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Exact Differential Equations:

Def: Let M(x,y)dx +N(x,y) dy =0 be a first order and first degree Differential Equation
where M & N are real valued functions of X,y . Then the equation Mdx + Ndy =0 is said to
be an exact Differential equation if & function f . =

afd afd
dIf ooy = S

Condition for Exactness: If M(x,y) & N (x,y) are two real functions which have
continuous partial derivatives then the necessary and sufficient condition for the Differential

aM aN
equation Mdx+ Ndy =0 is to be exact is that By = Ax

Hence solution of the exact equation M(x,y)dx +N(x,y) dy =0. Is
f Mdx + f Ndy =c.

(y constant) (terms free from Xx).

*hkkkhkhkkkik

PROBLEMS:

1)Solve (1 + ef) dx + e_y(l— Xy .dy=0
y

X X X
Sol: Hence M=1+e¥ & N= e¥(1--)

y
M 1) 5 4
3y - ¢ (& =g | 4y me'(2)
o e ox \y) ¥ y
oM N =51 an = =3
. 3 eV(F] & ﬁ —uel (Fj
aM _ AN N .
3y _ 3. eduation is exact

General solution is
f Mdx + f NEJT,_'L’ =C.

(y constant) (terms free from x)

f(1+eyde + fo0dy =c

== XT

< e 2.

=>x+yer=C
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2. (e¥+1) .cosx dx + e¥ sinx dy =0.

i ) aM AN
Ans: (e¥+1) . sinx=c By ax e* cosx

3. (r+sind —cas#) dr + r (sinf + cosd) df = 0.

Ans: r2+2r(sind + cosf) = 2c

M _ON = sing + cos8-
or 00

4. Solve [y(1 + ) +cos y] dx+ [ x +logx —xsiny]dy =0.

Sol: hence M =y(1 + 1) +cosy N =x +logx —xsiny.

aM _ an .
2. 3,50 the equation is exact
¥ x

General sol [Mdx + [Ndy
= ¢.(y constant) (terms free from
X)
JIv+Z+cosyldx + [o.dy =c.
=Y (x+ logx) +x cosy = c.
5. ysin2xdx — (7 *+cosx) .dy =0.

6. (cosx-xcosy)dy — (siny+(ysinx))dx =0
Sol: N =cosx-x cosy & M = -siny-ysinx

an - M 4
T -SINX - COSY av -COSY - SInX
aM _ 8N %
5y, ~ 3. = theequation is exact.

General sol [Mdx + [Ndy

= ¢.(y constant) (terms free from

X)
=> [(—siny —ysinx).dx + Jo.dy =c
=> -Xsiny+ ycos X =C
=> yCOSX — Xsiny =C.
7. (sinx.siny - x e¥) dy = (¥ +cosx-cosy) dx
Ans: xe? +sinx.cosy =c.

8. (x2+y?-a?) x dx +(x2-y?-b?) . y .dy =0
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REDUCTION OF NON-EXACT DIFFERENTIAL EQUATIONS TO

EXACT USING INTEGRATING FACTORS
Definition: If the Differential Equation M(X,y) dx + N (x,y ) dy = 0. Can be made exact by
multiplying with a suitable function u (x,y) = 0. Then this function is called an Integrating
factor(l.F).
Note: there may exits several integrating factors.

me meth findan I.F non-exact Differential E ion Mdx+N
Case -1: Integrating factor by inspection/ (Grouping of terms).

Some useful exact differentials

1. d(xy) = xdy +y dx

2. d (;ij = ﬂ

3. d® - xdx;dx

4. d(#) =x dx +ydy

5. dllog)) = T

6. d(log() - e

7. d(m‘,n_i(;_‘_‘;,) - jx__xd

8. d(tan™(%)) - I:Jf)ﬂ

9. d(log(xy)) = *'ix;'ﬂ
2{xdx+ydy)

10. d(log(x*+¥?) =

1. d g

PROBLEMS:
1. Solve xdx +y dy + *2—2= “fx =0.

Sol: Given equation xdx +ydy + “'jr%“ =0

d( =22 ) +dlean=" @)) = 0
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on Integrating

x:—_‘,': _1 ¥ _
+ tan (I] =C.

-

2.Solve y(x3. e —w) dx + x (y + x%. ) dy = 0.
Sol: Given equation is on Regrouping
We get yx® ™ dx - y*dx+ x%y dy +x* e dy =0.
X3e*¥ (ydx+ xdy)+ y (x dy —ydx ) =0
Dividing by x®
e (ydx + xdy) +&) . () =0
d(e™)+) d+) =0

on Integrating
(yY
e+ _J =C isrequired G.S.
X
3. (I+xy) xdy+ (1-yx)ydx=0
Sol: given equation is (1+xy) x dy +(1-yx ) y dx =O0.
(xdy + ydx) + xy (xdy—ydx) =0.
Divided by x?y? => (2125 + (22222 =0

L Ei

d(xy)
(x::l.: ) + l dy' 1 dx =0.

On integrating => %+ logy—log x=log ¢
- — - logx +log y =log c.

4. Solve ydx —xdy=a (x* + v*) dx

vdx -x dy

Ans: =adx

d(tan™*2) =adx

X

integrating on tan™*Z = ax +c

Method -2: If M(xy) dx + N (X,y) dy =0 is a homogeneous differential equation and

Mx +Ny # 0, then ; is an integrating factor of Mdx+ Ndy =0.
Mx + Ny

1.Solve x?y dx— (x3+y3)dy=0
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Sol: X2y dx— ( X+ y?) dy = Q-mmmmmmmmmmmmeee (1)
Where M= x2y & N= (-x>-y®)
Consider E,w =X & Z—;: -3x?
au N o
5 T a. equationis notexact .

But given equation(1) is homogeneous D.Equation then
So Mx+ Ny = x(x%y) —y (%+ y¥) = - y* #0.

F=_1 -1

Mx+Ny v
Multiplying equation (1) by =

2
= > X_Z dx- XY o (2)
—y o
=> L -2 g
This is of the form M1dx + N:dy =0
. x3+y°
For M1=}_'3“ & N;= Y
ar X L _ 3x?
R I S iy
BM1  ap1 . ) .
=> By -~ ox equation (2) is an exact D.equation.

General sol [Mdx + [Ndy =c.
(y constant) (terms free from x in N)

=> —EEJT.I + Jﬂ%d}’ =_C.

=> % +log |y| = c.//
2.Solve ¥ dx+ (x?—xy— yHdy=0

Ans: (xy). ¥ = c1¥(x+y).

3.S0lve y( ¥* =2 xM) dx +x(2 ¥*— x%)dy=0----mmmmm- (1)
Sol: it is the form Mdx +Ndy =0
Where M=y( ¥*—2 x*) N= x(2 y*— x%)
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: M an
Consider 5 = 3y>2x* & -= 2y*-3%°
aM _ 8N .
2. T 3. equationis not exact .
3 x

Since equation(1) is homogeneous D.Equation then
Consider Mx+Ny=x[y( ¥*—2 x*) J+y[x (2 ¥*— x%)]
=3xy( y*— x¥)=#0.

= IlF=—21
Bay (3% — &%)
Multiplying equation (1) by = We get
== 3:»::«'"1 ¥i- x;;'- 2x 3:-::; (y*- :r; J dy =0

=>  now it is exact (check)

( P ::':_:I— P e ( pE ot ]
sy (3o 7 XY gy wn) Y0,
8% _ _xdx 4 ydy 4y o
x :..: —I: -..’.: —I: »

dx |, dyy 4 2ydy 2xdx
=yt 2y =x)2(y -x)

Logx+|ogy+%|og(_v:—x:]-%log(_v:—x:)=c = Xy=C
4. r(g2+2) dO—g (8%+2,2) dr =0

Ans: E'— +log? +logr? =c.

Method- 3: If the equation Mdx + N dy =0 is of the form y. f (xy) .dx+x.g (xy)dy=0 &
Mx- Ny = 0 then *__js an integrating factor of Mdx+ Ndy =0.

Mx— Ny

Problems:
1. solve (xy sinxy +cosxy) ydx + ( Xy sinxy —cosxy )x dy =0.
Sol:  (xy sinxy +cosxy) ydx + ( Xy sinxy —cosxy )x dy =0 ------ (2).
=> this is the form y. f(xy) .dx + x. g ( xy) dy =0.
=> consider Mx-Ny
Here M =(xy sinxy + cos Xy ) y

N= (Xy sinxy- c0s Xy) X
Consider Mx-Ny =2xycosxy

Integrating factor =

DayooEny
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So equation (1) x I.F

(xysmxy+cosxy)xdX + (xymnxy+{msxy)ydy - 0.
2xy cos Xy 2Xy COS Xy

= (ytanxy+f—{)dx+ (ytanxy--)dy=0

= Midx+ Npdx=0
Now the equation is exact.

General sol [ Midx + [Nidy =c.

(y constant) (terms free from x in Ny)
-1
=> [(ytanxy + j—rjdx + Ide =c.

yv.log|ssexy|
=>" . +logx + (-logy) = log c

=> log|sec(xy)| +log- =log c.
=>- . seexy =C.
2. Solve (1+xy) ydx + (1-xy) x dy =0

Sol:lL.F= ——

Zx® gy

=> [— —%jdx+ f%d}f =C

=>_—+ 1 logx -- log y =c.
=> — +log() =c*  where ¢! =2c.
3. Solve ( 2xy+1) y dx + ( 1+ 2xy-x3y®) x dy =0

al + 1 _ =¢.

I:_‘,': EIE_‘_."

Ans: logy +

4. solve (x2y? +xy +1) ydx +( x?y?- xy+1) xdy =0

Ans:  xy xi + log(®) =c .

M 8N

Method -4: If there exists a single variable function jf(x) dx such that _3_\ 2

N

=f(x), then I.F. of Mdx + N dy =0 is e
PROBLEMS:
1. Solve ( 3xy — 2ay~) dx + (x* — 2axy) dy =0

Sol: given equation is the form Mdx+ Ndy =0
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=> M=3xy-2ay~ &N=x"—2axy

aM an
ay - 3x-4ay & - =2x-2ay

equation not exact .

al“{ E

ay dx

aM_aN , - ,
. iy &x _ | 3x—4ay)—(2x—Zay

Now consider = x—2ay)
aM_aN
_ 2y x _1 _
=> ,"'.—" —? —f(X)

%% **is an Integrating factor of (1)

d g

=> =l
=> equation (1) x I.F = equation (1) X X
= TRV _lza}-hj X dx + —':I:"f“y} x dy=0

=> (3x2y -2ay?x) dx + (x3-2ax?y) dy =0
It is the form Midx + Nidy =0

General sol [M,dx + [N,dy =¢.
=> j(3x2 — 2ay?x )dx +_[od y==C

=> x3y—ax?y? =c ./l
2 . Solve ydx-xdy+(1+x*)dx + x*siny dy = 0
Sol : given equation is (y+1+x*) dx + (x* siny — x) dy =0

M=y+l+x? & N =x?siny —x
ﬂ;"r:l' an A
Ty - L . = 2Xsiny-1
a]"’: - al"ll- - -
- = the equatlon IS not exact.
gy dx
M AN
. T (1-2x siny—x) —2x siny—x) -2
So consider —— = T = ————
M xsiny—x xsiny —x x
|.F = e.rg':}'}r:.!}' - e—:f:;dx — e—!!ﬂgx - x_:

Equation (1) X LF  => % dx + Itﬁ dy =0
It is the form of M1dx+ N1 dy =0.

Gen soln :>f(;—; + xi + 1)dx +j sinvdy =0

v 1 _
=>—X -~ +x- CcOSy =C.
x &£

=>x%— y—1— xcosy = ex.//

10
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3. Solve 2xy dy — (x>+y?+1)dx =0

arl 1
Ans: -X+=— +;= c.

4. Solve (x*+y?) dx -2xy dy =0
Ans:  X2-y?=CX.

aN M

Method -5: For the equation Mdx + N dy =0 if - =g(y) (is a function of y alone)
then e/ 2079 s the Integrating factor of M dx + N dy =0.

Problems:

1. Solve (3x2y*+2xy)dx +(2x3y*-x?) dy =0

Sol:  (3x2y*+2xy)dx +(2x3y%-X?) dy =0 ---mmmmmemmmmme- ().
Here M dx + N dy =0.

Where M =3x%y*+2xy & N = 2x3y*-x?

M " aN

ay T # equation (1) not exact.

8N aM
e A b

So consider _st - =2 =g()

FL
i

|
I
L]
i<}
-
|
||-L

[ aiidy
LF:E.Q-.J_- ¥ oz ‘¥ =) =

o

2x3y3d —x2

Equation (1) x I.LF => (M_—G) dx +(—7—)dy=0
It is the form M1dx + N1 dy =0
General sol [Mi1dx + [Nidy =c.
(y constant) (terms free from x in N1)

> f(Ex:}rz—:_—:_rjd:c+ Jody =c.

+—=c.
3 e

=
Fx"y"

=>

=> x%yI+Z =cll

o

2. Solve (xy3+y) dx + 2(x2y?+x+y*) dy =0

aN aM
L3 a3 [ 4wy +2) (323" +1) 1
Sol: ——% = - =1 =q(v.
> o S =9y
ri
A g —dy
|E=¢e glylds =g ¥ - =y

11
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Gensol: [(xy4 + y2)dx +[(2¥5)dy = ¢

T4 - -
EY o4yt x+22
&

=C.

3. solve (Y*+2y)dx + ( xy® +2 y* — 4x) dy =0

= =q(y).

Gensoln: J’|[y+ é}dx +_[2ydy=c .

(

4 Solve (3x% y* +2xy)dx + (2x3y® —x?) dy =0
Ans : x3y3+x2=cy

"

)x +vi=c./l

v+

1
o

5. Solve (y+ y?)dx + xy dy =0
Ans: X+ xy =c .
6. Solve (xy>+y) dx + 2(x2y>+x+y*)dy =O0.
Ans: (x2+y*-1) e*" =c.
LINEAR DIFFERENTIAL EQUA

TION’S OF FIRST ORDER:

Def: An equation of the form g_y + P(x).y = Q(x) is called a linear differential equation
X

of first order in y.

Working Rule: To solve the liner equation %+ P(x).y = Q(x)
X

first find the Integrating factor I.F = ol plx)ax
General solution is yx I.F = JQ(x)x l.F.dx+c

dx

Note: An equation of the form U p(¥).x =
of first order in x.
Then Integrating factor =e/ 2374

Gensolnis=x X L.F = [Q(y)x|.F.dy+c
PROBLEMS:
1. Solve (1+ y?) dx=( tan~ty —x ) dy

Sol: (1+y?) == (tan""y—x)

dx 1
-+
dy [1—_‘,'=

y) is called a linear Differential equation

12
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It is the form of :—i +p(y).x= Q(y)

A= :e‘r-plzx:lﬂ'x — e.r,__,__}.zd}' — etﬂn_i ¥

tan - -1
— g™ " Ydy+c.
1437 -

=> Gensolis x. et ¥ =[

=>x etem ¥ =[t. efdt+c

[puttanty=t

= 1 ay-dt]

1+y

X efan Y =t ef-ef +c

=> x et®™ ¥ —tan ly. gtan ¥ _gtam "y 4o

=>x =tan™? y— 1 + ¢/ ™" " ¥ jsthe required solution

2. Solve (x+y+1) :—i =1
Sol: g iven equation is (x+y+1) :—i =1.

dx
=> = _ =v+1.
P y+1

It is of the form Z—j +p(y).x= Q(Y)
Where p(y) =-1;Q(y) = 1+y

=> | E=ele0ldy = —~Jay = ,-¥
Gensoln=x X I.LF = JQ(y)xI.F.dy+c
=>x.e ¥ =[(1+v)e ¥dy+c

=>x.e ¥ =[eVdy+ [yve Vdy+ ¢

=> Xe ¥ =-e*— yxe¥-e?¥ +c

=> Xe™ =-e {2+ y) +c./l

g

3.Sleyl+v=e
Sol: this is of the form %—l— plx).yv = Q(X)

Where p(x) =1  Q(X) = e
=> I.LF= elpldx - lax —_px

Gensoln is is yx I.F = [Q(x)x I.F.dx+c
= y e¥=] e e¥dx + ¢

13
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=>vy. e* =[ eftdt +¢ put e* =t
=>vy. e* =t e — e’ +c e“dx = dt
=y e¥ = e (e — 1) +e.
4. Solve x.% +y =log x
Sol : this is of the form == +p(x)y = B(x).
Where p(x) :i & O(x) ===

=

. dy 1 logx
— 4 - = ——
lL.e, . i Yy P
i I-.id 1
=> | F= elptder - 3 _jrogr oy

Gensoln is is yxLF=[Q(y)xL.F.dy+c

=>  yX= flofxxdx +c

=>y.X =X (logx-1) +c.//
5. Solve (1+y?) + (x- e ¥) 2 =,

ghan ™= =¥

. . . . ri_:r x —
Sol : Given equation is d}_+ ry— -

dy

It is of the form &= + X=
p(y) QW)

= 1 = tan "y
Where p(y) = — Q) A
1+v2
I.F :e‘r'i!ﬂ':}'}d}' e e'r"_-i-_}'id}- = Erﬂ?‘!_:}'-

General solution is is x X .LF = [Q(y)xI.F.dy+c.

—a gtan ~*y ban—ty
= E +
1432 dy +c

=> X . etﬂn_L}- :f et ef. dt +C
[ Note: put tan 'y =t

1

=2 dy =dt ]
142
=>X etfzn_-} — J.- E:r ) dt o
14
-t g
=> X Erﬂ?‘! ¥ — : 4 c
-z E:mn"—}-
=> X etr.m ¥ — - re //
6.solve & + Y =nZ

@z ylogx  °9%

14
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Ans: ylogx = 05 2x

+ C.

dy —giny 2
7. Z+(y-1). Cox= e™"¥ cos® x
Ans: y. eTSiny = D4 TR 4 gmsiny g )
8 E-{-z_x

ax 1tz T oy given y=0, where x= 1.

ANs:Y(1+x2)= tan~lx -r

9.Solve 2 2% —(1+x) e . secy
dx 1+x

Sol : the above equation can be written as

Divided bysecy  => cos y% _siny

Put siny=u
dy i
=>Cos y; I
D. Equation (1) is :—: —ﬁ Lu=(1+x) e*

this is of the form :_: +p(x)u= Q(X)

Where p(x) :i Q(x) =(1+x) e*

=> | F= elrax e

1+x

Gensoln is is ux.F= [Q(y)xI.F.dy+c

1 )

=> U.l:L::“re:rdx_I_c
=> (Sin y)ll:: e* 4¢
(Or)
10. Solve 2 - ytan ="

}.1

. —_ —GDSEI
ANS: 33 ppgiy = +C.

v . X
11 .Solve = —yx= y?e =
dx

LSinx

15

. (1+X) -&=--------

- ( 1
=g 1+x =g log(ltx) 1

=>siny=(1+x) e* +c. (1+x) is required solution

(1)
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Ans: 1 e = =cosx+c.

x

12. ex.% =2xy’+y e

Ans: - e ¥ = x%+¢,

[

dy .
13, Z+ycosx= y°sinx

Ans: : — =(1+2sinx)+c g i (or)

o

=2 e TEME=_(1+2sinx) e T4,

14. @& y cot X = _v: sinx cos® x
dx

Ans: ysinx (c + cos® x) =3,

15.Solve = = e *7V (e T— e ¥)

Ans: e *. e * =e * (e*—1)+c

(EQUATION’S REDUCIBLE TO LINEAR EQUATION)
Def: Anequation of the form = + p(x) .y = Q(x) ¥" ----- - (1)

Is called Bernoulli’s Equation, where p & Q are function of x and n is a real constant.
Working Rule:

Case -1 : if n=1 then the above equation becomes z—x +p.y=0Q.

d )
=> Gen soln of d_y+(p—Q)y=0 IS
X

j %iﬁ (p-Q)dx=c by variable separation method.
Case -2: if n #1 then divide the given equation (1) by ¥"
= ¥ Zap) .y = Qe 2)
Then take ¥* ™™ =u

n) pon Y g
(1n)1 " dx dx

16
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Then equation (2) becomes

= =4 p(x) . u=Q

:—: + (1-n) p.u = (1-n)Q which is linear and hence we can solve it.

Problems:

1. Solvex% +y=x3 ¥°

Sol: given equation can be written as :—i + G) v =x2+y°
Which is of the form == + p(x).y =Q y=

Where p(x) = Q(X)=*" &n=6

g i dy 1 2
Divided by y* => Jii_ 2 +;;—5 ez S N (2)

Take = =u
X
—5 dy _ du
> < T 3)
1 dy _ 1ldu 0
S s m } (3)
@) in@ =>=-u=-5¢

Which isa L.D equation inu

—5 [Lax _c1 1
213 —p TElegx — =

LF = elptaax
X

Gensol = u.l.LF =]Q(y)x|.F.dy+c
u. x—t = —5}-:2.1—? dx +¢C

C B

1 _ 5 _1= S5x 5
¥ xS - 22 +C (Or) _-_,-5 2 + Cx
2. Solve :—i (x2y¥ +xy) =1
sol. ¥ i e B —— (1)
dy x dy X
Put fzu
-1l ogx  _odw
= =2 ; i (2)
@in(1) > —-=— uy=y°

17
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(On) —+u y=-v°
IsaL.D Equation in ‘ u’

I.F=

Gensol = u.l.LF=[Q(y)x|.F.dy+c

K] _L
S ou.eT = [vieTTdy +c
2
e?2 L
N =2 —1) .eT +c
X 2
(or)

X(2-¥3)+ cxe ™ T =1.

3. Solve -y tanx = ¥~ sec X
Ans: |F= g [tamvdw g flescox — 5oy
Gen sol }1 COS X= -X +C .
4. (1-x ) =y Xy = 1,3 siﬂ,_ix
Sol: given equation can be written as

ri_'; ¥
dx

- sin” Ix

Which is a Bernoulli’s equation in “y*

Y 3 1 dy, 1 x sin~x
v = | =+= = --- :
Divided by ¥* = —= . —+5 — =-—— (1)
1
Let — =u
-
-2 dy g 1 dy 1 du
——— = — == >— —— = — —— o
¥»® dx dx ¥® dx 2 dx (2)

(2)in (1) o ldw  x o snix

2 dx 1—x2 1—x?
Which is a L.D equation in u

| F= efpiar _ mlTmdr _les(1-x) =(1—=x%)

Gensol = u .I.F =]Q(x)x .F.dx+c

>1 (A-xH= fEE G dx e

(1-=%) - 3
:>}_—: = -2 [ xsin 1K+\."1—x‘ ] +c

18
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EWTON’S LAW OF LIN
STATEMENT: The rate of change of the temp of a body is proportional to the difference
of the temp of the body and that of the surroundings medium.

Let ‘8" be the temp of the body at time ‘t> and o be the temp of its surroundings
medium(usually air). By the Newton’s low of cooling , we have

i—e a (8 —bo)= —i—e =k(f — 6o) kis +ve constant

= f |EiEEI'D_, =k j dt

= log (¢ —8o) =-kt +c.
If initially 8= 81 is the temp of the body at time t=0 then
c=log(f1—6ae) = log(F —6Fe)=-kt+log (61— fo)

(8—8g) N
-jE:l—E'.:-}:I = -kt.

= log (

(8—-8p)
= (81-80)

6= 60 + (61 — B0). e~**

— okt

Which gives the temp of the body at time ‘t* .

2a

1. Find the O.T of the co focal and coaxial parabolas r =

" 14co=d

c

Ans: r=

1—cos=8

Problems:

1 Abody is originally at 80° and cools dowm to 60° ¢ in 20 min . if the temp of the air is
40° ¢. Find the temp of body after 40 min.
Sol: By Newton’s low of cooling we have

% =k(# — Fo) o is the temp of the air.

N J’I:E'iﬂ}.: —k [dt 6o =40

= log(# —40)=-kt+logc

#—40

c

= log ) =-kt
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40 _ -kt
=8 =40+¢c g™ - (1)
Whent=0,8 =80% ¢ = 80 =40 +C ----------- (2).
Whent=20, 68 =60° ¢ = 60 =40 +Ce™2% ---eemmmmv 3).

Solving (2) & (3) = ce™2% =120
C=40 = 40e %% =20
_ _ 1
= k= = |ng

When t=40° ¢ =>equation (1) is & = 40 + 40 ¢~ (e °=%0

40 +40 21022

40+ ( 40 x1 )

= 8=50° ¢
2. An object when temp is 75°% cools in an atmosphere of constant temp. 25° ¢, at the rate k
8.6 being the excess temp of the body over that of the temp. If after 10min , the temp of

the object falls to 66° ¢ , find its temp after 20 min . also find the time required to cool down
to 55°% .

Sol : we will take one as unit of time.

It is given that 'Z—E = - k&

= solis @ =ce ™ —-ommmmmee (1).
Initially whent=0 — 6 =75° — 25% = 50°
When t= 10 min = & =65 — 257 = 40°

= 40=50 710

The value of & whent=20 = & =ce ¥t
§ = 50e~20%
§ = 50( e1%)?

&. 1

6 =50( -)°

when t=20 = 8 =32%¢,
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3. Abody kept in air with temp 25%¢ cools from 140° ¢ to 80 in 20 min. Find when the
body cools down in 35°.

8
Sol: here #o=25% = I,;ﬂa} = -k dt

= log (¢ —25) = -kt +c

------------ (1).
Whent=0, # =140%¢ = log (115) =c

= ¢ =log (115).

— kt=-log (# —25)+ log 115-------- (2)

When t=20, & =80° ¢

— log(80° ¢) = -20k + log 115

— 20 k =log (115) - 10g(55) - 3)
(2)/(3) — Kkt _ log115—log (@ —-25)

20k log115 —log 55

3

i log115 —log (8 —25)
a0

logl1s —logss

log1is -logiid
When8=35°¢c = = — [Eiii-leso)
20 logiis-logss
t log{11.5] B
= 20 log (=) =331

= t=20x 3.31=66.2

The temp will be 35% ¢ after 66.2 min.
4 . If the temp of the air is 20° ¢ and the temp of the body drops from 100%¢c  to 80° ¢
in 10 min. What will be the its temp after 20min. When will be the temp 40° ¢ .

