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Chapter 1.  Number Systems, Number Representations, and Codes 

 

1.1.  Key concepts and Overview 

 
 Digital vs. Analog 

 Digital Design Overview (from Transistor to Super Computer) 

 Design Methodologies 

 Number systems (Binary, Octal, Decimal, Hexadecimal) 

 Base Conversions 

 Signed Binary Number Conventions 

 Binary Arithmetic 

 Binary Code 

 DC Electrical Circuit Fundamentals 

 Additional Resources 

 Problems 
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1.2.  Digital vs. Analog 

Natural forces and signals are all analog (or continuous) which means we hear, see and change items in 
a continuous manner.  On the other hand, our digital technology (also called non-continuous or 2-value 
discrete) more effectively allows us to process and communicate more effectively.  This leads us to 
design systems that fit the following block diagram architecture: 
 

 
  

 Why convert analog data to digital data? 
 We have the information we need (on-off, timing) 

 Above a certain level is on, high, 1-state or true. 
 Below a certain level is off, low, 0-state or False. 

 
Note:  We have introduced a discontinuity when a signal goes from 1 to 0 or 0 to 1.  This 
means we cannot say what the exact value is at the time of transition. 
 

 Reduces complexity of signals and the solutions to work with the signal.  
 To deal with a digital signal we need to deal with binary algebra.  
 To deal with an analog signal we need to deal with calculus to approximate. 

 
 Positive vs. Negative logic 

 Positive Logic Convention  (Default  easier for humans to understand) 
 H, (V > Vmax)  is 1-state or True 
 L,  (V < Vmin)   is 0-state or False 

 Negative Logic Convention (1 is L and 0 is H) 
 H, (V > Vmax)  is 0-state or False 
 L,  (V < Vmin)   is 1-state or True 

 
  

Real World 
Signal 

Analog to 
Digital  
Convertor 
(Audio, ..) 

Process/ 
Store/ 
Communicate 
Convertor 

Digital to 
Analog 
Convertor 
(Audio, ..) 

Real World 
Signal 

Example: Music           Microphone                 Memory Chip                             Speaker                Music 
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 Example of analog and digital representations of human Heart Beat:  

 
 Based on the definition of a digital (2-valued) system, what are some examples where a digital 

system could apply?  What are the variables and on/off or high/low states? 
 

 Example: Describe the input and output of a traffic intersection in digital form. 
Solution: 

Car’s presence at an intersection:  
(Car PresentMagnitude is 1, No Car PresentMagnitude is 0)  
 
Status of Traffic Lights:  
(Red-on  1, Red-off  0) 
 
Extension: draw a typical Intersection and label the output and input in digital form. 

 

t 

V 

Vmax 

Vmin 

H (>Vmax) 

L (<Vmin) 

V 

t 

Analog to  
Digital  

Converter 
(ADC) 

Digital to 
Analog   

Converter 
(DAC) 

Digital  

Analog 
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1.3.  Digital Design Overview (from Transistor to Super Computer) 

 All digital systems from the smallest to largest run on a 2-valued system (also called Binary system). 
So a mechanism is needed to represent the two values.  This is typically accomplished with a switch 
that can be on or off.  In the early days, mechanical switches were used, followed by vacuum tubes 
as switches.  Today we use transistors that can be configured to approximate the switch on and off 
modes.  Transistors are fast, inexpensive and small.  
 
 

 Transistor overview (the invention that makes today’s automation possible) 
 The transistor, invented by three scientists at the Bell Laboratories in 1947, rapidly replaced the 

vacuum tube as an electronic signal regulator. 
 

 Transistors are the basic elements in integrated circuits (ICs).  An IC consists of a very large 
number of transistors interconnected with circuitry and packaged into a single silicon microchip or 
"chip."  A typical processor chip has many millions of transistors. 
 

 A transistor is developed based on semiconductor material characteristic.  Semiconductor 
material used basically as a switch as shown below: 
 
 

 
 Semiconductor material is given special properties by a chemical process called doping. The 

doping results in a material that either adds extra electrons to the material (which is then called N-
type for the extra negative charge carriers) or creates "holes" in the material's crystal structure 
(which is then called P-type because it results in more positive charge carriers). 
  
Today's computers use circuitry made with complementary metal oxide semiconductor (CMOS) 
technology. CMOS uses two complementary transistors per gate (one with N-type material; the 
other with P-type material).  When one transistor is maintaining a logic state, it requires almost no 
power when not switching. 
 

 
 Semiconductor Integration scaling 

 
 Small-Scale Integration, SSI (Basic gates: OR, NOR, NOT, AND) 

 
 Example: Inverter  (NOT) is a common SSI element used in Digital Design (Vendors provide 

usage information and specifications in the form of a data sheet)  

Base 

Emitter (E) 

Collector (C) 

NPN Transistor Example 
”A small current at the base causes the CE connection to change from open to a short” 

P-Type 

N-Type   

Base 

Collector  

N-Type   

Emitter  
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 Medium Scale Integration, MSI  
 PAL--Programmable Array Logic, GAL--Generic Array Logic, EPROM--Erasable 

Programmable Read Only Memory, ADDER, COUNTER) 
 1,000s to 100,000s of gates.   
 Typically, the vendor provides information in the form of a data sheet  

 
 Large Scale Integration (LSI) 

 100,000s to Millions of gates 
 Typically implements complex functionality 
 Processors such as special function controllers and interface chips 

 
 Very Large Scale Integration (VLSI) 

 Millions to Billions of gates 
 Typically includes extensive functionality 
 Processors such as Intel’s Pentium are examples of VLSI. 

 
 Design / Analysis tools 

 We will be using manual processes for most of this text to design/analyze digital circuits 
in order to gain in-depth understanding of logic design. 

 The final section of this text is dedicated to the use of Hardware Description Language 
(HDL) to automate design, simulation, implementation, and analysis and verification 
process.  
 

1.  Block Diagram 

A B  

Input    Output 
A B 

0 
1 

1 
0 

2.  Truth Table 

A 
 
B 
 
 

t 

Propagation Delay  

3.  Timing Diagram 

A 
B 

4.  Equivalent Circuit 

+5 V 

GND 
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1.4.  Design Methodologies 

Digital design depends on the type of problem, the work already completed, the strategic direction of the 
organization and the skills/resources available to the project team. Having said that, in general, there are 
three approaches available to the designers under traditional Hierarchical-Oriented Designs: 

 Top-down Design Methodology 
Start with larger block of design and then work out the detail of each block. 
 

