =  
3i  j  k 

 
3i  j  k 

 

Let g(x,y,z) = xyz2+xz,then 
 

g 
 yz 2  z, 

g 
 xz2 , 

g 
 2xy  x 

   

x y z 

g=(yz2+z)i+xz2j+(2xyz+x)k 

And [g] (1,1,1) = 2i+j+3k 

Directional derivative of the given function in the direction of e at (1,1,1) = g. e 

=(2i+j+3k). 
 3i 





j  k 
 


6  1  3 
   

4 

 
 

9: Find the directional derivative of 2xy+z2 at (1,-1,3) in the direction of i  2 j  3k . 

Sol: Let f = 2xy+z2then 
f 

 2 y, 
x 

f  
 2x, 

f 

y z 
 2z. 

grad f = i 
f 

 2 yi  2xj  2zk 

x 

 
 

and (grad f)at (1,-1,3)=  2i  2 j  6k 

given vector is a  i  2 j  3k   

Directional derivative of f in the direction of a is 
 

  

 
(i  2 j  3k )(2i  2 j  6k ). 






 
20 

 

10: Find the directional derivative of  = x2yz+4xz2 at (1,-2,-1) in the direction 2i-j-2k. 

Sol:- Given  = x2yz+4xz2 
 

 2xyz  4z 2 , 
 

 x 2 z, 
 

 x 2 y  8xz. 

x y z 

11. 

14 

a.f 

a 

 2  4 18 

14 
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2i  j  2k. 

4 1 4 

22  22  22 12 

3 



 

Hence  = i 
 

 i (2xyz  4z 2 ) 

x 

 
 

jx 2 z  k (x 2 y  8xz) 

 at (1,-2,-1) = i(4+4)+j(-1)+k(-2-8)= 8i-j-10k. 

The unit vector in the direction 2i-j-2k is 

a   
1 

(2i  j  2k) 
3 

Required directional derivative along the given direction = . a 

= (8i-j-10k). 1/3 (2i-j-2k) 

= 1/3(16+1+20) = 37/3. 

11: If the temperature at any point in space is given by t = xy+yz+zx, find the direction in 

which temperature changes most rapidly with distance from the point (1,1,1) and determine 

the maximum rate of change. 

Sol:- The greatest rate of increase of t at any point is given in magnitude and direction by t. 

    

We have t = i 
x 

 j 
y 

 k 
z 

 (xy  yz  zx) 

 
  

= i ( y  z)  j(z  x)  k (x  y)  2i  2 j  2k at (1,1,1) 
 

Magnitude of this vector is   2 

Hence at the point (1,1,1) the temperature changes most rapidly in the direction given 

by the vector 

 
 

2i  2 j  2k and greatest rate of increase = 2 . 

12: Findthe directional derivative of (x,y,z) = x2yz+4xz2 at the point (1,-2,-1) in the 

direction of the normal to the surface f(x,y,z) = x log z-y2 at (-1,2,1). 

Sol:- Given (x,y,z) = x2yz+4xz2 at (1,-2,-1) and f(x,y,z) = x log z-y2 at (-1,2,1) 
 

Now  =  
i  

 j  
 

k 

x y z 
 

= (2xyz  4z 2 )i  (x 2 z) j  (x 2 y  8xz)k 
 

()(1,-2,-1) = [2(1)(2)(1)  4(1)2 ]i  [(1)2 (1) j]  [(12 )(2)  8(1)]k    (1) 
 

= 8i  j  10k 

Unit normal to the surface 

 
f(x,y,z)= x log z- y2 is 

 

Now f = i 
f

 

x 

 
j 
f

y 

 
k 
f

z 

 log z i  (2 y) j  
x 

k 
z 

 
At (-1,2,1), f = log(1) i  2(2) j  

1 
k   4 j  k 

1 

3 

f 

f 
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 4 j  k . 

16 1 

 4 j  k . 

17 

17 

4 10 

17 

14 

17 

2 1  22  22 

116 16 



9  9  36 

 
 

 
 

 

= 



Directional derivative = . 

 
 

= ( 8i 







j  10k ). 
 4 j  k . 

  . 
 
 

13: Find a unit normal vector to the given surface x2y+2xz = 4 at the point (2,-2,3). 

Sol:- Let the given surface be f = x2y+2xz – 4 

On differentiating, 

f  
 2xy  2z, 

f
 

x y 

 x 2 , 
f

 

z 

 

 2x. 

 
grad f  i 

f 
 i2xy  2z jx2  2xk 

x 

(grad f) at (2,-2,3) = i 8  6 4 j  4k  2i  4 j  4k 

grad (f) is the normal vector to the given surface at the given point. 

 
Hence the required unit normal vector 

 
  

= 
2(i  2 j  2k ). 

 
 i  2 j  2k 

3 

14: Evaluate the angle between the normal to the surface xy= z2 at the points (4,1,2) and 

(3,3,-3). 

Sol:- Given surface is f(x,y,z) = xy- z2 

Let n1 and n2 be the normal to this surface at (4,1,2) and (3,3,-3) respectively. 

Differentiating partially, we get 

f  
 y, 

f 

x y 
 x, 

f
 

z 

 

 2z. 

 
 

grad f = yi  xj  2zk 
 

n1= (grad f) at (4,1,2) = i  4 j  4k 
 

n2 = (grad f) at (3,3,-3) = 3i  3 j  6k 

Let  be the angle between the two normal. 

 
cos  =  

i  4 j  4k 
. 
3i  3 j  6k 

f 

f 

f 

f 

f 

f 

n1.n2 

n1 n2 
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4 11 11 











15: Find a unit normal vector to the surface x2+y2+2z2 = 26 at the point (2, 2 ,3). 

Sol:- Let the given surface be f(x,y,z)  x2+y2+2z2 – 26=0. Then 

f  
 2x, 

f 

x y 
 2 y, 

f
 

z 
 4z. 

grad f = i 
f 

 2xi+2yj+4zk 
x 

Normal vector at(2,2,3) = [f ](2,2,3) = 4i +4 j +12 k 

Unit normal vector = = 
4(i  j  3k ) 

 
i  j  3k 

 

16: Find the values of a and b so that the surfaces ax2-byz = (a+2)x and 4x2y+z3= 4 may 

intersect orthogonally at the point (1, -1,2). 

(or) Find the constants a and b so that surface ax2-byz=(a+2)x will orthogonal to 4x2y+z3=4 at 

the point (1,-1,2). 

Sol:- Let the given surfaces be f(x,y,z) = ax2-byz - (a+2)x ------------ (1) 

And g(x,y,z) = 4x2y+z3- 4 ----------- (2) 

Given the two surfaces meet at the point (1,-1,2). 

Substituting the point in (1), we get 

a+2b-(a+2) = 0  b=1 

 
Now 

f 
 2ax  (a  2), 

f
 

x y 

 

 bz and 
f 

 by. 

z 

f = i 
f 

 [(2ax-(a+2)]i-bz+bk = (a-2)i-2bj+bk 
x 

 

 

Also 

 
g 

 8xy, 
g 

 4x2 , 
g 

 3z 2 . 
   

= (a-2)i-2j+k = n1, normal vector to surface 1. 

x y z 

g = i 
g 

 8xyi+4x2j+3z2k 
x 

(g)(1,-1,2) = -8i+4j+12k = n2 , normal vector to surface 2. 

Given the surfaces f(x,y,z), g(x,y,z) are orthogonal at the point (1,-1,2). 

f .g 0  ((a-2)i-2j+k). (-8i+4j+12k)=0 

-8a+16-8+12  a =5/2 

Hence a = 5/2 and b=1. 

(3  12  24) 

33 54 

 9 

33  54 

f 

f 
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f 

f 

21 

n1.n2 

n1 n2 



 

 

17: Find a unit normal vector to the surface z= x2+y2 at (-1,-2,5) 

Sol:- Let the given surface be f = x2+y2-z 

f  
 2x, 

f 

x y 
 2 y, 

f
 

z 
 1. 

grad f = f = i 
f 

 2xi+2yj-k 
x 

(f) at (-1,-2,5)= -2i-4j-k 

f is the normal vector to the given surface. 
 

Hence the required unit normal vector = = 

 

 2i  4 j  k 
 
 2i  4 j  k 

 


(2i  4 j  k) 

 

18: Find the angle of intersection of the spheres x2+y2+z2 =29 and x2+y2+z2 +4x-6y-8z-47 =0 

at the point (4,-3,2). 

Sol:- Let f = x2+y2+z2 -29 and g = x2+y2+z2 +4x-6y-8z-47 

Then grad f= i 
f

 

x 

 
j 
f

y 

 
k 
f

z 

 
 

 2xi  2 yj  2zk 

 
and 

 
 

grad g = (2x  4)i  (2 y  6) j  (2z  8)k 

The angle between two surfaces at a point is the angle between the normal to the 

surfaces at that point. 

Let 
 

 

n1= (grad f) at (4,-3,2) =8 i  6 j  4k 
 

 

n2 = (grad f) at (4,-3,2) = 12i 12 j  4k 

The vectors n1 and n2 are along the normal to the two surfaces at (4,-3,2). Let θ be the 

angle between the surfaces. Then 
 

Cos θ=  . 
 
 

 

 cos 1




19 

29 

19: Find the angle between the surfaces x2+y2+z2 =9, and z = x2+y2- 3 at point (2,-1,2). 

Sol:- Let 1 = x2+y2+z2 -9=0 and 2= x2+y2-z- 3=0 be the given surfaces. Then 

1= 2xi+2yj+2zk and 2 = 2xi+2yj-k 

(2)2  (4)2  (1)2 

1 

21 

152 

116 304 
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n1 n2 

n1 n2 16  4  16 16  4  16 

16  4  4 

6 21 

16 

6 21 

 3 21 
 

Let n1= 1 at(2,-1,2)= 4i-2j+4k and 

n2 = 2 at (2,-1,2) = 4i-2j-k 

The vectors n1 and n2 are along the normals to the two surfaces at the point (2,-1,2). Let θ be 

the angle between the surfaces. Then 

 
Cos θ =  

(4i  2 j  4k) 
. 
(4i  2 j  k) 

  






 cos1 8 







20: If a is constant vector then prove that grad ( a . r )= a 

Sol: Let a = a1i  a2 j  a3 k , where a1,a2,a3 are constants. 
 

a . r = ( a1i  a2 j  a3k ).( xi  yj  zk ) = a1 x  a2 y  a3 z 
 

(a.r )  a , 





(a.r )  a , 
 

(a.r )  a 
 

x 1 y 
2   
z 

3
 

grad ( a . r )= a1i  a2 j  a3 k = a 

21: If = yzi  zxj  xyk , find . 

Sol:- We know that = i 
f

 

x 

 
j 
f

y 

 
k 
f

z 

Given that = yzi  zxj  xyk 

Comparing the corresponding coefficients, we have 
 

 yz, 
 

 zx, 
 

 xy 

x y z 

Integrating partially w.r.t. x,y,z, respectively, we get 

= xyz + a constant independent of x. 

= xyz + a constant independent of y. 

= xyz + a constant independent of z. 

Here a possible form of  is = xyz+a constant. 
 

 

DIVERGENCE OF A VECTOR 
 

Let f be any continuously differentiable vector point function. Then 
 

 

i. 
f 
x 

 
 

 j. 
f


y 

 
 

 k . 
f


z 

 
  

is called the divergence of f and is written as div f . 

 
  f i. 

f 
 j. 

f
 

 

   

 
 

 
 

 k . 
f     


 



 




  i.e., div 
= 

x y 

z 
=i 

x 
 j 

y 
 k 

z 
. f 

 

Hence we can write div f as 

8 

3 21 

. 
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  





 
  

div f = . f 

This is a scalar point function. 
 

 Theorem 1: If the vector f = f i  f j  f 
 

  k , then div f = f1   
f 2    

f3 
   

1 2 3 

 

Prof: Given f = f1i  f 2 j  f3 k 

x y z 

 
 

 

f  
 i 

f1 
 j 

f 2 
 k 

f3 
    

x x x x 
 

 

Also i. 
f 

 
f1   . Similarly 

 

 
 

j. 
f 

 
f2 

 
 

and k . 
f

 
 
f3 

 

x x 
 

 

 
 f 







y 
f1 

y 
f 2 

 

z z 
f3 

 
We have div f = i . 

x 
  x 

 
y 

 
z 

 

Note : If f is a constant vector then 
f1 , 

f 2 , 
f3 are zeros. 

   

x y z 

div f =0 for a constant vector f . 
 

Theorem 2: div ( f  g ) = div f  div g 

Proof: div ( f  g )= i . 



x 
f  g  = i . 




x 
f  i . 




x 
g = div f  div g . 