Sol: log (68 —20) =-kt+logc

= 3
c=80% ¢ and e71% =-

A

_1o lo g:l‘:}

B .
log (5)

5. the temp of the body drops from 100% ¢ to 75° c is temp in 10 min. When the

surrounding air is at 20? ¢ temp. What will be its temp after half an hour, when will the temp
be 25%¢.

a8
Sol : =

2 = K(® — 60)

log (8 —20) =-kt +log c
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whent=0, 8 =100% =>¢=80

11

when t=10, 6 =75° => g~ 10k = %

whent =30min  => @ = 20 +80 () = 46°C

2096

8 25 log5—logald

o
when © ="" ¢ =>t= 10 (;; ;11— 108 = 7486 min

LAW OF NATURAL GROWTH OR DECAY
(STATEMENT: Let x(t) or x be the amount of a substance at time ‘ t” and let the substance
be getting converted chemically . A law of chemical conversion states that the rate of change
of amount x(t) of a chemically changed substance is proportional to the amount of the

substance available at that time
Z a x (or) :—f = -kt; (k>0)

dt
Where Kk is a constant of proportionality

Note: In case of Natural growth we take

£ =k x)

dt
PROBLEMS
1 The number N of bacteria in a culture grew at a rate proportional to N . The value of N
was initially 100 and increased to 332 in one hour. What was the value of N after 1hrs
Sol: The D. Equation to be solved is Z—" =kN

- L V0
N

- (& = [kat

N

= log N =kt + loge

When t=0sec , N =100 = 100 =c = ¢ =100
When t =3600 sec , N =332 => 332 =100 e300%

600K 332
= = =
100

Now when t :3 hors = 5400 sec then N=?
= N =100 g >*00k
— N =100 [ e300 ] z

33z

5] * =605.

= N =100 [
= N=605.
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2 . In a chemical reaction a given substance is being converted into another at a
rate proportional to the amount of substance converted. If§ of the original
amount has been transformed in 4 min, how much time will be required to
transform one half.

Ans: t=13 mins.
3. The temp of cup of coffie is 92% . in which freshly period the room temp being 24° .

in one min it was cooled to 80°% . how long a period must elspse , before the temp of the

cup becomes 65% .

Sol: : ByNewton’s Law of Cooling,
2 = k@ —60) ; ko0
Bo =24% = log (¢ — 24 )=-kt +log C------------- (1).
When t=0; & =92 — c=68

When  t=1; 6=80% = e* =2

= k=log &).
When 8 = 65°% ,t=?
Ans: t :% min.
RATE OF DECAY OR RADIO ACTIVE MATERIALS STATEMENT:
The disintegration at any instance is propositional to the amount of material present in it.
If u is the amount of the material at any time ‘t” , then :—“ = - Kku, where k is any constant (k
>0).

Problems:
1). if 30% of a radioactive substance disappears in 10days flow long will it take for 90% of it

to disappear.
Ans: 64.5 days
2).In a chemical reaction a gives substance is being converted into another at a rate

proportional to the amount of substance unconverted. If 1 Of the original amount has been

transformed to required to transform one-half.
Ans:

3 The radioactive material disintegrator at a rate proportional to its mass. When mass is 10
mgm , the rate of disintegration is 0.051 mg per day . how long will it take for the mass to be

reduced from 10 mg to 5 mg.
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Ans: 136 days.

4. uranium disintegrates at a rate proportional to the amount present at any instant . if m1 and
M2 are grms of uranium that are present at times T1 and T2 respectively find the half=cube of

uranium.

(T2-T1)io0g2
Ans: = :

log (37)

5. The rate at which bacteria multiply is proportional to the instance us number
present. If the original number double in 2 hrs, in how many hours will it be triple.

Ans: 2222 s,

log2
6. a) if the air is maintained at 30°% and the temp of the body cools from 80° to
60% in 12 min . find the temp of the body after 24 min.
Ans:  48%
b) If the air is maintained at 150% and the temp of the body cools from 70%

to 40% in 10 min. Find the temp after 30 min.

FIRST-ORDER DIFFERENTIAL EQUATIONS OF HIGHER DEGREE
Equations of the First-order and not of First Degree

First-Order Equations of Higher Degree Solvable for Derivative j—i =p

Equations Solvable for y
Equations Solvable for x
Equations of the First Degree in x and y - Lagrange and Clairant Equations

Exercises

Equations of the first-Order and not of First Degree

24




ADVANCED CALCULUS MA1201BS

In this Chapter we discuss briefly basic properties of differential equations of first-order
and higher degree. In general such equations may not have solutions. We confine
ourselves to those cases in which solutions exist.

The most general form of a differential equation of the first order and of

higher degree say of nth degree can be written as

-1 n-2
(A gy Q) apy) Q)
\dX) + de} at de)

d
...... +an_1(x,y)d—§/( +an(X,y)=0

or p'+aip™i+azpi+ ... +an-1 p+an=0 (1)
dy i
where p = dx and ai, az, . ., an are functions of x and y.
X

(1) can be written as
F(x,y,p)=0 2)
First-Order Equations of Higher Degree Solvable for p
Let (2) can be solved for p and can be written as

(P-91(%,Y)) (P-020X,Y)) -eveerveereens (p-an(x,y)) =0

Equating each factor to zero we get equations of the first order and first degree.

One can find solutions of these equations by the methods discussed in the
previous chapter. Let their solution be given as:

fi(x,y,c)=0, i=1,2,3 ......... n (3)

Therefore the general solution of (3.1) can be expressed in the form

f1(x,y,c) f2(x,y,C)......... fn(x,y,c) =0 4)

where c in any arbitrary constant.
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It can be checked that the sets of solutions represented by (3) and (4) are
identical because the validity of (4) in equivalent to the validity of (3) for at least one i

with a suitable value of ¢, namely c=c;

dy Y d
Example 1 Solve Xy(_y\ + (X2 + y2) _y+ xy=0 (D
L dx ) dx

Solution: This is first-order differential equation of degree 2. Let p =3—y
X

Equation (1) can be written as
Xy p*+(x*+y?) p+xy=0 )
(xp+y)(yp+x)=0
This implies that
xp+y=0, yp+x=0 (3)
By solving equations in (3) we get
Xy=c1 and
x2+y?=c, respectively

dy

+y=0 or di+ 1J/zo,lntegrating factor

dx dx X

[ x

[
IX)=e* =€ This gives

y.x = Jo.x dx +c; or xy=ci]

[yﬂ+x:0, or ydy+xdx=0
dx

2

By integration we get y2 + X =c

1
2

or  x*y?=cz €2>0, —,/c2 <x<.,c2 ]

N|

The general solution can be written in the form
(+y?-C2) (xy-C1)=0
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It can be seen that none of the nontrivial solutions belonging to xy=ci or
x2+y?=c; is valid on the whole real line.

Equations Solvable fory

Let the differential equation given by F(X, y, p) = O be solvable for y. Then y can be

expressed as a function x and p, that is,
y=f (x,p) (1)

Differentiating (1) with respect to x we get

Y_42, 20 @)

(2) is a first order differential equation of first degree in x and p. It may be solved by
o(x,p,c) =0 (3)

The solution of equation (1) is obtained by eliminating p between (1) and (2). If
elimination of p is not possible then (1) and (3) together may be considered parametric

equations of the solutions of (1) with p as a parameter.
Example 2:  Solve y?-1-p?=0

Solution: It is clear that the equation is solvable for y, that is

y =1+ p? (1)

By differentiating (1) with respect to x we get

dy_1 1 ,,0p
dx 2 1er2 dx
1+p2 dx
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|r 1 dp1|
or p1- ] =0 (2)
X
‘[ \/1+ p? I
. _ p dp
2) gives p=o or 1- — =0
(2) gives p > dx

1+p
By solving p=0 in (1) we get
y=1

1 dp
1+p? dx

By 1-

we get a separable equation in variables p and x.

By solving this we get

p=sinh (x+c) (3)
By eliminating p from (1) and (3) we obtain

y=cos h (x+c) 4)

(4) is a general solution.

Solution y=1 of the given equation is a singular solution as it cannot be obtained by

giving a particular value to c in (4).

Equations Solvable for x

Let equation F(x, y, p) =0 be solvable for x,
that is x=f(y,p) . Q)

Then as argued in the previous section for y we get a function W such that
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¥(y,p,c)=0

(2)

By eliminating p from (1) and (2) we get a general solution of F(x, y, p) =0 .If

elimination of p with the help of (1) and (1) is combursome then these equations may be

considered parametric equations of the solutions of (1) with p as a parameter.

Example 3

3
dy7 dy
Solve x(_ -12 = -8=0
L dx ) dx

i dy
Solution; Let P=—, then
dx

xp3-12p-8=0
It is solvable for x, that is,

12p+8 12 8
X = ="+

p3 Io2 p3

Differentiating (1) with respect to y, we get

dx: 12dp_38 dp

iy b TN

dy pddy pdy

1 24dp 24 dp
Or—=——m 7
p p°dy p°dy
or dy=r—ﬁ—ﬁ dp

L p2 p>
24 12

or =+  + 4+
P p2

1)

)

(1) and (2) constitute parametric equations of solution of the given differential equation.
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Equations of the First Degree in x and y — Lagrange’s and Clairaut’s Equation.
Let Equation F(x, y, p) =0  be of the first degree in x and y, then
y = x¢1(p) + 92 (p) - @
Equation (1) is known as Lagrange’s equation.
If p1(p) = p then the equation
y=Xxp + @2 (p) : (2)
is known as Clairaut’s equation

By differentiating (1) with respect to x, we get

& _, @xe P o @P

dx 1 1 dx 2 dx
1 1 dp

or p—01(p) =(xe (P)+¢ (p)) .. 4B)
1 2 4x

From (3) we get

x+o' )P =0 for ps(p)=p
2 dx

This gives

d_p:O or x+¢ (p) =0
dx 2

d_p:O gives p = c and
dx

by putting this value in (2) we get
y=cx+2(C)

This is a general solution of Clairaut’s equation.
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The elimination of p between
x+(p'2 (p) =0 and (2) gives a singular solution.

If p1(p) = p for any p, then we observe from (3) that

d_p # 0 everywhere. Division by

dx

dp
dx

[p - (Pl(p)] in (3) gives

dx ?q it

¢ (p)
= X 2
dp p-¢4(p) P-¢41(P)

which is a linear equation of first order in x and thus can be solved for x as a function of

p, which together with (1) will form a parametric representation of the general solution of (1)

Example 4 Solve d_y_l y_xd_y\|:d_y
dx dx ) dx

Solution: Let p= dy then,
dx

(P-1)(y-xp)=p

This equation can be written as

P
=X _
Y =xp+-

Differentiating both sides with respect to x we get

:
E|x—;—|| ~0
ol (p-1)2 |
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Thus either —=0or

(p-1)?

d_p =0 gives p=c

dx

Putting p=c in the equation we get

y—oxs S
1

(y-cx)(c-1)=c
which is the required solution.
Exercises
Solve the following differential equations

(QY\B dy e2x

\dx ) dx
2.y(y-2)p? - (y-2x+xy)p+x=0

2
3-_(%&) +4y—X2 =0

y
4.(dy+y+xvxdy+y+xydy+2x\:0
Sl -
5.y+xd_y—x4(d_y)2:0

dx L dx )

((dy Y dy ) 2dy
G.L ™ yJLy&+xJ:h &
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7.y(d_”2 +(x—y)d_y=x

L dx ) dx
2
8){2{) —2yﬂi+ax:0
L dx ) dx
2
d
(] -

10. Xy{y—Xd—y)=x+yd—y
k dX) dx

Multiple choice

The order of x3 22 + 2 x2 £ 3y = x|
eorderof X° ——+ 22X~ ——-3y=xs
a) 2 b) 3 c) d) None
tl'z_'l..' 2 d;"-‘ 2 z A
1) The orderof (7 )* = [1+ (dx) lzis
a) 2 b) 1 c)3 d)None
frerential Equation [ =2 + () 7] 7= a2
2) The degree of Differential Equation 2 . =a_— s
a) 3 b) 2 01 d) 9
. . . d*v, 4 dyy 27 3.
3) The degree of Differential Equation (dxz) =[1 + (;) ]*is
a) 4 b) 3 c)2 d) None

) ay k
4) The general solution of d— =e*Yis
"

a) ef+e¥=chye*+eY¥=cc)e*+e'=cd)e*+eV=c¢

5) Find the differential equation corresponding to y = a e* + b e + ¢ e

a) y111 _ 6y11 + llyl _ 6y: 0 b) ylll + yll _ 3y1 =0
c)y" +2y'+y=0 d) yt—2y" + 3yt +y=0
7) Find the differential equation of the family of curves y = e* (Acosx + Bsinx)
a)y" -2y'+3y=0 b) y** - 3y' +y=0
oyt -2yt+3y=0 d) None
8) Form the differential equation by eliminating the arbitary constant © Y= (X—0)

2
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a)(yh2=1 b) yt +2yt =2 c)(y)2=0 d) None
9) Find the differential equation of the family of parabolas having vertex at
the origin and foci on y -axis
a) xy* = 2x b) xy! = 2y c) xy* = 4y d) None
10) Form the differential equation by eliminating the arbitary constant
tanx + tany = ¢
a) ya(tany + sec?x) =0 b) yi(tany sec?y) + tany sec’x =0

c) yi(tanx sec?x) + tany sec’y =0 d) None
2 2

11) Obtain the differential equation of the family of ellipse is ;—2 + ;—2 =1
a) xyy!+xyt=0 b) xy!! + xy=0
c) xyyt+x(y)2-yyl=0 d) None
12) The solution of the differential equation Z—: + f = x? under the condition that y=1
when x=1 is
a) 4xy= x3+3 b) 4xy= x*+3 c) 4xy= y*+3 d) None
13) The family of straight lines passing through the origin is represented by
the differential equation
a) ydx + xdy=0 b) xdy —ydx=0 C) xdx + ydx =0 d) ydy — xdx =0
14) The differential equation of a family of circles having the radius ‘r’ and

centre on the X — axis is
2 E 27_ 2 2 E s 0
a) y[1+ (D) =r )R 1+ D2 =r

9o+l + (D3] =¢ Oe[1 + (2] =x

15) The differential equation satisfying the relation x = A cos(mt - &) is

dx a2 x
- - 2 - — (%2
a) —-=1-x b) 7z =~ %%
G'z q |:1' .
c) a: = — m?x d) d—i = - m°X
. dy ax+hy+g .
16) The equation i e byef Ois
a) Homogeneous  b) Variable separable c) Exact d) None

17)  Find the differential equation of the family of cardioids r = a(1+cosf)
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dr . ar 8
a) — +rsinx=0 b)— +rtan(=) =0
ds 48 2
dr . 8
c)— +rsin(2) =0 d) None
a8 2
—
. dy 1+ w7 .
18) The equation — + | —=0is
dr W 1+x
a) Variable separableb) Exact ¢) Homogeneous d) None

. . _ . dy
19) The solution of the differential equation is d—" =eX Y+ x%Y
N

.k'E .k'E
a) ey:?+ex+c b)eY=e*+3x+cC c)eX:?+ey+c d) None

I::l.l .
20) The general solution of i = (4x + y+1) 2 is

dx+v+1 dx+y+1

1
a) tan(—) =c b) ~tan(—) =y+c

dx+v+1

1
c) ~tan’( )J=x+c d) None

-
&

21) The solution of of the Differential equation (x?+1) y1 + y?+ 1 =0, y(0) = 1 is

T T

9 5 b) 5 )3 d)
. vdx —xdy .
22) The solution of 1,—2 =0is
a) Xy==¢C b) y = cx C) X=cy d)X:CJ,Z

1 xdx+vdy ]
23) The general solutionof ———-—=01s
=+ Y

a) log(x+y) =c¢ b) Iog(.‘+;2 - J-‘E) = c ¢)log(xy) = ¢ d) None
24) The equation of the form Z—: +p(X)y = q(x) is

a) Homogeneous b) Exact c) Linear d) None
25) Integral factor ofg +p(X)y = q(x) is

a) elvdx p) elvay c) el o d) el adv

. dy :
26) The general solution of .;:_L + yCcotx = cosx is
N
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1. 1 .
a) y=—sinx+ ccosx b) y==cosx + ¢ sinx

1 .
C) Y= T sinx + c cosecx d) None

27) The form of Bernoulli’s Equation is

a) Zipx=0Qyn b) <X + py= Qx"
ax - ax
) S+ Qy"=px d) S +py= Q"
dx dax
28) The equation of the form M(x,y)dx + N(x,y)dy = 0 is called if M _dn
oy Ox
a) Linear b) Bernoulli’s c) Exact d) Homogeneous
29) Integrating factor of the homogenous de Mdx + Ndy =0 is
1 1 1
a) Mx — Ny b) Mx+ Ny C) Nx— My d) wone

1 3] anN_ . . . .
30) If ;(a—f - E) is a function of x alone say f(x) then the integrating factor of Mdx + Ndy
=0is
a) EJ‘ fx)dy b) E,_|‘ flv)dy c) E_r Flxddx d) E_r fx)dy

31) The integrating factor of (x> — 3xy + 2y?)dx + X(3x-2y)dy = ¢ is

ES oL : NS
2) — ) = 93 )=
32) The given differential equation y(x+y)dx + (x+2y-1)dy =0 is
a) Exact b) Not Exact c) We can’t say d) None
OBJECTIVE
.3 E_'l.-' 2 dz_'l.-' L
1) Theorderof X P 22X . 3y=xis

ayv ¥ 2
2) The differential equation E + ; =V " xsinxisis

day
3) The integrating factor of x Z -y = 2x? cosec2x is

4) Theintegrating factor of (1—x%)y+xy =axis

dv ¥ v
5) The general solution of the differential equation d_ = : +tan (:) is
v x .

6) The integrating factor of (x? — 3xy + 2y?)dx + x(3x-2y)dy = c is

7) The newton law of cooling is
8) Mdx+Ndy is exact if
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9) statement of law of Natural growth or decay is

10)Solution of linear differential equation of first order in y is (independent variable
X)

11)Bernoulli’s equation is

1 aN aM, . . . . .
12) )If;(a— - a—”) is a function of y alone then the integrating factor is
! X v

13) The general solution of (1 + x?) dy — (1+y?) dx =0 is

. aw .
14) The general solution of .;:_ +Xy=XIs
i,

15) The integrating factor of the equation y fi(xy)dx + x f2(xy)dy is
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HOMOGENE LINEAR EUATION R) CAUCHY’S EUIL AR EUATION

d’ﬂ . d’ﬂ—l

Definition: An equation of the form PO Xndx” + Py(x) X" . dx"—}l LEEEEEE +Pa(X) .y =
Q(X) evveeirenns (1)
Where Po (X) P1(X), P2(x), P3(X) ......... Pn(X) are real constant ,

Q(X) (functions of x) continuous eq(1) of operator form is (x" D" + Py X" D" +--ceeeeeen
+Pn)y= Q(X) is called a linear differential equation of order n.

LINEAR DIFFERENTIAL EQUN’ WITH CONSTANT COEFFICIENTS:

dmy dn-1y dn-2y
Def: An equation of the form PR Py . -1t P2 - FECECE + Pn.y = Q(X) where
P1, P2, P3,......Pn, are real constants and Q(X) is a continuous functions of x is called an L.D
equation of order ‘ n” with constant coefficients.
Note:
d d? dm
1. operator D= ; D? ST — D"=""n
dy d?y dy
Dy=_"": D? 'IFCIRR. DMy=""n

2. operatoriQ = f Q ie D1Q is called the integral of Q.

To find the general solution of f(D).y =0
Where f(D) = D" + P; D" + P D™? +---------- +Py is a polynomial in D.
Now consider the auxiliary equation : f(m) =0
i.e f(m)= m"+ Py m" 4+ P, m"2 4---mmeeeeee +P, =0
WHEre P1,p2,P3. ... pn are real constants.

Let the roots of f(m) =0 be my, mp, ms,......Mx.

Depending on the nature of the roots we write the complementary function

as follows:
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Consider the following table

E.no Roots of A.E f(m) =0 Complementary function(C.F)
1. mi, Mg, ..M, are real and distinct. Te=CEmm T LR 7.7 tnEh
2. mu, My, ..My are 3 : my, m are equal and
real(i.e repeated twice) &the rest are real | Yc = (C1+C2X)e™*+ cae™s* +.. .+ Coe™
and different.
3. M, My, ..Mpare 3 :my, mz, mzareequal | Ye = (Co+Cax+Cax?)e™ + Cae™* +...+ Ce™"
and real(i.e repeated thrice) &the rest are
real and different.
4. Two roots of A & B are complex say a+if | y.=e%* (c1cosfx + cosinfix)+ cae™* +...+
@ -if8 and rest are real and distinct. Cre™™
5. If a+iff are repeated twice & rest are real Ye= %" [(crtcax)cosf x + (Ca+Cax) sinfx)]+
and distinct Cse™s* +...+ Cne™*
6. If a+if} are repeated thrice & rest are real | v, = & [(ci+cox+ cax?)cosfBx + (Ca+Csx+
and distinct cox?) sinBX)]+ cre™ +......... + e
[£ a+iff Ye=e™ (cicosfx + casinfix)
Solve the following Differential equations :
da®y _dy
1. 5 - 35 +2y=0
Sol: Given equation is of the form f(D).y = 0
Where f(D) = (D®-3D+2) Y =0
Now consider the auxillary equation f(m) =0
f(m) = m®*-3m+2 =0 = (m-1)(m-1)(m+2) = 0
=>m=1,1,-2
Since m; and my are equal and mz is -2
We have Y. = (C1+C2x)eX + cae™
2. (D*-2D3-3D2?+4D +4)Y =0

Sol: Given f(D) = (D*-2D®-3D? +4D +4) Y =
= A.equation f(m)=(m*-2m®-3 m?+ 4m +4)
= (M+1)2(M-2)2=0

= m=-1,-1,2,2

2 Yc = (C1+Cox)e™ +(Ca+Cax)e
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3. (D*+8D%*+16)Y =0
Sol: Given f(D) = (D* +8D? + 16) Y =0
Auxillary equation f(m) = (m* +8 m? + 16) Y =0
= (M2 +42=0
= (MH2i)2 (M+2i)2 =0
= m=2i,2i, -2i, -2i

Yc= e ¥ [(c1+Cax)cos2x + (Ca+Cax) SinZ)]

4. y'+6y+9y=0;y(0)=-4,y'0) =14
Sol: f(D)y=0 = (D?+6D +9)Y =0
A.equation f(m) =0 = (m? +6m+9) =0

= m=-3,-3

Y = (C1+Cax)e > (1)
D.of (1) w.rto x = y! =(ci+cox)(-3e%) + co(e™)
Giveny: (0)=14 = c1=-4&¢Cy =2
Hence we get y =(-4 + 2x) ()
5. Solve 4yM! + 4yt +yl =0
Sol: equation f(m) =0
Aam®* +4m?+m=0
m(4m? +4m+1) =0
m2m + 1)%=0
m=0,-1/2 -1/2
y =C1+ (C2 + C3x) e
6. (D?-3D +4) Y =0

Sol: equation f(m) =0
m?-3m+4=0

3, V7 A7
y= €2 (C1C0S—/X+ C28iN—X)
General solution of f(D) v = Q(x
Isgivenby y=yc+ Vyp
ie. y=C.F+P.l

Where the P.I consists of no arbitrary constants and P.I of f (D) y = Q(x)
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1
Is evaluated as P.I = f_ﬂu . Q%)

Depending on the type of function of Q(X).
P.1is evaluated as follows:
1. P.1 of f (D) y = Q(X) where Q(x) =e** for (a) #0
Casel: P.I :f;m .Q(X) :f ;D:I e :f ;a] e
Provided f(a) #0
Case 2: If f(a) = 0 then the above method fails. Then
if f(D) = (D-a) O(D)
(i.e “a’isarepeated root k times).
1

ThenP.| =—— e % x¥ provided 0 (a) # 0

o

B{a)

2) P.1 of f(D) y =Q(x) where Q(x) = sin ax or Q(x) = cos ax where ¢ a ¢ is constant
1
then P.1 —}Tﬂl . Q(x).
1 )
Case 1: In f(D) put D? = - @ 3 f(-a?) # 0 then P.I = ol sin ax

Case 2: If f(-a®) =0 then D? + a? is a factor of O(D?) and hence it is a factor of f(D).
Then let f(D) = (D? + a?) .f(D?).

Th 1 A —X CO5AX
en ————__(SInax) =
(D2 +az) ( ) 2a
& 1 (COS ax) _ X sinax
(D2 +a2) 2

1) P.1for f(D) y = Q(x) where Q(x) = x*where k is a positive integer
Then express f(D) =[1+ O(D)]

=[1£ O(D)]*

1 1
Express — =
P f{D}y 1x6(D)

1
14+0(D) Q).

=[1x O(D)] * X

2) P.1of f(D)y = Q(x) when Q(x) = e® V where “a’ is a constant and V is function

Hence P.I =

of x. where V =sin ax or cos ax or x¥

1
Then P.1 =—— Q(X)

— 1 eax

fio)
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1
Ff(ﬂ+a]

— eax

V)]

V is evaluated depending on V.

.

f(D+a)

3) P.loff(D)y =Q(x) when Q(x) =xV where V is function of x.