 Bottom-up Design Methodology 
Start with components and figure out how to interconnect them to design the system. 
 

 Middle-out Design Methodology  
A combination of the bottom-up and top-down.  Most designs are done this way: start with the 
top-down design, then modify the design to take advantage of the available components (based 
on cost, availability, and reliability). 
 

Another way of thinking about the problem of design that has a strong following in the software 
development community and is being used in the hardware community under the module design concept 
is Object-Oriented Design (OOD). 
 
Designers commonly agree that there are four main properties or benefits associated with object-oriented 
design: 

 Encapsulation 
As the name implies, the internals of the design are hidden from the user and only the interface 
definition (input/output) are available to the user.  Users benefit since they have a limited amount 
of information to learn.  Designers benefit since they are able to upgrade the module without 
involving the user as long as the new interface is a superset of an existing interface. 
 

 Inheritance 
This simply means that an object may be built on the features available in the base object 
property.  Of course, the benefit is that the designers only have to work on the additional feature 
and simply reuse the existing functionality. 
 

 Polymorphism 
OOD allows the designer to create objects that behave differently based on the attributes of input. 
 

 Composition (One object can be built using many others.) 
A new object may be developed based on the composition of multiple existing objects. 
 

Hopefully, at this point you are thinking “why wouldn’t everyone use OOD?”  The main drawback of 
OOD is the high level of planning required for each module, and discipline needed to follow the four 
properties in design. 
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1.5.  Number Systems (Decimal, Binary, Octal, Hexadecimal) 

We have learned and use the decimal numbering system simply because humans are born with ten 
fingers!  The decimal system has served us well.  But with digital systems, we need a 2-value system 
(binary).  We could attribute this to the fact that computers only have open or closed switches (or one 
finger, if you prefer). 
 
This means, we have to learn the binary system in addition to the decimal system.  We also will discuss 
the octal and hexadecimal systems because conversion to/from binary is easy and numbers in these 
systems are easier to read than binary numbers for humans. 

 Decimal Number (base or radix 10) 
 Humans use the decimal numbering system as a default, so when you see a number 56 your 

assumption is that its base or radix is 10 or (56)10 which is “56 base 10”.  
 

 Each digit is weighted based on its position in the sequence (power of 10) from the Least 
Significant Digit (LSD, power of 0) to the Most Significant Digit (MSD, highest power).   
 

 Each digit must be less than 10 (0 to 9) 
 
For example (2375.46)10 is evaluated as: 
 

 MSD      LSD 
Digit notation d3 d2 d1 d0 . d-1 d-2 
Digit 2 3 7 5 . 4 6 
Value 103 102  101 100  10-1 10-2 
Results=Value*Digit 2000 300 70 5  0.4 0.06 

  
 
(2375.46)10 = 2x103 + 3x102 + 7x101 + 5x100 + 4x10-1 + 6 x10-2 
                  =  2000  +  300   +  70      +    5    +   0.4    + 0.06 
Note: The general term for decimal point is “radix point”. 
 

  Binary Number (base or radix 2) 
 Digital and computer technology is based on the binary number system, since the foundation is 

based on a transistor, which only has two states: on or off.  
 

 Each digit of the number is called a bit or which is a short for binary digits 
 An 8-bit group is referred to as a Byte 
 An 4-bit group is referred to as a nibble  

 
 Each bit is weighted based on its position in the sequence (powers of 2) from the Least 

Significant Bit (LSB) to the Most Significant Bit (MSB).   
 

 Each bit must be less than 2 which means it has to be either 0 or 1. 
 

For example (1010.11)2 is evaluated as: 
 

 MSB   LSB   

Digit notation b3 b2 b1 b0 b-1 b-2 
Digit 1 0 1 0 1 1 
Value 23 22  21 20 2-1 2-2 
Results=Value*Digit 8 0 2 0 0.5 0.25 
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(1010.11)2 = 8 + 0 + 2 + 0 + 0.5 + 0.25 = (10.75)10 
Note: The general term for decimal point is radix point 
 

 In binary, the count starts at 0 (called 0-referencing), where in decimal, the count typically starts 
with 1 (called 1-referencing) 
 

 Octal  (base 8) and Hexadecimal (base 16) 
These number systems are used by humans as a representation of long strings of bits since they are: 
 
 Easier to read and write, for example (347)8 is easier to read and write than (011100111)2. 

 
 Easy to convert  (Groups of 3 or 4) 

 
 Today, the most common way is to use Hex to write the binary equivalent; two hexadecimal digits 

make a Byte (groups of 8-bit), which are basic blocks of data in Computers. 
 

 Question:  The hexadecimal system is base 16, so the digits range in value from 0 to 15. How do you 
represent Hexadecimal digits above 9? 
 
Use A for 10, B for 11, C for 12, D for 13, E for 14 and F for 15.  So (CAB)16  or (CAB)HEX is a valid 
hexadecimal number.  
 

 Computer memory is typically organized in 8-bit groups or bytes.  Why groups of 8? 
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1.6.  Base Conversions 

 Decimal to Binary Conversion  
 Alternative 1 – “Subtract the weight method”  
 Steps: 

 Find the largest power of 2 (2n) that can be subtracted out of the decimal number 
 Take the result and subtract (2n-1) from it 

 If the result is not negative then that bit is one 
 If the result is negative, then that bit is zero and the result equals the result from 

step 1 
 Repeat step 2 until the result is exactly 0 

 
 Example: convert (49)10 to a binary number 

 
 
 Alternative 2 – “Division by 2 method”  
 Steps: 

 Divide the decimal number by 2 
 Remainder is the least significant bit (most right bit) 
 Quotient is used in the next step 

 Divide quotient by 2 
 Remainder is the next significant bit (next left bit) 
 Quotient is used in the next step 

 Repeat previous step until quotient is 0 
 

 Example: convert (49)10 to a binary number 

 
 

 Binary to Decimal Conversion – “Add the weight method”  
 Step: 

Simply multiply each bit with its weight and add to get the decimal number 
 

 Example: Convert (110001)2 to a decimal number 
(110001)2 = ( 1* 25 +  1* 24 +  0* 23 +  0* 22 +  0* 21 +  1* 20)10 = (49)10 

 
 Binary   Octal Conversion   -  “Group of 3 method” 

                    Remainder 
2|49   1  (LSB) 
2|24   0 
2|12   0 
2| 6   0 
2| 3   1 
2| 1   1   (MSB) 
2| 0   Stop 
 

(49)10      (110001)2 

49 
-32 
---- 
17 

 
2n  

 
Results  

17 
-16 
---- 

1 

Binary #   ( 1                 1               0                0                 0               1)2  

1 
-8 

---- 
-7 

1 
-4 

---- 
-3 

1 
-2 

---- 
-1 

1 
-1 

---- 
0 When =0, done 

>0 
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 Step: 
(1) Each three bits in binary (right to left) equals one octal digit in the same direction) 

 
  Example - Convert (10110111)2 to an Octal number.  