 
 

Note: If  is a scalar function and f is a vector function, then 
     

 (i). (a.)  a.i 
x 

 j 
y 

 k 
z 


 

= 
 






  


 



 


 

(a.i ) 
x 

 (a. j) 
y 

 (a.k ) 
z 


= 
  



 


 








(a.i ) 
x 

 (a. j) 
y 

 (a.k ) 
z 


 

= (a.i ) 
 

. and 
x 

(ii). 

 
 

(a.) f = (a.i ) 
f 

. by proceeding as in (i) [simply replace  by f in (i)]. 
x 

 

SOLENOIDAL VECTOR 

A vector point function f is said to be solenoidal if div f =0. 

 

Physical interpretation of divergence: 
 

Depending upon f in a physical problem, we can interpret div f (= . f ). 

Suppose F (x,y,z,t) is the velocity of a fluid at a point(x,y,z) and time ‘t’. Though 

time has no role in computing divergence, it is considered here because velocity vector 

depends on time. 
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Imagine a small rectangular box within the fluid as shown in the figure. We would 

like to measure the rate per unit volume at which the fluid flows out at any given time. The 

divergence of F measures the outward flow or expansions of the fluid from their point at 

any time. This gives a physical interpretation of the divergence. 

Similar meanings are to be understood with respect to divergence of vectors f from 

other branches. A detailed elementary interpretation can be seen in standard books on fluid 

dynamics, electricity and magnetism etc. 

SOLVED PROBLEMS 
 
 

 

1: If f = 
 

 

xy2i  2x2 yzj  3yz 2k 

 
 

find div f at(1, -1, 1). 
 

  

Sol:- Given f = xy2i  2x2 yzj  3yz 2k . 

Thendiv f = 
f1  

f 2  
f3 = 

 
(xy2 )  

 
(2x2 yz)  

 
(3yz 2 )  y2+2x2z-6yz 

      

x y z x y z 
 

(div f ) at (1, -1, 1) = 1+2+6 =9 

 

2: Find div f when grad(x3+y3+z3-3xyz) 

Sol:- Let = x3+y3+z3-3xyz. 

 
Then 

 
 3x2  3yz, 

 
 3y 2  3zx, 

 
 3z 2  3xy 

x y z 

grad  = i 
 

 j 
 

 k 




 

= 3[(x2  yz)i  ( y 2  zx) j  (z 2  xy)k ] 
x y z 

div f = 
f1   

f 2   
f3  = 

 
[3(x2  yz)]  

 
[3( y2  zx)]  

 
[3(z 2  xy)] 

      

x y z x y z 

= 3(2x)+3(2y)+3(2z) = 6(x+y+z) 
 

  

3: If   f = (x  3y)i  ( y  2z) j  (x  pz)k 

 

 
is solenoidal, find P. 

 
  

Sol:- Let f = (x  3y)i  ( y  2z) j  (x  pz)k = f1i  f 2 

 
 

j  f3 k 

We have 
f1 

x 
 1, 

f 2
 

y 

 1, 
f3    p 

z 

div f = 
f1  

f 2  
f3 = 1+1+p =2+p 

   

x y z 

since f is solenoidal, we have div f = 0  2  p  0  p  2 

 
 

4: Find div f = r nr. Find n if it is solenoidal? 
 

 

Sol: Given f = r nr. where 
 

 

r  xi  yj  zk and r  r 
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We have r2 = x2+y2+z2 

Differentiating partially w.r.t. x , we get 
 

2r 
r 

 2x  
r 

 
x 

, 
   

x x r 

Similarly r 
 

y 
and 

r 
 

z 
    

y r 
 

  

f =rn ( xi  yj  zk ) 

z r 

 

 
 

div f = 
 

(r n x) 

x 

 
(r n y) 

y 

 
(r n z) 

z 

= nr n1 
r 

x  r n  nr n1 
r 

y  r n  nr n1 
r 

z  r n 
   

x 

n1  x
2

 

y 

y 2 z 2  n 
 

  

z 

n1 r 2 


= nr 


    3r 
r r 

 nr +3rn = nrn+3rn= (n+3)rn 
r 

Let f = r nr 
 

be solenoidal. Then div f = 0 

(n+3)rn = 0  n= -3 

 
5: Evaluate . 

 r  
where r  xi  yj  zk and r  r . 

 
  

r 
3 

 
Sol:- We have 

r = xi+yj+zk and r = 
 

 

r 
 

x 
, 
r 




  

y 
, and 

r 
 

z
 

   

x r y r z r 
 

 

 
r 

= r . 
r 3 

r-3 = r-3xi+r-3yj+r-3zk = f1i+f2j+f3k 

Hence . 
 r

  
= 
f1  

f 2    
f3 

 

 
r 3 

 
x y z 

 
 

We have f1= r-3 x  
f1    r 3.1  x(3)r 4. 

r
 

x x 

 
f1  r 3  3xr4 

x 
 r 3  3x2r 5 

  

x y 
. 

 r  
= 

f1  3r 3  3r 5 x 2 
 

 
 

r 3   
x 


 

= 3r-3-3r-5 r2 = 3r-3-3r-3 =0 

6: Find div r where r = 

 
 

xi  yj  zk 

Sol:- We have r = 
 

 

xi  yj  zk = f1i  f 2 

 
 

j  f3 k 

 

x 2  y 2  z 2 

r 



81 

 

 



 
div r = f1 

 
f 2 

 
f3 

= 


  

(x) 
 

( y) 


 
(z) 1  1  1  3 

 

x y z x y z 
 

 

 

 

CURL OF A VECTOR 

Def: Let f be any continuously differentiable vector point function. Then the vector function 

 

defined by 

 
 

i  
f 

x 

 
 

 j  
f


y 

 
 

 k  
f


z 

 
   

is called curl of f and is denoted by curl f or (x f ). 

f f 
 

   

f 




f 




Curl f = i  
x 

 j  
y 

 k  
z 

 i  
x 


 

Theorem 1: If f is differentiable vector point function given by f = f1i  f 2 
 

 

j  f3 k then 

 f3 
 

 

f 2   f1 
 

 

 
 

f3   f 2 
 

 

 
 

f1 





curl f =  

y 
 
z 

i   
z

  
x 

 j   
x 

 
y 

k 


Proof : curl f = 
 

 

 
i  







 
( f )  i  

 
( f i  f 

 
 

  

 
 


j  f k ) 


 

 f2 
k  

f3 
j 








  

x  
x 

1 2 
3  

x 


x 
 f 2 f3 







 

 f3 f1   f1 
 

  

 
  

f 2 


 




= 
x 

k  
x j    

y 
i  

y 
k    

z
 j  

z 
i 

     
 f3 

 
 

f 2   f1 
 

 

 
 

f3   f 2 
 

 

 
 

f1 
= i  

y
  

z 
  j 

z
  

x 
  k  

x
 
 
y 




     

Note : (1) The above expression for curl f  can be remembered easily through the representation. 
 

 
 

 

curl f = 

 
  

j k 

 


 

y z 

f 2 f3 

 

 
 

=x f 

 
  

Note (2) : If f is a constant vector then curl f = o . 

Theorem 2: curl a  b  curl a  curl b 

Proof: curl a  b   i 

 a 
 

 a  b 
x 
b  a b 

 

 

= i  
x 

 
x 

 = i  
x 

 ix 
x

 

 

= curl a  curl b 
 

1. Physical Interpretation of curl 

If w is the angular velocity of a rigid body rotating about a fixed axis and v is the 

velocity of any point P(x,y,z) on the body, then w = ½ curl v . Thus the angular velocity of 

i 



x 

f1 
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

rotation at any point is equal to half the curl of velocity vector. This justifies the use of the 

word “curl of a vector”. 

2. Irrotational Motion, Irrotational Vector 

Any motion in which curl of the velocity vector is a null vector i.e curl v = 0 is 

said to be Irrotational. 

Def: A vector f is said to be Irrotational if curl f = 0 . 
 

If f is Irrotational, there will always exist a scalar function (x,y,z) such that f 
 

=grad . This is called scalar potential of f . 
 

It is easy to prove that, if f = grad , then curl f = 0. 

Hence x f = 0  there exists a scalar function  such that f = . 

This idea is useful when we study the “work done by a force” later. 

 
 

 
 

 

1: If f = 

SOLVED PROBLEMS 
 

  

xy2i  2x2 yz j  3yz 2 k find curl f at the point (1,-1,1). 
 

 

Sol:- Let f = 
 

 

xy2i  2x2 yz j  3yz 2 k . Then 
 

  

 
 

  

curl f = x f = 
 

 

= 
  2 





2    2 





2      2 

 

 

 
 2 i  

y 
(3yz )  

z 
(2x yz)  j 

z 
(xy )  

x 
(3yz )  k  

x 
(2x yz)  

y 
(xy )

     

= i  3z 2  2x2 z j0  0 k 4xyz  2xy  3z 2  2x2 yi  4xyz  2xyk 
 

 

= curl f at (1,-1,1) = 
 

 

 i  2k . 
 

 
 

2: Find curl f where f = grad(x3+y3+z3-3xyz) 

Sol:- Let = x3+y3+z3-3xyz. Then 

grad = i 
 

 3(x2  yz)i  3( y 2  zx) j  3(z 2  xy)k 

x 
 

 
curl grad = x grad = 3 

i 



j 



k 



x y z 

xy2 2x 2 yz  3yz 2 

 

i 



j 



k 



x y z 

x 2  yz y 2  zx z 2  xy 
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 

= 3[i  x  x j y  y k  z  z]  0 

curl f = 0 . 

Note: We can prove in general that curl (grad )= 0 .(i.e) grad  is always irrotational. 

 
3: Prove that if r is the position vector of an point in space, then rn r is Irrotational. (or) Show 

that 

curl 

Sol:- Let r = 
 

 

xi  yj  zk and r = r r2= x2+y2+z2. 

 

Differentiating partially w.r.t. ‘x’, we get 
 

2r 
r 

 2x  
r 

 
x 

, 
   

x x r 

Similarly r 
 

y 
, and 

r 
 

z 
    

y r z r 

We have r n r  r n (xi  yj  zk ) 
  

 
 (rn r )= 

 

 

 
 

 

= (r 


z) 




(r y) 


(r x) 




(r z) 


(r y) 



= 
 n1 r 

 
 

 
 

n1 r 





n1 

  y   z 





 i znr 

y 
 ynr 

z 
  nr i z 

r 
  y 

r 


      


 nr n2[zy  yzi  xz  zx j  xy  yzk ] 
 

 nr n2[0i  0 j  0k ] = nrn-2 [ 0 ]= 0 

Hence rn r is Irrotational. 
 
 

 

4: Prove that curl r = 0 

Sol:- Let r = xi  yj  zk 

curl r = i 


 
r   (ixi )  0 + 0 + 0 = 0 

x 

 r is Irrotational vector. 
5: If a is a constant vector, prove that curl 

 axr  
  

a
 

 
 

 
 

 
 

3r 
(a.r ). 

 
  

 
 

 
 

 

Sol:- We have r = xi  yj  zk 

 
r 

3    


r 3 r 5 

i 
 

 

n  n   
 

n  n 
k 
 

 

n  (r n x)



y  z  j 
z 

 x  x  y 

 

i 



 j 



k 



x 

xrn 

 y 

yr n 

z 

zr n 
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r 









  







r 
 i , 

r 



 

j , 
r 

 k 
 

x y z 

If = r then r2 = x2+y2+z2 

r 
 

x 
, 
r 




  

y 
, and 

r 
 

z
 

   

x r y r z r 

curl 
 a  r  

 i  
  a  r 

   






  
r 3      

x 
   

r 3   



Now   a  r  
 a 







 

  r  
 a  

 1 
 

 

 
  

r 
 

3 r 
r 






x 

 
r 3   

 
x 
 

r 3 

 

 r 3  x r 4  x   
 


= a  

 1 
i 






 


3 

xr 
 
 

a  i 
 

3x(a. r ) 
.
 

 

 
   

 r 3 r 5  r 3 r 5 

 i  
  a  r  

 i  
 a  i 

 
3x 

(a  r )
 
 

i (a  i ) 
 

3x 
i (a  r )

 
    

 
      

x 
 

r 3 




 r 3 r 5 

 r 3 r 5 

= 
(i.i )a  (i.a)i 

 
3x 

[(i.r )a  (i.a)r ] 
r 3 r 5 

Let a = a1i  a2 j  a3 k . Then i . a = a1 , etc. 
 

 i    a  r  



 


 

(a  a1i)  
3x 

(xa  a r ) 
 

 
  

 
  

x 
   

r 3   
  

r 3 r 3 
1

 
 i    a  r  




 


 

a  a1i  
3 

 

 
  

(x2a  a xr ) 
 

  

 
x 

 
r 3   

  
r 3 r 5  1 

= 
3a  a 

 
3a 

(r 2 )  
3r 

(a x  a 
   

y  a z) 

r 3 r 5 r 
5 1 2 3 

= 
2a 

 
3a 

 
3r 

(r.a )   
a 
 

3r 
(r.a ) 

r 3 r 3 r 5 r 3 r 5 

 
 

 

6: Show that the vector (x2  yz)i  ( y 2  zx) j  (z 2  xy) k 

potential. 
 