1
Then P.I = _E Q(x)

— XV
f"\Dfl

= [x-—— fi(D)] ——V
f (D) f ()

Formulae

1. iz(lfD)'1:1+D+D2+D3+ ------------------

2. ——=(1+D)1=1-D +D?-D®+ -ommememeemereeee
1+D

3. ———=(1-D)2=1+2D +3D?+ 4D + ------- oo
(1-D}

4, ———=(1+D)?=1-2D +3D?-4D® + -------mmmmmeee-
(1+D)

5. ,1_D~IE=(1—D)‘3=1+3D+6D2+1OD3+ ------------------

6. —=(1+D)®=1-3D +6D?- 10D + --==-mmmemm -
(1+D7®

l. HIGHER ORDER LINEAR DIFFERENTIAL EQUATIONS:
1. Find the Particular integral of f(D) y = e**when f(a) #0
2. Solve the D.E (D? + 5D +6) Y = ¢*

3. Solve y+4yt+4y =43 y(0)=-1,y}0)=3

4. Solve y + 4y! +4y= 4cosx+3sinx, y(0) =1, y*(0) =0
5. Solve (D?+9) y = cos3x

6. Solve yH1+ 2yt -yt _ 2y =1-4x3

7. Solve the D.E (D®-7 D? + 14D - 8) Y = &* c0s2x

8. Solve the D.E (D®- 4 D?-D +4) Y = e* cos2x

9. Solve (D?-4D +4) Y =x?sinx + e + 3

10. Solve x?D?—xD + y = logx

logx. sin{logx)+1

11. Solve the D.E (x°D?-3xD + 1) y =

¥
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2 v
2 T Y= cosecx

- d
12. Apply the method of variation parameters to solve F

Y 4 5x + 3y =0

13. Solve 2
At

ax _
e 3X+ 2y,
14. Solve (D? + D - 3) Y =x%3

15. Solve (D?-D-2) Y =3e* ,y(0) =0, y* (0) =-2

SOLUTIONS:
1) Particular integral of f(D) y = 2®* when f(a) #0

Working rule:
Case (i):
In f(D), put D=a and Particular integral will be calculated.

. . 1 ax ax .
Particular integral= —— €""'= 27" provided f(a) #0

f©) 7~ f(e)
Case (i) :
If f(a)= 0, then above method fails. Now proceed as below.
If (D)= (D-a)* ¢(D)

i.e. ‘a’ is a repeated root k times, then

ax K

— provided ¢ (a) #0

X
k!

Particular integral=——.
.¢I\.aal

2. Solve the Differential equation(D?+5D+6)y=¢*
Given equation is (D?+5D+6)y=¢*

Here Q( x) =e *

f(m) = (M?+5m+6)

Auxiliary equation is f(m) = m>+5m+6=0
m?+3m+2m+6=0
m(m+3)+2(m+3)=0
m=-2 or m=-3
the roots are real and distinct

C.F=yc=cie? +c
1
Particular Integral = y,= f_:u . Q(X)

: x -1

= __ .¢ p -
D2+53D+6 (D+2){(D+3)

PutD =1inf(D)
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1

eX
(314

P.l.=

. 1
Particular Integral = yp= o e

General equation is y=yc+yp

=
Y=g e 4

3). Solve y'1-4y*+3y=4e* y(0) = -1, y}(0) = 3
Given equation is y!-4yl+3y=4e%
d2y d:

i = _ &y — /N a3X
e~ 4.;:,1- +3y=4e

it can be expressed as

D?y-4Dy+3y=4e%

(D?-4D+3)y=4¢**

Here Q(x)=4e; f(D)= D?-4D+3
Auxiliary equation is f(m)=m?-4m+3 =0
m?-3m-m+3 =0

m(m-3) -1(m-3)=0 =>m=3 or 1

The roots are real and distinct.

C.F= ye=c1>+c26* 7> (2)

1
7oy QW)
_ 1

~ D2-4D+3°

P.l.= Yp=
= Yp 4>
1
—y — . 3x
Yp (D—1)(D—3) .4de

Put D=3

4xedx 2 3x
= = 2Xe
Yo (3-1)

General solution is y = yctyp

y=c1e®* + ¢ e+ 2xe¥
Differentiating with respect to ‘x’
y1=3cie¥+ce*+ 26 +6xe
By data, y(0) = -1, y*(0)=3

From (3), -1=ci+C2

From (4), 3=3ci1+Co+2

3Cc1+Co=1 -
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Solving (5) and (6) we get c1=1 and co = -2
y=-2e * +(1+2x) e**
(4). Solve y*+4y'+4y= 4cosx + 3sinx, y(0) = 0, y}(0) =0
Sol: Given differential equation in operator form
(D? + 4D + 4)y= 4cosx +3sinx
AE is m*+4m+4 =0
(m+2)?=0 then m=-2, -2
' C.Fisye= (c1 + cox)e™ 2%

dcosx+3sinx

Plis=yp=————— ut D* =-1
Ye (D2 +4D +4) P

_decosx+3siny_ (4D-3)(dcosx+3siny]

Yo= (4D+3)  (4D-3)(4D +3)
(4D=-3)(dcosx+3siny)

16D°%-9

Put D* = -1

. (4D-3)dcosx+35iny

Y= ~16-9
—l6sinx+12c0o5x—12co5x—95INX]  _o5oinw p

= — = = sinx

—£3 —23
“»general equation is y = yc+ yp
NN (TR AR Y 11— (1)

By given data, y(0) =0+~ c1 =0 and

Diff (1) w.r..t. y: = (c1 + c2X)(—2)e ™ + 7 7%(Cy) +COSX--------

given y}(0) =0

(2) = -2c1 + c2+1=0 “Cy = -1

“required solution is y = —xe ™ **+sinx
5. Solve (D?+9)y = cos3x

Sol:Given equation is (D?+9)y = cos3x

AEism’+9=0

om= = 3i

Y. = C.F = ¢1 c0S3X+ C2Sin3x

cos3x cos3x

Yo Pl = s T per e
X ; x .

= — - SIn3x = — sin3X
2(3) &

W
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General equation is y = yc+ Yp
Y = C1€0S3X + C2C083X + g sin3x
6. yllle2yll - yloy= 1-4%3

Sol:Given equation can be written as

(D* +2D*—D — 2)y = 1-4x*
AEis(m®*+2m* —m—2)=0
(m* — 1)(m+2) =0

m* =1o0rm=2
m=1,-1,-2

C.F=c +Co8™* + g%

3
P.l=—; 1-4X
(D3+2D?-D-2) ( )
a BIan7—py, (14X°)
2[1_;
2
-1 (D% +2D%-D)
=—[1- ——]"" (243
ll ()
-1 (D3*+2D?-D) (D*+2D*-D)* (D*+2D?-D)? 3
=11+ > + 4 - 5 +....1(1-4x7)

=S 11+3(D? +2D? = D) +5 (D2 = 4D*)+_ (D) (1-4x°)

-
-

=2[1-2(D) +2(D?)-2D] 14 )

=204 )-2(—24) +2 (=24%) -2 (120?)

[-4x3+6x> -30x +16] =

= [2x3-3x? +15x -8]
The general solution is
y=C.F+P.l
y=c18¥ + e ™ + e ¥ + [2x%-3x2 +15x -8]
7. Solve (D3 — 7D? + 14D -8)y = ” cos2x
Given equation is
(D®—7D*+ 14D -8)y = €™ cos2x
AEis(m®—7m*+14m—8)=0
(m-1) (m-2)(m-4) =0
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Thenm=1,2,4

CF=cie” +c.e?” +cie™
e¥cos2x

(D-7D2+14D -8)

P.l=

: 1
= E'j- (D+1)3-7(D+1)2+14(D+1)-8 Cos2x
1
"(D®-4D%+3D)
¥ 1
"(—4D+3D+16 )
¥ 1
"(16-D)
16+D
"({16-D }{164D)
16+D

" 256—D?2
16+D

"t 256—(—4)
=260 (16c0s2x — 2sin2x) GS.isy=vyc+ W

8. Solve I::D2 — 4D +4)y = _1{:2 siny 4+ EZx +3
Sol:

.C0S2X

.C0S2X

.C0S2X

.COS2X

.COS2X

.COS2X

Given (D? — 4D +4)y=x? sinx+ e?* +3
AEis(m* —4m+4)=0

(m — 2)* = 0then m=2,2

C.F. = (c1 + cox)e**

_ x?sinxt e2* +3 _ I 2x
P.l= O = omar (x°sinx)+ - e
Now /D_lﬂ - (x*sinx) = iq v (x?) (1.Pofe'™)

= P of — ( ‘) (™)
-IPof(E") |2{ %)

On simplification, we get
(x? sinx) = i - [(220x+244)cosx+(40x+33)sinx]

[(D+i-12 |2

and s E{E"")——(E‘J‘)

(3)-—

Pl=—1
A75
Y=Yt ¥p

ID ..f.l:2

"2
a2y 3
+— (") +=

.'j .(_|2

(3)

"
y= (C1 + Cox)e?* + i [(220x+244)cosx+(40x+33)sinx] + AT (e=*) +
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2

10. Apply the method of variation of parameters to solve 2 4 y = COsecx

Sol: Given equation in the operator form is (£-%-+-1}3:=-£@SEEx--------------- Q)
AEis(m*+1)=0

The roots are complex conjugate numbers.
"+ C.F. IS yc=C1C0SX + CoSinX
Let yp = Acosx + Bsinx be P.1. of (1)
dv di y. N
u—- ?-cc:s x+ sin“x=1
A and B are given by
A—-f vR :_J-;,:lxclosecxdxz_fdx:_x

'I..!'Ll—'l, ul
B=J

“1Yp= -XCOSX +sinX. log(sinx)

= [ cosx.cosecx dx = [ cotx dx = log(sinx)

urt —pul

“+ General solution is y = yc+ yp.

Y = C1C0SX + C2SinX-Xcosx +sinx. log(sinx)
11. Solve (4D? — 4D +1)y = 100
Sol: AEis(4m? —4m+1)=

2m—1)% = Othenm=>2
C.F = (c1t+c2x) ez
100 100 &% 100
P.I= == —~ =7 .- =100

(4D2-4D+1) (2D-1)2 (0-1)2

Hence the general solution is y = C.F +P.1

y= (C1+C2X) €z + 100

HOMOGENEOQOUS L.E (OR) CAUCHY’S-EULAR
EQ’S: f\n equation of,;hp form

p.x"__ +p an1 +———+p .y = Q(x)—(1)
0 dx2 0 dxn—1
Where Po,P1,Pa........... Pnare real constants. Q(X) is a function of ‘x’ is called C-E
Eqg-(1) of the operator form is
(xnD* + pracn=1Dn1 4 — — — + p)y = Q()-(2)

Cauchy’s linear differential equation can be transformed in to L.D.E. with constant co-
efficients by the change of independent variable with the substitution
Let x=e* so that Z=logX ---(a)

dz _ 1
= e (b)
Now
dx dz “dx
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dy 1 dy dy dy
- a;— :p;_za;'—'—(C) lL.e ,X.EZE'— EE;'—'—'—
Again
d dy 4 1 dy
dx(a)_dx(E'E
dzx_ 1 4 dy dy -1
o Pt Az
_ 1d dy 1 dy
x2 (30~ dz
“x @) T v
x dz' x x dz
1 d¥y dy
- ( —)
x “dz?  dx

2 2
Y= o @
dx dz dz

Let usdenote 4 =D & — = ¢
dx

(c) &(d) can be written as
XD= 6; x> D? =6(6-1)
Llly, x3D® = 8(6-1)(6-2) ; x*D*=6(6-1)(6-2)(6-3)
& soon
Formula’s X358
X?D?=(-1)
X3D%=0(6-1)(6-2) & Soon

Problem:
1. Solve

G.T(x?D?—-4XD+6)y = (log x)> (1)

This is a homogenous D.E

Let x=e* (or) z= log x then we have
X?D*=6(6-1)

Now from (1),(2) we have

=(6(60 —1) — 46 + 6)y = (log x)*
=(6?—0 — 460 + 6)y=(log x)?
=(6?—560 + 6)y=( logx)?

(6>—56 + 6)y = Z*
This is in the form of f(8)y = Q(z)
:. The general solution is Y=Y +Y,

To find Y. :-
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Take A.E f(m)=0
=m?2-5m+6=0
=m?2-2m-3m+6=0
=m(m-2)-3(m-2)=0

=(m-2)(m-3)=0
.. m=2'3
:. The complementary function is
Y=Y=C;e?=C, e3* " (a)
To find Yp :-
Let
(62'59+6)y:22 1
v =_ 7
Then
> E 72
6% — 56
6 (1 + 3 )
1 2 , N
=_(1—(8=59 4 °-50)
6( ( )t ) Z?
1(1 (2-5.22) + . (0 +25.2 — 0))
= - P _ ] Z - - I*
6 36
_1 (22 2 10z 1 50)
! 1 5 25
= —(72 —— - o

1 5 19
== (22 + =Z+ —
6@t 32+ 19

5 9
:. The particularintegral Y =i(Z2 I+ 4 +1_) —————— (b)
P 6 3 18

:. The general solution is

Y=C o2z e3zi(

2 O 19)
. L Tz T3ty

(:.from (a) (b))
RV 1 5 19
.Y=C, e2|og><+c2 @3logx +g((logx a+ EIOgX‘l‘E
2 2 1
= C elgx + C elosx” + ((logx)? 4

1 2 6
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1 5 19
=C1x2+ C2x3+ —((ogx)? + _logx + —
6 3 18

Which is the required solution

2. G.T (x2D%-3XD+1) = 8 sindogx) 1

X

This is a homoheneous L.D.E
Let x=e? (or) Z = logx Then we have
X2D*=6(6 —1)

Now substituting (a) in (1) we get

= (6(0 — 1) — 30 + 1)y =—EX=nCoEDT

_ ZsinZ+1

= (62—6 — 30 + 1)y =

o
=(0°—460 + 1)y =e % (Z.sin Z+1)
This is in the form of F(@)y = Q(Z)
:. The general solution is Y=Y, + Y,
Tofind Y. :-

Take A.E f(m) =0

m—4m+1=0

4 +v16 —4.1.1

2.1
_4EV1Z

2
2 2

=2++3,2-+3

:. The complementary function is Y.=e* (C; cos h V3x+Cy sinh \/3x)
(or)

Y. = C1e@+VIZ 4 Cre(@-V3z ~=== (a1)
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To find Yy :-
Let (02-40+1)Y = e*(Z sin Z+1)

=m e Z (ZSiIlZ+ 1)

Then

YzeZ_ '  (ZsinZ+1)
P (6-1)2—4(6-1)+1

1
=e? ZsinZ +1
92+1—129—40+4+1 sinz g "

.ZsinZ +

= ez

- 0.2
02 —60 +6

02 —60 +6

=e?{ ! . Zimez + .1}
F—60+6 0-046

=e™*{im elz - 2+ 1}

(6—12)—6(0+i)+6 6

L 1
=e*{imeiz

62—1+260i—66—6i+6 -Z i 1/6}

o ) 1 1
=e*{imeiz Z+}

02-1+20i—66—6i+ 6

. ) 1 1

=p? iz
e*{imeiz. . ———
(5—-6)(1+ ) 6
i

. 1 2 -
—6i 5—6i 6

. 1 2 5
—61 5—6i 6

=e{im eiz 1 (5—6i—92—29i+66
5—6i 5—6i

1
)Z+g}

etfim piz — L {57 —i6z—0—2i+6}+2
e{ime (5_602{ } 6}

1

(s i 5—6i) 64 +
=e{im e (X )+
{ ( 5—6i2 (5-6i)2 6
. , - 1
:e-Z{lm eiz ( z " 5+6i + 62 ) + _}
5-6i 5+6i  25—35—60i 6
, : 1
=e*{ime"” ((5+6l)2 +-2 )+
25436 —11-60i 6
afi iz (5z+i6z 6—2i 11-60iy | 1
=e*{ime” ( 6i —(11+604) * 11—601') + 6}
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=e*{(cosZ + isinZ) (E +i - (66 36022t 120)) + _}

61 61 3721

=e¥{(cosZ + i sinZ) 2 +i.% — ) + 4

61 61 3721 6

Compare in part we get

=e { Zst +° ZcosZ+ > sinz + % cosz + }382
61 3721 3721 6

{SZ sinz + 6Z cos Z + > sinZ + % cosZ + _}
61 61 61

:. The general solution is

—logx

{5logx.sin(logx) + 6logx. cos(logx) +

Y=C e@+V3)logx 4 C e(2—V3)logx + <
' 2 61

54 sin(logx) + ﬁcos(logx) + i}
61 61 6

3. Solvex2®? —3x¥ Tty =(1+x)2 T (1)
dx2 dx

Sol: Thisis a homogeneous L.D.E.
Given equation of operator from is
(x2D2 —3xD + 4)y = (1 +x)2777" (2)
Let x=ez => Z=logx Then we have
XD=;x*D?=0(6 —1) - (a)
Now substituting (a) in (2) we get
= (0(60 —1)—360 +460)y = (1 + e?)?
= (02—-0—-30+4)y =1+ e + 2ez
= (02 —40 +4)y =1+ e22 + 2e*
This is in the form of F(0)y = Q(2)
:. The general solutionis Y=Y +Y,
To find Y. :-

Take A.E f(m)=0
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> m2—4m+4=0

= m?z-—2m-—2m+4=0

2 m(m—2)—-2(m—-2)=0
2 (m—-2)(m—-2)=0

2> M=2,2

:. The complementary function is

Ye

=(C1 + C22)e?

=(C1 + C; logx) e?logx

Ye= (Cl + C: logx)xz

To find Yp :-

Let (62 — 46 + 4)y = 1 + e27 + 2e

= Y=

.1 4+ e2z 4+ 2ez
F—46+4

Then

Yo

= gpozy 1 27, 1 9olz
7aors €0+ g e’ + giagia 2e

1 1
= 1+ e —L o
. eZ
0—0+4 4-8+4 1-4+4

ze

2z
+ 2e?
20—4

1
=+
4

1 eZZ

=_+z__+ 2ez
4 4—4

1 eZZ
=_+z2_+2e?
4 2

1 s 1
= ) 2logx logx
n + logx .5-e + 2e

1
= + (logx)2. ZL.xZ +2.x
The general solution of (1) is Y=Y+Y,
4. G.T

(x*D2%+4xD+2)y=ex""" (1)

This is a H.L.D.E.
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d d
Let x=ez => Z=logx& =D &— = 6 Then
dx dz

We have
xD=0 ; x2D2 = (6 — 1) -------------- (a)
From (1) (a) we have
= (0(0—1)+40 +2)y = e
2 (02—60+46 +2)y = e
= (62430 +2)y =e
This is in the form of F(8)y=Q(2)
:. The general solution is Y=Y+Y,
To find Yc:-
Take A.E. F(m)=0
= m2+3m+2=0
= m+2m+m+2=0
= m(m+2)+1(m+2)=0
2 (m+2)(m+1)=0
= m=-1,-2
The complementary function is
Y.=Cie™% + Cre™%*
= Cie~109x 4 (C,e—2logx
DYe=Cix— Y+ Cox—277 T (2)
To find Yp, :-

Let (02 + 360 + 2)y = e’

Y ! ?
S — e
0213012 " €

A

ThenY, = Giner - &

_ 1 1 z
=y €]
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=L e [e ez dz
6+2

1 Z
= — —Z e
6+2 [e=2 . e<]

(- fef(x)_ fl(x).dx = ef®)
=e~% [ %% dz
=e-2 [ec’er dz
=e—2zpe”

=e—210gx. ex

The general solution is Y=Y+Y,( from (b) &(c))
Home work :
Solve 1) (x*D?-4xD+6)y=x>
2) (x*D>-xD+1)y = log x
3) (x 3D 3+2x 2D2+2)y =10 (x+;1c) ~ (usQED® = (6 —1)(6 — 2))

4) (x*D*+3x2D*+xD+8)y=65 cos (logx)

5) (x*D?*-xD+2)y = x log x

d2y 1dy
6)—+—— — 12logx
dx? xdx x2

d? d
Ans: x2.° Y + x. E 12 log x
dx? dx

i.e., (x*D*+xD)y = 12 log x

7) (x*D*+xD+4)y=log x . cos (2 log x )

8) (x’D?-3xD+1)y= log x .(M
X

i.e., (x2D*-3xD+1)y = log x -Siz(logx) 4 logj:

LEGENDRE’S LINEAR EQUATION :-

57




ADVANCED CALCULUS MA1201BS

An equation of the form

dny dn—ly
polat by —+ (a+b0)"'p | 5+ — — 4y = Q)

xn
Where Pg,P4,Ps......... P.are constant & Q(x) is function of ‘x’ is called LEGENDRE’S LINEAR EQUATION .

This can be solved by the substitution a+bx = e? (or) log (a+bx) =z

1. G.T.

2
(X+1)2d_y2— 3+ DY +4y = 22 +x + 1 (1)
dx dx

This is a legendre’s L.D.E
Put x+1=u
= X=u-1
= dx=du

= du =1
dx

Sy _dy du dy 4 dy

Tdx  du dx du’ du

from (1)we have

dzy d
uz_d_uz —3u £+4y: (u—1)2+4

= (u2D2—-3uD+4)y=uw+1-2u+4
= (uD2—-3uD+4)y=u2—-4+1
Which is a homogeneous L.D.E ----(2)

Let u=e*

d d
Z=logu &also T =D; 0= 0
Then we have UD =6
u2D2 = 9(0 — 1)

From (2) we have

= ((0—-1)—-30+4)y=e2—er+1
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= (02—0—-30+4)y =e2—ez+1
= (02—-40 +4)y =e2z —ez+1
This is in the form of F(8)y = Q(Z)
Tofind Y. :
Take A.E f(m) =0
-mz—4m+4=0
-» (m—-2)2=0
- m=2,2
. C.F (yc) = (C1 + C2 Z)eZZ
s ye = (€1 + Cz2logu)ezlogu
= (C1+ C2log(x +1))(x + 1)?

= (C1 + C2 log(x + 1)) (x + 1)?

To find Yp:

Let (02 — 460 + 4)y = ez —ez + 1

= waerr €” —er 1
L 1
LT 1 ez4+ __— 0.
Then Yp '92_49+4 e & 92—4H+4 92—40+4- € ’
1
b 1 ezz_ 1 eZ+ .1
4—-8+4 1-4+4 0-0+4

2z 1

_ze b 1

20 —4 4

2z 1

= ze — ez 4+ _

4—4 4

2,2 1

_ze” ey

2 4

(log u )zez log u

I 1
—_ eogu + —
2 4

(log(u)). etogu’ 1
_ —u+
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(logu)?. elos W’ 1
Yp = Uu + _
2 4

~ The general solutionisY =Y. +Y,

2)G.T

3
@x—- 122+ @x - D2y =x—(1)
dx3 dx

Eq (1) can be written as

3 53
2= V20 -H P -—2y=

2 dx3 2 dx
Thisisintheformofp (ax + b)"ﬂ +p (ax+ b)r1! dni+
0. dax2 L dxn—1
(or)

Which is a legendre’s L.D.E.
Put x—1_=u => x=u+i

2 2

dx =du
From (2) we have
= 8u3d3y+2udy—2y=u+1 __________ (3)

du3 du 2

Which is a homogeneous L.D.E.

d d
Put —=D; —=g;,u=ez =>06Z=Ilogu Then
du dz

We have u3D3 =0(0 —1)(6 —2)

from (3)&(4)we have

= (8usD?+2uD —2)y =u+.
2
= (80(0—1)(0—2)+20—2)y=es+ -
2
= (80(02—30+2)+20—2)y=e +-
2

= (803 —2402+160 +20—2)y=e +
2
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= (803 —2402+180 —2)y =e* + -
2

This is in the form of F(8)y = Q(Z)
~ The general solisY =Y.+ Y,
To Find Y. : Take A.E F(m)=0
= 8m3—24m2+18m—-2=0
2 m=1(or)8m2—16m+2=0

2 m=1(or)8m2—16m+2=0

2 =1 (or)m = 8+3[624;4.4.1
_8+VEB  84+VAx2x2x3
8 8
_814V3
8
243
INCERE)
8
V3
=1+ —
2
A LA
~Y=cex+ex(C coshx+C sinh¥x)
¢ 1 2 2 3 2
To Find Yp :
Let (803 — 2402 — 180 —2)y = e* + -
2
= +o .z
— o S 00 _ .
Y= o zagi—180—2 "¢ 2
Then Yp=— 1 oz +.. 1
8.1-24.1-18.1-2 2 0-0-0-2

1
o L plogx—p _ 1

36 4
= L(x— 1) .
36 2 4
~ The general solutionisY =Y. +Y,

FILL IN THE BLANKS;
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1 .The general solution of (4D2+4D+1)y=0 1S ceeeevureerercnrenseenns
2.The C.F of gD+1)(D — 2)2y=€3% [Siieiniiniieiiecnannennns

3.The Pl of 42 + Yy =e % iSiiiuuuvereerrnnererrnnnne

dx3
4.The P.1 of (D% + a?)y = COSAX ISecutuererurecasarnennss
5. The P.l of (D2-5D+6)y = €2% iSucueeerenrennnns
6. The P.lof (D4 1)2y =XiSeeeeerrereenrn

7. 1 SINX = eiiiieeiiiinnnnnn
DZ¥D+1

8. The P.lof (D —1)*y=€*iS.ccceviiuriarnnnnns
9.The value of_128inx [

10. The value of D++43in2X is
11,1 e*=.iiiiiiniininnncnnnn
12.1_(X+ex)= .............................

(D+2)
13. The C.F of the equation (D3-D)y=X iS..cceeeteereecerenrancens
14. The C.F of the equation (D2+4D+5)y=13€% iS...ccvurrrrerarercecnrncnns
15.C.F Of (D — 1)2y=SIN2X iS.eeerurerarnrresasersecnsasnns
16.The equation e*dx+(xeY+2y)dy=0 iS....c.cceeeeu.

a.Homogeneous b.Variable Separable c. Exact d.Non homogeneous
17.P.1 of (D2-2D+1)y=COShX iSue.eeerenrenceanes

MULTIPLE CHOICE QUESTIONS;

1.The general solution of (4D2+4D+1)y=0iS......ccc.v...
a.y=ciez +czez b. y=(c1x+cz2) ez
C. y=ciez+czez d. y=(c1t+czx) ez
2.The C.F of (D+1)(D — 2)2y=€3% [Seueeeveeureneencnncases
a. (c1tczx)e*+cze3x b. (ci1tc2x)e?*+cze—*
C. cie~*+cze?x d.None
3.P.10of (D3+1)y=€ % iS.eeeieureeraeencensnn.
a.xes  b.es c.-xe3 d.None
4.The P.1 of (D2+a2)y=C0SaX iS.ccceeeeeeerenne
a. - i cosax b. ﬁ sinax c. X cosax d. xsinax
5.The P.1 of (D%-5D+6)y=€2% iS...ccceeeerenennen
a. —xe2x b. xe2x c. e%x d.0
6.P.10f (D4 1)2Y=X iSecerererurararururnrnrnnnes
a. X b.x-2 c. (x+1)2 d. (x +2)2
7.1 inx=

p7ipr 1 SN X =i
a. sin x b. cos x C. 3lsin x d. 1-cos x
8.P.I Of (D — 1)%Y= €% iSueuierurnieecnrnrnnnns
a.x ex b. x*ex c.ex d.e

4 4
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9.The value of ﬁ sin X is

a.z1(cos x+sin x) b. Icosx c. 1Isin X d. 1(cos x+sin Xx)

5 5 5 5
10.The value of L _ ;j ;

522 SN 2X iSeeeeeeinninnnnnn,

a.tsin2x b. Zlsin?x C. cos2x  d. Zlcos 2x

5 5 5 5
11. 1 ox=

021 € Pttt e

a. xex b.-1xe* <c.*_e* d.None

2 2 2

a X 1, pr4l_ e cx—'iex  dNone

"4 16 3 4 16 3 4 16
13.The C.F of the equation (D3-D)Y=X IS «ccceteereeeerenseeccecnsansnsn
a. c1tczx + c3 ex b. c1tc2e* + c3 e * C. (c1tc2x)e*+cze—*  d.None

14.The C.F of (D2+4D+5)y=13€% iS.cuteeteererenrercnranscacnns

a. e~2x(c1Ccosx+c2sinX)  b. e2*(c1cosx+czSinxX) €. e*(c1C0s2x+c2s8in2x)  d. None
15.C.F of (D — 1)2y=SiN 2X iSeueueverureenecnsn

a. (c1tcz2x)ex b. (c1tczx)e™* . cix+czex d.None

16. The substitution to transform homogeneous linear equation into a linear equation with
constant coefficient is.............

a. x=e? b. z= ex c. x=logz d.x=y

17.By eliminating y from the simultaneous equation (D-1)x+2y=0, (D-3)y-5x=0 where

D=i the differential equation obtained iS ....ccccveveen.

a. (D2+4D-13)x=0 b. (D2-4D+13)x=0
c. (D%-4D-13)x=0 d. (D2+4D+13)x=0
18) If my, mo,m3 are real and distinct roots then the complementary function is

(a) C1 e(mlx+m2x+m3x) (b) Clemlx + Clemzx +C3€m3x
(b) () C1™X + CoeM2X +caeMX (d) None
19) If my, my,ms are roots are real & equal and m4, ms are real and different

Then complementary function is

(a) Clemlx + CzemZX +(C3+C4) em?>x (b) (C1+ch)em1X + C4em3x +C5em4x

(C) (C1+Cox+ Cax?+Cax®) eMiX (d) none

20) If two roots of auxiliary equation are complex say @+if, & -if then the

complementary function is
() (C1008%x+ c2sinfx) (b) ™" (cicosPx+ casinfx)

(©). 8 [(ca+cax)cosPx+ (ca+cax)sinfx)  (d) None
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vector Calculus and Vector Operators

INTRODUCTION

In this chapter, vector differential calculus is considered, which extends the basic
concepts of differential calculus, such as, continuity and differentiability to vector functions
in a simple and natural way. Also, the new concepts of gradient, divergence and curl are
introduced.
DIFFERENTIATION OF AVECTOR FUNCTION

Let S be a set of real numbers. Corresponding to each scalar t & S, let there be

associated a unique vector f . Then f s said to be a vector (vector valued) function. S is

called the domain of f . We write f = f (t).