 
 Reverse the process to convert from Octal to Binary 

 
 Binary   Hexadecimal Conversion   -  “Group of 4 method”  

 Steps: 
(1) Each four  bits in binary (right to left) equals one hex digit in the same direction) 

 
 Example:- Convert (110110111)2 to a hexadecimal  number  

 

 
 Reverse the process to convert from hexadecimal to binary 

 
 

 Any base to Decimal Conversion -  “Polynomial Function Method”  
 The most general number in any base is the real number and the general rule is as follows: 

 
(Real Number)r = (dj…d1d0. d-1d-2…)r = (djrj + … +d1r1 + d0r0 + d-1r-1 + d-2r-2 + …)10 

 
 Example – The most common conversion is Hex integer to decimal base.  For this example, 

convert (1CAB)16 to decimal: 
 
(1CAB)16 = (1*163 + 12*162 + 10*161 + 11*160) = (7339)10 

 
 Example - Although not common, let’s do an example of converting a real binary number to 

decimal so Convert (11010)2 to decimal.   
 
(11010.11)2 = ( 1*24 +  1*23 + 0*22 + 1*21 + 0*20 + 1*2-1 + 1*2-2) = (26.75)10 

 
 Integer Decimal Conversion to any Base – “Repeated Radix Division Method”  

 The solution is based on the fact that  
(integer number)10 = dnrn + … + d2r2 +  d1r1 +  d0r0  = (dn…d2d1d0)r 
 

 Steps: 
(1) If (integer number)10 is divided by r, the remainder is d0 (Least Significant Digit, LSD) 
(2) If the quotient from step 1 is divided by r the remainder is the next digit  
(3) Repeat step 2 until the quotient is zero were the remainder is the dn (Most Significant 

digit, MSD) 
 

  

( 0001  1011   0111 )2 

( 1  B 7 )16 

( 010  110   111 )2 
 

(   2   6   7 )8 
 

“0” is added to 
make a group of 3 
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 Example:  Convert (52)10 to binary (radix, r = 2)  

 

 
Therefore     (52)10 = (110100)2  
 
 

 Decimal Fraction  Conversion to any Base – “Repeated Radix Multiplication Method”  
 
 Solution is based on the approach:  

(decimal fraction)10 = d-1 r--1 + d-2 r--2 + …  = (.dn…d2d1d0)r 

r*(decimal fraction)10 = d-1  + d-2r-1 + …  = (.d-1d-2d-3 … )r 
 
 Steps: 

(1) Multiply  (fraction)10 by r, the non-fractional part is the first digit 
(2) Continue step 2 until fraction is 0 

 
 Example: Convert (.125)10 to binary (r=2) 

 
Solution: 

 
Therefore  (.125)10 = (.001)2 
 
Note: Some numbers may not be fully convertible, so you have to decide the number of decimal 
points you need to convert.  For example (1/12)10 does not fully convert to binary number. 
 

.125  
x 2 
----- 
0.25 

d-1 

.25  
x 2 
----- 
0.5 

d-2 

.5 
x 2 
----- 
1.0 

d-3 

Fraction is 0 which means d-3 is the Least Significant Digit 
Non-fraction portion is 1 which means d-3 is 1. 

Non-fraction portion is 0 which means d-1 ,the Most Significant Digit, is 0.  

 52 
-4 
---- 
 12 
-12 
---- 
0  

26 

2 

13 

2  13 
-12 
------ 
  1 

6 

2  6 
-6 
---- 
0 

3 

2 

Remainders 
               R0=d0=0                R1=d1=0         R2=d2=1          R3=d3=0             R4=d4=1             R5=d5=1 

 26 
-2 
---- 
 06 
-  6 
---- 
  0  

 3 
-2 
---- 
1 

1 

2  1 
 0 
---- 
 1 

0 

2 

Quotient is 0 therefore remainder is MSB 

First Remainder is the LSB 
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1.7.  Signed Binary Number Conventions 

 Signed Binary Number Representations (3 methods) 
 
 Signed Magnitude (SM) 

 Easiest for people to read (Not used by computers) 
 Here is an example of Signed Magnitude number with 4-bit word size 

 

 
 Binary SM numbers for n-bit word ranges from +(2n-1 – 1) to -(2n-1 – 1) 

Note: there are two values for zero (Sign-bit = 1 and Sign-bit=0) 
 

 Example of complete list of binary SM numbers for a 4-bit word. 
 

Binary SM Number (n=4) Decimal Number 
d3 d2 d1 d0  
0 1 1 1 + 7 = +(24 -1 -1) 
0 1 1 0 + 6  
0 1 0 1 + 5  
0 1 0 0 + 4 
0 0 1 1 + 3 
0 0 1 0 + 2 
0 0 0 1 + 1 
0 0 0 0 + 0 
1 0 0 0 - 0 
1 0 0 1 - 1 
1 0 1 0 - 2 
1 0 1 1 - 3 
1 1 0 0 - 4 
1 1 0 1 - 5  
1 1 1 0 - 6  
1 1 1 1 - 7 = -(24 -1 -1) 

 
 
 Diminished Radix Complement (DRC) or 1’s complement  

 Some computer systems use this information because it is easier to convert. 
 

 To obtain a negative DRC or 1’s complement: 
 Write a positive number with MSB set to 0 (positive sign) 
 Negate (Invert) every bit including sign bit to obtain the negative number. 