  

Sol: let f = (x2  yz)i  ( y 2  zx) j  (z 2  xy) k 

 
is irrotational and find its scalar 

 
  

 
 

 

Then curl f = = i(x  x)  0 

 

 

 

 f is Irrotational. Then there exists  such that f =. 

 i 
 

 j 
 

 k 
 

= (x2  yz)i  ( y 2  zx) j  (z 2  xy) k 

x y z 

Comparing components, we get 

 



x 
x2  yz     x2  yzdx  

x3  


3 

xyz  f1 ( y, z) ..... (1) 

i j k 

   

x y z 

x 2  yz y 2  zx z 2  xy 
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x 2  y 2  z 2 

 





y  



y 
y 2  zx   

3 

3 
 xyz  f2 (z, x) ..... (2) 

 
 z 

2 

z 
 xy    

z
 
3 
 xyz  f3 (x, y) ...... (3) 

 

 

From (1), (2),(3),   
x3  y3  z 3 

3 
 xyz 

 

   
1 

(x3  y 3  z 3 )  xyz  cons tan t 
3 

Which is the required scalar potential. 

 
 

7: Find constants a,b and c if the vector f = 
 

 

(2x  3y  az)i  (bx  2 y  3z) j  (2x  cy  3z) k 

 
is Irrotational. 

 
 

  

Sol:- Given f = (2x  3y  az)i  (bx  2 y  3z) j  (2x  cy  3z) k 

 
 

Curl f = = 
 

 
 

(c  3)i  (2  a) j  (b  3) k 
 

If the vector is Irrotational then curl f = 0 

2  a  0  a  2,b  3  0  b  3, c  3  0  c  3 

8: If f(r) is differentiable, show that curl { r f(r)} = 0 where r = xi  yj  zk . 

Sol: r = r = 

r2 = x2+y2+z2 

 
 2r 

r 
 2x  

r 
 

x 
, similarly 

   

r 
 

y 
, and 

r 
 

z 
    

x x r y r z r 
 

curl{ r f(r)}= curl{f(r)( 
 

 

xi  yj  zk 

 
 

)}= curl (x. f (r)i  y. f (r) j  z. f (r) k ) 
 
 

 

i j 

= 
 

k 
 

 i 
  

[zf (r)] 
 

[ yf (r)]



x 

xf (r) 

y 

yf (r) 

z 

zf (r) 


y z 


 1 r 

 
 

1 r   1 y 
 

 

1 z 

i zf 


(r) 
y 

 yf (r) 
z 
  i 


zf 

(r)  yf r 

(r) 
r 





3 

i 



j 



k 



x y z 

2x  3y  az bx  2 y  3z 2x  cy  3z 

 



86 

 

 




= 0 . 
 

9: If A is irrotational vector, evaluate div( A x r ) where r = xi  yj  zk . 
 

Sol:We have r = xi  yj  zk 

Given A is an irrotational vector 

x A = 0 

div ( A x r ) = .( A x r ) 

= r .(x A )- A .(x r ) 

= r .( 0 )- A .(x r ) [ using (1)] 

= - A .(x r )…..(2) 

 

 

Now x r = = 
 

 
           i  
y 

z  
z 

y   j 
x 

z  
z 

x   k  
x 

y  
y 

x   0 

     


 A .(x r )=0 …(3) 

 

Hence div ( A x r )=0. [using (2) and (3)] 
 
 

10: Find constants a,b,c so that the vector A = 

(x  2 y  az)i  (bx  3y  z) j  (4x  cy  2z) k 

. 

 
is Irrotational. Also find  such that A = 

 
 

 

Sol: Given vector is A = (x  2 y  az)i  (bx  3y  z) j  (4x  cy  2z) k 

Vector A is Irrotational  curl A = 0 

 

 

  0 
 

 

 
 

 (c 1)i  (a  4) j  (b  2) k  0 
 

 

 (c 1)i  (a  4) j  (b  2) k 

Comparing both sides, 

c+1=0, a-4=0, b-2=0 

c= -1, a=4,b=2 

 
 

= 0i  0 j  0 k 

Now A = (x  2 y  4z)i  (2x  3y  z) j  (4x  y  2z) k , on substituting the values of a,b,c 

i 



j 



 k 



x 

x 

y 

y 

 z 

z 

 

i 



j 



k 



x y z 

x  2 y  az bx  3y  z 4x  cy  2z 
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

we have A = . 
 
 A = (x  2 y  4z)i  (2x  3y  z) j  (4x  y  2z) k = 

 
i 
 

 j 
 

 k 


x y z 

Comparing both sides, we have 

 
 x+2y+4z = x2/2+2xy+4zx+f1(y,z) 

x 

 
 2x-3y-z = 2xy-3y2/2-yz+f2(z,x) 

y 

 
 4x-y+2z = 4xz-yz+z2+f3(x,y) 

z 

Hence = x2/2 -3y2/2+z2+2xy+4zx-yz+c 

11: If  is a constant vector, evaluate curl V where V = x r . 
 

Sol: curl (x r ) = i  
 

(  r )  i  
 

 r   
r 




 

x  x x 


= i [0   i ]  [a (b c)  (a.c)b (a.b ).c] 

= i ( i )  [(i.i )  (i.)i ]    (i.)i  3   2







Assignments 
 

   

1. If f = ex+y+z (i  j  k ) find curl f . 
 

  

2. Prove that f = ( y  z)i  (z  x) j  (x  y) k 

 

 

 
is irrotational. 

3. Prove that .( a  f )=  a 

 
 

. curl f where a is a constant vector. 
 

 

4. Prove that curl ( a  r )=2 a where a is a constant vector. 
 

 

5. If f = 

 
   

x2 yi  2zx j  2yz k find (i) curl f (ii) curl curl f . 

OPERATORS 
Vector differential operator 

The operator  =  i 
 
 j 

 
 k  




 

is defined such that = i 
 

 j 
 

 k 


  

where  is 

x y z 

a scalar point function. 

x y z 

Note: If  is a scalar point function then = grad = i 



x 

(2) Scalar differential operator a .

The operator a . = (a.i ) 
 

 (a. j) 
 

 (a.k ) 



is defined such that 

x y z 
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( a .)= (a.i ) 
 

 (a. j) 
 

 (a.k ) 



x 
 

 

And ( a .) f = (a.i ) 
f

 
x 

y 
 

 

 (a. j) 
f

 
y 

z 
 

 

 (a.k ) 
f

 
z 

(3). Vector differential operator a x

The operator a x= (a  i ) 



x 
 (a  j) 




y 
 (a  k ) 




z 
is defined such that 

(i). ( a x)= (a  i ) 
 

 (a  j) 
 

 (a  k ) 



x y z 

(ii). ( a x). f = (a  i ). 
f 

 (a  j). 
f 

 (a  k ). 
f 

 

x y z 

(iii). ( a x)x f = (a  i ) 
f 

 (a  j)  
f 

 (a  k )  
f 

 

x y z 

(4). Scalar differential operator . 

The operator  = i.
 


x 

 j. 



y 

 k . 



z 

 
 

is defined such that . f = i. 
f

 
x 

 
 

 j. 
f


y 

 
 

 k . 
f


z 
 

  

Note: . f is defined as div f . It is a scalar point function. 

(5). Vector differential operator  x 

The operator  x = i  



x 
 j  




y 
 k  




z 
is defined such that 

 
   

x f = i  
f 

 j  
f 

 k  
f 

 

x y z 

Note : x f is defined as curl f . It is a vector point function. 

(6). Laplacian Operator 2 
 

   


  

   2




 2 2 2  2 
.=i. 

x
i 

x 
 j 

y 
 k z 

  
x2        x2 y 2 z 2 



2  2 

  

 2  2 
 Thus the operator  

x 2  
y 2 

 
z 2 

is called Laplacian operator. 

Note : (i). 2= .() = div(grad ) 
(ii). If 2=0 then  is said to satisfy Laplacian equation. This  is called a harmonic 

function. 

 
 

SOLVED PROBLEMS 

1: Prove that div.(grad rm)= m(m+1)rm-2 (or) 2(rm) = m(m+1)rm-2 (or) 2(rn) = n(n+1)rn-2 

Sol: Let 
 

 

r  xi  yj  zk and r = r then r2 = x2+y2+z2. 

Differentiating w.r.t. ’x’ partially, wet get 2r 
r 

= 2x  
r 

= 
x 

. 
   

 
 

Similarly 

 
r 

=
 

y 

 
y 

and 
r 

 
r 

= 
z 

z r 

x x r 
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



x 

Now grad(rm) = i 
 

(r m ) = imrm1 
r 

= imrm1 
x 

= i mrm2 x 

x x r 

 div (grad rm) =  
 

[mrm2 x] =m 

(m  2)rm3 

r 
x  rm2 




x 
 x 



=m (m  2)rm4 x2  rm2  m(m  2)rm4 x2 rm2 

= m[(m-2)rm-4(r2)+3rm-2] 

= m[(m-2) rm-2+3rm-2]= m[(m-2+3)rm-2]= m(m+1)rm-2. 

Hence 2(rm) = m(m+1)rm-2 

 
2: Show that 2[f(r)]= 

d 2 f 

dr 2 

 2 df
r dr 

 
 f 11 (r)  

2
 

r 

 
f 1 (r) where r = r . 

Sol: grad [f(r)] = f(r)= i  
 

[ f (r)] i f 1 (r) 
r 

 i f 1 (r) 
x
 

x x r 

 div [grad f(r)] = 2[f(r)] = .f(r)=  
  

f 1(r) 
x 


x  r 

r 
 

[ f 1 (r)x]  f 1 (r)x 
 

(r) 
  

= x x  

r 2 

r
 

f 11(r) 
r 

x  f 1 (r)
 
 f 1 (r)x

 x 




 
x   

r 


=     

r 2 

 
11 x 1 

 
 

1  x 


rf (r) x  rf (r)  f (r)x 

= 
  r  r 

r 2 
 

rf 



11(r)  x  rf 

r 
r 2 

1(r)  x2 

. 
f 1r 



r 
 

 

 
f 11r 



2  
3
 1  

 1
 1   2 

r f r 
r 2 r 

f r r 
r3 

 f 11r  
2 

f 1r 
r 

3: If  satisfies Laplacian equation, show that  is both solenoidal and irrotational. 

Sol: Given 2 = 0 div(grad )= 0  grad  is solenoidal 

We know that curl (grad ) = 0 grad  is always irrotational. 

 
4:Show that (i) ( a .)= a . (ii) ( a .) r = a . 
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 

 

 
 

Sol: (i). Let a = a1i  a2 j  a3 k . Then 

a .= ( a i  a j  a k ).( i 

  j 

  
 k 

 

 
)= a   

 
 a 

  

 
 a   


 

1 2 3 
 

x y z 1 x 2 y 3 z 

 
 ( a .)= a  

 a
  

 a  



Hence ( a .)= a . 

(ii). r = xi  yj  zk 

1 x 2 y 3 z 

 
r 

 i , 
r 

 j, 
r 

 k 
 

x y z 
 

( a .) r =  a   
 

(r )  a 
 

 r 
 a i  a j  a k = a 

1 x 
1 
x 

1 2 3 

 
   

5: Prove that (i) ( f x). r =0 (ii). ( f x)x r =  2 f 
 

Sol: (i) ( f x). r = ( f  i ). 
r 

= ( f i ).i =0 
x 

(ii) ( f x)= ( f  i ) 
 
( f  j) 

 
( f  k ) 




  

x y z 

( f x)x r = ( f  i )  
r 

 ( f  j)  
r 

 ( f  k )  
r

 ( f  i )  i ( f .i)i  f 
x y z 

 

= ( f .i)i  ( f . j) j  ( f .k )k  3 f  f  3 f  2 f 

6: Find div F , where F = grad (x3+y3+z3-3xyz) 

Sol: Let = x3+y3+z3-3xyz. Then 

F = grad 

 i 
 

= 3(x2  yz)i  3( y 2  zx) j  3(x2  xy) k = F i  F 

 

 

 

 
 
j  F k (say) 

x 
1 2 3 

 div F = 
F1  

F2  
F3 = 6x+6y+6z= 6(x+y+z) 

   

x y z 

i.e div[grad(x3+y3+z3-3xyz)]= 2(x3+y3+z3-3xyz)= 6(x+y+z). 

 

7: If f= (x2+y2+z2)-n then find div grad f and determine n if div grad f= 0. 
 