Let i, j, k be three mutually perpendicular unit vectors in three dimensional space. We
canwrite f = f (t)= f,(0)i + f,(t) j + f,(t)k . where fa(t), f(t), fa(t) are real valued functions

(which are called components of f_). (we shall assume that i, j,'k_are constant vectors).

1. Derivative:
f(t)— f(a) if
t—a t—a

Let f be a vector function on an interval | and a e I. Then
df
exists, is called the derivative of f ataand is denoted by f (a) or {-d{-)l att=a. We also

saythat f is differentiable att =aif f (a) exists.

2. Higher order derivatives

flz ibe the derivative of f . If
dt

clmy _ 1 = d?f

ro-Tia exists for everya € lic | . It is denoted by yo— e

Let f be differentiable on an interval | and

L
e 1

Similarly we can define f 14(t) etc.

We now state some properties of differentiable functions (without proof)
(1) Derivative of a constant vector is a .

If @ and b are differentiable vector functions, then

2. Y asp) 92,9

dt dt dt
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@). Y @)= piad

((jjt d}i a db-
(4). _(axb)=_xb+ax__
dt dt dt

(5). If f is a differentiable vector function and ¢ is a scalar differential function, then

Twon=0+do;

dt dt dt
(6). If f= fl(t)i_ + f,(t) ] + fa(t)k_ where fy(t), f2(t), f3(t) are cartesian components of
the vector f, then 9" _df - dfy j+d£k

dt dt dt dt

(7). The necessary and sufficient condition for f (t) to be constant vector function is

o

dt

3. Partial Derivatives
Partial differentiation for vector valued functions can be introduced as was done in the

case of functions of real variables. Let f be a vector function of scalar variables p, g, t. Then

we write f = f (p,q,t). Treating t as a variable and p,q as constants, we define

f(p,g,t+8t) — f(p,a.t)

Ltﬁt—)O St
if exists, as partial derivative of f w.r.t. t and is denot by i
ot
- of of . .
Similarly, we can define i also. The following are some useful results on partial
p oq
differentiation.
4. Properties
Oa_
1) ga)=""ar
ot ot ot
8&
2). If A is a constant, then _(ka)
ot 8t
. o
3). If ¢ isa constant vector, then a(<1>e) = 6‘5
aa— ob~
4). ( ath)="":
gt 0 a atab—
5). ° @) ="Cb+a’
gt 6t ot b
6). (& b-)_ & b+ ax o
ot ot ot
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7). Let f=fii + f; j+ f, k , where f1, f2, faare differential scalar functions of more then one

variable, Then a_f =ii jaf +k o, ~° (treating F, },k as fixed directions)

ot ot ot ot

Higher order partial derlvatlves

Let £= £(p,q,t). Then %{_f @Jaﬂ‘ Bpét ;p(aqetc.
L) L)

6.Scalar and vector point functions: Consider a region in three dimensional space. To each
point p(x,y,z), suppose we associate a unique real number (called scalar) say ¢. This ¢(x,y,z)
is called a scalar point function. Scalar point function defined on the region. Similarly if to
each point p(x,y,z)we associate a unique vector f (x,y,z), f is called a vector point function.
Examples:

For example take a heated solid. At each point p(x,y,z)of the solid, there will be
temperature T(x,y,z). This T is a scalar point function.

Suppose a particle (or a very small insect) is tracing a path in space. When it occupies
a position p(x,y,z) in space, it will be having some speed, say, v. This speedv is a scalar point
function.

Consider a particle moving in space. At each point P on its path, the particle will be
having a velocity v which is vector point function. Similarly, the acceleration of the particle

is also a vector point function.

In a magnetic field, at any point P(x,y,z) there will be a magnetic force f (x,y,2). This

is called magnetic force field. This is also an example of a vector point function.

7. Tangent vector to a curve in space.
Consider an interval [a,b].
Let x = x(t),y=y(t),z=z(t)be continuous and derivable for a<t <b.
Then the set of all points (x(t),y(t),z(t)) is called a curve in a space.
Let A = (x(a),y(a),z(a)) and B = (x(b),y(b),z(b)). These A,B are called the end points of the
curve. If A =B, the curve in said to be a closed curve.
Let P and Q be two neighbouring points on the curve.

Let OF = 7(t),00 = #(t + 8t) =7+ 67.Then 67 = 00 — OP = PQ

Then > is along the vector-PQ. As Q—P,PQ and hence " tends to be along the
ot St

tangent to the curve at P.
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Hence | OF _ drF will be a tangent vector to the curve at P. (This d_p may not be a unit
st>0 St dt dt

vector)
Suppose arc length AP = s. If we take the parameter as the arc length parameter, we

dar .
can observe that = unit tangent vector at P to the curve.
S

VECTORDIFFERENTIAL OPERATOR

Def. The vector differential operator V(read as del) is defined as

0 o 0
a—x+15+ka

V=i . This operator possesses properties analogous to those of ordinary

vectors as well as differentiation operator. We will define now some quantities known as
“gradient”, “divergence” and “curl” involving this operator V. We must note that this

operator has no meaning by itself unless it operates on some function suitably.

GRADIENT OF A SCALAR POINT FUNCTION

Let ¢(x,y,z) be a scalar point function of position defined in some region of space.

. .0 .0 0
Then the vector function rﬁ + jﬁ + k—ﬁ is known as the gradient of ¢ or V¢
OX oy oz

Properties:
(1) If fand g are two scalar functions then grad(f +£g)= grad f + grad ¢

(2) The necessary and sufficient condition for a scalar point function to be constant is that Vf =

0
(3) grad(fg) = f(grad g)+g(grad f)
(4) If cis a constant, grad (cf) = c(grad f)

5) gad [ f1)= g(grad f)— f (grad g)
{gi . (9#0)

(6) Let r=xi+Yy j+zk. Then dr = dxi+ dy j+dzkif ¢ is any scalar point function, then

do = d d dz =i i k
[0} a_Xx+a_yy+(32 Z ||_ + +

x "ty = L(idx+ joy+kdz)=Va.dr

o0 o6 o6 [ od -od Y
DIRECTIONAL DERIVATIVE /
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Let ¢(x,y,z) be a scalar function defined throughout some region of space. Let this function
have a value ¢ at a point P whose position vector referred to the origin O is OP = r. Let
d+Ad be the value of the function at neighbouring point Q. If 3@ =7+ Ar. Let Ar be the
length of A7

AQ

,ﬂ_ gives a measure of the rate at which ¢ change when we move from P to Q. The limiting
r

value of% as Ar — 0 js called the derivative of ¢ in the direction of PQ or simply
directional derivative of ¢ at P and is denoted by d¢/dr.

Theorem 1: The directional derivative of a scalar point function ¢ at a point P(x,y,z) in the

direction of a unit vectoreis equal to e. grad ¢=e. V¢.

Level Surface

If a surface ¢(X,y,z)= ¢ be drawn through any point P( r_), such that at each point on it,
function has the same value as at P, then such a surface is called a level surface of the
function ¢ through P.

e.g : equipotential or isothermal surface.
Theorem 2: V¢ at any point is a vector normal to the level surface ¢(x,y,z)=c through that

point, where c is a constant.

The physical interpretation of V¢

The gradient of a scalar function ¢(X,y,z) at a point P(x,y,z) is a vector along the normal to the
level surface ¢(x,y,z) = c at P and is in increasing direction. Its magnitude is equal to the greatest rate
of increase of ¢. Greatest value of directional derivative of ® ata point P = |grad ¢| at that point.

SOLVED PROBLEMS
1: If a=x+y+z, b= x?+y>+z% , ¢ = Xy+Yyz+zX, prove that [grad a, grad b, grad c] = 0.

Sol:- Given a=x+y+z

There fore a_azl, 8_a=1,8_a=1
OX oy 0z
.o0a . .
Grada=Va= N1 =i+j+k
OX
Given b= x?+y?+z?
Therefore a_b =2X, 82: 2y, 8&: 27
OX oy 0z
Grad b = Vb :ia_b + ja_b +zib =2xt + 2yj + 2zk
OX oy 0z
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Again ¢ = xy+yz+zx

Therefore§=y+z,T=z+x,a_czy+x

OX oy 0z
Grad c = iﬁ: +}a_c+ La_cz(y+ )i+ (2 + X) f+ (X + y)k-
OX oy 0z
1 1 1

[grad a, grad b, gradc] = [2x 2y 2z |=0,(onsimplification)
Y+Z Z+X X+Y
[grad a, grad b, grad c] =0

f
2: Show that V[f(r)] =

. Fwhere = yi 1 yj+zk .
Sol:- Since T = Xi + yj + zk , we have r2= x2+y?+72

or leferentlatmg w.r.t. ‘x’ 6Dart|ally, we get
a " _ox = o Slmllarly =’ or_z

OX r r@zr
(a 0 a\

VIf(n] \'a_+Ja_+k—|f(r) 2.t (r) Z” (r)_
fi(r i fi(r

Note : From the above result, V(log r) = 1_2r"
r
3: Prove that V(r")= nr"2 -
Sol:- Let F= xj +yj+zk andr= |r|. Thenwe have r* = x*+y*+z Differentiating w.r.t. x
par(%lrally, we ha\r/e = o2
2r =2x= _ = .Similarly = = ~ and -
OX ox r ay T oz v
V(M= Dk @ (r") =) inr™t & =Zinr”*1 = =nr2 ) ix =nr" 2 (r)
OX OX r
Note : From the above result, we can have

1 .
(1). V{%\I = —15, taking n=-1 (2) grad r = i,taklng n=1
)

4: Find the directional derivative of f = xy+yz+zx in the direction of vector i + 2] + 2k at the
point (1,2,0).
Sol:- Given f = xy+yz+zx.
_ Ot of
Gradf=1_ + j <
OX oy

If e is the unit vector in the direction of the vector i + 2j +2k , then

+Z—_(y+z)| +(Z+X)j+(X+ y)k

I +2]+ 2k

_1
V1% 422 422 3

g = (i+2j+2k)
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Directional derivative of f along the given direction = &.Vf
= é(l +2j+ Zk). [(y +2)i+(z+%)j+ (x + ykj]at (1,2,0)

= [+ )+ 2+ ) 2+ 9120 =

5: Find the directional derivative of the function xy?+yz?+zx? along the tangent to the curve x
=t, y = t2, z =t at the point (1,1,1).
Sol: - Here f = xy2+yzza-1lgzx2 -
Vi=i" +j +k= = (y2 + 2xz)i F (z2 + 2xy)j—+ (x2 +2yz)k“
OX oy 0z
At (1,1,1), Vf=3i +3j+3k
Let r be the position vector of any point on the curve x =t , y = t2, z = t3. then
r=xi+yjrzk=ti+t? j+t3k
a_F =T +2tj+3t%k = (Fr+2j+3K)at (1,1,1)
ot

We know that a_ris the vector along the tangent to the curve.
ot

i+ 2]T+3k_ Y i+ 2]+3E

V12213 V4

Unit vector along the tangent =e <

Directional derivative along the tangent = Vf e

= % ((+2]+3K).3( +j+k) %(1+2+3)=%

6: Find the directional derivative of the function f = x2-y?+2z2 at the point P =(1,2,3) in the

direction of the line PQ where Q = (5,0,4).

Sol:- The position vectors of P and Q with respect to the origin are OP =i+ 2j_+ 3k and
0Q = 5 + 4k
PQ=0Q -OP = 4i -2j+k

— 4i-2j+k
Let € be the unit vector in the direction of PQ. Then € = ———
0 N

=04 of + _of P
gradf=7_ " ;0 " _ 2Xi — 2Vj + 4zk

OX oy 0z
The directional derivative of f at P (1,2,3) in the direction of PQ = e .Vf
1 oA O - - - 1 1
= —— (4 —2] +K). (2 —2y] +4zk) —==(8X+4Y +47) 31,5 = —(28)
\/ﬁ ( J ) ( | ) \/ﬁ t(1,2,3) \/ﬁ

7: Find the greatest value of the directional derivative of the function f = x?yz® at (2,1,-1).
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Sol: we have

f _ _
grad f = "3 j— of +gaot _ 2xyZ3i + X223 [+ 3x2yz%k =—4i - 4] +12k at (2,1,-1).

8x oy 0z
Greatest value of the directional derivative of f = |Vf | = J16 +16 +144 = 4.11.

8: Find the directional derivative of xyz2+xz at (1, 1 ,1) in a direction of the normal to the
surface 3xy?+y=z at (0,1,1).
Sol:- Let f(x, y, z) = 3xy*+y-z=0

Let us find the unit normal e to this surface at (0,1,1). Then
of of of

_ =3y?, __=6xy+1, 1.
OX oy az
VT = 3y?i+(6xy+1)j-k
(VHowy = 3i+j-k=n
_n _3i+j-k _3i+j-k
Al o1+l V11

Let g(x,y,z) = Xyz?+xz,then

9 =yz% + 1, aiz xzz,aiz 2xy + X

X oy 0z

Vo=(yz?+2)i+xz?j+(2xyz+x)k

And [V] @11 = 2i+j+3K

Directional derivative of the given function in the direction of €at (1,1,1) = Vg.e~

:(2|+J+3k) (BI + ] _k)_ 6+1—3_ 4

Jii ) Vi1 oV

9: Find the directional derivative of 2xy+z? at (1,-1,3) in the direction of i + 2j_+ 3k .

f
Sol: Let f=2xy+z’then — =2V, ﬂ_z ot 5
OX oy oz
_ et % w - &
grad = MF 3 =2yT+ 2+ 22K 514 (grad fat (1,-1,3)= —2i + 2 + 6k

givenvectoris a=i+2j+3k=[a)=v1+4+9 =14
Directional derivative of f in the direction of & is

avl (i +2]+3k)(=2i +2]+6k). _—2+4+18 _ 20
a J14 V14 J14

10: Find the directional derivative of ¢ = x?yz+4xz? at (1,-2,-1) in the direction 2i-j-2k.

Sol:- Given ¢ = x2yz+4xz> 5
=2xyz + 412, :xzz,ib:xzy+8xz.
OX oy 0z
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Jal)
OX
Vo at (1,-2,-1) = i(4+4)+j(-1)+k(-2-8)= 8i-j-10k.
The unit vector in the direction 2i-j-2k is

Hence V¢ :Z'r =i(2xyz + 4z%) + =

jx2z +k(x y + 8xz)

_ 2i—j-2k. 1, .
A=——r—==(2i—-j-2K
Va+1+4 3( J )

Required directional derivative along the given direction = V¢. a
= (8i-j-10k). 1/3 (2i-j-2k)
= 1/3(16+1+20) = 37/3.
11: If the temperature at any point in space is given by t = xy+yz+zx, find the direction in

which temperature changes most rapidly with distance from the point (1,1,1) and determine

the maximum rate of change.

Sol:- The greatest rate of increase of t at any point is given in magnitude and direction by Vt.

(o e N
We have Vt = | i —+ J —+k —||(xy+ yZ + ZX)

\ ox oz )
=i(y+2)+ jZ+X) +k(x+y)=2i + 2]+ 2k at (1,1,1)
Magnitude of this vector is v/22 + 22 + 22 =12 =
Hence at the point (1,1,1) the temperature changes most rapidly in the direction given
by the vector 2j + 2 + 2k and greatest rate of increase = 2v3.
12: Findthe directional derivative of ¢(x,y,z) = x?yz+4xz? at the point (1,-2,-1) in the
direction of the normal to the surface f(x,y,z) = x log z-y? at (-1,2,1).
Sol:- Given ¢(x,y,z) = x?yz+4xz? at (1,-2,-1) and f(x,y,z) = x log z-y? at (-1,2,1)
Now V¢ = @0 - 00 i‘+® k
OX oy 0z
= (2xyz + 422)i + (X22) | + (x2y + 8x2)k
(V)2 = RO + 417D+ 102 (D) TT+[32)(-2) +8(-DIk - (1)
= 8i — j—10k

Unit normal to the surface

f(x,y,2)= x log z- y? is |V]:|

Now vf=io + jﬂﬂzﬂ: log zf +(-2y)j+ K
OX oy oz z

At (-1,2,1), vE= log(1)i —2(2)j+__ ; k_——4I K
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Vi _ —4j-k. -4j-k.
Vi J16+1 17

Directional derivative = V¢. Vi

[V
(8T 10K 4j-k. 4+10 14
S 100" 7=

13: Find a unit normal vector to the given surface x2y+2xz = 4 at the point (2,-2,3).
Sol:- Let the given surface be f = x?y+2xz — 4

On differentiating,

i = 2Xy + 2z, i:xz,ﬁzz)(_

OX oy oz

grad f :ziz_f =1(2xy +22)+ ¥ + 2xK
X

(grad f) at (2,-2,3) =i(-8+6)+ 4+ 4k =2i +4j + 4k

grad (f) is the normal vector to the given surface at the given point.

Hence the required unit normal vector —— _ 2T +2j+2). _Ti+2j+2K

Vfl od+22 422 3
14: Evaluate the angle between the normal to the surface xy= z? at the points (4,1,2) and
(3,3,-3).
Sol:- Given surface is f(x,y,z) = xy- z?
Let n,and N2 be the normal to this surface at (4,1,2) and (3,3,-3) respectively.
Differentiating partially, we get

of
g:y,ile_:—zz_
OX oy 0z

grad f= yi_+ xj_— 27k

ni= (grad f) at (4,1,2) =i + 4] -4k

2= (grad f) at (3,3,-3) = 3i +3] +6k

Let 6 be the angle between the two normal.

n.n, (i+4j-4k) (3i+3j+6k)
\n_lun_z\ J1+16 +16  /9+9+36

cos 0=

74




(3+12-24) -9

V3364 33454

15: Find a unit normal vector to the surface x?>+y?+2z? = 26 at the point (2, 2 ,3).

Sol:- Let the given surface be f(x,y,z) = x?+y?+2z? — 26=0. Then

of
g:ZX, i=2y7—=4z.

OX oy 0z
grad f= Z'r@c = 2Xi+2yj+4zk
OX

Normal vector at(2,2,3) = [Vf ]@23) = 4i+4] +12k
VE 4@ +j+3k) _i+]j+3k
V| ad1 Vi1

16: Find the values of a and b so that the surfaces ax?-byz = (a+2)x and 4x?y+z°= 4 may

Unit normal vector =

intersect orthogonally at the point (1, -1,2).
(or) Find the constants a and b so that surface ax?-byz=(a+2)x will orthogonal to 4x?y+z%=4 at
the point (1,-1,2).
Sol:- Let the given surfaces be f(x,y,z) = ax>-byz - (a+2)X ------------ (1)
And g(X,y,2) = 4X°y+23- 4----------- (2)
Given the two surfaces meet at the point (1,-1,2).
Substituting the point in (1), we get
at2b-(a+2) =0 = b=1
of of

of
Now — =2ax—(a+2), __ __prand — =-by.
OX oy 0z

vi= 5 & Z[(2ax-(a+2)]i-bz+bk = (a-2)i-2bj+bk
OX

= (a-2)i-2j+k = Nz, normal vector to surface 1.

Also a_g =8xy, aﬁz 4x2, a_g: 322,
OX oy 0z

_ . 9a
Vg—zrax

(V)12 = -8i+4j+12k = N2, normal vector to surface 2.

= 8xyi+4x%j+3z%k

Given the surfaces f(x,y,z), g(x,y,z) are orthogonal at the point (1,-1,2).
[V | Tva]= 0= ((@-2)i-2j+K). (-8i+4j+12k)=0

—=-8a+16-8+12 = a =5/2

Hence a = 5/2 and b=1.
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17: Find a unit normal vector to the surface z= x?+y? at (-1,-2,5)
Sol:- Let the given surface be f = x>+y?-z

of
g=2x, i:2y!—=—1_

OX oy 0z

grad f=Vf = Z r a = 2Xi+2yj-k
OX

(Vf) at (-1,-2,5)= -2i-4j-k

Vf is the normal vector to the given surface.

. . vi
Hence the required unit normal vector = W =

—-2i—-4j-k :—2i—4j—k:_ 1 it itk
JEr + (a7 +(p V22 o 2

18: Find the angle of intersection of the spheres x?+y?+z% =29 and x?+y?+z? +4x-6y-8z-47 =0
at the point (4,-3,2).
Sol:- Let f= x2+y?+72 -29 and g = x?+y?+7% +4x-6y-8z-47

Then grad f= i+ of + o

— 2xi +2vi+ 27k and
x oy p 2Xi + 2Yj + 2zk

grad g = (2x +4)i_ +(2y - 6)] +(2z —8)k_
The angle between two surfaces at a point is the angle between the normal to the

surfaces at that point.
Let ny= (grad f) at (4,-3,2) =8i —6j + 4k
Mo = (grad f) at (4,-3,2) = 12i —~12j -4k
The vectors N1 and N are along the normal to the two surfaces at (4,-3,2). Let 0 be the

angle between the surfaces. Then

n.n, _ 152

] 16508

4 119
.0 =cos (\/%j

19: Find the angle between the surfaces x>+y?+z% =9, and z = x?+y?- 3 at point (2,-1,2).

Cos 0=

Sol:- Let ¢1 = x2+y?+22 -9=0 and ¢,= x?+y>-z- 3=0 be the given surfaces. Then
V1= 2xi+2yj+2zk and V2 = 2xi+2yj-k
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Let N1= V1 at(2,-1,2)= 4i-2j+4k and
2= Vooat (2,-1,2) = 4i-2j-k
The vectors N1 and Ny are along the normals to the two surfaces at the point (2,-1,2). Let 6 be

the angle between the surfaces. Then

mn, _(4i-2j+4k) (4i-2j-k) _16+4-4 _ 16 8
An,| V16+4+16 1614116 621 6421 3J2L

8
-0 :cos—{—) .
321

Cos 0=

20: If a is constant vector then prove that grad (a".r)=a

Sol: Let @ = a,i +a, ] +a.k , where as,az,as are constants.

aa r_(a1|+a j+8.3k)(XI j+Zk) aX+a,y+a,z
~(ap=a, (ar)=a, (ar)=a

O 1 oy /4 °

grad (a.F)=aj +a,j +a;k =a

21: If Vo= yzi +2xj + xyk, find ¢.

Sol:- We know that V= 'raf + Jaf TR < of
OX oy 0z

Given that Vo= yzi + zxj + xyk
. . . fali} all) o
Comparing the corresponding coefficients, we have = = yz, =X, =Xy
OX oy oz

Integrating partially w.r.t. X,y,z, respectively, we get
$= xyz + a constant independent of x.
$= xyz + a constant independent of y.
$= Xyz + a constant independent of z.

Here a possible form of ¢ is ¢= xyz+a constant.

DIVERGENCE OF A VECTOR

Let f be any continuously differentiable vector point function. Then

- 6L+ of e of
I 5x ]8_y E is called the divergence of f “and is written as div f .
f__|af+1af O (o o 2
ie., div ex @y ——
+k _)f
_ GZA( 8ZJ

Hence we can write div f as
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divf=V.f
This is a scalar point function.