 

(+5)10  = (0 1 0 1 )2SM 

( -5)10  = (1 1 0 1)2SM 
 

One Sign Bit  
   0 + 
   1  - 
 

3 Magnitude Bit 



Digital Logic Design  Page 18 

  Here is an example of 4-bit word size: 
 

 
 DRC numbers for n-bit word ranges from +(2n-1 – 1) to –(2n-1 – 1) 

 Note that there are two values for zero (Sign-bit = 1 and Sign-bit=0) 
 

 Example of Binary DRC or 1’s Complement Numbers for a 4-bit word 
 

Binary SM Number (n=4) Decimal Number 

d3 D2 d1 d0  
0 1 1 1 + 7 = +(24 -1 -1) 
0 1 1 0 + 6  
0 1 0 1 + 5  
0 1 0 0 + 4 
0 0 1 1 + 3 
0 0 1 0 + 2 
0 0 0 1 + 1 
0 0 0 0 + 0 
1 1 1 1 - 0 
1 1 1 0 - 1 
1 1 0 1 - 2 
1 1 0 0 - 3 
1 0 1 1 - 4 
1 0 1 0 - 5  
1 0 0 1 - 6  
1 0 0 0 - 7 = -(24 -1 -1) 

 
 
 Radix Complement (RC) or 2’s complement 

 Majority of Digital Systems use RC since it simplifies the binary arithmetic operation. 
 

 To obtain a negative RC or 2’s complement: 
 Write a positive number with the MSB set to 0 (positive sign) 
 Negate (Invert) every bit including sign bit 
 Add a 1 to the result to obtain the negative number 

 
Note: Taking the 2’s complement of the result will return the original positive number. 
 

  Below is an example of 4-bit number of SM to RC: 
 

(+5)10  = (0 1 0 1 )2DRC 

( -5)10  = (1 0 1 0)2DRC 
 

One Sign Bit  
   0 + 
   1  - 
 

3 Magnitude Bit 
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 RC numbers for n-bit word range from +(2n-1 – 1) to –(2n-1) with the following two characteristics: 
 The range is not symmetrical, there is one more negative number than there are positive 

numbers. 
 There is only one pattern for zero (-0 and +0 have the same pattern) 

 
 Example of Binary RC or 2’s Complement Numbers for a 4-bit word 

 
Binary SM Number (n=4) Decimal Number 
d3 d2 d1 d0  
0 1 1 1 + 7 = +(24 -1 -1) 
0 1 1 0 + 6  
0 1 0 1 + 5  
0 1 0 0 + 4 
0 0 1 1 + 3 
0 0 1 0 + 2 
0 0 0 1 + 1 
0 0 0 0 + 0 
0 0 0 0 - 0 
1 1 1 1 - 1 
1 1 1 0 - 2 
1 1 0 1 - 3 
1 1 0 0 - 4 
1 0 1 1 - 5  
1 0 1 0 - 6  
1 0 0 1 - 7  
1 0 0 0 -8 == -24 -1 

 
 Quick Inspection Method  Finding  2’s complement 

 Working from the LSB of the number to be complemented toward the MSB (right to left), 
rewrite each bit up to and including the first “1” encountered, then complement each bit 
thereafter 

 Example: 
                                 MSB            LSB 

Old Number:  (1 0 1 1 0 1 0) 
2’s Complement: (0 1 0 0 1 1 0) 
 

**Note: 2’s complement gets you back to the original number. 

             (+5)10  = (0 1 0 1 )2RC 

                   ( -5)10  = -(0 1 0 1)2RC 
                 
 Bit-invert         1 0 1 0 
Add 1                + 1 
  ----------- 
2’s Compl.   (1 0 1 1)2RC 

One Sign Bit  
   0 + 
   1  - 
 

3 Magnitude Bit 
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1.8.  Binary Arithmetic 

All of today’s computer systems use RC numbers (2’s complement) for binary arithmetic operations. The 
reset of this section provides description of Binary Arithmetic using RC numbers.  
 
 Addition of Signed Binary Numbers 

When adding RC numbers, simply add then ignore the left-most carry. 
 
+7     0 1 1 1 
+(-2)  1 1 1 0 
   ---------- 
   0 1 0 1    “Ignore the left-most carry, and the result is +5” 
                               
Notes: 

 The left-most bit is a sign bit and there are three magnitude bits. 
 As long as we know results fits within the 1 sign-bit and n magnitude bits, this process 

works.  Otherwise we need to consider the overflow. 
 

 Addition of Unsigned Binary Numbers 
Unsigned addition Signed works exactly the same way as singed addition, allowing us to use the 
same circuitry. 
 
+7     0 1 1 1 
+3      0 0 1 1 
  ---------- 
  1 0 1 0    “Result is +10. If there is a carry beyond the available bits, then an 
                  an overflow has occurred. 
 

 Overflow 
 An overflow occurs when the addition of two numbers results in a number larger than can be 

expressed with the available number of bits. 
 
 Example – performing the operation, 8+9=17; in a 4-bit word system, results in an overflow 

since 4 bits can only store 0 to 15.  The result will show as a 1, which is 16 less than the 
correct result. 
 

 Detecting overflow 
 Unsigned number addition  

If the addition has a carry beyond the available bits then an overflow has occurred. 
 

 Signed (RC, 2’s complement) number addition 
 If the operands have different signs, then overflow cannot occur, since one number is 

being subtracted from the other. 
 If the operands have the same sign and the result has a different sign, then an overflow 

has occurred. 
A quick way to identify an overflow situation is when the carry into the sign-bit position 
and the carry out of sign-bit position are different.  Example 
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 Subtraction (indirect method) 
If you write subtraction as addition with a negative number, then the previous method can be used. 
 
 For example: 

{2 – 6} can be done by performing {2 + (-6)} 
 

-5          1 0 1 1  
+(-6)     1 0 1  0 
                ---------- 
                0 1 0 1   Result is +5 which is wrong  
                                  since -5 +(-6) = -11  
               1  0 1 0         Carry bits   

The sign is 0 (+) where 
the two operands had sign 
1 (-), indicating an 
overflow. 