Sol: Let f= (x2+y2+z2)-n and r = xi  yj  zk 

r = r  r2 = x2+y2+z2 

f(r) = (r2)-n = r-2n 
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r 













  

 f1(r)= -2n r-2n-1 

and f11(r) = (-2n)(-2n-1)r-2n-2= 2n(2n+1)r-2n-2 

 

We have div grad f = 2f(r)= f11(r)+2/rf
1(r)= (2n)(2n+1)r-2n-2 -4n r-2n-2

 

= r-2n-2[2n(2n+1-2)]= (2n)(2n-1)r-2n-2 

If div grad f(r) is zero, we get n = 0 or n = ½ . 
 
 

 A  r  
 

(2  n) A 
 

n(r.A)r 
 8: Prove that x 

   r
n 

 rn 

rn2 
. 

 
 

Sol:   We have r = xi  yj  zk and r = = 
 

 
r 

 i , 
r 

 j, 
r 

 k 
 

 
and 

x y z 

r2 = x2+y2+z2…..(1) 

Diff. (1) partially, 
 

2r 
r 

 2x  
r 

 
x 

, similarly 
   

r 
 

y 
and 

r 
 

z 
    

x x r y r z r 
 

 

 A  r  
i  

  ( A  r ) 


x  
   r

n 

 x 
 

rn 




  (A  r )  


   r 








 rni  rnrn1  r 
 

 

 
  Now x 

 
rn  A  

 


n   A  
2n 

  x  r   r  x 
 

 rni  nrn2xr   1 n 


= A  


r 2n 
  A  

 r
n 

i  
rn2 

.xr 






= 
A  i 




rn  

n 

rn2 

 

.x( A  r ) 

 
  

 i  
  ( A  r )  

 
i ( A  i ) 








  

nx 
.i ( A  r ) 

 
  

 

 

 
 

x 
 

rn 
 

rn 
rn2 

= 
(i.i ) A  (i.A)i 




rn 

nx 

rn2 
[(i.r ) A  (i.A)r ] 

Let 

 
 

A1i  A2 j  A3k . Then i.A  A1 

 
  

 i  
  ( A  r )  

 
 A  A1i  







  

nx 
[xA  A r ] 

 
 

 
 

 
 

x 
 

r
n  

   
rn2 1 

and  i  
  ( A  r ) 




  A  A1i  





nx 
[xA  A r ] 

 
 

 
 

 
 x 

 
rn   

rn  
rn2 1 

   

x 2  y 2  z 2 

rn  
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







   







 





 

= 
3A  A 







n 

[r 2 A]   
nr

 
 

( A x  A y  A z) 
r n r n2 r 

n2 1 2 3 

Hence the result. 

 
2A 

 
n 

rn  rn 
A  

nr 

rn2 
( A.r )  

(2  n) A 


rn  

nr 

rn2 
( A.r ) 

 
 

VECTOR IDENTITIES 

 

Theorem 1: If a is a differentiable function and  is a differentiable scalar function, then 

prove that div( a )= (grad ). a + div a or .( a )= (). a +(. a ) 

Proof: div( a )=.( a )= i. 
  a
x 

 




a 








   




 a 

= i . 
x 

a   
x 

 = i. 
x 

a   i 
x 


     

= 
 
i 
 

.a  
 

i 
a 

 =(). a +(. a ) 
 

 
 

 
 

   
x 

 
x 




Theorem 2:Prove that curl ( a )= (grad )x a + curl a 

Proof : curl ( a )=x( a )= i 
 

(a ) 

x 

= i 
  

a   
a  

= 
 

 
 

 


i 
 

  a 








i  

a 








  
x x 


   

x 
  

x 


= x a +(x a )=(grad )x a + curl a 

Theorem 3: Prove that grad ( a . b )= (b.)a  (a.)b  b curl a  a curl b 

Proof: Consider 

a  curl b  a  b  a 


   

 
i  

b 




 
x 



 

 b 
 a i  

x 


 

 b  b   b      a. 
x 

i  (a.i ) 
x 

  i a. 
x 

  a.i 
x 
b 

 



    

 b 


 



 


a curl b i  a. 

x 
  (a.)b ….(1) 

 

Similarly, b  curl b  i 

b. 
a  

 (b .)a ...................................(2) 
  

 

 

 

 
 

 
x 



 
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(1) +(2) gives 
 
 

  

 
 

 
 b 




  


 a 




  





 a curl b  b  curl a i  a. 

x 
  (a.)b i b . 

x 
  (b.)a 

   



 b a 




    


     a curl b  b  curl a  (a.)b  (b.)a i  a. 

x 
 b. 

x 



 i 

 

 
(a.b ) 

x 

= ( a . b )=grad ( a . b ) 
 

Theorem 4: Prove that div (a  b) = b.curl a  a.curl b 

  a b 



   

 


 Proof: div (a  b) i . 
x 

(a  b ) i . 
x 

 b  a  
x 


 

 a   b   a 
 


 

 






 b 











   i . 

x 
 b   i. a  

x 
  i  

x 
.b  i  

x 
.a 

       


 

= ( a).b  ( b ).a = b.curl a  a.curl b 
 

 

 
 

Theorem 5 :Prove that 
 

     

curl (a b )  a divb  bdiva  (b.)a  (a.)b 
 

 

Pr oof : curl (a  b )  i   
 

(a b )  i   
a 

b  a  
b 


  

x 
 
x x 




 


i 
 a 

 b 
 
 i 

 
a  

b 


 


 
x 

  
x 




   

 


(i .b ) 
a 

 
 

i . 
a  

b 
 
 

 
i . 
b  

a  (i .a ) 
b 


 


  
x 






x 

    


x 


 x 




        





 (b.i ) 
a 

 
 

i . 
a 

b 
 

i . 
b  

a 
  

a.i 
  

  

 
b
 

x 

 x 


  

x 
  x 




     


 (b.)a  (.a)b  (.b )a (a.)b 
 

 (.b )a  (.a)b  (b.)a  (a.)b 
 

 a divb  bdiv a  (b.)a  (a.)b 

Theorem 6: Prove that curl grad  = 0. 

Proof: Let  be any scalar point function. Then 
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     

.grad   i 
 

 j 
 

 k 



x y z 
 

 

 

curl(grad ) 







 2 2   2 2   2 2 
   

= i  yz 
 
zy 

  j  
xz 

 
zx 

  k  
xy 

 
yx 

  0
 

Note : Since Curl(grad)  0 , we have grad  is always irrotational. 
 

7. Prove that div curl f  0 
 
 

 

Pr oof : Let f 
 

 

 f1i  f 2 j  f3 k 
 

 

 

 curl f 

 
 

 f  



 
 f3 

 
f2  

i  
 f3 

 
f1  

j  
 f2 

 
f1  

k
 

  

 
      

 
y z 

  
x z 

  
x y 




     


  div curl f   .( f )    f3  

f2  



  

  f3 
 
f1  





  

  f2  
f1 


  x 

 
y z 

 
y 

 
x z 

 
z 

 
x y 




     

2 f 2 f 2 f 2 f 2 f 2 f 
 3  2  3  1  2  1  0 

xy xz yx yz zx zy 
 

Note : Since 
 

  

div(curl f )  0, we have curl f is always solenoidal. 
 

 

Theorem 8: If f and g are two scalar point functions, prove that div(fg)= f2g+f. g 

Sol: Let f and g be two scalar point functions. Then 

g  i 
g 

 j 
g 

 k 
g

 
   

x y z 

 
Now fg  if 

g 
 jf 

x 

 

g 
 kf 

g 

y z 

g   





g 





  g 
∴.(fg)  

x 
 f x 

  
y 

 f
 y 

  
z 

 f
 z 




     

 
i 



 j 



k 



x 



 y 



z 



x  y z 

 

i 



 j 



 k 



x 

f1 

 y 

f2 

 z 

f3 
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   

 

     



 

  2 g 2 g  2 g   f g f g f g 
= f  




    .  . 
 

     

 . 


  

 x2 y 2 x2   x x y y z z 


2  f f f   g g g 


     

=f g+i 
x 

 j 
y 

 k 
z 

. i 
x 

 j 
y 

 k 
z 

. 
   

= f2g+f. g 
 

 

Theorem 9: Prove that x(x a )= (. a )-2 a . 

Proof: x(x a ) = i  



x 

 
( a ) 

 
Now i  

 
( a )  i  

  
i  

a 
 j  

a 
 k  

a 


  



    x x 

 
x y z 




 

 
 2a 2a 2a 


  

i  i  
x2 

 j  
xy 

 k  
xz 




 
 2a   2a   2a 


  

i  i  
x2   i  j  

xy 
  i  k  

xz 




  2a   2a 
 

  

  2a   2a 


 

 i. i x2 x2  i. 
xy 

 j  i. 
xz 

k [  i.i  1,i. j  i.k  0] 
     

  a    a    a  2a  a  2a = i 
x 

 i . 
x 

  j 
y 

 i . 
y 

  k 
z 

 i . 
x 

  
x2 

  i . 
x 

  
x

2
 

       

i  





a 2a  2a 2a 2a ( a)   i .   (.a)   
 


   x x x2 

 
x2 y2 z2 




 

x(x a )= (. a )-2 a 
 

 

i.e., curlcurla  grad 

 
  

diva  2 a 
 

 
SOLVED PROBLEMS 

1: Prove that (f xg)is solenoidal. 
 

Sol: We know that div ( a x b ) = b.curl a  a.curl b 

Take a=f and b= g 

Then div (f x g) = g. curl (f) - f. curl (g)=0 



f g is solenoidal. 

 

 
 

curl(f )  0  curl(g)
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x 

x 

   

 

  r  

2:Prove that (i) 

vectors. 

Sol: (i) 

div(r  a)b  2(b.a) (ii) curl (r.a)  b  b  a where a and b are constant 

divr  a  b   div[(r .b )a  (a..b )r ] 

 

 div(r.b )a  (a..b )r 

 r .b diva  a.grad r .b   a.b divr  r . grad a.b 
We havediv a  0, div r  3, grad (a.b )  0 

divr  a  b  0  a.grad r.a   3a.a 

 a. 
i r.b  3a.b



 a.i 
r 

.b  3a.b

 a.i i.b  3a.b

 a.b  3a.b  2 a.b
 2 b.a

(ii)  curl r  ab  curl r.ba  a.b r 

 curl r.ba  curl a.br 

 r.bcurla  grad r.b a 

 0  r.b a  curla  0
 b  a   Since grad r.b= b 

3: Prove that 

. 

r  
 
 2 

r. 
 

 
  


 r  r 3 

Sol: We have .
 r  




 i. 
  r 




 

r 
  

  
 

  x  r 

=  i. 
1 r 

 r 
 1  x  

 i.
 1 

i  
r 

x 





    

 
r x  

r2  r 
  

r r3 


= 
1 
 i.i 

    

1 
r 

2 
 

3 
 

1 
 

2 

r r 3 r r r 
 

 
   .  i   2  

= i 
 2  x  

 
2 

 xi  
2r 

.
 

  
r 
  

x 
 

r 
  r2    r  r3 r3 

        
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1 




4: Find (Ax), if A = yz2 i - 3xz2 j +2xyz k and  = xyz. 

Sol : We have 

 

i j k 

Ax= yz2  3xz2 2xyz 

  

x y z 
 

= i 
 (3xz2 ) 

 
(2xyz)

 
 j 

  
( yz2 ) 


 

 
(2xyz)

 
 k 

  
( yz2)  

 
(3xz2)





  


x y 

 
 z x 

 

y x 




   


= i (-6xz-2xz)- j (2yz-2yz)+ k (z2+3z2)= -8xz i -0 j +4z2 k 
 

(Ax), = (-8xz i +4z2 k )xyz = -8x2yz2 i +4xyz3 k 

Objective questions 

 
1. (rn)= ---------------------- 

2( ) = …………………………….. 
𝑟 

 

3. the greatest value of the directional derivative of the function f = x2yz3 at (2,1,-1)is …………….. 

4. a unit normal vector to the surface x2+y2+2z2 = 26 at the point (2, 2 ,3)is………….. 
 

5. a unit normal vector to the surface z= x2+y2 at (-1,-2,5) is………….. 

6 The vectors n1 and n2 are along the normals to the two surfaces .Let θ be the angle between 

the surfaces. ThenCos θ=………… 
 

 

7. If the vector f = f1i  f 2 

 
 

j  f3 k , then div f = ……. 
 

  

8. A vector point function f is said to be solenoidal if div f =………… 

9. if r is the position vector of an point in space, then   rn r is   Irrotational   then 

curl( rn r )=………. 

Multiple choice questions 
 

 1. : If f= xy2i  2x2 yz j  3yz 2 k find curl f at the point (1,-1,1). 
 

   a. 

 
  

 i  2k . 
b. 

 
  

 i  2k . 
c. 