Theorem 1: Ifthe vector f= fi+f j+f k, thendiv f = Jh  of, of
v 3 ox oy oz

Prof: Given f= fii + f2 j+ fak

of I,afl Lof,  _ofy

—=l—+ ] —+k—
ox  OX OX OX
Atso . % =% simitarly ;o _of and k. & _ofy
ox  OX oy oy 0z 01
) _(at\ of, , of, , of,
We have div f=2i.|w—)=@x' - o
X
Note : If f- is a constant vector then af_l af_z af3_are zeros.
ox oy oz

-.div f =0 for a constant vector f .

Theorem 2: div ( f +9) 5 div f +divg
. ' _ 0 ) 3 p
Proof: div ( f ig):zr.a— (f J_rg) =Zr.a— (T )izr.a— (@)=div f +divg.
X X X

Note: If ¢ is g-scalar function and f_js a vector function, then
(). @) f[a.l L2k
N é e MM
(ai) . +@j) . +@k)_ |
P
L(a.i) o +(.j) & +(ak) azJ
:Z(&-F)de_ and
OX

(ii). (&Vv)f= Z(a.'r) Qf_.by proceeding as in (i) [simply replace ¢ by f~in (i)].
OX

SOLENOIDAL VECTOR
A vector point function f is said to be solenoidal if div f =0.

Physical interpretation of divergence:

Depending upon fina physical problem, we can interpret div f (=V. f_).

Suppose F (x,y,z,t) is the velocity of a fluid at a point(x,y,z) and time ‘t’. Though
time has no role in computing divergence, it is considered here because velocity vector

depends on time.
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Imagine a small rectangular box within the fluid as shown in the figure. We would
like to measure the rate per unit volume at which the fluid flows out at any given time. The
divergence of F measures the outward flow or expansions of the fluid from their point at
any time. This gives a physical interpretation of the divergence.

Similar meanings are to be understood with respect to divergence of vectors f from
other branches. A detailed elementary interpretation can be seen in standard books on fluid

dynamics, electricity and magnetism etc.

SOLVED PROBLEMS

1 0f = xy2i +2x2yzj —3yz% find div f at(1, -1, 1).

Sol:- Given f = xy2i +2x2 yzj — 3yz2K .
Thendiv f = a_fl +a_]c2 +a_f3= E (xy?) + 6_(2)(2 yz) + a_(—3yzz) = y2+2x%2-6yz
ox oy 07 Ox oy 0z

(div ) at (1, -1, 1) = 1+2+6 =9
2: Find div f when grad(x*+y®+z°-3xyz)
Sol:- Let ¢= x3+y*+73-3xyz.
Then 2 = 3x% —3yz, 2% = 3y? —3zx,@2 =322 - 3xy

OX oy 0z

.0 .0 0
grad ¢ = 20, ijz w2 3[(x2 - y2)ir T (y? —2x) j + (2% — xy)k]
OX oy oz
div f-= 6f_1+ af_2+ afi= 6_[3()(2 —y2)]+ ﬁB(yz —2X)]+ 8_[3(22 —xy)]
ox oy 01 OoX oy oz

= 3(2x)+3(2y)+3(22) = 6(x+y+2)

300 f= (x+3y)i +(y—22)j+(x+ pz)k issolenoidal, find P.
Sol- Let = (x+3y)i +(y—22)j+(x+pok = il + 2 j+ £,k

of, 8f
Wehave =1, 72 =1, =
OX oy 0z
div f :i+ §+ 8f_3: 1+1+p =2+p
ox oy oz

since f issolenoidal, we have div f =0 =2+ p=0=p=-2

4: Find div f =
Sol: Given f_:

. Find n if it is solenoidal?

ﬂ| qI

. where F=xi+yj+zk and r=|r|
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We have r? = x2+y?+z2
Differentiating partially w.r.t. x , we get

2r a_r = 2x:>a_r= i
OX oX r
Similarly o _ Y 4" _2

oy r oz r
f_=r”( xf+yi+zl<_)

_ 0, o, . o,
div f= — ")+ __(r"y)+ _(r"z)
OX oy oz
- n-1 r n n-1 or n n-1 or n
=nr" T XAt nr™ T y+rt ™ T 24
OX oy 0z

n—l|_x2 y2 22—| n n-1 (rz)

=nr {_Jr — 4+ —1[+3r =nr —+3r"=nr"+3r"= (n+3)r"
Lror o r

Let f=r"" be solenoidal. Thendiv f =0

(n+3)r" =0 = n=-3

5: Evaluate V.( ' \there r=xi+yj+zkandr=r .

: I

r
Sol:- We have

T =xityj+zk and r = /x2 + y? + 22

ox 1oy oz r
-
il il o ¥
r r
Hence V. ;\:iJr@Jra_fs
| |
r ox oy oz
U ) _
We have fi= rix= " =r=3.1+x(=3)r . or
of ox OX
L= -3t X_: r-3 _3x2r-5
ox I A g

|— | —
SR 2
= 3r3-3r°r2 = 3r3-3r3 =0
6: Find div rwhere r=xj 4 yj + zk

Sol:- We have F= xjtyj+zk =fii+f2 j4 f,k
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i 0 0
dive= Of df2 Ofs _ 0 )+ _ (Y)+ () =1+1+1=3
ox oy 07 OX oy 0z

CURL OF A VECTOR
Def: Let f be any continuously differentiable vector point function. Then the vector function

of

: Y A ; _
defined by x =+ JX—FKX_— s called curl of £ and is denoted by curl  or (Vx f ).
OX oy 0z

of of of [ of)

Curl T = — ot Kkx—= .
IX6X+JX8y+ x—= ZLIX(?XJ

Theorem 1: If f is differentiable vector point function given by f = fai + f, J+ f k then

( of, afz\ (afl afs\ (of, of,
curlf’-ka_ a )
Proof : curl¥ ?%)— ] ? Taka)— (6fzk___8f3j\
x X x ¢ B )l
fof2y _ofs ) (ofs  of ) (ofi  ofa )
(e Jo| T K T
(of, of2) (off afgﬁv (of2 _of, )
Ny a) N s My )

Note : (1) The above expression for curl f can be remembered easily through the representation.

1 J k

- 0 o0 0 =

curl f = & 5_62 =Vx f
f, f, f

Note (2) : If f is a constant vector then curl f = 0.

Theorem 2: curl (a‘i bj— curl a+curlb

Proof: curl(a+b)= Zi'x ? (a+p)

|(aa ab\| oa ob
:lekﬁ_ﬁ) :ZIXWiZIXW
= curla+curlb

1. Physical Interpretation of curl
If Wis the angular velocity of a rigid body rotating about a fixed axis and Vis the

velocity of any point P(x,y,z) on the body, then W = curl v". Thus the angular velocity of
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rotation at any point is equal to half the curl of velocity vector. This justifies the use of the
word “curl of a vector”.
2. Irrotational Motion, Irrotational Vector

Any motion in which curl of the velocity vector is a null vector i.e curl v=0 is

said to be Irrotational.
Def: A vector f is said to be Irrotational if curl f = 0.

If f is Irrotational, there will always exist a scalar function ¢(x,y,z) such that f
=grad ¢. This¢ is called scalar potential of i

It is easy to prove that, if f = grad ¢, then curl f=0.
Hence Vx f = 0 < there exists a scalar function ¢ such that f = V¢.

This idea is useful when we study the “work done by a force” later.

LVED PROBLEM
1:0F f = xy%i +2x%yz j—3yz%k find curl f at the point (1,-1,1).

Sol:- Let f = xy2i +2x2yz j—3yz2k . Then

i J k
curl f_: VX f_: o0 9 0
ox oy 0z

Xy? 2x2yz —3yz?

L( 504, <2x2yz)}+ {20wh-2om ] )

)|+l{jx(2x2yz)—§y(xy2))
= F(— 372 - 2x2 z)+ J(0-0)+k (4xyz—2xy) = —(322 +2x2 y)_i +(4xyz—2xy )k

=curl f at 1-11)= —i -2k,

2: Find curl f where f = grad(x3+y3+z3-3xyz)
Sol:- Let ¢= x3+y*+2z3-3xyz. Then

grad ¢= Zr%dz =3(x% —y2)i +3(y2 —2x)j +3(z% — xy)k
X

i j k ‘
curl grad ¢= Vx grad ¢=3 ai 0 0
X

oy 0z
X2 —yz y?-zx z2-xy
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=3[ (-x+x)- j(~y+y)+k(-z+2)]=0
~eurl f=0.
Note: We can prove in general that curl (grad ¢)=0.(i.e) grad ¢ is always irrotational.

3: Prove that if  is the position vector of an point in space, then r"ris Irrotational. (or) Show
that
curl{(z") =0

Sol:-Let F= xj yyj+zk andr=|r|  .r’=x’+y+2%

Differentiating partially w.r.t. ‘x’, we get

or MoK

OX X T
Similarly o7 _Y g F -2
oy r oz r

We have r"r = r"(xi_+ yj_+ zk_)

] j k
A -
Xrh yr" zr"

_Jo L 0 s Vol e ()]
C (r'z)- —( r&’)) l\ (r'x) (rfz) |)+kk_a( y) - 5 )
[ Laor morl [ (y) (2)

= Zi‘{LGr b ynr ET = Zi'{LZ|U—j—— y( - JT

=nr™2[(zy - y2)i + (xz— 2x)j + (xy - yz)K]

=nr"2[0i +0j+0k]=nr"2 [0]=0
Hence r"r is Irrotational.
4: Prove that curl F=0 -
Sol:- Let 7= Xi +yj+ zk
curl = er (IC) D (ixi)= 0+0+ 6= 6

STis Irrotatlonal vector.
5: If a is a constant vector, prove that curl (axr) 2y 3r_ (a.r).

) F

Sol:- We have T = xi + yj + 2k
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ar - or j,a_tzk

ox = oy I’
If |F| =rthen r* = x*+y*+7°
or X or y,andﬁrzz

X . r o r 0 r
[ (axr)_ 1-X6fa><r\

cur
Now 8] & Ei gar”j} 1 oF 3 or
ow ax _LL Xax p3'= [ri@x_riéxr‘}
N \ )
:erll_ Ij_axr 3x(a.x F)
Lr_‘“’ r_5 B rs
" a[axl:\:ix:_axf_3_x(&><|L)T| ix(axi) 3X|—x(a-><r)
Lr3 r5 J r3 r5
M [(ir)a- (i.a)r)
r re
Let a= a,i +a,j+a,k.Then i.a=a, etc.
iy O faxr) (ii_ali)—sx(xa—a r)

3J_Z 3 r_s_l

ax o
i)( (}{ (@X I:\_ a— a.ll- 3 (Xza = Xr)

Z &k r3 J_Z -

_Z '

3a a 3a
(r)+ (ax+a y+a 7)
rs s r° !
I D TR
r.3 r.3 r.5 r.3 I,.5

6: Show that the vector (x2 — y2)i + (y2 — zx) j +(z2 — xy) k is irrotational and find its scalar

potential._ &
Sol: let f = (x2 —y2)i +(y2 —2x) j +(z2 = xy)k

i i k
- |0 0 0 -
Thencurl f =| = - = =>(—x+x)=0
OX oy 0z Z( )

x2—-yz  y?-zx 7?2 -xy

. f is Irrotational. Then there exists ¢ such that f =V¢.
% + i@ +|’<@2 = (X2 —y2)i+(y?2 —2x) § + (2% —xy)k

=t
OX oy 0z
Comparing components, we get
3
0
£ -yzI=>¢ = _[(x - yz)dx— —xyz+ fi(y,2) ... (1)
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9 _ yz—zx:>¢:—3—xyz+ f,(z,X)..... (2)

oy 3
2 :
5 = “XY=0=__xyz+ f3(X, y)......(3)
z
3 3 3
From (1), (2),(3), ¢ = % —xyz

L h = 1_(x3 +y3+2%)—xyz+constant
3

Which is the required scalar potential.

7: Find constants a,b and ¢ if the vector f =
(2x + 3y + az)i + (bX + 2y +32) j + (2x + ¢y +3z) k is Irrotational.

Sol:- Given f = (2x + 3y +az)i + (bx + 2y +32) j+(2x+cy +32)k

P j k
Curl f=|© 0 0 =
OX oy 0z

) _ |2x+3y+az bx+2y+3z  2x+cy+3z
(c-3)i—-(2-a) j+(b-3)k
If the vector is Irrotational then curl f = 0

2-a=0>a=2b-3=0=>b=3,c-3=0=c=3

8: If f(r) is differentiable, show that curl { ¥ f(r)} = 0 where T = xi + yj + zk .

Sol: r = F=4/x% + y2 + 72

2 = X2y z?

—2r 8_r:2X:>8L: )i similarly or _ y da_rzi

OX oX r oy r oz r

curl{ F f(N}= curl{f(r)( xi + yj+ zk )}=curl (x.f ()i +y.f(r) j+zF(O)k)

i _
2 b il o= 2 i oy
X oy oz Lay oz

xf (r) yf (1) zf (r)

[ 1 or p o or] [y 1 Z]

il () —-=yf ==Yl -
Y (r)@%y‘frZ 7

Q) =i
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= 0.

9: If Ais irrotational vector, evaluate div( A xr’) where r = xi + yj + K .
Sol:We have F = xi + yj + zk

Given A is an irrotational vector

VXA =0

div (AXF) =V.(AXF)

T (VXA) A .(VXT)
r.(0)-A.(Vxr) [using (1)]

A (VXD)....(2)
] j
Now VXr= 0 0 0 =
0z
X y YA
(_&Z _dy _l_dz —dX ﬂ_@y__dx\“:(_)
kéy oz ) oXx 0z 8x

A (VXF)=0 ...(3)

Hence div ( A xr)=0. [using (2) and (3)]

10: Find constants a,b,c so that the vector A =
(x+2y +az)i +(bx -3y —2) j+(4x+cy+2z2)k is Irrotational. Also find ¢ such that A =
V.

Sol: Given vector is A = (x+2y+az)| +(bx—3y-2) j +(4x+cy+ 22)k
Vector A is Irrotational = curl A = 0

l ]
N 0 0 0 -0
OX oy 0z

X+2y+az bx—-3y—z 4x+cy+2z

=(c+l)i +(@@-4)j+(b-2)k=0

= (c+1)i +(@—-4) j+(b-2)k = 0i +0]+0k

Comparing both sides,

c+1=0, a-4=0, b-2=0

c=-1, a=4,b=2

Now A =(X+ 2V +42)i +(2x -3y —2) j+ (4x— y+22)k , on substituting the values of a,b,c
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we have A= V.

= A=(X+2y+42)F+(2x -3y —2) j+ (4x -y +22)k = i’®+]®+l€®
OX oy oz

Comparing both sides, we have

% =X+2y+42 == X2[2+2xy+4zx+f1(y,2)
OX

a9 =2X-3y-Z == 2Xy-3y?/2-yz+f;(2,X)
oy

% = 4X-y+27 == dxz-yz+7%+f3(X,Y)

0z

Hence ¢= x%/2 -3y?/2+72+2Xxy+4zX-yz+C
11: If o is a constant vector, evaluate curl V where V = oxr .
Sol: curl (xr) = Yix & (@ xr) = Yix1 28 xr 45 x L]
OX L OX 5XJ
=Y ix[0+oxi] [..ax(bxC) = (ac)b —(ab).c]
=Y ix(@xi)= Y [([i-i)o—(i.0)i]=D 0 - (il0)i =30 -0 =20

i ~ As§ignments
LIFf =e*Y*2(i + j+k) find curl f.

2. Prove that f = (y+2)i +(z+x) j+(x+y)k is irrotational.
3. Prove that V.(ax f)=—& _curl f where ais a constant vector.
4. Prove that curl (ax F):Z a where a is a constant vector.
5.1f f = x2yi —27x j+2yzk find (i) curl £ (ii) curl curl f .
OPERATORS
Theoperator V=14 ~ +j  + Iti is defined such that V¢= r%.,__}@Jr k—@(]) where ¢ is

OX oy 0z OX oy 0z
a scalar point function.

Note: If ¢ is a scalar point function then V= grad ¢= zi %
OX

(2) Scalar differential operator a .V 2 2
The operator & .V = (ad) ™ +(a.f) — +(ak) ™ isdefined such that
OX oy oz
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(a.V)p= (a.i)de +@§) % +(ak) a9
OX oy oz
And (&.V) f:(&.'r)ﬁ+ (&]) i+(&.k‘) i
OX oy 0z
(3). Vector differential operator a xV
., 0 ., 0 0
The OperatOI’ axv= (aX r)_+ (a'X ]) _+ (&x k-)_ is defined such that
OX oy 0z
(). (2 xv)0=(ax )2 1 @ax )2 + (axk) 2
OX o oy o oz o
(ii). (axV). f=(axi).” +(@xj.” +(@axk).—
OX . oy . 0z :
(i), (axv)x f=(@xi)x T+ @ax jyx T+ (axiyx &
OX oy 0z

(4). Scalar differential operator V.

Theoperator v= 2 + 3.2 +k. % is defined such that v. + = 1.7 + 1.7 4.

OX oy 0z OX oy 0z
Note: V. f is defined as div f It is a scalar point function.

(5). Vector differential %peratorav X

The operator V.x=ix_ + jx_ +Kx 3 is defined such that
OX oy 0z

vxfzix® 4 i e d
OX oy 0z
Note : Vx f is defined as curl f . It is a vector point function.
(6). Laplacian Operator V2
_ f[ o0 op ap\_wep [ & )
Vel otk T el o] ot ot b et 0=V ¢
\ ) \ )
e Toa  Gh
Thus the operator V= o is called Laplacian operator.
oy? oz
Note : (i). V29=V.(V) = div(grad ¢}
(ii). If V2$=0 then ¢ is said to satisfy Laplacian equation. This ¢ is called a harmonic
function.

SOLVED PROBLEMS
1: Prove that div.(grad r™)= m(m+1)r™2 (or) VZ(r™ = m(m+1)r™2 (or) V3(r") = n(n+1)r"2
Sol: Let r = xi +yj+zk andr=|r| thenr? = x?+y?+72.

Differentiating w.r.t. ’x” partially, wet get Zri: 2X = a_r: i
Oox ox r
I y
Similarly "= 2 and o = 2
oy r oz r
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Now grad(r™ = > i 9 (rmy=> imrm-* o =>imrm? X =>imrm2x
r

OX OX
~.div(grad rm) = >’ g [mr™2x]=m Zr(m —2)rm3 or .. rm—ﬂ
OX L OX J

=m Z[(m 2rm4x% 4 ™2 ]:m[(m —2)rm4 Y x? +Zrm‘2]

= m[(m-2)r™4(r2)+3rm2]

= m[(m-2) r2+3r™2]= m[(m-2+3)r™?]= m(m+1)r™2,

Hence V#(r™) = m(m+1)r™?
2: Show that V2[f(r)]= d_‘;+%ﬁf =fu(r+ a f1(r) where r = f].
r
Sol: grad [f(n] = Vi(= i  [f(1)] =Zi 1L =it
OX XX—| r

~.div [grad f(r)] = V[f(r)] = V.Vf(r)= Z 1( r
ol
e Ot eox 7

— Z OX _ OX
ECLE o 1(r)\J— fred X

v\ LrJ
_Z r2
n X 1 L (X))
] er (r);x+rf (n-f (r)xILJ_
rZ
P2 11(r)5x+rf i(r) - X2 ()
r

_f (r)z)\ ——Zfi(r)—rifi(rjz
O Oy
r? r

=f3(r )+—1()

3:1fd satlsfles Laplacian equation, show that V¢ is both solenoidal and irrotational.

Sol: Given V2¢ = 0 =div(grad ¢)= 0 => grad ¢ is solenoidal

We know that curl (grad ¢) = 0=>grad ¢ is always irrotational.
4:Show that (i) (a.V)o=a .V (i) (a.V)r=a.
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Sol: (i). Let & = a,i +a, j +ask . Then

a.v=(at+a j+ak).(ia+ja+lea):a a+a 0 0
1 2 3 o o —_ta

ox oy oz lox oy Gax

(aV)p=a 00, 00 . 0O
tox 2oy 3oz

Hence (a.V)¢=a.Vo

(ii). T=xi+yj+zk
oc . oor- . ar_:

k-

OX oy o1
_ 0 or : :
(a.V)r=>a -~ (r)=Ya — =ai+ajrak=a
1 ox B W G
5: Prove that (i) ( f xV).r =0 (ii). (f xV)xr = —2f

Sol: (i) (£ xv).r= 3 (f xP). % = $(F i) =0
OX

(i) ( f xV)=(f xi)iif_xi) g x( £ xk) R
OX oy oz

CEXV)xE = (f xd)x 4 (F x)x E 4 (Fxk)x T =S (FxD)xi-=3 [(Fi)i- ]
OX oy 0z

= (Fi)i+(F.))jr(fkk—3f = f-3f=-2f
6: Find div F, where F = grad (x3+y*+z3-3xyz)
Sol: Let ¢p= x3+y>+z%-3xyz. Then

F =grad ¢

.0 . . i
=) o =3(x* = y2)i-+3(y? —2x) § +3(x%> — xy) k= Fll 4 sz + F3k (say)
OX

OF,  OF,  OFs 6x+6y+62= 6(x+y+z)
ox oy oz

s.div F=

i.e div[grad(x3+y3+z3-3xyz)]= V2(x3+y3+23-3xyz)= 6(x+y+2).

7: I f= (x2+y?+z?)™ then find div grad f and determine n if div grad f= 0.
Sol: Let f= (x+y2+z2)"and r = Xi + yj + 7k
r= H: 12 = x2+y2 472

=f(r) = ()" =r"
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2 fi(r)=-2n ot
and f13(r) = (-2n)(-2n-1)r?"2= 2n(2n+1)r2"2

We have div grad f = V2f(r)=f1}(r)+2/f}(r)= (2n)(2n+1)r2"2 -4n "2
= r2"2[2n(2n+1-2)]= (2n)(2n-1)r212

If div grad f(r) is zero, wegetn=00r n=%.

(Axr | _@-mA  nrAr
K r” ) rﬂ rn-¢—2 i
Sol: We have r = xi+yj+zk_ and r = [f| = yX* +y? +2°
o . o . oc
=k =} =k and
OX oy 0z
r? = x*+y*+z2....(1)
Diff. (1) partially,

8: Prove that Vx

2r a_r=2x:> - )i similarly or _y . or _zZ
X X r a r oz r
Axr 0 ( (AxF)
Vx( ):er ( \
L) ox )
of(Axn)) afr) [k — et ] or
Now ox I J_ Ax k—| Ax| =
L ox\rn ) L r | ox
[ rMi—nr"2xr | [1 n |
- Ax e i _
{ J_AX|Lr”I rn+2.xr|J
_ Axi
r _rn+2 x(Axr)
o O ((AXD)) _ix(Axi) Y ix(Axr)
- r.n+2
axL rn J "o
_ ()A-(@A)i  nx . (i
= iz L) A -(A)]

Let Agi + Az j + Ask. Then i.A = A,
o ((Axr))_(A-Ai) " [xA-Ar]

T )
a((Axm' |fA All\| ™ xA-Ar]
=3 o — -
-

\ )\ )

A

and i
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N n ne
_3A-A " [r?Al+  (Ax+A y+Az)
I,n I,n+2 I,n+2 1 2 3

A _ F 2-n)A
_2A_n4, nf (RF):( A nr (A1)
r.n rn+2

rn rn rn+2

Hence the result.

VECTOR IDENTITIES

Theorem 1: If &'is a differentiable function and ¢ is a differentiable scalar function, then
prove that div(p a )= (grad ¢). a +¢ div aor V.(pa)= (Vo). a +¢(V.a)
Proof: div(¢ @)=V.(¢x)=Yi % (va)
OX
(op  oay (a0 )\ [ ca)
=i .LWH—HP 6_XJ=Z|\| 87a5+2|c 87|)¢
(%15, i ®Yy=wg).a+4v.a)
2 o) 2 )
Theorem 2:Prove that curl (¢ @ )= (grad ¢)xa +¢ curl &

0
Proof : curl (0 @)=Vx(¢a)=Dix _ (¢2)

= ix(® a+¢a—g_)\= (i_ﬁ\xaqt (-anqa\(b
2l ad ZUad T2 4
= Voxa +(Vxa )d=(grad ¢)xa +¢ curl a
Theorem 3: Prove that grad (a .b )= (b.V)a +(a.V)b +b xcurl a + axcurlb
Proof: Consider

axcurl (b) - ax(Vx b) —ax _[. &b)

_ <[ « ob
Yl ®hi-@n®i-Fifa ®l-{aXi 2lb
L U R U

([ ob)
caxcurlb=) |]\_at—875|—(a.v)b (1)
Similarly, b xcurlb = [(Qaa_\_ b,

U o
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(1) +(2) gives
(b)) ( oa)
axcurlb +bxcurla=) il a. —j—(a A IES k J (b.V)a

| _ 4( ob ag\l
= axecurtr =b=curla +(@v)b +(b.V)a =) i \a. ot b. ox)
0
-V (&)
ZI OX

=V(a.b)=grad (a.b)

Theorem 4: Prove that dlvéxﬁ)—ﬁcurlé acurlb
Proof: di b) =) i b)=>il a2 b ab\|
roo <3
iv (axb) T (a,y, ) i 6_X +a><6_)
(aa_a_ . N ab\ ( oa) [ ob)

:Zf.lgx-ﬁ%g{ax 8XJ = ZLI X b J.B_—ZU X o J.a

= (Vxa).b —(Vxb).a=b.curl a —a.curlb

Theorem 5 :Prove that curl (a xb) =a divb — bdiva + (b.V)a _|(a V)b
.0 . |loa 8b_
Proof :curl(axh)=) i x = (axh)= ) i x]7=xh +a
@xb) Z_ ax( ) Z_ L&x 8XJ|

Zl_>_<( da xbw+2i x(a_xﬂw

\ { \ )
([ za (. éa) (( Nab) ab |
_ p)2_[j ey _ a
21 (I“)‘ai_'I—ax' F+Z%|—ax| (——) axF
| \ ) 8 ) J
a

Y2 -3 2y 2 a0 amb
C ) \ X) \
— (b.V)a —(V.a)b +(V.b)a —(a.V)b
= (V.b)a—(V.a)b + (b.V)a — (a.V)b
=a divb —bdiva + (b.V)a — (a.V)b
Theorem 6: Prove that curl grad ¢ = 0.