The carries in and out of sign-
bit are different, indicating an 
overflow. 
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1.9.  Binary Codes 

 
Binary codes are used to translate human symbols to one and zeros.  The most important of the symbols 
is the alphabet used for human communications.  So every key and character has to have a unique 
binary code. The minimum number of bits required to uniquely identify all the keys on the keyboard must 
meet the following condition: 
 
   2Number of Bits ≥ Number of keys 
 
 ASCII Code 

Initially, IBM’s scheme of representing alphanumeric and control characters for computers was the 
most commonly used coding method.  The coding scheme was referred to as the Extended Binary-
Coded Decimal Interchange Code (EBCDIC).  Its dominance was driven by IBM’s near-monopoly 
position in the computer industry until the early 1980’s. 
 
The majority of other manufacturers were looking for a non-proprietary coding, leading to the 
American Standard Code for Information Interchange (ASCII) coding.  ASCII was adopted by the 
majority of vendors and very quickly overtook EBCDIC as the most commonly used coding scheme. 
 
ASCII code is used to represent alphanumeric and control characters with 8 bits.  The ASCII code 
table is shown below: 
 

 
 
In early 1990, the need for a code that was capable of representing Asian languages with large 
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number of characters became an important competitive question.  Up to that point, the language of 
computer interfacing was English and to lesser extend other western languages that have less than 
256 characters.  The ASCII code could represent them using its 8-bit word with 256 unique codes.  
But this is not true for a number of Asian languages. 
 
In order to meet the need for the larger Asian languages character set and maintain compatibility 
with ASCII code, Unicode was introduced.  Unicode use 16 bits, so it is capable of representing as 
many as 216 or 65,536 unique symbols.  The majority of today’s computers use Unicode which is also 
referred to as the double byte code. 
 

 Other Binary Codes 
 
 Binary coded decimal (BCD) 

BCD assigns 4 binary bits to each binary digit.  The only drawback is that only 0 to 9 are used, 
and the other 6 combinations from 10 to 15 are not used. 

 
 Reflective Gray Code (RGC) 

RGC is a binary number system organized so that consecutive codes in the sequence only 
require one bit change as shown below: 

 
  

2-bit Reflective Gray Code 
 00 
 01 
 11 
 10 

3-bit Reflective Gray Code 
 000 
 001 
 011 
 010 
 110 
 111 
 101 
 100 
 

Binary Coded Decimal 
 0000    0 
 0001    1 
 0010    2 
 0011    3 
 0100    4 
 0101    5 
 0110    6 
 0111    7 
 1000    8 
 1001    9 
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1.10.  DC Electrical Circuit Fundamentals 

 
The basic components used here are resistors and power supplies.  The power supply provides energy to 
the circuit and the simplest power supply is a battery.  Resistors are material that limits the amount of 
current follow. 
 
This section discusses the generation and sensing of logic “1” which is typically equal to 3.5 and 5 volts.  
On the other hand, logic “0” is typically less than 0.7 volts. 
 

 Electrical Resistance 
 Resistor Symbol 

 
 Resistance is the capacity of a material to impede the flow of current (electric charge).  The 

most common use of resistors is to limit current flow. 
 

 The flow of current through a resistor will convert electrical energy to thermal energy. 
In some applications, this property is desirable and in other application it is undesirable.  Here 
are examples of each: 
 
 Undesirable:  transmission line, digital devices 
 Desirable:  heater, toaster. oven, stove top 

 
 Resistance, R, is a basic ideal element so it is defined in term of current, I, and Voltage. 

Ohms law:   V = I * R  where: 
 R value is in Ohms or  
 V is in volts  
 I is in Amperes 

 
 Power 

Power is measured in Watts and can be calculated using the following equations. 
  P= V2/R = I2*R   where 
   V is the voltage and is in volts 
   I is the current in Amps 
   R is the resistance in Ohms 
 

 Example 
Find the value of the resistance ,R, and the power consumed by the resistor if Vg = 1 kV and Ig = 
5 mA. 

R 

+ - V 

I 
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 Solution 

 R= Vg/Ig = 1000/0.005 = 200 kΩ 
Pr  = Ig2 * R = (.005)2*(200,000)= 5 W 
 
 

 Circuit simplification by combining resistors  
 Resistors in Series 

Resistors in series can be replaced by an equivalent resistor that is the sum of all the 
resistors in series. 

 
 Resistors in Parallel 

Resistors in parallel can be replaced by an equivalent resistor as shown below: 

 
 Example 

Find values of I1 and I2 for the following circuit: 

 
Solution: 
1) Simplify the circuit by combining the two 1 M  parallel resistors with the 1 k resistor that is in 

1 k 1 M 

+ 
 

+5V 
 
- 

I1 I2 

1 k 

1 M 

R1 R2 Rn 1/Req = 1/R1 + 1/R2 + … + 1/Rn  . . .  

R1 R2 Rn 
. . . 

Req = R1 + R2 + …+ Rn 

+ 
- 

Vg R 

Ig 
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series with them.   

 
2)  Redraw the circuit and apply Ohms law (V=I*R) to find currents. 
 

   I1 = V / R = 5 / 1000 = 0.005 A = 5 mA 
   I2 = V / R = 5 / 501000 = 0.00001 A = 10 uA 
 
Note:  The amount of current through each resistor is inversely proportional to the size of the 
resistors. 
 

 Using a switch to create logic 1 “+5 v” and logic 0 “Ground or 0 v” 
 

 
 

1 k 

Switch 

+ 
 

+5V 
 
- 

Output: 
”1” when switch is open 
”0” when switch is closed 

Typically 
drawn as  

1 k 

Vcc 

Gnd 

Output 

1 k 

+ 
 

+5V 
 
- 

I1 I2 

501 k 

1 k 1 M 

+ 
 

+5V 
 
- 

I1 I2 

1 k 

1 M 

1/R1 = 1/106 + 1/106 = 2/106   R1 = 500 k 

R2 = 500 + 1 =  501 k 
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 What is the voltage at the output (vo) when the switch is Opened and closed in the following 
circuit: 

 
Solution: 
 

 
 
 

1 k 

Vcc 

Gnd 

Output, 
Vo 

1 M 

Switch Open 

I 

I 

1 k 

Vcc 

Gnd 

Output, 
Vo 

1 M 

Switch Closed 

I 

I2 = 0 

I = V/R = 5 / (1001 x 103) 
I  5 x 10 -6  A 
Vo = 0 + 106x5 x 10-6 == 5v 

Vo=0    
“The output is directly Connected to 
Ground or 0 v” 

1 k 

Vcc 

Gnd 

Output 

1 M 
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1.11.  Additional Resources 

 
 Wakerly, I. Digital Design. (2006) Prentice Hall  

Chapter 1 & 2. “introduction” & “Number Systems and Code” 
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1.12.  Problems 

Refer to www.EngrCS.com or online course page for complete solved and unsolved problem set. 
 