 
  

 i  2k . 
d. 

 
 

 i  2k . 

 
2. If f= (x2+y2+z2)-n then find div grad f and determine n if div grad f= 0. 

 a. n = 0 or n = ½ . b. n = 0 or n = ½ . c. n = 0 or n = ½ . d. n = 0 or n = ½ . 
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 3. : Find div  F , where F = grad (x3+y3+z3-3xyz) 
 a. 6(x+y+z) b. 6(x+y+z) c. 6(x+y+z) d. 6(x+y+z) 

 4. ( f x). r = 

   a. 0 b.1 c.2 d. 3 

 
 5. Find constants a,b and c if the vector f = 

 
 

 

(2x  3y  az)i  (bx  2 y  3z) j  (2x  cy  3z) k is Irrotational 
 

   a.a=2 b=3,c=3 b.a=1,b=2,c=4 c.a=0,b=1,c=4 d.a=1,b=3,c=2 
 

   6. If    f = (x  3y)i  ( y  2z) j  (x  pz)k 

 a.p=4 b.p=-2 c.p=3 d.p=-3 

is solenoidal, find P. 

 

   7. If f = xy2i  2x2 yzj  3yz 2k 

   a.6 b.7   c.8 d.9 

 
 

find div f at(1, -1, 1). 

 

 8. Find the directional derivative of  = x2yz+4xz2 at (1,-2,-1) in the direction 2i-j-2k. 

 a. 37/3. B. 47/3. C. 27/3. D. 17/3. 



9. 

 If If a is constant vector then prove that grad ( a . r )= a a is constant vector then grad ( a . r 

)= 

 a. a 
b.0 c. r d. 1 

 10. 

  : Find the values of a and b so that the surfaces ax2-byz = (a+2)x and 4x2y+z3= 4 may intersect 

orthogonally at the point (1, -1,2). 

   a.a-3.5b=1 b.a=2.5,b=1 c.a=1,b=1 d. a=1 ,b=0 
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

  

Line integral:- (i)  F.d r is called Line integral of 
c 

F along c 

  

Note : Work done by F along a curve c is  F.d r 
c 

 

 

 

   

PROBLEMS 


1. If F (x2-27) i -6yz j +8xz2 k , evaluate d r from the point (0,0,0) to the point (1,1,1) 

along the Straight line from (0,0,0) to (1,0,0), (1,0,0) to (1,1,0) and (1,1,0) to (1,1,1). 

   

Solution : Given F = (x2-27) i -6yz j +8xz2 k 
 

 
 

Now r = 

 
   

xi + y j+ zk  dr  dxi + dy j+ dzk 
 



 F . dr 
 
= (x2-27)dx – (6yz)dy +8xz2dz 

 
 

(i) Along the straight line from O = (0,0,0) to A = (1,0,0) 

Here y =0 =z and dy=dz=0. Also x changes from 0 to 1. 

 1  x3 
 

 

 1 1  80 

  F . dr = 
OA o 

(x2-27)dx = 


 27x = 

 0 

 27 
3 3 

 

(ii) Along the straight line from A = (1,0,0) to B = (1,1,0) 

Here x =1, z=0  dx=0, dz=0. y changes from 0 to 1. 

 1 

  F . dr =  (6 yz)dy  0 
AB y0 

(iii) Along the straight line from B = (1,1,0) to C = (1,1,1) 

x =1 =y dx=dy=0 and z changes from 0 to 1. 

 1 1 
 

 

8z3  1 8 
  F . dr = 8xz2dz  8xz2dz    

BC z0 

 


z0 

 
88 

 
 

 3  0 3 

(i)  (ii)  (iii)  
C 

F . dr = 
3 

 

   

2. If 
F =(5xy-6x2) i +(2y-4x) j , evaluate  F . dr 

C 

along the curve C in xy-plane y=x3from (1,1) 

to (2,8). 

3 
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0 

  

Solution : Given F =(5xy-6x2) i +(2y-4x) j , ------- (1) 

Along the curve y=x3, dy =3x2 dx 

  

 F =(5x4-6x2) i +(2x3-4x) j , [Putting y=x3 in (1)] 
 




d r = dxi + dy j= dxi +3x2dx j 
 

  4 2 
 

3 
   2 



F . d r = [(5x -6x ) i +(2x -4x) j ].  
dx i 3x dx j 



= (5x4 – 6x2) dx+(2x3 – 4x)3x3dx 

= (6x5+5x4-12x3 -6x2)dx 
 

 2 

Hence 
y x3 

F . dr =(6x5  5x4 12x3  6x2)dx 
1 

 

 x6 x5 x4 x3  6 5 4 3   
2

 

=  6.  5. 12.  6.   x  x  3x  2x 
 6 5 4 4  1 

= 16(4+2-3-1) – (1+1-3-2) = 32+3 = 35 


  

3. Find the work done by the force F = zi + x j + yk , when it moves a particle along the arc 
 

 

of the curve r = cost i + sint j -t k from t = 0 to t = 2
   

   

Solution : Given force F = z i + x j +y k and the arc is r = cost i + sin t j -t k 

i.e., x = cost, y= sin t, z = -t 



d r = (-sin t i +cost j - k )dt 
 

  
   



 F . d r = (-t i +cost j +sin t k ). (-sin t i + cost j - k )dt = (t sin t + cos2 t – sin t)dt 

2      2

Hence work done = 
0 

F . d r = 
0 

(t sin t + cos2 t – sin t ) dt 

2 
2 2 

1 cos 2t 2

= t(cos t)   (sin t)dt   2 
dt   sin t dt 

0 0 0 

2 1  sin 2t 
2
  2

=  2  (cos t)0  t 
2 


2 0 

 cost 0 

=  2  (1 1)  
1 

(2 )  (1 1)  2    
2 

Assignment 
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



 

 2 

 

F 





i j k 

   

1. Find 
c 

F . d r where F = x2y2 i +y j and the curve y2=4x in the xy-plane from (0,0) to 

(4,4). 
   

2. If 
F =3xy i -5z j +10x k evaluate 

C 

F .dr along the curve x=t2+1,y=2 t2, z = t3 from t = 

1 to t= 2. 
  

 

3. If F =y i +z j +x k , find the circulation of F round the curve c where c is the circle x2 

+y2 =1, z=0. 
 

 

4. (i) If   x2 yz3, evaluated r 
c 

 
 

along the curve x= t, y =2t, z=3t from t = 0 to t=1. 

 


(ii) If   2xy2 z  x2 y, evaluated r 
c 

where c is the curve x=t, y=t2, z= t3 from t=0 to 

t=1. 

5. (i) Find the work done by the force 

particle from (1,1,1) to (3,-5,7). 

(ii) Find the work done by the force 

  x2  yz 


 ( y    zx) 
 

 (z 2  xy) 
 

in taking 

 
F  2y  3i  (zx) j  ( yz  x)k when it moves a 

particle from the point (0,0,0) to (2,1,1) along the curve x = 2t2, y = t, z=t3 

 

Surface integral:  F.nds is called surface integral. 
S 

 

 

 

1 : Evaluate 

PROBLEMS 
 
 

 F.ndS where F = zi + xj 3y2zk and S is the surface x2 + y2 = 16 included 

in the first octant between z = 0 and z = 5. 

Sol. The surface S is x2 + y2 = 16 included in the first octant between z = 0 and z = 5. 

Let  = x2 + y2 = 16 

  
Then  = i 

x 
 j

y 
 k 

z 
 2xi  2yj 

 

 

 unit normal 

 
 

n  


 

xi  yj 
(
 

4 

 

= 16) 

 

Let R be the projection of S on yz-plane 

 
Then 

 
 

F.ndS =  F.n 
dydz  

……………. * 

S R n . i 
 

Given F = zi + xj 3y2zk 



x 2   + y2
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4 5 

 F . n  
1 

(xz  xy) 
4 

x 
and n . i 

4 

In yz-plane, x = 0, y = 4 

In first octant, y varies from 0 to 4 and z varies from 0 to 5. 

 F.ndS 
 

4 5  xz  xy  dydz 
= 

     
4 


S y0 z0  





=   (y  z)dz dy 
y0    

 

= 90. 
 

2 : If F = zi + xj 3y2zk, evaluate 

z0    

 

 
 

F.ndSwhere S is the surface of the cube bounded 
S 

by x = 0, x = a, y = 0, y= a, z = 0, z = a. 

 

Sol. Given that S is the surface of the x = 0, x = a, y = 0, y = a, z = 0, z = a, and F = zi + 

xj 3y2zk we need to evaluate 

 
 

F.ndS. 
S 

 

 

(i) For OABC 

Eqn is z = 0 and dS = dxdy 
 

 

n 
 

F.ndS 
S

1
 

 
 

 k 

= 

 

 
 


x0 

 

 
 

 (yz) dxdy = 0 
y  0 

(ii) For PQRS 

Eqn is z = a and dS = dxdy 

y 

C 

B 

Q 

P 

O A X 

R 
S 

x 

4 

a a 
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a 



a 

a 



 
  

n  k 
a a a 4

 
 

F.ndS =    y(a)dy dx 

S2 

 

(iii) For OCQR 

x0 y0 2 

Eqn is x = 0, and n  i, dS = dydz 

F.ndS = 

a 

  4xzdydz  0 
S3 

(iv) For ABPS 

y0 z0    

Eqn is x = a, and n  i , dS = dydz 
 

 

F.ndS = 
S3 

 

(v) For OASR 


a  




y0    

a 

4azdzdy 
z0    

 2a
4
 

 
 

Eqn is y = 0, and n 

 
 

 j, dS = dxdz 

 
 

F.ndS = 

 
a 

  y
2
dzdx  0 

S5 

(vi) For PBCQ 

y0 z0    

 
 

Eqn is y = a, and n 

 
 

 j, dS = dxdz 

 
 

F.ndS = 

 
a 

  y
2
dzdx  0 

S6 y0    z0    

From (i) – (vi) we get 

a 4 
 

 

 

3a
4

 

F.ndS = 0 + 
S6 

2 
+ 0 + 2a

4
 + 0 a4 = 

2 

VOLUME INTEGRALS 

   

Let V be the volume bounded by a surface r  f (u,v). Let F ( r ) be a vector point function 

define over V. Divide V into m sub-regions of volumes V1,V2 ,....Vp ..... Vm 
 

 m  

Let Pi ( r i ) be a point in Vi .Then form the sum Im =  F (ri )Vi . Let m   in such a way 
i1 

 
 

that Vi shrinks to a point,. The limit of Im if it exists, is called the volume integral of F ( r ) 
 

   

in the region V is denoted by  F (r) dv or  Fdv. 
V V 



105 

 

 

 
 

Cartesian form : Let 
 

that 

   

F r  F1 i F2 i F3 k where F1, F2, F3 are functions of x,y,z. We know 

dv = dx dy dz. The volume integral given by 
 

      

 Fdv     (F1 i F2  i F3 k) dx dy dz = 
v 

i     F1 
dxdydz + j     F2 dxdydz + k     F3  dxdydz 
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Introduction 

Vector Integral Theorems 

In this chapter we discuss three important vector integral theorems: (i) Gauss 

divergence theorem, (ii) Green’s theorem in plane and (iii) Stokes theorem. These theorems 

deal with conversion of 

  

(i) 
S 

F .n ds into a volume integral where S is a closed surface. 

 

(ii) 
C 

F .d r into a double integral over a region in a plane when C is a closed 

curve in the plane and. 
 

(iii) 
S 

( A) . n ds into a line integral around the boundary of an open two sided 

surface. 
 

I. GAUSS’S DIVERGENCE THEOREM 

(Transformation between surface integral and volume integral) 


Let S be a closed surface enclosing a volume V. If F is a continuously differentiable 

vector point function, then 
 

 div Fdv   F .n dS 
V s 



When n is the outward drawn normal vector at any point of S. 

EXERCISE 

    
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0 0 0 0 

 

 

 

SOLVED PROBLEMS 
 

1) Verify Gauss Divergence theorem for  taken over the 

surface of the cube bounded by the planes x = y = z = a and coordinate planes. 

Sol: By Gauss Divergence theorem we have 
 

 F.ndS   divFdv 
S V 

 

 
a a  a3  a  a3   a3  a  a3  a5     adydz    a ( y)a dz  





 a  a dz 




 a a2    a3 ……(1) 
 

  

 3   
 3   3  


  3  3 

Verification: We will calculate the value of 
 

 

 F.ndS 
S 

over the six faces of the cube. 