Proof: Let ¢ be any scalar point function. Then
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Q) ==
o
8)}

curl(gradd))—& N o2

o 2 2

ox oy oz
(&0 @) (P9 o) (&9 P9

:Itﬁ_az—ayj_]kaxaz 8zaxJ kaxay 8y8xJ

Note : Since Curl(grad¢) -0 , We have grad ¢ is always irrotational.

7. Prove that diveurl f =0

< <

Proof : Let f =f,i+f,]+ f.k
i g k
sourl F oy f 2|9 9 9
OX oy o
fy f, fs
(s _df \| { ofa afl\ Sl oy
=loy-az - & &y
\ ) \ ) \ )
i - of(of, of, ) o(ofs o) of(of, of
div curl £ =V.(Vx £) = ax(a;i—@é |—a¥(a§:@é N az(ai— @;D‘
\ vr— p— )
0%t o0*f & f &2f o%f o%f

3 2 S, i | 2 1_

T oxoy oxoz Oyox  oyor  ozox  ozdy

Note : Since div(curl f_) =0, we have curl f is always solenoidal.

Theorem 8: Iff and g are two scalar point functions, prove that div(fvg)=fV2g+Vf. Vg

Sol: Let f and g be two scalar point functions. Then

Vg = 'ra_g+ ja_g+lta_g
OX oy 0z
_ 09 . _
Now  fvg=if —+if 99 5%

OX oy oz
( 09 )+ 8(f 8<ﬂ+ 8|(f 89\

)\)K)
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_¢[ 2%, &g +azg\‘+,/af ag , of .ag+af.ag)
e o7 o) \axax oy ooz
o (of of o)\ ag g ag)

=ftvg+i_ +j_ +k_ J|i ' k |
g k'ax”af 8ZTLI8X+18y+ azJ

= fV2g+Vf. Vg

Theorem 9: Prove that Vx(Vxa )=V(V.a)-V?a
. 0
Proof: Vx(Vxa) = N1 x = (yxg
> ?X( ) \
Now i x 0 (Vxa) =ix 0 | i xa§+j aé+k &' |

_éée——_——@xk OX oy 0z

[ a Pa &a )

IX\' +J oxoy kxaxazb
( aZa\ ([ a) [ &)

|><|\|>< ZIH \JX88 fH |K axaz|)

(aa,\| oa [ 8&\ (0% ) 4

\I @x_jl—@x_ﬂ. —|J+L > Jk [ii=L1ij=ik=0]
a(u.aa

oxdy )
=iofi.cay+] J+k 0(i.0a)-g —y(j. ca) s
—ax! — o - o' “ox ! o
k ) éy\ @’L) v v

Tox | o
. . 2 2 2 2
~-Z'X (Vxa)= VZL.%‘;‘—Zggﬂ(Vi)—(gg+aa 1% ]
"
SVX(VxT)=V(V.a)-Via
ie., curleurla = grad diva—Vv2a

SOLVED PROBLEMS
1: Prove that (Vf xVg)is solenoidal.

Sol: We know that div (& xb ) = b.curl a —a.curlb

Takea=Vf and b= Vg

Then div (VFx Vg) = Vg. curl (V) - Vf. curl (Vg):o["'
-.Vf xVg is solenoidal, curl (Vf) =0 = curl(vg) |
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2:Prove that (i) div{ (rxa)b} =-2(b.a) (ii) curl {(ra)xb} =bxawhere a and b are constant

vectors.
sol: (i)

div{(F xa)xb } =div[(F.b)a - (@.b)F]
=div(r.b)a - (a.b)r

=[(7.b )diva +agrad (b ) || (&b )divi +F.grad (ab )]
Wehavediv a = 0,divr =3,grad (a.b) =0
div{ (_r xg)x B} =0 +_a.grad (r_a_) —3(f;a_)
=ay, fx_(r.b) -3(ab)
-aYi % b-3(ab)
= ai(ib) - 3(ab)
_ab-3(ab) - -2(ab)
= -2(ba)
(i) curl {(Fx a)x 5} =curl [(EQ&—(&IQ r]
= curl (Ft;)z;— curl (gt;)r_
= (r.B)curIa_+ grad (r_Qx a
=0+ V(Eﬁ)x 5('.' curla = (D
—bxa Since grad (Fﬁ)ig
3:Provethat VV.- = r

Sol: We have VL{EYJ ?5“_\
7 2 &)
=sil } 2 we[ T mif hin )
| ) \ )
=lyii-1,..3 1_2
r r3 r r r
V(Y| Zi( 2(2)) oyl 2) X) -2y
L) ) T '
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4: Find (AXV)o, if A = yz2 i - 3x22 j +2xyz k and ¢ = xyz.

Sol: We have
T i k
AxV= |yz? -3xz2  2xyz
o o 2
OX oy 0z

5 1 To, , @ 110 o 0 vyl
il £ 63 @ud |- L ()= | o k| () (e
L ] L ]
=i (-6x2-2X2)- | (2yz-2y2)+ k (22+32%)= -8xz i -0 j +47%Kk
(AXV)d, = (-8xz i +422k )xyz = -8x2yz2 i +Axyz3 k

Objective questions

1. V(r)=

3. the greatest value of the directional derivative of the function f = x?yz? at (2,1,-1)is ...cc.cvve......
4. a unit normal vector to the surface x*>+y?+2z° = 26 at the point (2, 2 ,3)is..............

5. a unit normal vector to the surface z= x>+y? at (-1,-2,5) is

6 The vectors N, and N are along the normals to the two surfaces .Let 6 be the angle between

the surfaces. ThenCos 0=............

7. 1fthe vector f= fi+f, j+ fak, thendiv f =

8. A vector point function f is said to be solenoidal if div f =...........

9. if Tis the position vector of an point in space, then r"ris Irrotational then

curl(r"F)=.........
Multiple choice questions

L1t f= xy%i +2x2yz j—3yz2 K find curl f at the point (1,-1,1).
a -1 —2k. —-1-2k. —i-2k. —ij —2k.
b. c. d.
5 If f=(x*+y?+2>)" then find div grad f and determine n if div grad f= 0.

“a.n=0orn=%.b.n=0or n=%.c.n=00or n=%.d.n=00r n=%.
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. 3.:Finddiv F, where F =grad (x*+y*+z3-3xy2)

" a. 6(x+y+z) b. 6(x+y+2) c. 6(x+y+2) d. 6(x+y+2)
L4 (fxV).r=

a.o0 b.1 c2d.3

. 5. Find constants a,b and c if the vector f=

(2X + 3y + az)i + (bX + 2y +32) j + (2X + ¢y +32) k is Irrotational
a.a=2b=3,c=3  b.a=1,b=2,c=4 c.a=0,b=1,c=4 d.a=1,b=3,c=2

6.1f f = (x+3y)i +(y—22)]+(x+ pz)k issolenoidal, find P.

“ a.p=4 b.p=-2 c.p=3 d.p=-3

7.1 T = xy?i +2x%yzj —3yz%k finddiv f at(1,-1, 1).
a.6 b.7 c¢8d.9

. 8. Find the directional derivative of ¢ = x?yz+4xz* at (1,-2,-1) in the direction 2i-j-2k.
" a.37/3. B.47/3. C.27/3. D.17/3.

9.

“ If If @ is constantvector then prove thatgrad (@ .r)=a a is constantvector thengrad(a .r-

):

. a @ b.0 c.rd. 1

- 10.

: Find the values of a and b so that the surfaces ax?>-byz = (a+2)x and 4x?y+z*= 4 may intersect
orthogonally at the point (1, -1,2).
a.a-3.5b=1 b.a=2.5,b=1 c.a=1,b=1d.a=1,b=0
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UNIT-V

Vector Integration
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Line integral:- (i)J.F.d r is called Line integral of F alongc

Note : Work done by F along a curve c is IF-d r

c

PROBLEMS
1. If F (x*-27) i-6yz j+8xz2 k, evaluate [ F.drfrom the point (0,0,0) to the point (1,1,1)
along the Straight line from (0,0,0) to (1,0,0), (1,0,0) to (1,1,0) and (1,1,0) to (1,1,1).

Solution : Given F = (x2-27)i_ -6yzj+8xz2 k
Now r= xi+yj+zk = dr = dxi+dyj+ dzk

F.dr = (x2-27)dx — (6yz)dy +8xz2dz

(0 Along the straight line from O = (0,0,0) to A = (1,0,0)
Here y =0 =z and dy=dz=0. Also x changes from 0 to 1.
! My 1T 80

[ E dr= [ 027)dx=| —-27x| = —-2T=—
d[\ dr i |L3 ho 3 5

(i) Along the straight line from A = (1,0,0) to B = (1,1,0)
Here x =1, z=0 = dx=0, dz=0. y changes from 0 to 1.

1

AL i: dr= y_\[ (-6yz)dy=0

(i) Along the straight line from B = (1,1,0) to C = (1,1,1)

x=1=y _ dx=dy=0 and z changes from 0 to 1.
_ 1 1 (821t 8
j F.dr= j8xzzdz = j8xzzdz = __|=_
BC 2=0 2=0 | 3 | 3
- 88

() + i)+ i) = | F.dr=—

210 £ _(5xy-6x) i +(2y-4X) ], evaluate [F “dr along the curve C in xy-plane y=xfrom (1,1)
l

to (2,8).
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Solution : Given F =(5xy-6x%) i +(2y-4x) j,------- (1)
Along the curve y=x3, dy =3x? dx

F =(5x%-6x) i +(2x¥-4x) j, [Putting y=x in (1)]

dr= dxi+dyj=dxi +3x%dx ji
4 2 - 3 - F N 2 —|

F.dr= [(5x -6X )i +(2X -4x)j].|dei+3x dX j |

= (5x* — 6x?) dx+(2x3 — 4x)3x3dx
= (6x°+5x*-12x3 -6x%)dx
- 2
Hence L F.dr =J.(6x5 +5x* ~12x° - 6x%)dx
y=x 1
(X 3¢ ) . .
=[6._+5_-12._ -6, |=(x +x -3x -2x )
\ 6 5 4 4 ) 1
= 16(4+2-3-1) — (1+1-3-2) =32+3 = 35

3. Find the work done by the force F = zi+xj+ yk , when it moves a particle along the arc
of the curve r = cost i + sint j_-E kfromt=0tot=2n

Solution : Given force F = zi+ x j_;fl? and the arcis r =cost i +sint j-tk

i.e.,, X =cost, y=sint, z=-t

sdr=(-sint i +cost j - k)t
o F.dr= (-t i +cost j+sint k). (-sint i +cost j- k)dt = (tsint+cos?t—sin t)dt

i _ 2 ] h
Henceworkdone:J‘ Fdr_: J‘ (tsint+cos?t—sint) dt
y !

o 7 1+cos2t 2"
= [t(-cost)] , = [ (-sint)dt+ | dt - [ sint dt
0 0 0
2n l( Sln 2t\2n ( )27:
= —-2n —(cost)o + [ t+ |+ \cost 0
2 2

=-27n —(1—1)+£(27‘C)+(1—1):—2TC +7T =-T
2

Assignment
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1. Findj l;.dehere F_ = x%y? i7+yj7 and the curve y>=4x in the xy-plane from (0,0) to

(4,4).c

2. If J F .dr along the curve x=t?+1,y=2t?, z = t3 fromt =

t

F =3xyi-5z jT+10X k evaluate
ltot=2.

3. If F=yi +z_j_+x k, find the circulation of F round the curve ¢ where ¢ is the circle x?
+y? =1, z=0.

4. () 1f ¢ = X2yz® evaluatej(bd ¢ along the curve x=t, y =2t, z=3t fromt = 0 to t=1.

(i) If & = 2xy%2 + X2y, evaluatej(bd r Where c is the curve x=t, y=t?, z=t* fromt=0to
t=1.

5. (i) Find the work done by the force F = (x2 - yz)i7+ (y2 —2x) j+ (2% — xy) kin taking
particle from (1,1,1) to (3,-5,7).
(ii) Find the work done by the force F = (2y +3)i +(zx) j +(yz — x)k when it moves a

particle from the point (0,0,0) to (2,1,1) along the curve x = 2t%, y = t, z=t*

Surface integral: _[F.nds is called surface integral.
S

PROBLEMS

1 : Evaluate fF.ndS where F = zi+ Xj 3y’zk and S is the surface x? + y? = 16 included
in the first octant between z=0and z = 5.
Sol. The surface S is x? + y? = 16 included in the first octant between z = 0 and z = 5.

Let dp=x2+y*=16

_0p -0 _0d i i}
Th Vo=1—+]—+k—=2Xi+2
o ¢ OX J&y 0z Y]

unit normal H_v—d)_ X1yl (. x*+y* =16)
Vel © 4

Let R be the projection of S on yz-plane

Then andS— ”F ‘—y—‘ ................ *
n

Given F=zi+xj 3y%zk
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Tl
=
Il

| =

(Xz + xy)

and n.

X N

In yz-plane, x=0,y=4
In first octant, y varies from 0 to 4 and z varies from 0 to 5.

jE.ndS _ r js(xzzxy\’dydz

X

4

S y=0 z=0

4 5
= | Jy+2dzay
y=0 z=0
=90.
2:1fF=zi+xj 3y%zk, evaluate g[IE.HdSwhere S is the surface of the cube bounded
byx=0,x=a,y=0,y=a,z=0,z=a.
Sol. Given that S is the surface of the x =0, x=a,y=0,y=a,z=0,z=a, and F = zi +

Xj 3y’zk we need to evaluate J |; EdS,

Y 4

Q
P
0 A X
R
S
(i) For OABC
Eqgnis z =0 and dS = dxdy
n =—k
JF.ndS = —‘[ (yz) dxdy = 0
1 Xx=0 y=
(i) For PQRS

Egnis z=aand dS = dxdy
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n=k
[Finds =
Sy

x=0 y=0

(iii) For OCQR

Egnisx=0, and n =-i ds= dydz

S{F.ndS = _jo Z:[O 4xzdydz =0

(iv) For ABPS

—i, dS = dydz
ja4azdz)dy = 2a’
z=0

Egnis x=a, and n

Iy

Jﬁ@sz

(v) For OASR

Egnisy =0, and n —j, dS = dxdz
[F.nds = r [ y'dzdx=0
Ss y=0 20

(vi) For PBCQ

Egnisy=a, and ﬁ

—j, dS = dxdz
— ~ a a ) B
SjﬁF.ndS = y_fo Z_IO y?dzdx =0

From (i) — (vi) we get

4

Jﬁ.ﬁd5:0+% +0+ 23" +0 ad=
Se

YOLUME INTEGRALS

I'C T yady) ax="
2

3a*

3

Let V be the volume bounded by a surface r=f (u,v). Let F (r) be a vector point function

define over V. Divide V into m sub-regions of volumes 6V1,0V2,....0Vp

m -

Let Pi (r i) be a point indV, .Then form the sum Iy = Z F(r;)oV,. Let m —o0 in such a way

that OV, shrinks to a point,. The limit of I, if it exists, is called the volume integral of F (1)

in the region V is denoted by J F(r)dv orJ Fav.
\ \
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Cartesian form : Let IE ( )= F. i; F> i;r Fs kWhere F1, F2, F3 are functions of x,y,z. We know

that
dv = dx dy dz. The volume integral given by

[Fav=[[[(Ri+Fi+F K dxdydz= IHI F dxdydz + j [ [[ F, dxdydz +k [ ] Fy dxdydz

SOLVED EXAMPLES

A If F=2xzi -xj + vk evaluateffdv where ¥ is the region bounded by the
v

surfaces x=0,x=2, y=0, y=6,z=x>,z=4.

Solution : Given F = 2xzi —xj + y°k. .. The volume integral is

dev=m(2xzf _§+y R dedyde

V 2 6, 4 2 6 4 * 2 6 4

=7J0 jo J?xzdxafvdz —j'jo jo Lmdydm?jojo J.ﬂyzdxaydz
x=0 y=0 z=x x=0y=0z= x=0y=0z=x
2 6 2 6 2 6
-7 [ [uthaa-7 [ [ebasd [ [Fohad
x=0 y=0 x=0 y=0 x=0y=0

,j' '6[):(]6 x* ey - ,j ix(«;-xz)'my -/?zj }yz(x2—4)drdy
x=0y=0 x=0 y=0 x=0y=0
2 2 3\
I(l6x x) dx -J I(4x x)y)o J‘(x2—4)[y? dx
x=0 x=0, x=0 0

6)2 4\ 3
_f[Sx -—] (6)- ,{2): 'T] (6)—1?[4;-%} (2—;—1)
0 0 0

=1287 - 247 - 384k
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: m If F = (2x? - 3z)i —2xyj —4xk then evaluate (i) IV. F dv and (ii) jV x Fdv
v v

, Visthe closed region boundedbyx =0,y =0,z=0, 2x+2y+z=4

- OF - OF oF

Solution: (1) V- F=i- 'a—x‘+1 Ey~+z-—5\;=4x—2x=2x,
. 4 -2x
The limitsare: z=0toz =4—-2x-2y,y=0t0 > (ie)2—x and x= ()to (ie)2
2-x4-2x-2y
JV Fadv = j _[ IZxdxdydz j j(zx)(z)“ 22 ey
x=0y=0 z=0 x=0y=0
2 2—x 2 2-x
% | jzx(4 —2x-2y)dxdy = 4] [x—x* -maedy
x=0 y=0 x=0y=0
.2 2\2-r 2 . .
=4I(2xy-—x2y—-x'v—) dx=4J.[(21—x2)(2—x)——(2—x)2]dx
2 2
0 0 /]
2 § o3 7
8 8
=[@r ~ax? rend=| -4 | =3
12 2 . 3
i J k
y - 2 & 0| = .1 B
(i) VxF=| — e Y
X e m m| R
2xr -3z 2xy —4x
2 2-x
“[vxFav= ﬁju 2bydyds = [ [G-2AN Py
14 x=0 y=0
y
2 2-x _
- J’ I(f—Zyk)(4—2x—-2y)dxdy
x=0y=0
X
2-x
j [ {Tla-20-25)-F[4-20) 2y~ 4y ? Jlex oy
x=0y=0

2 2-x 2 P 2-x
J](4—2x)y—y2] dx—k I[(4—2x)y2—--—y——} dv
x=0 0 x=0 3 0
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2 5 —22 3
=J£(2rx) dxwkk(z—x) dx

O L a P
=,—-[c21x>} &{a_z,} 275
-3 3 —4 A 3

E ~

| EXERCISE :

(1} Evaluate IIJ(2x+ y)dv where V is the closed region bounded by the cylinder z=4_,2 and'
planes x=0, y=0, y=+2, and z=0. ' -

@) If $=45x1y evaluate J‘Hfbdv where V is the closed region bounded by the Plang
4

!

4x+2y+2z=8,y=0,z=0.

.(3) Evaluate J'F'dv when F = xi + yj + zk and ¥ is the region bounded by xzo,;vz(),y=6,z=4,z=le !
v

9 i
- T —

) 8_39 @128 (3) 247 +96j+-3—§5-1€ , |

\ T - o

Vector Integral Theorems
Introduction

In this chapter we discuss three important vector integral theorems: (i) Gauss
divergence theorem, (ii) Green’s theorem in plane and (iii) Stokes theorem. These theorems

deal with conversion of

0} ! F .n ds into a volume integral where S is a closed surface.

(ii) l F.dr into a double integral over a region in a plane when C is a closed

curve in the plane and.

(iii) 1 (Vx A).nds into a line integral around the boundary of an open two sided

surface.

I. GAUSS’S DIVERGENCE THEOREM
(Transformation between surface integral and volume integral)

Let S be a closed surface enclosing a volume V. If F is a continuously differentiable
vector point function, then

Jdidev:JF.n ds

When n is the outward drawn normal vector at any point of S.
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SOLVED PROBLEMS

1) Verify Gauss Divergence theorem for F = (x* — yz)T — 2x% ¥] + zk taken over the
surface of the cube bounded by the planes x = y = z = a and coordinate planes.
Sol: By Gauss Divergence theorem we have

E[E.Hols _ J divFdv

[EI v o o & a a @ _

RHS = J J J (3x° — 2x* + 1)dx dvdz = J J J1[x: +1)dxdydz= J J [la—a + x)c dy dz

o oo ooo oo g

H“_a3 +aldydz="[ a +a—||(y)adz :|(a3 +a)aadz :|(a3 +akaz)= @ 1ad ... (D)

SRR Uy A

Verification: We will calculate the value of jE.r;dS over the six faces of the cube.

(0 For S1 = PQAS; unit outward drawn normal 7 =1

x=a; ds=dy dz; 0<y<a, 0<z<a y

~Fn=x3-yz=a’-yzsincex=a =

.-.HE.ers _ f f (a>~ yz)dydz 2

z=0 y=0

I
e
—
o
II'.l]
|
ta |5,
(]
| I
Fi
|
[a=]
]
[ ]

- a~ .
=as-2 .(2)

7!
(i) For S = OCRB; unit outward drawn normal 7 = —1

x=0; ds=dy dz; 0<y<a, y<z<a
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(iii)

(iv)

V)

(vi)

Fan=—{(x—yz)=vzsincex=10

. £o= - &
_ 2
[ [£ras= [ [yeayaz= JH
& z=0y=0 z=p - =0
- il
as [ a- (3)
[ r— Tl T = | :
2 g z J
==

For Ss=RBQP; Z=a;ds = dxdy; 1 = k

0<x<a, 0<y<a

Fn=z=a sincez=ana

a a

.'.JJ‘En_dS: j Iadxdy:a3""(4)

y=0 x=0
For S4 = OASC; z = 0; t = —k, ds = dxdy;
0<x<a, 0<y<a

FAa=—z=0 sincez =0

J Fads=0..(5)

—

For Ss = PSCR; y = a; n =], ds = dzdx;

0<x<a, 0<z<a

F.n=-2x%y=—-2ax? sincev=a

L a @

J J F.fids = J J:;j—zaxf}dza‘x
=z x=0=z=0

a

J. (-2ax*z)®_, dx

x=0

_ _.jaz['f)“_—zaf -
T T

For Se = OBQA; y =0; n = —J, ds = dzdx;

0<x<a, O<y<a

Fn=2x*v=0sincev=20

J F.iidS =0

L'_‘—-\.

g
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= 5 5 % s = 7
a* ﬂ_+ C z E+ﬂ
=g ————+4 53 -
4 4
a’ i} ) P .
- ?.H;_.a :J J J V.F dvusing (1)

Hence Gauss Divergence theorem i5 verified

2.Compute [(ax® + by + cz*)dS over the surface of the sphere x?+y?+z% = 1

Sol: By divergence theorem jg_ﬁdg =J, V.F dv

GivenF.i=ax>+by? +cz? letgp=x*+y? +27 -1
- Normal vector 7 to the surface ¢ is
\L¢:|('LQ 424 @ \(x2 + Y2+ 2 1) = 2(xi+ y o+ 2K)
ox ~ oy oy
\ )
- _2(x_i+y_j+zE)

.. Unit normalvector =n
2«/ X2+ y? + 72

© En=F(Xi+yj+zk) = (@2 +by? +c22) = (axi +by j +czk).(xi +y j + k)

=xi+yj+zk Since x2+y? +22=1

ie., F = axi +by_j +czk LV R
Hence by Gauss Divergence theorem,
" . i . i 4w
J (ax=+ by~ +cz")dS = J (a+b+cldv=(at+b+c)V= ?(a— b+c)
:
47

[Sfﬂce V= is the volume of the sphere of unit radius

3)By transforming into triple integral, evaluate [ [ *® dy dz + x*y dz dx + x*dx dy
where S is the closed surface consisting of the cylinder x>+y? = a2 and the circular discs z= 0,
z=h.
Sol: Here F, = x*,F, =x*yv,F, =x"zand F =FRi1+Fj+ Rk

oF,; _ 3. oF, _ 2. oF; _ 2

OX oy oz
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ox oy oz

VFE =3x? + x> + x? =5x

By Gauss Divergence theorem,

[ [ Fayoz +F dzc.+ F axy = [1] |( LAWY \’dxdydz

LOX GY—G7
\ )

II(Xdedz +x? ydzdx + x2zdxdy = ”'f5x2dxdydz

=5j .[_Ib x2dxdydz
-a y:,\/ﬁz:o
aaz-x2 b

zzoj I I x2dxdydz [Integrand is even function]
0 0 z=0

—

——
ava -x a Vaf—=%

=20 J J % (z)Edxdy = 20b J v dxdy
o o

|:.

x=0
= 20b J 1.3(},:]:&.12‘—:‘ dx = Z-GbJ 1.2“..:-":12 — :.L.: d
x=0 o
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=20b | a’sin? 0/ a? —a?sin?8 (acosfdB)

‘T”“———-.n|;_1

T
[Put x = asin® == dx =acos@d® when X=a=6 =_2 and x=0=0 =0]

-

= 20a*b IIESiﬂ: 8 cos®8df = 5a*b j;[? sin @ cos#)* df =5a°b fgi_cfs;ﬂ df

Ty &

5a*h gin 48
o -

5a*h [ﬂ'] 5 .
= —| = —ma®b
2 4

. 2

4: Applying Gauss divergence theorem, Prove that [ 7 .7idS = 3V or [T .ds = 3V
Sol: Let 7 = xT + ¥J + zk we know that div 7 = 3

By Gauss divergence theorem, I E.HdS 3 I divEdv

Take F=7 == J F.ds = J 3 dlV = 3V.Hence the result

5

5: Show that J (axT + byJ + czk).ndS = % (a= b —c), where S is the surface of the
sphere x?+y?+z2=1.