Digital Logic Design  Page 30 

Chapter 2.  Boolean Algebra, Functions, and Minimization 

 

2.1.  Key concepts and Overview 

 
 Logic Gates 

 Huntington’s First Set of Postulates 

 Principle of Duality 

 Boolean Functions 

 Boolean Algebra Theorems  

 Canonical or Standard Forms (Min-term and Max-term) 

 Function Minimization 

 Karnaugh Maps (K-Maps) 

 Special Case: Don’t Care Terms 

 Exclusive OR Properties and Applications 

 Additional Resources 

 Problems 
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2.2.  Logic Gates  

 The rest of the class relies on two-valued Boolean Algebra, i.e. B = {0, 1} 
 We use variables X, Y, Z, A, B, … and constants 0 and 1 

**Note “0” and “1” are also called identity elements 
 

 Binary operators  
 “+”  called “OR” 

 “OR” symbol  Z=X+Y 

 
 “OR” truth table 

X Y X+Y 
0 0 0 
0 1 1 
1 0 1 
1 1 1 

 
 Review the 74LS32 Data sheet on the website 

 

 “.”  called “AND” 

 AND symbol   Z=X.Y 

 
 “AND” truth table 

 
X Y X.Y 
0 0 0 
0 1 0 
1 0 0 
1 1 1 

 
 Review the 74LS08 Data sheet on the website 

 

 “ ” Called “NOT, Inversion, negation” 

X 

Y 
Z 

X 

Y 
Z 
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 “NOT” symbol  Z= X  =X’ (Also called the complement) 

 
 “NOT” truth table 

X Z=X’ 
0 1 
1 0 

 
 Review the 74LS04 Data sheet on the website 

 
 Order of Operation Precedence  (Same as decimal arithmetic) 

Highest to lowest order of Precedence for Binary Operator: “=”, “()”, “ ”, “.”, “+”  

Note:  
 Parentheses are used to force the operation order sequence much like decimal Algebra. 
 The equal sign “=”  is same as decimal algebra for assignment. 

 
 An expression is a combination of variables and binary operators  Z+ XY + X 
 
 The number of Literal is the total occurrences of all variables in an expression. 

For example f(x,y,z) = x+ y.x.z + x’.y’.z   is said to have 7 literals.  The number of literals typically 
used as a measure of implementation complexity. 

 
 Additional standard logic gates: 

 
 NOR is an OR gate with the output negated 

Review the 74LS02 Data sheet on the website 
 

 NAND is an AND gate with the output negated 
Review the 74LS00 Data sheet on the website 
 

 XOR (also called “Module 2 add” or “exclusive or”)  YXYXYX ..   
 “XOR” Symbol 

 
 “XOR” Truth Table 

Review the 74LS86 Data sheet on the website 
 

X Y YX   
0 0 0 
0 1 1 
1 0 1 
1 1 0 

X 

Y 
Z 

X Z 
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 When using three variables, the operation is performed on two at a time as shown below:  

ZYXZYX  )(  

 “XOR” is commonly used to check if there is an odd or even number of “1”s.  This check is 
called “parity”. Odd parity is when there are odd numbers of “1”s and even parity is when 
there are an even number of “1”s.  Parity check is used for single bit error detection.  
 

 XNOR (also called “equality coincidence” or “exclusive nor”)  𝑋 ⊕ 𝑌 = 𝑋. 𝑌 + 𝑋. 𝑌   
 
“XNOR” Truth Table 
 

X Y YX   
0 0 1 
0 1 0 
1 0 0 
1 1 1 

 
 When using three variables, operation is perform on two at a time as shown below: 

ZYXZYX  )(  

 XNOR is not commonly available as a standard stand alone chip. 
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2.3.  Huntington’s First Set of Postulates 

Postulates, Axioms or propositions are self-evident mathematical statements that are stated without 
proof.  The following Postulates will be used to develop Boolean Algebra. 
 

 P1a: If X and Y are in B, then X+Y is in B 
 P1b: If X and Y are in B, then XY is in B 

 
 P2a: There is an element 0 such that X+0 = X for every variable X. 
 P2b: There is an element 1 such that X1=X for every variable X. 

 
 P3a: X+Y = Y+X  (Commutative with respect to +) 
 P3b: XY = YX  (Commutative with respect to .) 

 
 P4a: X+YZ = (X+Y)(X+Z) (+ is distributive over .) 

 P4b: X(Y+Z)=XY+XZ  (. is distributive over +) 
 

 P5: For every variable X, there is a variable X  such that 

 a:  X + X  = 1 

 b:  X X   = 0 
 

 P6: There are at least two distinct elements in B. 
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2.4.  Principle of Duality 

 Dual of an expression is obtained by: 
 Interchanging  “0” and  “1” 
 Interchanging  “.” and  “+”  

 
 (Exp)D represent dual of (Exp)  examples: 

 (X+0) D = X.1 
 (X + Y.Z) D = X.(Y+Z)   “**Note: it is not equal to X.Y + Z 

 
 You may recognize that Huntington’s first set of Postulates are true for duals (a and b of each 

postulate) 
 



Digital Logic Design  Page 36 

2.5.  Boolean Functions 

 Pure form 
 X.Y.Z is called the product of terms when literals are ANDed together 
 X+Y+Z is called the sum of terms when literals are ORed together 

 
 Mixed forms 

 (X+Y).(Z+Y+X)  this form is called the product of sums form (POS form) 
 X.Y +  Y.Z  this form is called the sum of products form (SOP form) 

 
 Truth table for a function 

 
 Steps 

 Identify all possible combination of “1s” and “0s”. For an “n” variable function, there will 2n 
rows in the table counting from 0 to 2(n-1). 

 Evaluate the output function value for each set of input variable values. 
 