(i) For S1 = PQAS; unit outward drawn normal 

x=a; ds=dy dz; 0≤y≤a, 0≤z≤a 

 

 

 
 

 F.n  x3  yz  a3  yz sin cex  a 
 
 

 

   F.ndS 
S1 

 
a     a 

 
z 0 y0 

 
(a3  yz)dydz 

 

 
 

 

 

(ii) For S2 = OCRB; unit outward drawn normal 

x=0; ds=dy dz; 0≤y≤a, y≤z≤a 

0 
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z0 

 
 

 

 

(iii) For S3 = RBQP; Z = a; ds = dxdy;  

0≤x≤a, 0≤y≤a 

 
 

 
 

   FndS 
S3 

a     a 

  adxdy  a3 .... 
(4) 

y0 x0 

(iv) For S4 = OASC; z = 0; , ds = dxdy; 

0≤x≤a, 0≤y≤a 

 

 
 

(v) For S5 = PSCR; y = a; , ds = dzdx; 

0≤x≤a, 0≤z≤a 

 
 

 

a 


x0 

(2ax2 z)a dx 

 

 
 

(vi) For S6 = OBQA; y = 0; , ds = dzdx; 

0≤x≤a, 0≤y≤a 
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2   x2  y2  z2 

 
 

 

 

 

 

2.Compute  over the surface of the sphere x2+y2+z2 = 1 
 

Sol: By divergence theorem 

 
 

 F.ndS = 
S 

 

 
 



V  
 

i 
 
 j 

 
 k 

 x2  y2  z2 1  2(xi  y j  zk )  
x y y 




 


 Unit normalvector = n = 
2(xi  y j  zk) 

 xi  y j  zk 

 

 
Since 

 

 
x2  y2  z2 =1 

 
 

          

 F.n = F.(xi  y j  zk )  (ax2  by2  cz2 )  (a xi  by j  czk ).(xi  y j  zk ) 
 

i.e., F  axi  by j  czk .F  a  b  c 

Hence by Gauss Divergence theorem, 

 

 

 
 

3)By transforming into triple integral, evaluate  

where S is the closed surface consisting of the cylinder x2+y2 = a2 and the circular discs z= 0 , 

z= b. 

Sol: Here  

F1  3x2 , 
F2  x2 , 

F3  x2 
   

x y z 
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a
2 
x

2
 

a2 x2 

.F  
F1  

F2  
F3   3x2  x2  x2  5x2 

   

x y z 
 

 

 

By Gauss Divergence theorem, 

 Fdydz F dzdx  F dxdy 
  F

1  
F

2  
F

3 
 
dxdydz 

   1 2 3 
   x y z 




 

(x3dydz x2 ydzdx  x2 zdxdy    5x2dxdydz 
s 

 

a b 

 5    x2dxdydz 

a y z0 

 

a b 

 20  x
2dxdydz [Integrand is even function] 

0 0 z0 

 

 

a
2 
x

2
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[Put x  asin  dx  a cosd when x  a    



2 
and x  0    0] 

 

=  
 

 
4: Applying Gauss divergence theorem, Prove that  

Sol: Let   we know that div 

By Gauss divergence theorem,  F.ndS   divFdv 
v 

 
 

 
 

 

5: Show that  where S is the surface of the 

sphere x2+y2+z2=1. 

Sol: Take  

divF  
F1  

F2  
F3  a  b  c 

   

x y z 

By Gauss divergence theorem, 
 

 

 F.ndS  (a  b  c) 
4


s 
3 

6: Using Divergence theorem, evaluate 

Sol: We have by Gauss divergence theorem, 

 
 

x2+y2+z2=a2 
 

 F.ndS   divFdv 
s v 

L.H.S can be written as   in Cartesian form 

Comparing with the given expression, we have F1=x, F2=y, F3=z 
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Then divF  
F1  

F2  
F3  3 

   

x y z 
 

 divFdv  3dv  3V 
v v 

 

Here V is the volume of the sphere with radius a. 

V  
4 
a3  

3 

Hence  

7: Apply divergence theorem to evaluate (x  z)dydz  ( y  z)dzdx  (x  y)dxdy 
s 

 

 
S is the 

surface of the sphere x2+y2+z2=4 

Sol: Given (x  z)dydz  ( y  z)dzdx  (x  y)dxdy 
s 

Here F1 = x+z, F2 = y+z, F3= x+y 

F1  1, 
F2  1, 

F3  0 and 
F1  

F2  
F3  11 0  2 

      

x y z x y z 

By Gauss Divergence theorem, 

 F dydz  F dzdx  F dxdy 
  F1  

F2  
F3 

 
dxdydz 

   1 2 3 
   x y z 




s V  







8: Evaluate  over the tetrahedron bounded by x=0, y=0, 

z=0 and the plane x+y+z=1. 

Sol: Given F = , then div. F = y+2y = 3y 

1 1 x 1x y 
 

  

 F.ndS   divFdv     3ydxdydz 
s v x0 y0    z0 
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9: Use divergence theorem to evaluate 

 
the sphere x2+y2+z2 = r2 

Sol: We have 

 
  

 

 F.d S where F =x3i+y3j+z3k and S is the surface of 
s 

 
 

V .F 
 

(x3) 
x 

 
(y3) 

y 

 
(z3)  3(x2  y2  z2 ) 

z 

∴By divergence theorem, 

 

 

 
= 3(x2   y2  z2 )dxdydz 

v 

 

 
 

 
 

a      a  
 3   r 4 sin (2  0)drd  6  r 4 sind  dr 

r 0  0 r 0  0 





10: Use divergence theorem to evaluate  where  and S is 

the surface bounded by the region x2+y2=4, z=0 and z=3. 

Sol: We have 

 
  

divF  .F 
 

(4x) 
x 

 
(2 y2 ) 

y 

 
(z2 )  4  4 y  2z 

z 
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4 x2 

 

 
 

 

 

 

 

2  

  21 2 
2  0 

dy 12(0)dx 


[Since the integrans in forst integral is even and in 2nd integral it is on add function] 
 

2    2    

 42  4  x2 dx  42 2 4  x2 dx 
2 0 

 

 

 
 

11: Verify divergence theorem for  over the surface S of the solid cut 

off by the plane x+y+z=a in the first octant. 

Sol; By Gauss theorem, 
 

  

 F.ndS   divFdv 
s v 
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n.k  



 
 1, 

 
 1, 

 
 1 

x y z 

 grad  i 
 

 i  j  k 
x 

 

Let R be the projection of S on xy-plane 

Then the equation of the given plane will be x+y=a  y=a-x 

Also when y=0, x=a 

 

 F.ndS    
F.ndxdy 

s R 
 

 
 

   a  5 2  a4
 

 F.ndS    x3  3ax2  2a2 x  a3 dx  , on simplification…(1) 

s 0  3 3  4 

Given F  x2 i  y2 j  z2 k 

div F 
 

(x2 ) 
x 

 
( y2 ) 

y 

 
(z2 )  2(x  y  z) 

z 
a   a x ax y 

Now  divF.dv  2    (x  y  z)dxdydz 
x0 y0   z 0 

 

= 
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Hence from (1) and (2), the Gauss Divergence theorem is verified. 

 

 

12: Verify divergence theorem for 2x2y i -y2 j +4xz2 k taken over the region of first octant of 

the cylinder y2+z2=9 and x=2. 
 

  

(or) Evaluate  F.ndS, where F =2x2y i -y2 j +4xz2 k and S is the closed surface of the region 
s 

in the first octant bounded by the cylinder y2+z2 = 9 and the planes x=0, x=2, y=0, z=0 

Sol: Let F =2x2y i -y2 j +4xz2 k 

 
 

. F 
 

(2x2 ) 
x 

 
( y2 ) 

y 

 
(4xz2 )  4xy  2 y  8xz 

z 
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9z
2

 



 
 

 

 

 

 

 


18(x  x2 )  72 



x2 
2

 


0 

 
 18(2  4)  36(4)  36 144  180...(1) 

 
 
 

 
 

 F.ndS =  F.ndS +  F.ndS +……+  F.ndS 
s s1 s2 s5 

 

 

Where S1 is the face OAB, S2 is the face CED, S3 is the face OBDE, S4 is the face OACE and 

S5 is the curved surface ABDC. 

(i) On S1 : x  0, n  i F.n  0 Hence  F.ndS 
s1 

 

(ii) On S2 : x  2, n  i  F.n  8 y 
 

   3 3      y2 
 F.ndS     8ydydz 8 

2 
 dz 

s2 0 0 0      0 

9z
2

 

2 
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( y2  z2 ) 

( y2  z2 ) 
   
4 9 

 
 

(iii) On 
 

  
 

S3 : y  0, n   j. F.n  0 Hence  F.ndS 
s3 

 
 

 
 

2 2 2 y j  2zk y j  zk y j  zk 
 

(v) On S5 : y  z  9, n      

4 y2  4z2 3 

 y3  4xz3    z 
 

F.n  and 
3 

n.k  
3 

 

Hence 
 

 

 

 = 180 … … (2) 

Hence the Divergence theorem is verified from the equality of (1) and (2). 

 

 

 

13: Use Divergence theorem to evaluate xi  y j  z2 k .nds. Where S is the surface 

bounded by the cone x2+y2=z2 in the plane z = 4. 

Sol: Given  S is the surface bounded by the cone x2+y2=z2 

in the plane z = 4. 

Let  
 

 

 
 

Now .F 
 

(x) 
x 

 
( y) 

y 

 
(z2 )  11 2z  2(1 z) 

z 

1 

3 
9  y2 
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16x2 

1 sin
2 

On the cone, x2  y2  z2 and z=4  x2  y2  16 
 

 

 

 

4 4       0 
 

 2 [4  8]dxdy  212  [ y] 16 x
2 

dx 
0 0 0 

 

[ putx  4sin  dx  4 cosd. Also x  0   0 and 

 
 

 

2    2 
 

 

x  4    
 

] 
2 

.Fdv  96 4 4 cosd 96 4 cos
2 d

V 0 0 

 

 

 

 

 

14: Use Gauss Divergence theorem to evaluate  S 

is the closed surface bounded by the xy-plane and the upper half of the sphere 

x2+y2+z2=a2 

above this plane. 

Sol: Divergence theorem states that 
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Here .F 
 

( yz2 ) 

x 

 
(zx2 ) 

y 

 
(2z2 )  4z 

z 
 

 

 F.ds     4zdxdydz 
s V 

 

Introducing spherical polar coordinates 

z  r cos then dxdydz  r2drdd




x  r sin cos, y  r sin sin , 

 
a        2

 F.ds  4    (r cos )(r2 sindrdd) 
s r 0  0  0 

 

 

 

 

 
 
 
 

15: Verify Gauss divergence theorem for  taken over the cube bounded 

by 

x = 0, x = a, y= 0, y = a, z = 0, z = a. 

Sol: We have  

 
 

.F 
 

(x3) 
x 

 
( y3) 

y 

 
(z3)  3x2  3y2  3z2 

z 
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a     a 

a     a 

0  

 
 

 

 

 

 

To evaluate the surface integral divide the closed surface S of the cube into 6 parts. 
 

i.e., S1 : The face DEFA ; S4 : The face OBDC 

 S2 : The face AGCO ; S5 : The face GCDE 

 S3 : The face AGEF ; S6: The face AFBO 
 

 

 

 

 

 
 
 

 

 F.nds 
s1 

  a3i  y3 j  z3 k .idydz 
z0 y0 

 

 
 

 

 

 

 
 

  F.nds 
s2 

   y3 j  z3 k .idydz  0 
z0 y0 

 

 
 

 
 

  F.nds 

a     a a     a a 

    x3i  a3 j  z3 k  . jdxdz  a3    dxdz  a3  adz  a4  z 
a

 

s3 

 

 a5 

z0 x0 z0 x0 0 
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The Gauss divergence theorem is verified. 

 

Assignment 

1. Evaluate    over  +  + =1 

2. Compute    over the ellipsoid ax2  by2  cz2  1 

(Hint: Volume of the ellipsoid , V=  ) 

3. Find . where =2 + 4xz  and S is the region in the first octant bounded 

by  + =9 and x=0,x=2. 

4. Find   Where S Is the region bounded by  +   =4, z=0 and 

z=3. 

5. Verify divergence theorem for F=6z + (2x+y)   -x , taken over the region bounded by the 

surface of the cylinder  +  =9 included in z=0, z=8, x=0 and y=0. [JNTU 2007 S(Set 

No.2)] 
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 Mdx  Ndy 

 

 

II. GREEN’S THEOREM IN A PLANE 

(Transformation Between Line Integral and Surface Integral ) [JNTU 2001S]. 

If S is Closed region in xy plane bounded by a simple closed curve C and if M and N are 

continuous functions of x and y having continuous derivatives in R, then 


 N 

 
M  

x 
y 

dxdy. 

C R   

Where C is traversed in the positive(anti clock-wise) direction 
 

 

SOLVED PROBLEMS 

1: Verify Green’s theorem in plane for   where C is the 

region bounded by y=   and y=  . 