Sol: Take F = axT+ bvj+ czk
oF, , oF, oF,

ox oy oz

divF = =a+b+c

By Gauss divergence theorem,

Jo Fords=[ V.Fav=(a+b+c) [, dV =(a+b+c)V

4 W8
We have V = E:ﬁ"“ for the sphere.Herer = 1

- [Fnds = (a+b+)
3

S

6: Using Divergence theorem, evaluate
I J;, (xdy dz+vdezdx +zdxdy) where §X+y?+7°=a°

Sol: We have by Gauss divergence theorem, I E_Hds = J divEdv

L.H.S can be written as [(F, dydz + F,dzdx + Fydxdy) in Cartesian form

Comparing with the given expression, we have F1=x, Fo=y, Fs=z
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oF, , OF, _oF,

Then divF = =3

8x 8y oz

- divFdy = [aav=3v
Here V is the volume of the sphere with radius a.
=V o= 4_Tca3

3
Hence | [(x dv dz + vy dz dx + z dx dy) = 4ma?
7: Apply divergence theorem to evaluate ”(x +2)dydz + (y + 2)dzdx + (x + y)dxdy S is the
surface of the sphere x?+y?+z°=4

Sol: Given [ (x + z)dydz + (y + z)dzdx + (x+ y)dxdy

Here F1 = x+z, F> = y+z, F3= x+y

P19 % gand O 9% O _1i0-2
OX oy oz ox 8y 0z
By Gauss Divergence theorem,
F dydz + F dzdx+ F dxd jjj(aF1+aF2+aF3\|dxdydz

_”1y2+22X+3xy_ |8_XQLQ

; vl )
=J J J 2dxdvdz = J du = 21
=2 [ 7(2)° ] == [for the sphere,radius = 2]

8: BEvaluate . F.mds, if F = xyT+ 2z°J + 2yzk over the tetrahedron bounded by x=0, y=0,
z=0 and the plane x+y+z=1.

Sol: Given F = xyi+ z°J + 2yzk, then div. F = y+2y = 3y

1 1-x1-x-y

j F.nds = jdldev— J T ] syduayaz
x=0 y=0 z=0
‘{ 1T.r 1 1T.r
= J J _u'[:]é__""_:'-dxd_v =3 J J v(1l—x—y)dxdy
x2=0y=0 x2=0y=0
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_, - i_i_ii_xﬂr._giEl_xj:_xEl_x):_(l_ij o
N _J 2 2 3 T J 2 2 3 g
! 43 — X3 ! — )3 _ _x;.i
:EH(:L—:L:I (-9 .:{:L-=3JE1 )dl:i[M 1
2 3 /6 6 4« | s

9: Use divergence theorem to evaluate J‘ J‘ EdS where F =x3i+y3j+2% and S is the surface of

the sphere x?+y?+z% = r?

Sol: We have
TE 20+ L+ L@ =3y + )
T OX oy 0z

~By divergence theorem,

—
al

Fdv = [[, [V.Fdv :IIIB(XZ +y2 + 72)dxdydz

@ T

=3 J J J r2(+? sin 8 dr d6 d )

TE

r=08=0¢=0
[Changing into spherical polar coordinates x = rsinfcos¢,y =rsinfsing,z = rcosf]
JJF_.Q’E=3 J J'r;'sinﬁ' J dg |dr df
s »=08=0 $=0
a n . a 4|_n : _|
:3_[ j r*sind (2m —0)drd6 = 6n I r |Ism6d6 |dr
r=00=0 r=0 0 J
= 6m J r*(—cos8)] dr = —E;TJ r*(cosw — cos0) dr
r=0 o]
T r*]*  12na®
=12x J ridr = lEH[— =
5 5
o o

10: Use divergence theorem to evaluate [ [, F.ds where F = 4xi — 2y*j+z°kand Sis
the surface bounded by the region x>+y?=4, z=0 and z=3.
Sol: We have

_ _ 0 0 0
diVE = VE = — @)+ __(-2y°)+ _(*)=4-4y+2z
OX oy oz

Bv divergence theorm,
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e
e —

|

B,

Ly

Il

‘-\___\-J
2 —
‘-\___\-J

—

N

=,

—

I

I

|
Jt
(48]

= ] [(4—4y)z+ 2] dx dy

= J [12(1—y) + 9] dx dv

[ e ]
_ j|| 21x 2 j dy —12(0) ||dx
2 0 J

[Since the integrans in forst integral is even and in 2" integral it is on add function]

=42 Jﬁ (W)Y dx

2 2
=42j\/4—x2dx=42x2j Va— x2 dx
-2 0

x / — 4 _1.)- &
=54 [— 4 —x-+—sin —]
2 2 o
T
= 54 [G_E'E_G] = B4m

11: Verify divergence theorem for F = x*i + ¥*j + 2" k over the surface S of the solid cut

off by the plane x+y+z=a in the first octant.

Sol; By Gauss theorem, IE.r_ldS :jdivEdv

Letgp=x+ v+ z—a bethe given plane then

115




o 00 00,

OX oy 0z

. [ .

- gradd Zlax i+J+K

grad ¢ _I—I—E
lgrad ¢l 3
Let R be the projection of S on xy-plane

Unit normal =

Then the equation of the given plane will be x+y=a = y=a-x
Also when y=0, x=a

(esac _ [ E.ndxdy
..'[F.ndS—'['l[ ‘HR‘

o c
- - -

= chc f;_x[b.‘: + 2y? = 2ax + 2xy — 2ay + a*]dx dv
= [r il o

dx

- 2y° = . ,
= J 2x°y + 3 T xy* —2axy— ay® +a‘y

x=0 ¢
a

= J [2x%(a—x) + %[a —x)P¥+xla—x) - 2axla—x)—ala—x)*+ a*(a —x)dx

a5 2 ) a

I F.ndS = J\ — _x*+3ax* —2a’x+ _a® |dx=__, onsimplification...(1)
S L 3 3 ) 4

Given F =x2i+y2 |+ 22k

~divF= ;<X2)+3(y2)+3(22) =2(X+Yy+2)
X

oy 0z
a a-x a—x-y
Now [[[ divF.dv =2 Xj_o on jo (x+ y + 2)dxdydz
=2 ‘ J l:[x +v) —:2—: o dx dv
*=oy=0 0
= 2 J J (a—x—1vy) [I +y —H_;—_K dx dy

J (a—x—v)la+ x+ v]dx dv

116




= J J [a® — (x + )] dy dx = J J (a® —x% — v? = 2xv)dx dv
o_o0 20
— [ﬂ:_‘-' — 1.2}. — L — 1.},2] E—.r dx

(=]

[ird

= J (a—x)(2a® — x? —ax)dx =7 (2)

|:.
Hence from (1) and (2), the Gauss Divergence theorem is verified.

12: Verify divergence theorem for 2x2yi -y? j +4xz2 k taken over the region of first octant of

the cylinder y?+z?=9 and x=2.

(or) Evaluate jj F.ndS, where I;:szyif-y2 j +4xz2K and S is the closed surface of the region
in the first octant bounded by the cylinder y?+z? = 9 and the planes x=0, x=2, y=0, z=0

Sol: Let F =2x%yi-y? j +4xz%k

V. F= i(2x2)+3(—y2)+3(4x22) =4xy — 2y +8xz
o OX oy 0z

f

E D

s

A
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= J_‘ [l—21‘)$ + 4x (‘h —;)3 dx
0 2 . ¢
- 5 2
- J{E[l—zxj[{)—z?]—41‘[2?—9]}dx= J[—lS[l—Exj—?Ex]dx

2

2
[—18(X —x?)+72 X?] =-18(2—4)+36(4) =36+144 =180...(1)
0

Now we sall calculate J F.71 ds for all the five faces.

k)

Where S; is the face OAB, S; is the face CED, S3 is the face OBDE, S; is the face OACE and
Ss is the curved surface ABDC.

(i) On S, X =0,_n =—i .F.n=0 Hence ! Er;ds

1

(ii) OnSZ:x=2,n_=i.'.F_.n_:8y

3 (yz\ﬂ

N N
- | F.ndS = 8ydydz =|8| - dz
£ j Jl j (%)

0
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3 -
a
-3

—4 J'(g— zdz =4 [:9: —?)E =4(27-9) =72

(i) Ong .y—0n=-j. “F.n=0 Hence f F.ndS

(ivJOnS,:z=07a=—k. F.A=0. Hence J F.ads =
Sa
22 = 2.2y 2yj+2zk  yj+zk  yj+zk
(V)On Ss:y +2 zg,n:M: _ 4
‘V(yz + 22)‘ \/4y2 +422  NAx9 3

A oA __ 7y
Fn=—  and nk=—=29—y?
3 3 3
Hence fs_ F.nds = erfR F.n E:_; Where R is the projection of 5; on xy — plane.
[ 4xzi—yd o B k _ufit
= J J —Hdl d_‘r': J J [41.(9_},-)_}& [9_},_j ::|d’_.|‘, dx
R 1.';..9 -y =0 v=0

r i .

= J 72x dx — 18 J dx = ?2[?) —18(x); = 144 — 36 = 108
o o ~ o

Thus [, F.Ads=0+72+0+0+108=180... ... (2)

Hence the Divergence theorem is verified from the equality of (1) and (2).

13: Use Divergence theorem to evaluate ”(xi + Y 22 k).n_ds. Where S is the surface

bounded by the cone x>+y?=z2 in the plane z = 4.

Sol: Given [ [{xT+ vj+ z*k).fi.ds Where S is the surface bounded by the cone x?+y?=z?
in the plane z = 4.

let F = xT+vj+z°k

Bv Gauss Divergence theorem,we have

J1 J‘[:xf—_vj— ::E}.ﬁ. ds = J J J V.F dv

Now V.F = 7 (x)+ i(y) 9 (22) =1+1+22=2(1+2)
OX oy 0z
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On the cone, x* + y> = 72and z=4 = x® +y?> =16

Thelimitsarez=0tod,v=o0to16—x? ,x=0to 4
s Tvieman 2
JJ JT?.F@I::: J J Jz[l—:)dxd_va’:
> -
ST .
=2 J J {[:]E—lil Ia’l dy
0

ke IR
_2 [4+8]dxdy = 2x12 [y] " dx

0 0

=24 J V16 — x%dx = 24

|:.

\/16 — 16 sin® 6 4 cosBdf

ey ©

T
[ putx = 4sin® = dx =4cos0dO. Also x=0=0 =0 and X=4=0 2_2]

n
2

5'” 0 cos0dd =96x 4J; cos’ 6do

T
2

.-.mv.F_dv = 96x 4[4

0

JJJF.F = J /1 — sin ECGEE‘dE—?EEﬂLJCGEZE dg
o o
1+ cos28 {11 cos28

=96X’¢1-J dE—?EX-’-I-J[—— > ]-:1'!9

0 0

1 lsinEBf_L
= 384 [—5’—— = 947

2 2 2,

14: Use Gauss Divergence theorem to evaluate [ [ (y2z°T + zx*J+ 2z°k).ds, whereS
is the closed surface bounded by the xy-plane and the upper half of the sphere
X2+y2+72=3?2

above this plane.

Sol: Divergence theorem states that

J!Fﬂs=[![?ﬁdr
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_ 0 0 P
Here V.E = — (Y2)+ _(@®)+ _(22%) =4z
OX oy 0z

“; E.ds = J‘U4zdxdydz

Introducing spherical polar coordinates x = rsin® cos, y = r sin6 sin¢,

z =rcosO then dxdydz = r2drd0d¢

a 7w 2n
j j F.ds =4 j j \[ (r cos0)(r? sinddrdode)
s r=00=0¢=
=4 J ¥ 5inf cos @ J dep | dr dF
r=08=0 F=10

i T

4, J J r¥sinfcosf (2w — 0)dr df

r=0E8=0
: _ : - . cos 264"
= 4 J’r"‘ U gin 28 df| dr = 41 J’r‘"(— J dr
W,
r=0 0 r=0

=(—2m) Jrcﬂ ri1—1)dr=20

15: Verify Gauss divergence theorem for F = x*T + ¥*J + z*k taken over the cube bounded
by

x=0,x=a,y=0,y=a,z=0,z=a.

Sol: We have F = x*T = vij+ z°k

VE= 3 () + i(y"') + 3 (%) =3x% +3y? +322
OX oy 0z

J. J J V.Fdv = J J J,ES;L_:_S}.:_S__:){{X dy dz
=3 J J J~(l_:_}.:___:)dxd},d:

=0 y=0x=0

a e]
[ e
i 4

_ J J THat+ :fx)c dy dz

z=0y=0 = g
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==0y=0
s /3 3 a
a v -
=3 J(—v—a'——ﬂ:'v dz
3 3 ;

To evaluate the surface integral divide the closed surface S of the cube into 6 parts.

i.e., Si:Theface DEFA ;Ss:The face OBDC i
S, : The face AGCO ; Ss: The face GCDE c s
Ss: The face AGEF  : Se: The face AFBO R i
J J F.ads = J J F.ads + J J F.fids + -+ J J F.ads= B .
5 5, 5 e " W

On S,,we haven =1, x

ﬁ F.nds = j: ji (a3i+ i+ zsk_)._idydz

[}

z=0 y=0

J J F.nds = J J [:asf—}'sj—:gﬁ}.fd}' dz
5, z=0 =0
= J J aldy dz = L‘IEJ (v)§ dz

=0 ¥=0 o
= a*(z)§ =a®
OnS,wehaven=—-Lx =10
JIF,nds: J J (y3 j+ z3k).(—i)dydz -0
2 z=0 y=0

OnS;,wehaven=J,yv=a

g[.[ En_dS - z;'-o x'='-0 (X35+a3}+ ZSE).]dXdZ =ad Z!O X;[O dxdz = a3.([adz -3¢ (Z)Z

:a5

122




OnS,wehaven=—y =10

J J F.7ids = J J [:133—:“"3{} (—fldxdz= 0
s, 2=0x=0
OnS. wehaveni=k,z =a
J JF.’E-:{5= J J (3T + 37+ a*k) .k dx dy
5 =0x=0
e z

= J J aldx dv = a® J (x)8dy = a*(y)3 = a®

¥=0x=0 )
On S we haven = —kz=0
J J F.nds = J J (x37+ ¥%7). [:—E}a’x dv= 0
5, y=0x=0

ThusJ JF.’E{I5= a* +0+a*"+04+a”+0=3a"
5

Hence J JF_.ﬁn’S = J J V.F dv

) §
.. The Gauss divergence theorem is verified.

Assignment
1. Evaluate [ xdv dz — v dz dx — zdxdy over P+ +z=]

2. Compute [[(a’x® + by + c227)7 d5 over the ellipsoid ax? +by? +cz? =1

7L

(Hint: Volume of the ellipsoid , V=—=—)

3vabc

3. Find [_F. ndS where F =2 x*T— ¥%j+ 4xzk and S is the region in the first octant bounded

by ¥* + z7=9 and x=0,x=2.

4.Find [ (4.xi — 2y%j +z7k).7dS Where S Is the region bounded by x* + ¥* =4, z=0 and
z=3.

5. Verify divergence theorem for F=6zi + (2x+y) j -xk , taken over the region bounded by the
surface of the cylinder x* + ¥~ =9 included in z=0, z=8, x=0 and y=0. [JNTU 2007 S(Set

No.2)]
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Il. GREEN’S THEOREM IN A PL ANE
(Transformation Between Line Integral and Surface Integral ) [JNTU 2001S].
If S is Closed region in xy plane bounded by a simple closed curve C and if M and N are

continuous functions of x and y having continuous derivatives in R, then

\
[ﬁde+Ndy U(@N 6'\3 )|dxdy.

Where C is traversed in the positive(anti clock-wise) direction

y=d F
A
A
Y |
X=a ZL
O
SOLVED PROBLEMS

Verify Green’s theorem in plane for $(3x — 8y~ )dx + (4v — éxv)dy where C is the
region bounded by y=+x and y=x" .
Solution: Let M=3x--8v" and N=4y-6xy. Then

M _ 16y, 2 = gy
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We have by Green’s theorem,

)\
[ﬁMdXJrNdy WN al\s )|dxdy.

Now H| (N 8M ]dxdy = ”(16y—6y)dxdy

-1ojjydxdy 1oj j ydydx = 1oj|y \| dx
x=0 y=x2 x=0 X2
: 1 .
=5 [(x—x9)dr=5(2-Z) =5(t-1) =2
(D
Verification:

We can write the line integral along c
=[line integral along y=x(from O to A) + [line integral along »*=x(from A to 0)]
=I,+1(say)

Now fizj;:.;.{[El': —8(x*) ]dx + [4x7 — 6x(x*)] 2dxc] [ y=xa®= 21‘]

LX
_f1(31" +8x% - 20x¥)dx = —1
And 2—0 3x2—8x)dx+4 —6x32)l dx-|:0(3x —llx+2)dx=

I|L W

R P R VoL

From(1) and (2), we have

5
o5 Il 2
”(aN oM )

[ﬁde+ Ndy = oy )|dxdy.

Hence the verification of the Green’s theorem.

Evaluate by Green’s theorem f.; (v —sin x)dx + cosx dyv where C is the triangle
enclosed by the lines y=0, x=7, my = 2x.
Solution : Let M=y-sinx and N = cesx Then

am_ aN_ .
—E_':._—l and —_=-sinx
foN oM

-.By Green’s theorem ”
j” Mdx + Ndy = N )|dxdy.

x=mn/2
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= J.( y —sin X)dx + cos xdy = ﬂ(—l—sin X)dxdy

=" ; f {1+ sinx) dxdy

&=

=- [ (sinx + D] dx

—__—ﬂ cm: x(sinx + 1)dx

.
_[x cosx+x]0—.|'l(—cosx+x)dx
0

Zi[x[— cosx+ x) +sinx — AT]
T = (1}

T’[—xcosx—i—‘—sinx] =i[i—l]=—(i—:]
L - |:

Evaluate by Green’s theorem for 95': (x? — coshv)dx + (v + sin x)dv where C is the
rectangle with vertices (0,0). (, 0), (7, 1), (0,1).

Solution; Let M=x* — coshv ,N = v + sinx

M _ T _

S sinh y and . COSX
By Green’s theorem, oN oM )

[ﬁde+ Ndy = ”( |dxdy.
oy ) y
0, 1) (n, 1)
= Q] (x? —cosh y)dx + (y +sin x)dy = “(cos X +sinh y)dxdy
= 95': (x* — coshy)dx + (v +sinx)dy = fff[cosx + sinh of (m 0)

:J:_:r:c_ j;'zc_(cos x + sinh v)dydx = J:_:c (vcosx + coshy)]dx

= j (cos x + coshl-1)dx
x=0

=(cosh1 — 1)

A Vector field is given by F = (sin y)i_+ X(1+ cos y)]
Evaluate the line integral over the circular path x*+¥~ = a*, z=0
(i) Directly (ii) By using Green’s theorem

Solution : (i) Using the line integral
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9?; F.dr = 95': Fidx + F,dy = 95:: sin yvdx + x(1 + cosv)dy
= msin ydx + xcos ydy + xdy = [ﬂ d(xsiny) + xdy

Given Circle is x*+v* = a”. Take x=a cos# and y=a sin @ so that dx=-a sin & 48 and
dy=acosfdfand & =0 — 2m

~ $F.dr = J’E_:xd[a cos @ sin(a sind)] —J’E_:'Ta[ cosf)a cosf df

=[a cosfsin(a sin§)]7* + 4a’ J:; cos?0de
1mn
=0+4a’.— — =xa?
2 2
(i) Using Green’s theorem
Let M=sin v and N=x(1 + cosy]. Then

aM___ on_o,
35 —c05) and ax_[l Cos V)

By Green’s theorem,

ON M)
@Mdm Ndy = {f{ ox y )|dxdy

Q]sin ydx + x(1+cos y)dy = ﬂ(—cos y +1+ cos y)dxdy == ” dxdy

= ’H dA= A=ra? (- area of circle=ma?)

We observe that the values obtained in (i) and (ii) are same to that Green’s theorem is

verified.

Show that area bounded by a simple closed curve C is given by 1<r5 xdy — vdx and hence
find the area of
. . . . X2 2
() The ellipse x=acos0, y = bsind (i.e) _+y_ _1
a’ pr
(ii)The Circle x=acosf,y = asinf (i.e)x* +y? = a’
N oM )

Solution: We have by Green’s theorem H _aM
 Mdx+ Ndy = \ OX o )|dxdy
C R

Here M=-y and N=x so that ? =-1 t‘ma’% =1

mxdy —ydx = Zidxdy =2A where A is the area of the surface.
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%J’ xdy—yvdx = A4
(i) For the ellipse x=aces & and y=bsinf and 8 = 0 = 2x
~ Area, -’;1=}95 xdy — vdx = }J’E:F [(a cos@)(bcosf) — (b sinf (—a sind))]d @

=Lab _J’E_:'T[cos:E + sin?@) de =2 ab(8)3™ = 22 (2w —0) = mab

(i) Put a=b to get area of the circle A=ma*

6: Verify Green’s theorem for fc[[l'_u' + v?)dx + x*dy], where C is bounded by y=x and
y=x2
Solution:By Green’s theorem, we have

j(aN oM

deX—l— Ndy = J ] )|dxdy

Here M=xy +v~ and N=zx~

c2

The line y=x and the parabola y=x* intersect at O(0,0) and A(1,1)

NOw [ Mdx + Ndly = [ Mdx + Ndy + [ Mdx+ Ndy...... (1) )

Along C; (i.e.y =x"), the line integral is

jde+ Ndy = j[x )+ x*]dx + x?d (x? J(x +x* + 2x%)dx j(3x +xM)dx

4 =1, 1 13
=(3.=+%) =+z== )

/5 20

Along €, (i.e.y = x) from (1,1) to (0,0],the line integral is
[ Mdx + Ndy = [ (xx+x2)dx -+ xedx [ @y = dx]

L5y 0 .
= 3xide=3 [[xlde=3(%) =(=%I=01=1 ...(3)
E: '\\.-\:I.l'i

From (1), (2) and (3), we have
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_Jrc ."lffr'.'fl' T _-"u'ﬂr}' = % —1 = %
(4
Now
m(aN oM , .
— ixdy = [[(2x - x - 2y)dxdy
R 8y R
TG = 2 — (57 — )l = [ - 20
B 4y 1
G+ -i-%
oS 2
..(5) ) \
F Mdx + Nd ON aM
rom@)mcf(E),H@ ;m«;e% Y= HI dxdy

Hence the verification of the Green’s theorem.

Using Green’s theorem evaluate [ (2xy — x?)dx — (x* + y*)dy, Where “C” is the

closed curve of the region bounded by y=x2 and = = x

Solution:

,,,,,, —— - _— ,_._3

/

The two parabolas ¥ = x and ¥ = x7 are mtersectmg at 0(0,0).and P(1,1)
Here M=2xy-x~ and N=x* +y2

&;‘I!_ 2 B’ E: 2
ey 2x and —— = 2x
E.‘
Hence——— =2x—2x=10

dx By
By Green’s theorem J'MdX+ Ndy = ”|(8N oM Wd dy

c R
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1K
ie., J'(ny —x2)dx + (X2 + y?)dy = _[ _[ (0)dxdy =0

x=0 y:)(2
E Verify Green’s theorem for [ [(3x* — 8y?)dx + (4y — 6xy)dy] where c is the region
bounded by x=0, y=0 and x+y=1.
Solution : By Green’s theorem, we have

o+ Ny = [ [ 2N M
ox |dxdy
¢ =\ oy )
Here M=3x" — 8y~ and N=4y-6xy
y 4
8 LO.D
|
x=0
0 —> X
oN
oM =-16y and — =6y
oy OX

Now [ Mdx + Ndy = J Mdx + Ndy + 1 Mdx + Ndy + E[ Mdx + Ndy...(1)
c A B C
AlongOA,y=0 «~dv =10

1 . L5y 1
IGA Mdx + Ndy = jc- 3x-dx Z(AT] =1
N

Along AB, x+y=1 . dv = —dx and x=1-y and y varies from 0 to 1.

1

JB Mdx + Ndy = 0[[3(y—1)2 ~8y?](~dy) +[4y +6y(y ~1)]dy

:fc_i (—5v? —6v + 3)(—dv)+ (6v? — 2v)dy

g o2 1

:Jf,:[ll_‘r': +4y —3)dy = (11%_ 4L _ 3_1',]
. & 2 Ao
=¥ +2—-3=28

o o

Along BO, x=0 .. dx =0 and limits of yare from1to 0

o O

[, Mdx+ Ndy = [ 4ydy = (4Z) = (29} = -2
SEv2

-
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from (1), we have [ Mdx+ Ndy=1+-—2=

(ON M) .
Now ”| ﬁx- Wdedy: j .r(—6y+16y)dxdy

x=0 y=0

r.-:|r

2z 1—x

=10 jj:c- [Jd:_l; _vd_v] dx =10 J:;' (T] dx

=

_5f (1—x)*dx —5['1: ]:

:5[(1—1) —E:L—'DII =2

(N oM )
From (2) and (3), we have IMdX+ Ndy = ” xd
X
oy ) y

c R

Hence the verification of the Green’s Theorem.

a Apply Green’s theorem to evaluate 95':(21': —vdx + (x*+ v dy,where cis

-

the boundary of the area enclosed by the x-axis and upper half of the circle x* + ¥* = a”

Solution ; Let M=2x? — v* and N=x* + ¥ Then

r = —2vy and e— = 2x

X

n.-|';'u

i
\N —» X

@) a
Figure
| J M+ Ny = HWN oM |
. By Green'sTheorem,
c RK 6y JUXdy

M@ - y2)dx + ¢ + y?)dy] = u(ZX +2y)dxdy
=2 L[(x +Yy)dy
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:2J': fc"_r?(ccrs 8 +sin8).rd fdr

[Changing to polar coordinates (r,&], r varies from 0 to a and 8 varies from 0 to ]

a T

Eﬂ[(zx2 — y2)dx + (x* + y?)dy] = 2_|.r2dr_|'(cose +15in6 )do
C 0 0

:2.':?3[1—1]:'—

Find the area of the Folium of Descartes x% + v® = 3axv(a = 0)using Green's
Theorem.
Solution: from Green’s theorem, we have

[ Pdx + Qdy =[], (—— —'Iaxm

By Green’s theorem, Area = = m(Xdy — ydx)
2

Considering the loop of folium Descartes(a>0)

Lot 80 st [df 3atﬂdt . (3at2ﬂ
e Y T ™ X_|dt‘1k iy |)|J B y_‘dt‘lki ¥ )J
The point of intersection of the loop is f’;,f’;]:t =il
\ )

Along OA, t varies from 0 to1.
£ (395 ] e — (25 [ (225 )]

—qS(:Ldu—ud;L = f ( ][
|[ 3at r3at(2 t3)—| 3at2r3a(1 2t3)—|ﬂ

e ey |
,[L|1+te| W| (1+t3)

L
J
_5a° Mz—e) (1—2" - WE S S
j [ t%)E {1+2%)8 ]dr 2w E-Tdr
_ 9%’ ¢ P+t g 22 2 12 (1+t3)Olt
B ety I S Rt ea o
0 0

:Eﬂi ,:1 o= at [Put 1+t =x = 3t7 dt = dx

L.L.:x=1, U.L..x=2]
9a°2t> dx 9a?°1 3a®

——— — =—— [— 4v _ —SQ. units(a>0).
=7 ez T =g

: Verify Green’s theorem in the plane for fc[x: —xvdx + (v — 2xv)dy

132




Where C is square with vertices (0,0), (2,0), (2,2), (0,2).