 Example  
Draw a system diagram and generate a truth table for the function, F(X, Y, Z) = X.Y + Y.Z + Z’.Y 
 

System Diagram 
 

 
 

Truth Table 
X  Y  Z F(X,Y,Z) 
0   0   0 
0   0   1 
0   1   0 
0   1   1 
1   0   0 
1    0   1 
1    1   0 
1   1   1 

0 
0 
1 
1 
0 
0 
1 
1 

 

 
System 

F(X, Y, Z) 

Output Input 

X 

Y 

Z 
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 Example – Basics of Digital Logic 
Develop a system diagram and truth table for two gates that ensure only one fish leaves the 
Outer Door at any one time.  Below is the physical diagram of the system: 
 

 
 

Aquarium 

Outer Door Inner Door 

Holding Area 

 Holding Area has a sensor with 2 bit output 
    ( 00: empty,  01:one fish,  10 & 11: more than one fish) 

 Each door has one input where logic “1” opens and logic “0” closes the door. 
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2.6.  Boolean Algebra Theorems 

 Purpose of Theorems 
The Theorems & Huntington’s Postulates are key in our ability to reduce the number of literal 
(variables) used in a function and therefore reduce the number of gates required to implement a given 
function.  Sometimes they are used to simply rearrange the expression so it is easier to implement. 
 

 Example: (X+Y)(X+Y )=X  
It is clear that right-hand-side requires fewer gates to implement compared to the left hand side. 
 

 Two methods available for proving theorems 
 Prove through Boolean Algebra 

Use the Huntington’s postulates or theorems already proved to show that both sides of theorem 
are the same. 
 

 Prove through Truth Tables 
Show that for all possible values on the left hand-side is equal to the right-hand side of the 
equation. This method works well for a small number of variables. 
 

 Theorems and proofs 
 Theorem 1    “ Double Complementation or Double Negation Theorem” 

a)   XX   
 

 Theorem 2 “Idempotency Theorem” 
a)   X+X = X  
b)   XX = X 
 

  Theorem 3 “Identity Element Theorem” 
a)  X + 1 = 1 
b)  X0  = 0 
 

 Theorem 4  “Absorption Theorem” 
a)   X + XY=X 
b)  X(X+Y) = X 
 

 Theorem 5 “Associative Theorem” 
a)  X + (Y+Z) = (X + Y) + Z 
b)  X(YZ) = (XY)Z 
 

 Theorem 6 “Adjacency Theorem” 

a)   XY + X Y  = X 

b)   (X + Y)(X + Y ) = X 
 

 Theorem 7 “Consensus Theorem” 

a)   XY + X Z + YZ = XY + X Z 

b)   (X + Y)( X  + Z)(Y + Z) = (X +  Y)( X  +  Z) 
 

 Theorem 8 “Simplification Theorem” 

a)   X +  X Y = X + Y 

b)   X( X  + Y) = XY 
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 Theorem 9 “DeMorgan’s Theorem (2-Variable form)” 

a)   YXYX .  

b)   YXYX   
 

 Theorem 10 “DeMorgan’s Theorem (General form)” 

a)   nn XXXXXX   2121  

b)   nn XXXXXX   .. 2121  

 
 Example of two type of Proofs (Truth Table and Algebraic) 

 Prove Theorem 8, “Simplification Theorem”. 
Hint: Use truth table 
 

 Prove Theorem 10, “DeMorgan’s Theorem (General form)”. 
Hint: Apply Theorem 9. 
 

 Utilizing Demorgan’s Theorem NAND and NOR gates may be represented using the other’s base 
signal as shown below (“not” circle indicates complement): 

 
Transforming from one form to another requires only two steps: 
 

1) Complement every input and output. 
2) Swap OR and AND gates. 

 
 Example:  Design an XOR using only NAND gates. 

F(A,B) = A  B 
 
Solution: 
  F(A,B) = A’.B + B’.A 
  Apply conversion rules “Complement every input and output; Swap ORs and ANDs” 
  F(A,B) = ((A’.B)’ . (B’.A)’)’ 
 

Gate Type 
NAND gate 
 
 
 
NOR gate 
 
 
 
AND gate 
 
 
OR gate 

 AND form OR form 

= 
 
 
 

= 
 
 

= 
 
 

= 
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B 

F(A,B) 

A 
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2.7. Canonical or Standard Form of Functions  

 Typically, a function has to be written in one of the two standard forms before the minimization step.  
The two standard forms are: 
 
 Standard Sum of Products (SOP) 
 Standard Product of Sums (POS) 

 
 Obtaining Standard Sum of Products (SOP) Forms of Functions 

In standard or canonical  SOP form, all the variables are present in each product term. 
 
 Example - for f(A,B) = A+B 

 
1) System Diagram 
 

 
 
2) Write the Truth table to see all the possible value of F(A,B) 
 
   Input           Output 
A       B       F(A,B)=A+B 
0        0    0 
0        1    1 
1        0    1 
1        1    1 
 
3) Write the full product term for all the possible combinations 
 

F(A,B) = F(0,0). BA. + F(0,1). BA + F(1,0). BA. + F(1,1). BA.  

F(A,B) = 0. BA.        + 1. BA          + 1. BA.         + 1. BA.  
 

F(A,B) =   1. BA  + 1. BA.  + 1. BA.   Canonical or Standard Form 
 
A standard product or “min-term” is a product of all independent input variables for a function that 

corresponds to a row of the truth table with output of 1.  For example, BA.  is a min term in the 
above example. 
 

  

System 

A 

B 
F(A,B) = A + B 
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 Let’s take another example from problem statement to truth table to min-terms and the resulting 
sum of products. 
 
Step 1) Understand the problem 
Write out an expression for the function that is true, when 2 out of 3 inputs are true.  Output is 
false for all other input combinations. 
 
Step 2) Develop a truth table for the function  
 

Input 
X   Y    Z 

Standard Product 
Terms (min-terms) 

Min-term 
Designators 

Output 
F 

0    0     0 ZYX ..  m0 F(0,0,0) = F0 = 0 

0    0     1 ZYX ..  m1 F(0,0,1) = F1 = 0 

0    1     0 ZYX ..  m2 F(0,1,0) = F2 = 0 

0    1     1 X .Y.Z m3 F(0,1,1) = F3 = 1 

1    0     0 X.Y Z.  m4 F(1,0,0) = F4 = 0 

1    0     1 X.Y .Z m5 F(1,0,1) = F5 = 1 

1    1     0 X.Y Z.  m6 F(1,1,0) = F6 = 1 

1    1    1 XYZ m7 F(1,1,1) = F7 = 0 
 
Note:  

1) The min-term subscript corresponds to the binary value of the input. 
2) All three independent input variables are present in each min-term. 
3) When input is 1, the corresponding variable appears in the Min-term, otherwise the 

variable is complemented in the min-term. 
 