Solution: Let M=3 -  and N=4y-6xy. Then 

, 
 
 



125 

 

 

 Mdx  Ndy 

x 
x 

 Mdx  Ndy 

 Mdx  Ndy 

0 



 

We have by Green’s theorem, 


 N 

 
M  

x 
y 

dxdy. 

C R   

 N 
 
M 

 Now  x 
y 

dxdy  16 y  6 y dxdy 
R   R  

1 x 1 
 y2 

=10 ydxdy =10   ydydx  10   2 
 dx 

R x0 y x2 x0  x2 

 

=5 
 

….(1) 

Verification: 

We can write the line integral along c 

=[line integral along y= (from O to A) + [line integral along =x(from A to O)] 

= + (say) 

Now = 

= 

 
And l2   3x2  8xdx  4  6x  2  dx      3x  11x  2dx 

3 1  0 5 
2 

 
 2 


 
 2 

1 1 
 

 

 From(1) and (2), we have 

 N 

 
M  

x 
y 

dxdy. 

C R   

Hence the verification of the Green’s theorem. 
 

 

2: Evaluate by Green’s theorem   where C is the triangle 

enclosed by the lines y=0, x= , 

Solution : Let M=y- Then 

=1 and =- 
 

 By Green’s theorem 

 N 

 
M       

x 
y 

dxdy. 

C R   

x 
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 Mdx  Ndy 

 ( y sin x)dx  cos xdy  (1 sin x)dxdy 
c R 

 

=- 
 

= -  

= 
 



= 
2  

2
 

 
x  cos x  x0   

  1( cos x  x)dx 
0 

 

= 
 

= 
 

 

3: Evaluate by Green’s theorem for  where C is the 

rectangle with vertices ,  

Solution: Let M= 
 

 

 By Green’s theorem, 

 N 

 
M  

x 
y 

dxdy. 

C R   

  (x
2  cosh y)dx  ( y  sin x)dy   (cos x  sinh y)dxdy 

c R 

 

 

= 
 



=  (cos x  cosh11)dx 
x0 

= 
 

 

4: A Vector field is given by 
 

   

F  (sin y)i  x(1 cos y) j 

Evaluate the line integral over the circular path + , z=0 

(i) Directly (ii) By using Green’s theorem 

Solution : (i) Using the line integral 


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 Mdx  Ndy 

 Mdx  Ndy 

=0+ 
2
 

 

 
 

= 
c c 

Given Circle is  + . Take x=a and y=a so that dx=-a  and 

dy=a and 

 

= 

1 
4a .  . 

2  2 

 

 
 a2  

(ii) Using Green’s theorem 

Let M=  and N=x  Then 

= and = 

By Green’s theorem, 


 N 

 
M  

x 
y 

dxdy 

C R   

  sin ydx  x(1 cos y)dy  (cos y 1 cos y)dxdy   dxdy 
c R 

=  dA  A  a2 ( 
R 

area of circle=  a2 ) 

We observe that the values obtained in (i) and (ii) are same to that Green’s theorem is 

verified. 

 

5: Show that area bounded by a simple closed curve C is given by  and hence 

find the area of 

(i)The ellipse x= a cos , y  bsin (i.e) 
x
 

a2 

(ii )The Circle x= 

y2 

b2 
1 

 Solution: We have by Green’s theorem 
 
 N 

 
M  

x 
y 

dxdy 

C R      

Here M=-y and N=x so that 
 

 xdy  ydx  2 dxdy  2A where A is the area of the surface. 
c R 

 sin ydx  x cos ydy  xdy   d (x sin y)  xdy 

2 
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 Mdx  Ndy 

 
 

(i) For the ellipse x= and y= and 

= 
 

= 

(ii) Put a=b to get area of the circle A=  
 

 

 
 

6: Verify Green’s theorem for   where C is bounded by y=x and 

y=  

 Solution:By Green’s theorem, we have 
 
 N 

 
M  

x 
y 

dxdy 

C R  




Here M=xy +  and N= 
 

The line y=x and the parabola y=   intersect at O and A  

Now  Mdx  Ndy   Mdx  Ndy ...... (1) …..(1) 
c c1 c2 

Along   the line integral is 
 

1 

 Mdx  Ndy  [x(x2 )  x4 ]dx  x2d (x2 )(x3 x4  2x3)dx  (3x3  x4 )dx 
c1 c1 c 0 

 

= =                                     …….(2) 

 
Along  from  to  the line integral is 

 Mdx  Ndy   (x.x  x2 )dx  x2dx 
c2 c2 

 
= =0-1=-1 ….(3) 

 

From (1), (2) and (3), we have 

 Mdx  Ndy 
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…(4) 

Now 

 N 
 
M 

   
x 

y 
dxdy 

= (2x  x  2 y)dxdy 

R   R 

= 
 

= = 
 

….(5) 

 
From 

 
 Mdx  Ndy = 

 
 N 

 
M  

dxdy
 

    
x y 




c R  

Hence the verification of the Green’s theorem. 
 

 

 7: Using Green’s theorem evaluate  Where “C” is the 

closed curve of the region bounded by y=   and  

 

Solution: 
 

The two parabolas   are intersecting at O  and P(1,1) 

Here M=2xy-    and N=   + 

 
 

Hence 

 
By Green’s theorem 

 

 
Mdx  Ndy = 

 
 N 

 
M  

dxdy
 

    
x y 




c R  
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1 x 

i.e., (2xy  x2 )dx  (x2  y2 )dy    (0)dxdy  0 
c x0 yx2 

 

8: Verify Green’s theorem for  where c is the region 

bounded by x=0, y=0 and x+y=1. 

Solution : By Green’s theorem, we have 

 Mdx  Ndy   
 N 

 
M 

 
x 

y 
dxdy 

c R  

Here M=3  and N=4y-6xy 
 

 

 
M 

y 

 
 16 y 

 
and 

N 
 6 y 

x 
 

Now  Mdx  Ndy   Mdx  Ndy   Mdx  Ndy   Mdx  Ndy...(1) 
c OA AB BC 

Along OA, y=0  
 

Along AB, x+y=1  and x=1-y and y varies from 0 to 1. 

 Mdx  Ndy 
AB 

 

= 

 
1 

= [3( y 1)2  8 y2 ](dy) [4 y  6 y( y 1)]dy 
0 

 

= 

 
= 

Along BO, x=0 and limits of y are from 1 to 0 

 
. 
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from (1), we have 
 

 N M  1   1x 

Now   x 

y 

dxdy    (6 y 16 y)dxdy 

R  











 From (2) and (3), we have 

x0 y0 

 

=10  

=5  

=- = 

 Mdx  Ndy   
 N 

 
M 

 
x 

y 
dxdy 

c R  

Hence the verification of the Green’s Theorem. 
 

 

9: Apply Green’s theorem to evaluate  

the boundary of the area enclosed by the x-axis and upper half of the circle  
 

 

Solution : Let M=  and N=  Then 
 

 

 
 Mdx  Ndy   

 N 
 
M 


  

x 

y 
dxdy 

c R  

 (x2  y2 )dy]   (2x  2 y)dxdy 
c R 

 

=2 (x  y)dy 
R 

 [(2x2  y2 )dx 
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2   

x x 

3 

2 

  

2 

=2 

[Changing to polar coordinates (r, , r varies from 0 to a and varies from 0 to ] 

a 

  [(2x2  y2 )dx  (x2  y2 )dy]  2 r 2dr  (cos  sin )d
c 0 0 

 

=2. 
 

 

 

 

10: Find the area of the Folium of Descartes  

Theorem. 

Solution: from Green’s theorem, we have 
 

By Green’s theorem, Area = 
1

 
2 

Considering the loop of folium Descartes(a>0) 
 

3at 
 

3at 2  d  3at   d  3at 2 
Let x= 

1 t3 
, y  

1 t3 
,Then dx   dt 

 
1 t3  dt and dy   

dt 
 

1 t3  dt 

     

The point of intersection of the loop is 
 3a 

, 
3a  

 t  1  
2 2 



 

Along OA, t varies from 0 to1. 
 

1 1 
 

3at 

3at(2  t3) 

 
3at 2 


3a(1 2t3) 




= 
      

dt 

0 1 t 
1 t3 

2     


1 t3  1 t3 
2 



 

= 
 

9a2 1 t 2  t5 9a2 1 t 2 (1 t3 ) 
 

2    (1 t3 )3 
dt    

2    (1 t3 )3 
dt

 
0 0 

 

= [Put 1+ 

 

 

 
L.L. : x=1, U.L.:x=2] 

9a2 2 t2 dx 9a2 2 1 3a2 

=  2 
. 

1 
3t2  dx 

1 

sq. units(a>0). 
4 

11: Verify Green’s theorem in the plane for 

 (xdy  ydx) 


6 



133 

 

 

3 

Where C is square with vertices (0,0), (2,0), (2,2), (0,2). 

Solution: The Cartesian form of Green’s theorem in the plane is 

 Mdx  Ndy   
 N 

 
M 

 
x 

y 
dxdy 

c R  

Here M=  and N=  

 - 3 and  

 

 

 

 

 

 

 
Evaluation of  

To Evaluate , we shall take C in four different segments 

viz (i) along OA(y=0) (ii) along AB(x=2) (iii) along BC(y=2) (iv) along CO(x=0). 

(i) Along OA(y=0) 

…..(1) 

(ii) Along AB(x=2) 

[  
 

= 
 

….(2) 

(iii) Along BC(y=2) 

 

 

 

 
 x3 

 

 

 
[ 


2 

 8 

 

 

 

 
 40 

 

 
(iv) Along CO(x=0) 

=  4x2 
 0 

 


16  


......(3) 
3 3 
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2 
2
 

[ 
 

…..(4) 

Adding(1),(2),(3) and (4), we get 

x2  xy3 dx   y2  2xydy  
8 
 

16 
 

40 
 

8 
 

24 
 8 

 

 

 

…(5) 
 

c 

 
 N 

 
M 


 

3 3 3 3 3 

Evaluation of   
x 

y 
dxdy 

R  

Here x ranges from 0 to 2 and y ranges from 0 to 2. 

 N M  
2 2  

 

  


dxdy = (2 y  3xy2 )dxdy 

R  x y 


0 0   

 

 

= 

 

=  (4 y  6 y2 )dy  2 y2  2 y3 
0 

0 

=-8+16=8 …(6) 

From (5) and (6), we have 

 Mdx  Ndy   
 N 

 
M 

 
x 

y 
dxdy 

c R  

Hence the Green’s theorem is verified. 

 
 

Assignments 

(1) Evaluate  where c is the circle  

(2) Verify Green’s theorem in the plane for  where c is the 

square with vertices (0,0), (2,0), (2,2) and (0,2). 

(3) Use Green’s theorem to evaluate  where c is the square 

bounded by y= 

(4) Find the area bounded by one arc of the cycloid 

x  a(  sin ), y  a(1 cos ), a  0 and the 

(5) Find the area bounded by the hypocycloid 

x  axis. 

 

(6) Find  (x2  y2 )dx  3xy2dy where c is the circle in xy plane. 
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Answers 

(1)-8 (3)           (4)3 (5)           (6)12 

 

 
III. STOKE’S THEOREM 

(Transformation between Line Integral and Surface Integral) [JNTU 

2000] 

Let S be a open surface bounded by a closed, non intersecting curve C. If is any 

differentieable vector point function then = 

direction and 
 

PROBLEMS: 

1: Prove by Stokes theorem, Curl grad = 

Solution: Let S be the surface enclosed by a simple closed curve C. 
 

 

= 
 i 

 j 
 

 k 
 

.idx  jdy  kdz 
     x y z 




c  

= 
  

dx  
 

dy  
 

dz 
 
 d   


 where P is any point   x y z 

  p
 

 

on C. 



c   



prove that curl 
s 

 
    

f .dS   f .dr  curl g rad  f dS 
c s 

Solution: Applying Stokes theorem to the function  

 f .dr   curl  f .nds  grad  f  curl f ds 
c s 

 

curl f .ds   f .dr    f .ds 
c c 

 

3: Prove that  

Solution: By Stokes Theorem, 

2: 
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  f f .dr  curlf  f .n ds   fcurlf  f f .n ds 
c s s 

  0.nds  0[ curlf 

 
 

 0 and f f 

 
 

 0] 

4: Prove that 
c 

f g.dr  f g .nds 

Solution: By Stokes Theorem, 

  f g.d r      f g  nds   f g   fcur lg radg .nds 
c s s 

= f g .nds 
 curl(gradg)  0





5: Verify Stokes theorem for , Where S is the circular disc 
 

Solution: Given that . The boundary of C of S is a circle in xy plane. 

 We use the parametric co-ordinates x=cos 
 

dx=-sin and dy =cos 
 

= 

= = 

= 
 

=2 =2 

 
Now 

 

 

 

We have (k.n)ds  dxdy and R is the region on xy-plane 
 

Put x=r cos 

r is varying from 0 to 1 and 0 

 .  .rdr d 

L.H.S=R.H.S.Hence the theorem is verified. 