Solution: The Ca}esmn form of Green’s theorem in the plane is

N oM )
Ide + Ndy = ” o dxdy
‘ R )

Here M=x* — xv® and N=v* — 2xy

l.':'."-'.r 2 N
il 3xv-and F -2y

Y4 y:;z
c -

0.2) 822

‘\

x=0 vy 4 x>

o P
(2~0)

Evaluation of [ (Mdx + Ndy)

To Evaluate [_(x* — xy*) dx + (¥? — 2xy)dy, we shall take C in four different segments
viz (i) along OA(y=0) (ii) along AB(x=2) (iii) along BC(y=2) (iv) along CO(x=0).
(i) Along OA(y=0)

-

f{(l‘ —xy¥)dx + (v* — 2xy)dy = _J(Zlﬂrl (] ==
Q.fl:, a3
()
(ii) Along AB(x=2)

_J:_,(xg —xyvdx + (v* — 2xy)dy = fc: (v2—a3)dy [*x=2,dx=0]

-

(£ 2y) = (2-8) =8 (-3) = -2
. 3 ‘o .3 K L 3/ 3
(iii) Along BC(y=2)
fc(:r: —xvdx + (v? — 2xv)dy = J':E'(:u: — 8x)dx [*v=2dy=10]
(e Y (8 ) 40

:k?— 4x? Jo = _|k5 -16 )| = )

(iv) Along CO(x=0)
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fc(x: —xvdx + (v —2xv)dv = ff}': de [+x=0,dx=0]= [?] =-Z

Adding(1),(2),(3) and (4), we get
'[(x —xy® )dx + (2 2xy)dy— (16,40 8_20_

8 ..(5)
. 3 3 3 3 3
J J (ON oM )
Evaluation of J]| )dxdy
R ay
Here x ranges from 0 to 2 and y ranges from 0 to 2.
(6N oM ) 22
H| T dxdy= ”( 2y + 3xy? )dxdy
Lox oy ) 00
—f ( 2xy ——1, ]_ dy
|:.
= [ -4y + 6y")dy = (<27 +2y°)?
0
0
=-8+16=8 ...(6)
From (5) and (6), \(/ve have \
Ide+Ndy=”|w _oM
OX |dxdy
¢ R ay )
Hence the Green’s theorem is verified.
Assignments
(1) Evaluate $.(3x + 417)dx + (2x — 3v) dy where ¢ is the circle 2 + 12 = 4
(2) Verify Green’s theorem in the plane for ${x* — xy*)dx + (»* — 2x))dy where ¢ is the

square with vertices (0,0), (2,0), (2,2) and (0,2).

(3) Use Green’s theorem to evaluate $.x =11+ yJdx +{y* + x*)dy where c is the square
bounded by y=*1 and x = *+1.

(4) Find the area bounded by one arc of the cycloid
x=a(® —sinB),y =a(l-cosb),a>0and the x—axis.

(5) Find the area bounded by the hypocycloid x*'2 + v3/3 = a2/3 q = 0.

(6) Find [Jj(x2 +y?)dx + 3xy?dy where ¢ is the circle x* + ¥ = 4 in xy plane.
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Answers
W8 () (@3 B (e)2n

1. STOKE’S THEOREM
(Transformation between Line Integral and Surface Integral) [INTU

2000]
Let S be a open surface bounded by a closed, non intersecting curve C. If F is any
differentieable vector point function then ¢_ F.d 7=
[ocurl F.fids where ¢ is traversed in the positive directionand
1 is unit outward drawn normal at any point of the surface.
Prove by Stokes theorem, Curl grad ¢=0
Solution: Let S be the surface enclosed by a simple closed curve C.

. By Stokes theorem

f (curl grandg).n ds = f ("-?\"-?cp) fdS=¢ Vo qS Vo.dr
Jz + ] Jz J‘z\(ldx+ de+kdz)
ﬁ' Ly ol
\( y
& 20 4y, 20 N dY+ Id¢ p where P is any point
2\ J

on C.

o Jeurl grade. i ds =0 = curl grade =0
prove that Id)curl f.dS = !fcl) f.dr —Icurl gradd x fdS
Solution: Applying Stokes theorem to the function ¢ f

I¢ f.dr = jcurl (q) ?).F]ds = j(gradq) < f+ dcurl f_)ds

.'.j¢curl f.ds = [(I) f.dr— jvq; x f.ds

3: Prove that ¢ fvf.d7 = 0.
Solution: By Stokes Theorem,
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[I( £ )dr = feurlf v £.n ds = [[ feurlVf +VF xVf ]n ds

S

= [o.nds = 0[ curlVf = 0and Vf xvf =0]

Solution: By Stokes Theorem,

[J]( fVg.d F) =_|'[V><( fvg)] nds =_[[Vf x Vg + feur lg radg].rﬁls

c

- J'[Vf xVg ].nds fL curl(gradg) = 6]

Verify Stokes theorem for F = —v*7 + x 37, Where S is the circular disc
i+ yt =1,z =0.
Solution: Giventhat F = —v37 + x*7. The boundary of C of S is a circle in xy plane.
x?+ vy = 1,z = 0. We use the parametric co-ordinates x=cos
B,v=s5inf,z=0,0=8 < 2m;
dx=-sing 48 and dy =cosg 48
955 F.dr = _J; Fidx + F,dyv+Fdz = fc —vidx + xdy
:Jr.;_:?r [—sin®8(—sinf) + cos®Bcosf]dl = Jrc_:x(cas;'ﬁ' + sin*@)df
:Jr,:_:?r (1—2sin’6 CGS:E)C{HZJ}:K dE= %_J:::— (2sinf cosf)* dB

— rim 1 p2m . 2 _ s _ 1 ram .
=J, dé —z [ sin®2df = (2m — 0) — < [ (1 — cos46)d6

£

2ar & 3

=om— Rt _ 3

=27 + [—1:_5 —:—Esiﬂﬁ}ﬁ]

|:.

K
- g — a A
Nowv x F = 2| = k(3x2 +3y?)
0

# [ (Vx F)ads =3 [(x* + v )k.7ds

We have (R.ﬁ)ds = dxdy and R is the region on xy-plane
2 JI(Vx F)ads =3 [[ (x* + y?) dx dy

Put x=r cos@, v = » sin@.. dxdy = rdr dC

ris varying from0Oto 1and 0= @ < 2m.

LV X F) Ads =3 [JZ [ v*rdrdo = =

L.H.S=R.H.S.Hence the theorem is verified.
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ﬁ If F = yi +(x-2x2) j - xyk evaluate j(Vx F).nds . Where S is the surface of sphere

x?+ v:+ z? =a?, above the xv — plane.
Solution; GivenF = vi + (x — 2xz)j — xvk.
By Stokes Theorem,

L("-? ® Fj.ﬁdS:JE,dr_: _J; Fidx + Fdy + Fydz = fc vdx 4+ (x — 2xz)dy — xydz

Above the xy plane the sphere is x* + y*+=a*,z =0
J F.dr = J_vdx + xdy.
Put x=a cos #,y=asinf so that dx = —a sinfd6, dy = acosfdf andd =0 — 27

J1 F.dr = J :T[a sinf) (—a sinf) df + (acosf)(acosd)dE

T

=a’ -ch-:.-r cos28 df = a® [Ei”ﬂ:g]m = ET (0)=0

[V erify Stokes theorem for F = (2x — ¥)T — ¥z — v?zk over the upper half surface of
the sphere x~ + ¥* + z* = 1bounded by the projection of the xy-plane.

Solutjon: The boundary C of S is a circle in xy plane i.e x* + ¥“=1, z=0

The parametric equations are x=cosfl, v = sinfl,§ = 0 — 2m

o dx = —sinf df, dy = cosf df
IE.dp: J. Fdx+ Edy + Bdz = j(Zx —y)dx—yz dy -y zdz
:J;[Ex — vidx(since z = 0 and dz = 0)
2n 2m 2n

= —![ (2cosO —sinB)sinOdO = Isinz 0do —J. sin 20 dO
0 0

=(;7 22 de — (77 sin20 d = |26 — 1sin26 +1.cos26)

|:.

%(2;? —0)+0 —%. (cosdm — cos0) ==

T J k
. - 8 8 8 _ _ — -
Again vV x F=| - P P =i—2yz+2vz)—j(0—-0)+k(0+1) =k
2x—y  —yzl —yiz

s (V% F)ads=[ _k.fds = [_[ dxdy

Where R is the projection of S on xy plane and k.7ids = dxdy
1—=x< 1

Now | JFI? dxdy = 4 f_?'_c_ fjc_d dydx = 4 f_?'_c_ Vi—xldx=4|2vV1—x%+ }sin_i x
; e=pJy= = 2 2 0
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=4 [}sin'i l] =22=m

~ The Stokes theorem is verified.

plan z=0 whose sides are along the lines x=0, y=0, x=a, y=a.

Solution: Given F = x* T+ xv]

7
C el B (a, a)
(O, a)
X=a
> X
O A (a, 0)
Fig. 13

By Stokes Theorem, [ (¥ x Fj.ﬁa’s:IEdr_

Now ¥ x F= 3=

LH.S:=(,(7x F)ide | y(n.kyds = [ yecly

.. 7.k.ds = dxdy and R is the region bounded for the square

E':

J'S(v x F).nds = fcc f; vdvdx = E
R.H.S. :J.E.dr_= '[(xzdx + xydy)

But [FdF = F.dF+[ F.dF +[ _F.dFf+ [

|
o,
=

()Along OA: y=0, z=0, dy=0, dz=0
IGAF_. dr = jc- xdx =7

(i) Along AB:x=a, z=0,dx=0,dz=0

jfdfz faydy = ;a's

AB 0

(iii) Along BC: y=a,z=0,dy=0,dz=0
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8: Verify Stokes theorem for the function F = x* 7+ xvj integrated round the square in the




o

(iv) Along CO: x=0, z=0, dx=0, dz=0

.dr = _j:: Odx =}a3
v [ F.d7 = [*0dy =0
Adding [F.dF=Za®+2
Hence the verification.

9: Apply Stokes theorem, to evaluate [.ﬂ(ydx+ zdy + xdz) where c is the curve of intersection

of the sphere x* + v* + z* = a” and x+z=a.

Solution : The intersection of the sphere x* + v* + z* = a” and the plane x+z=a. is a
circle in the plane x+z=a. with AB as diameter.

=

Equation of the plane is x+z=a= “—; +Z=1

fir]

~.OA=0B=ai.e.,, A=(a,0,0) and B=(0,0,a)
~. Length of the diameter AB = va? +a% +0 =ay2
Radius of the circle, r=—

Let F.d7 = ydx + zdy + xdz = F.dr = F. [ Tdx + jdv + Ed:} = vdx + zdy + xdz

=

=F=vitzj+tx
T k
=l & & =, T
Lourl F=|=— =— —|=—|1+j+k
' fdx dJy ©d=z [ J }
Yy oz x

Let  be the unit normal to this surface. i = r

=]

Thens=x+z-a, VS=i+ . 7="15 ==

Hence ¢ F.d7 = [ curl F.7ids (by Stokes Theorem)

=f(re 7+ B (s =1 () s

W i L *

ESll

N
ra|

ma”

:-\,’E_J; ds = —25=—2 [%] =—=
10: Apply the Stoke’s theorem and show that [ [ curl F.7ids = 0 where F is any vector
andS=x?+y?+z2=1
Solution: Cut the surface if the Sphere x* + v* + z* = 1 by any plane, Let 5; and 5,
denotes its upper and lower portions a C, be the common curve bounding both these portions.

- curlFuds = jE.dstrj F.ds
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Applying Stoke’s theorem,

jcurlEdQ:jEdLjEdE:o

The 2" integral curl F.d5 is negative because it is traversed in opposite direction to first
integral.

The above result is true for any closed surface S.

11: Evaluate by Stokes theorem 95.;("' +v)dx +(2x — z)dv + (v + z)dz where Cisthe
boundary of the triangle with vertices (0,0,0), (1,0,0) and (1,1,0).

Solution: Let F.d7 = F.( tdx +jdy + kdz) = (x + y)dx + (2x —z)dy + (y + z)dz
ThenF=(x+v)T+(2x—z)j= (v +2)k

By Stokes theorem, ¢_F.d7 = [ [_curl F.7ids

/8(1,1,0)

Y
A

Y=

P A(1,0,0)

z

Where S is the surface of the triangle OAB which lies
in the xy plane. Since the z Co-ordinates of O,A and B
Avre zero. Therefore@n = k. Equation of OA is y=0 and

that of OB, y=x in the xy plane.

T J
= 8 3 .
woeurl F=| = = =21+ k

ol

T+yv 2x—z v+=z

~ curl F.ads=curl F.K dx dv = dx dy
.'-gﬁcF_. di=[[dedy=[[ dd=A=areaofthed OAB
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=10A x AB:_l xlxlzi
z 2 2

12: Use Stoke’s theorem to evaluate [ [_ cur! F.7dS over the surface of the paraboloid
Z+X2+y?=1,z>0where F=yi+zj+xk

Solution : By Stoke’s theorem

qurll_:.d; - [!]E.d?: [( Vi+2 ]+ xk).(idx+ jdy +kdz)

:I ydx (Since z=0,dz=0) ......(1)

Where C isthecircle x*+ v:=1

The parametric equations of the circle are x=cosé, v = sinf
o dx = — sind d8
Hence (1) becomes

X =TT

- 2 271 z
[eurlF.ds = J“sine(—sine)de = [ sin*6do =-4fsin29de =—4x
0

s 0=0 6=0

1
2

13: Verify Stoke’s theorem for F = (x* + v*)T— 2x ] taken round the rectangle bounded by

the lines x==a.v = 0,y = b.
Solution: Let ABCD be the rectangle whose vertices are (a,0), (a,b), (-a,b) and (-a,0).
Equations of AB, BC, CD and DA are x=a, y=b, x=-a and y=0.
We have to prove that ¢ F.d7 = [_ curl F.fids
¢F.dF = ¢ {(x* +¥*)T — 2xyj}.{ 1dx + jdy}
=¢_(x2+y?) dx — 2xydy

“Jas T T e T o (1)
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C(-a,b) y=b B(a,b)
- -
X=-a Y - AXx=a
»- —PX
D(-a,0) O vy=0 A(a,0)
(i) Along AB, x=a, dx=0
from (1), Lig = f: ,—2aydy=—Za [T]c = —ab"
(i) Along BC, y=b, dy=0
x=fa |_ 3 2 .
from(l), J:T (X2+b2)dX=| X_-I-bZX—l =_:"|:: _Qab:
BC x=a I_ 3 Jx:a c-
(ii)) Along CD, x=-a, dx=0
[~ ooy 2 |
from(1), | = | 2aydy=2a| — | =-ab?
CD y=b I_’Z Jy_b
(iv) Along DA, y=0, dy=0
from (1), I:XT x2dx=[X_3J :2_33
DA x=-a 3 X=—a 3
(i) +(i)+(iii)+(iv) gives
b2 _:"EE — 2ab” — ab’ +::E = —4ab’ ....(2)

» $F.df = —ab?-—

Consider [ curl F.7ds

Vector Perpendicular to the xy-plane is = = k
B ik
) B = A T
. curl F= P 3y 2| = VK

(x*+v?) —2xv 0O
Since the rectangle lies in the xy plane,

7 = k and ds =dx dy
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_J; curl F.ids = js —4yk. kdx dy = _J:_::_E _JFE_J:E_—ﬂl-_V dx dy

a b
=f7 o —aydxdy=a [ y[x] gy [ 2avdy
y=0 -a y=0
=—4aly*]%_, = —4ab’ ..(3)
Hence from (2) and (3), the Stoke’s theorem is verified.
14: Verify Stoke’s theorem for F = ( —z + 2)T+ (vz + 4)7 — xzk where S is the surface

of the cube x =0, y=0, z=0, x=2, y=2,z=2 above the xy plane.

Solution: Given F = (v —z + 2)i+ (vz + 4)J — xzk where S is the surface of the cube.
x=0, y=0, z=0, x=2, y=2, z=2 above the xy plane.

By Stoke’s theorem, we have [ curl F.7ids = [ F.d7

T 7 k
vxF=| 2 2 fl=q0+v)—J—z+1)+ko0-1)=vi—-(1-2)]—Fk
Bx dv 2= : 5
y—z+2 yv+4 —x=z

VX FAds =[] ["—ldrxdy (v~z=0dz=0)=—4
()
To find | F.d¥
[Fdr={ ((_1.'— z+ 2T+ (vz+4)— :CE] (dXE = dyj + dzk)

= [[(y—z+2)dx + (yz+4)dy — (xz)dz]
Sis the surface of the cube above the xy-plane
nz=0 =dz=
n [Fdr= [(y+ 2)dx+ [ 4dy
Along 04,y =0,z = 0,dy = 0,dz = 0, x change from 0 ta 2.
[F2dx=2[xl3=4 ... )
Along EC,v = 2,z =0,dy = 0,dz = 0,x change from 2 to 0.
) 4dx = 4[x]3=-8 ... .(3)

Along AE,x = 2,z =0,dx = 0,dz =0,y change from 0to 2.

N

2

flﬁ-d?:j4dy=[4y] =8 . 4)

0
Along €0,x = 0,z = 0,dx = 0,dz = 0,y change from 2 to 0.
S 4dv = -8 (5)
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Above the surface When z=2

Along 0'4', [FFdr=0 ...(6)
Along A'B',x = 2,z = 2,dx = 0,dz = 0,y changes from 0 to 2
2 2 f y2 —|2

- 2
_([F.dr:'([(2y+4)dy:2[7J0+4[y]0:4+8:12 (7
Along B'C',y =2,z = 2,dy = 0,dz = 0, x changes from 2 to 0
JoFdr=0 ..(8)
Along C'D',x = 0,z = 2,dx = 0,dz = 0, y changes from 2 to 0.
0 fyz T

0

Jeyrg=2)5 | +aly],=-12 0
2 2

(2)+(3)+(4)*+(5)+(6)+(7)+(8)+(9) gives
JFd7T=4-8+8-8+0+12+0—-12=—4 .....(10)
By Stokes theorem, We have
[ F.dr=] curl F.7ds=-4

Hence Stoke’s theorem is verified.

: Verify the Stoke’s theorem for F = ¥ + zj + xk and surface is the part of the sphere

x*+ v*+ z? =1 above the xy plane.

Solution: Given F = yT+ zj + xk over the surface x~ + v* + z* = 1 is xy plane.
We have to prove [ F.d7=] [ Curl F.fds

F.d7=. (yi +zj = xk). (d=T + dvj + dzk)=ydx + zdy + xdz

_J:_,[}rd_\c + zdy + xdz) = [ vdx (in xyplane z = 0,dz = 0)

Let x= cos8, v = sinf = dx = —sinf df, dy = cosf df

T

Jrc F.d7 = fc y.dx = Jrc_: vdx [~ T4y

=[2% sin (—sin@)df = —4 [~/ sin®6 do

- [(—i] —'D: = —4H = (D)

I J k a
CurlF=|3/3x 8/dv @8/dz|=—-(C+J+k)
¥ Z x
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Il
1
b
W=
|
b
ey
|
11
=

] _ W
Unit normal vector 71 = o

[wel o Ax2dy® ag?
Substituting the spherical polar coordinates, we get
fl = sinf cos¢ 1+ sind sin ¢ J + cosfk
~ Curl F.1 = —(sinf cos ¢ + sinf sin ¢ + cosf)

I nZn

”CUfI F.nds = j j (sin® cos¢ +sind sin¢ +cosd )sinBdOd¢
0=0 ¢=0

= f;: [sinf sin ¢ — sinf cos ¢ + Pcosf] ™ sinfdE

.
—cost]"‘

-

=-27 fl;: cosfsinddf = —m VIFEF: sin28df = (—m) [

|:.
From (1) and (2), we have
jr-cﬁ':@f;i?ﬁ’=f Jr___C"wri' F.fds = —1

’s theorem is verified. —

~ over the box bounded by the planes
16: Verify Stoke’s theorem for F = (x2 - y? )i +2XY

x=0,x=a,y=0,y=Db.
Solution :
0,6)C B(a, )
"
0 A(a,0)

Stoke”’s theorem states that IEdr_: [Cu rl E.nds

Given F = (x® — v3)T+ 2xvj
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i ik

curlF=| 9/ %y 04, =(0,0)= 1(0,0) + k(2y + 2y) = 4yk

2

X2—y> 2xy 0

R.H.S= J.Curl F_.nas = 'f4y (IZrT)ds

Let R be the region bounded by the rectangle
[E ﬁ}n’g = dx dv

[curlFnds = | j‘ ayaxdy = 4 V_ZT dx = 2b? j 1dx
: ol 2,
=2b*(x)8 =2ab”

To Calculate L.H.S
F.di = (x?—v3)dx + 2xy dy
Let 0=(0,0),4 =(a,0),B =(a,b)and

C=(0,b) are the vertices of the rectangle.
()Along the line OA
y=0; dy=0, x ranges from 0 to a.
[,, FdF=[° x%dx= H <
(ii) Along the line AB
x=a; dx=0, y ranges from 0 to b.
Lis F.dr = sz C_[Ex_v] dy = [2& T]::ab:
(iii)Along the line BC
y=b; dy=0, x ranges fromato 0

[ %3 T (ad )

[ Fdr= f(xz—yZ)dx=|_—b2x| =0-| __-b?% |
BC X=a |_3 Ja K3 )
:ab:—ETE

b

(iv) Along the line CO
x=0,dx=0,y changes from b to 0

0
_J:_,F.d'r_": J- 2xydy =0
y=b

Adding these four values
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L.HS = RH.S
Hence the verification of the stoke’s theorem.
17: Verify Stoke’s theorem for F=y" T — 2xyj taken round the rectangle bounded by

X::b1 y:O1y:a_
Solution:
y
& s
=a
C < ’ B
X=-D AX=b
D > 5 > A V=0 » X

Curld= 5.,-":51. al.."'a v a.,-":a: = -4y.=€

Ve —2xy 0

For the given surface S, i=k

s (Curl F).m = —4y
Now ffE(C‘m‘E F).ads = J:[_- —4vdxdy

= ]r[j’ —4ydx}dy

y=0 I_x:—b

b

[-4xy] dy

-b

ot— o

= [ —8bydy =[-4by? | =-4a% ......(1)

J;F_'d’r_‘ :Jrnf-i_ as " Jec T Jep

[F.dF =y* dx — 2xydy
Along DA, y=0,dy=0 = [, F.d7 =0 (- F.dr=0)
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Along AB, x=b,dx=0

[ F.dF= [ —2bydy=[-by?] =-a%

Along BC,y=a,dy=0

[ FdF= er—a:- aldx=—2a’b

Along CD, x=-b,dx=0
[ F-dF=f] 2bydv=[-by? | =-a%.

J.F.dF = —a’b—2a’b —a’b=—4a’bh - (2)
From (1),(2) [, F.d7 =[] (Curl F).7ds

Hence the theorem is verified.

19: Using Stroke’s theorem evaluate the integral [ F.d7 where

F=2y"1+3x"] -(2x+z)k and C is the boundary of the triangle whose vertices are
(0,0,0),(2,0,0),(2,2,0).

Solution:
1 j k
Curl F = 5,;“'51. 5,-“'5}. .:’:-‘f,xa: = 2] + (bx-4y) k
2y? 3x° —-2x-z
b &
A
B(2,2)
@) />/J‘—> X
(0.0) A (2,0)

Since the z-coordinate of each vertex of the triangle is zero , the triangle lies in the xy-plane .
~a=k

~ (Curl F).7i= 6x-4y

Consider the triangle in xy-plane .

Equation of the straight line OB is y=x.

By Stroke’s theorem

t[E.olf:”(curl F).nds
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-

:J;::C_ f::[ﬁx — 4v)dxdy = J..x-=C- [J-;L (6x —4y)dy|dx

= } [6xy—2y2}:dx = J’S[ﬁxf — 2x%)dx

x=0

OBJECTIVE TYPE QUESTIONS

(1) For any closed surface S, ”(curl F_).n_ds =

() 0 () 2F (©7 @ ([ F.ar

(2) IfS is any closed surface enclosing a volume V and F = xT +~ 2y j+3zk then
H E r_lds =

@V (b)3V (c)6Vv (d)None

(8)If F=xi+ yj+zkthen =[f|rdr

(@0 (b) r (c) x (d) None

(4 [7x Ads =

@~o (b) r ()1 (d) None

6) [[7.7dS =

@V (b) 3V (c) 4V (d) None

(6) If 7 isthe unit outward drawn normal to any closed surface then f.: divit dIf =
(@S (b)2S (c) 3S (d) None

@ [ tvtdr-=

@f (b)2f (©0 (d) None

(8) The value of the line integral [ grad(x + v —z)d7 from (0, 1,-1)to (1,2, 0) is
(@-1 (o (c) 2 (d)3

(9) A necessary and sufficient condition that the line integral jE_A .dr =0 for every closed
curve c is that

(@) divA=0 (b)divA=0 (c)curlA=0 (d)curlA=0

(10) If F =axi + byj+ czk where a, b, ¢ are constants then [| F .7dS where S is the surface of

the unit sphere is
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(@) 0 (b) Swla+b+e) (¢) sm(a+b+c)* (d)none

(11) [, D x Fdv =

(@) (A x Fds (b) 0 OV @S
(12) f @ X dy =

(@) [ 7 pds (b) 0 ©V @
(13) [ feg.d7=

()0 (b) .(Vf xFDg) (0)F @S
(14) ﬂ; vdydx + vdzdx + zdxdy where S: NI -
(@) 4p (b) iérms ©) 47 (d) 4x

ANSWERS
1) d c @a Ha O)b (®a @Hc @d Oc

(100 b (11)a (12)a (13)b (14)c
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