. 



137 

 

 

 
    

If F  yi  (x  2xz) j  xyk, evaluate 

 
 

  F .nds . Where S is the surface of sphere 
s 

 

 
 

Solution: Given 

By Stokes Theorem, 
 

=  F.dr 
c 

 

Above the xy plane the sphere is  
 

Put x=a cos   ,y=asin  
 

 

= 

 

7: Verify Stokes theorem for  over the upper half surface of 

the sphere bounded by the projection of the xy-plane. 

Solution: The boundary C of S is a circle in xy plane i.e =1, z=0 

The parametric equations are x=  

 F.dr   F1dx  F2dy  F3dz  (2x  y)dx  yz dy  y zdz 
2 2 

 

c c c 

 

= 
 

2 2 2

   (2 cos  sin ) sind   sin2 d   sin 2 d
0 0 0 

 

= 
 

= 

 

 
Again = 

 
 

=  

Where R is the projection of S on xy plane and  

Now 

. 

. 

6: 



138 

 

 

= 2 = 

Stokes theorem is verified. 
 

 

8: Verify Stokes theorem for the function   integrated round the square in the 

plan z=0 whose sides are along the lines x=0, y=0, x=a, y=a. 

Solution: Given  
 
 

 

By Stokes Theorem, 

 

 

Now = y 

 
  

=  F.dr 
c 

 

 

L.H.S.= 

 
 

=  y(n.k)ds   ydxdy 
s s 

    and R is the region bounded for the square. 
 

 
  

R.H.S. =  F.dr  (x2dx  xydy) 
C C 

But   

(i)Along OA: y=0, z=0, dy=0, dz=0 

(ii) Along AB:x=a, z=0,dx=0,dz=0 

                a 
1

 

 F.dr   aydy  a3 

AB 0 
2 

(iii) Along BC: y=a,z=0,dy=0,dz=0 

. 

. 

. 
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k 

 

(iv) Along CO: x=0, z=0, dx=0, dz=0 
 

 

Adding 

Hence the verification. 

9: Apply Stokes theorem, to evaluate 

 
 

 ( ydx  zdy  xdz) where c is the curve of intersection 
c 

of the sphere  and x+z=a. 

Solution : The intersection of the sphere   the plane x+z=a. is a 

circle in the plane x+z=a. with AB as diameter. 

Equation of the plane is x+z=a 
 

OA  OB  a i.e., A  (a, 0, 0) and B=(0,0,a) 
 

 Length of the diameter AB 

Radius of the circle, r= 

Let 

a2  a2  0 =a 

 

 
 

= 
 

 

Let be the unit normal to this surface. 
 

Then s=x+z-a, S = i 

Hence 
 

=- ds = 

 
=- 

10: Apply the Stoke’s theorem and show that  is any vector 

and S = 

Solution: Cut the surface if the Sphere  Let  

denotes its upper and lower portions a C, be the common curve bounding both these portions. 

 curl F.ds   F.ds  F.ds 
s s1 s2 
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Applying Stoke’s theorem, 
 

 curl F.ds   F.d R  F.d R  0 
s s1 s2 

The 2nd integral curl is negative because it is traversed in opposite direction to first 

integral. 

The above result is true for any closed surface S. 

11: Evaluate by Stokes theorem   where C is the 

boundary of the triangle with vertices (0,0,0), (1,0,0) and (1,1,0). 

Solution: Let   

Then  

By Stokes theorem,  
 
 

Where S is the surface of the triangle OAB which lies 

in the xy plane. Since the z Co-ordinates of O,A and B 

Are zero. Therefore . Equation of OA is y=0 and 

that of OB, y=x in the xy plane. 

 
= 2 

 

 

 
ds=curl  

 the 
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= OA  AB= 
1 
11  

1
 

2 2 
 

 

12: Use Stoke’s theorem to evaluate  over the surface of the paraboloid 

z  x2  y2  1, z  0 where  

Solution : By Stoke’s theorem 
 

 curl F.ds   F.dr  ( yi  z j  xk).(idx  jdy  kdz) 
s c c 

 

=  ydx (Since z=0,dz=0) ……(1) 
c 

 

Where C is the circle  

The parametric equations of the circle are x=  
 

 

Hence (1) becomes 


       2



2 2 1 

 curl F.ds    sin (sin )d    sin
2 d  4 sin

2 d  4    

s  0  0 0 
2 2 

13: Verify Stoke’s theorem for  taken round the rectangle bounded by 

the lines x=  

Solution: Let ABCD be the rectangle whose vertices are (a,0), (a,b), (-a,b) and (-a,0). 

Equations of AB, BC, CD and DA are x=a, y=b, x=-a and y=0. 

We have to prove that  
 

= 

= …..(1) 
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2 

 

(i) Along AB, x=a, dx=0 

from (1), 

(ii) Along BC, y=b, dy=0 

x a 

 
 x3 

 

a 

from (1),    (x2  b2 )dx    b2 x = 
 

BC xa 

 

(iii) Along CD, x=-a, dx=0 

0 

 3 

 

 y2 
0

 

 xa 

from (1),    2aydy  2 a    ab2 

CD     y b 

 

(iv) Along DA, y=0, dy=0 

  y b    

 
from (1), 

 
xa    

   
 x3 

a

 

x2dx     
2a3 

 

DA  xa 

 

(i) +(ii)+(iii)+(iv) gives 

 3 xa 
3 

-- +   ….(2) 

Consider 

Vector Perpendicular to the xy-plane is 

= 

Since the rectangle lies in the xy plane, 

 and ds =dx dy 
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= = 4 

 

b 


y0 

a 

y x
a 

 

b 

dy  4 
y0 

 
2aydy 

=   …..(3) 

Hence from (2) and (3), the Stoke’s theorem is verified. 

14: Verify Stoke’s theorem for  where S is the surface 

of the cube x =0, y=0, z=0, x=2, y=2,z=2 above the xy plane. 

Solution: Given  where S is the surface of the cube. 

x=0, y=0, z=0, x=2, y=2, z=2 above the xy plane. 

By Stoke’s theorem, we have  

 

= 
 

 

 

…..(1) 

To find  
 

 

= 

Sis the surface of the cube above the xy-plane 

. (dx 

 
 

 

 

Along 

 

 
Along 

 

 
Along 

2 

 

……..(2) 

 

 
……. .(3) 

 

 
2 

 

 

 
Along 

=  4dy  4 y  8 
0 0 

……(4) 

. …..(5) 
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  2 0 

 2 2 

Above the surface When z=2 

Along                   ….(6) 

Along  y changes from 0 to 2 
 

2 2 
 

 

 y2 
2

 

F.dr    (2 y  4)dy  2  
0 0  0 

 4 y
2  
 4  8  12 ….(7) 

Along  x changes from 2 to 0 
 

Along  y changes from 2 to 0. 

 

 
….(8) 

0  y2 
0

 

(2 y  4)  2  
2  2 

 4 y
0  
 12 …..(9) 

(2)+(3)+(4)+(5)+(6)+(7)+(8)+(9) gives 
 

By Stokes theorem, We have 

= ds=-4 

Hence Stoke’s theorem is verified. 

 
 

…..(10) 

 

 

15: Verify the Stoke’s theorem for   and surface is the part of the sphere 
 

Solution: Given  over the surface  

We have to prove =  

. (y =ydx + zdy + xdz 
 

Let x=  

            [ 

= 
 

= 

=-   …..(1) 

 
Curl = (  
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Unit normal vector =  
 

Substituting the spherical polar coordinates, we get 
 

 

    
2 2

  curl F.nds    sin cos  sin sin   cos sindd
 0  0 

 

= 

 
=-2 

 

=   …..(2) 

From (1) and (2), we have 
 

’s theorem is verified. 

16: Verify Stoke’s theorem for 

x=0,x=a,y=0,y=b. 

 
Solution : 

F  x2  y2 i  2xy j 

 
 

over the box bounded by the planes 

 

 
 

 

Stoke”s theorem states that 

Given  

 
   

 F.dr  Curl F.nds 
c s 
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i j k 

Curl =  
x 

x2  y2 

 
y 

2xy 

 
z 

0 

 
    

 i(0, 0)  j(0, 0)  k(2 y  2 y)  4 yk 

R.H.S= Curl F.nds   4 y k.nds 
s s 

 

Let R be the region bounded by the rectangle 
 

 

   a     b a   y2 
b a 

Curl F.nds    4 ydxdy   4  dx  2b2  1dx 
 

s x0 y0 x0  2 0
 

 

x0 

=2 2a 

To Calculate L.H.S 
 

Let O= and 

C=(0,b) are the vertices of the rectangle. 

(i)Along the line OA 

y=0; dy=0, x ranges from 0 to a. 
 

(ii) Along the line AB 

x=a; dx=0, y ranges from 0 to b. 

=a 

(iii)Along the line BC 

y=b; dy=0, x ranges from a to 0 
 

                0  x3 
0

  a3 

 F.dr   (x2  y2 )dx    b2 x  0    b2a 


BC xa  3 a  3 


=a 

(iv) Along the line CO 

x=0,dx=0,y changes from b to 0 

0 

=  2xydy  0 
yb    

 

Adding these four values 
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

0 

= =  
 

 

L.H.S = R.H.S 

Hence the verification of the stoke’s theorem. 

17: Verify Stoke’s theorem for =  – 2xy  taken round the rectangle bounded by 

x= , y=0,y=a. 

 
Solution: 

 

 

 

 
Curl = = -4y 

 
 

For the given surface S, 
 
 

  

Now  = 

 
= 

 

 

 

 

 

a b 

  







4 ydx dy 

y0 xb 

a b 

= 4xy dy 
0 b 

=  = 4by2 
a   

 4a2b  ....... (1) 

   = 
 

 =  

Along DA , y=0,dy=0 



=0 ( F.dr  0) 
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0 

a 

Along AB, x=b,dx=0 

= = by2 
a   

 a2b 

Along BC,y=a,dy=0 

 = = 

 
Along CD, x=-b,dx=0 

= = by2 
0   

 a2b . 

   = 0 = -------(2) 

From (1),(2)  = 

Hence the theorem is verified. 

 
 

19: Using Stroke’s theorem evaluate the integral   where 

=2 +3  -(2x+z  and C is the boundary of the triangle whose vertices are 

(0,0,0),(2,0,0),(2,2,0). 

Solution: 

 
 

Curl = = 2  + (6x-4y) 
 

 
 

Since the z-coordinate of each vertex of the triangle is zero , the triangle lies in the xy-plane . 

 =k 

(Curl = 6x-4y 

Consider the triangle in xy-plane . 

Equation of the straight line OB is y=x. 

By Stroke’s theorem 

 F.dr    (curl F ).nds 
c s 
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 f f .d r 

3 

x 

0 

= = 
 

2 

= 
x0 

6xy  2 y2   dx  =   

 x3 
2

 

= 4   = 
 0 

 

 

OBJECTIVE TYPE QUESTIONS 

(1) For any closed surface S, 

 
  

(curl F ).nds = 
s 

 

(a) 0 (b) 2                      (c) (d) 

(2) If S is any closed surface enclosing a volume V and  +3z     then 
 

 F.nds 
s 

 

(a) V  (b)3V   (c)6V (d)None 

(3) If 
 

(a) 0 

  

 
(b) 

+z 

 
 

then =  r.d r 

(c) x 

 

 
(d) None 

(4) x 
 

 =    

(a) 0 (b) r (c) 1 (d) None 

(5)       . =   

(a) V (b) 3V (c) 4V (d) None 
 

(6) If is the unit outward drawn normal to any closed surface then     = 

(a) S (b)2S (c) 3S (d) None 

(7) 

(a) f (b)2f (c) 0 (d) None 

(8) The value of the line integral      from (0, 1,-1) to (1 , 2, 0) is 

(a) -1 (b) 0 (c) 2 (d) 3 

(9) A necessary and sufficient condition that the line integral   =0 for every closed 

curve c is that 

(a) div A=0 (b)div A  0 (c) curl A=0 (d) curl A  0 

(10) If =axi + byj+ czk where a, b, c are constants then  where S is the surface of 

the unit sphere is 

 F.dr 
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(a) 0 (b)    (c)      (d) none 

(11)  =   

(a)              (b) 0 (c) V (d) S 

(12)  =    

(a)                  (b) 0 (c) V (d)  

(13) =    

(a) 0 (b) ) (c) (d) S 

(14)  where S:  as 

(a) 4p (b)                           (c) 4     (d) 4 

 
ANSWERS 

(1) d (2) c (3) a   (4) a   (5) b (6) a (7) c (8) d (9) c 

 
(10) b (11) a (12) a (13) b (14) c 
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