Step 3) Write the algebraic function equivalent to the truth table by rule: 
 
If the output function (F) is 1 for the “min-term”, then the value appears in the algebraic form of 
the expression. 
  
F(X, Y, Z) = F0.m0 + F1.m1 + F2.m2 + F3.m3 + F4.m4 + F5.m5 + F6.m6 + F7.m7  

                = 


7

0

).(
i

ii mF  Generalized compact Min-term form of the function 

                = 0.m0 + 0.m1 + 0.m2 + 1.m3 + 0.m4 + 1.m5 + 1.m6 + 0.m7 
F(X, Y, Z) = m3 + m5 + m6 Compact min-term form of the function 

 

F(X, Y, Z) =  )6,5,3(m    Explicit Compact Min-term form for 1s of the function 

F(X, Y, Z) =  )6,5,3(    Implicit Compact Min-term form for 1s of the function 

 
By the way, the Not (Complement) of F can be written as (write the missing min-terms): 

F  (X, Y, Z)  =  )7,4,2,1,0(m   Explicit Compact Min-term form for 0s of the original function 

F (X, Y, Z)  =  )7,4,2,1,0(   Implicit Compact Min-term form for 0s of the original function 

 
 Obtaining the Standard Products of Sum (POS) Form of Functions 

Although POS is not used as much, there are times where the POS form is more efficient than SOP. 
 As the name applies, all three independent variables are present in either complemented or un-

complemented form.  
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 For each pattern, if the independent variable value is 0, it is un-complemented, and if 1, it is 
complemented in the max-term which is the OR of all independent variables. 

For example:  X=1, Y=1, Z=0  M6 = ZYX   
 

 Each max-term will result in the output for that term being zero. 
 

 Here is an example for a 3-input system: 
 
Step 1) Understand the problem 

Write the expression for a function that is true when more than 1 input is true, otherwise the 
function is 0. 

 
Step 2) Develop a truth table for the function and write max-terms: 

All independent variables must be present in each Max-term 
  *  It is complemented if the variable value is 1.  
  *  It is un-complemented if the variable value is  0. 
 
 
Input 

X   Y    Z 
Standard Sum 

Terms (Max-terms) 
Max-term 

Designators 
Output 

F 
0    0     0 X+Y+Z M0 F(0,0,0) = F0 = 0 
0    0     1 ZYX   M1 F(0,0,1) = F1 = 0 

0    1     0 ZYX   M2  F(0,1,0) = F2 = 0 

0    1     1 ZYX   M3 F(0,1,1) = F3 = 1 

1    0     0 ZYX   M4 F(1,0,0) = F4 = 0 

1    0     1 ZYX   M5 F(1,0,1) = F5 = 1 

1    1     0 ZYX   M6 F(1,1,0) = F6 = 1 

1     1    1 ZYX   M7 F(1,1,1) = F7 = 1 

 
 

Step 3) Write the algebraic function equivalent to the truth table by rule: 
 
For Compact Max-term Form: 
If the Output function (F) is 0 for the max-term, then the value appears in the algebraic form 
of the expression. 
  
F(X,Y,Z) = (F0 + M0). (F1 + M1). (F2 + M2). (F3 + M3). (F4 + M4). (F5 + M5). (F6 + M6). (F7 + M7) 

                = )(
7

0
ii

i
MF 


 Generalized compact max-term form of the function 

 
Note the when Fi=1, the max-term is not needed --- for our example: 
    F(X,Y,Z) = (0 + M0). (0 + M1). (0 + M2). (1 + M3). (0 + M4). (1 + M5). (1 + M6). (1 + M7) 
    F(X,Y,Z) = M0 . M1 . M2 . M4 Compact Max-term form of the function 
 
Other forms: 
F(X,Y,Z)   = )4,2,1,0(M    Explicit Compact max-term form for 1s of the function 

F(X,Y,Z)  = )4,2,1,0(    Implicit Compact max-term form for 1s of the function 

 
 The Not  (Complement) of  F can be written by writing the missing max-terms for Un-

complemented F:  
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F  (X,Y,Z)   = )7,6,5,3(M    Explicit Compact max-term form for 0s of the function 

F (X,Y,Z)  = )7,6,5,3(    Implicit Compact max-term form for 0s of the function 

 

 Relationship between Min-terms and Max-terms 

Min-terms and Max-terms are complements of each other :      iiii mMandmM   

 DeMorgan’s Theorem is key to proving the min-term/max-term relationship:   
 

a)   nn XXXXXX   2121  

b)   nn XXXXXX   .. 2121  

 
 Examples: 

Given max-term M6 = ZYX  . , find min-term m6. 
 
1) Since it is a max-term, when X=1, Y=1 and Z=0 Then F(X,Y,Z) = 0 
2) To convert to Min-term we can apply DeMorgan’s Theorem which in practice is dividing up 
the overbar. This means that the cross bar can be divided across its subpart while accepting the 
rules: 
 

      .. and  

 
Let’s see how it applies to our example. 
 

We know that iiii mMandmM   so 

 

ZYXZYXZYXmtermMin i ...   

 

 Example:  Apply the overbar to finding Complement of F if F(X,Y,Z) = )).(.( ZYYX   

 
Solution: 
Apply the DeMorgan’s Theorem in the form of “Dividing up the Overbar”. 

ZYYXZYYXZYYXZYYXZYXF ..).().()(.)()).((),,(   

 
 

 Example 

Write Standard SOP and POS form for f(x3, x2, x1, x0) =  )15,12,7,0(  

Solution: 
 
 
 
 
 
 
 
 
 

 Converting between compact forms of functions 
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 We can extend the relationship between max-terms and min-terms to include SOP (Sum of 
Products) and Products of Sum (POS): 
 

 



and

mMandmM iiii
 

 
 Example: 

Write the F(A,B,C)=  )6,5,3,0( in the compact min-term form. 

 

We know that   Therefore 

 

)).().().(()6,5,3,0()6,5,3,0(),,( CBACBACBACBACBAF  
 
Since these terms are the 0’s of the function, if we write the Min-terms that are not present then 
we will have the 1’s of the function: 

 CBACBACBACBACBAF ........)7,4,2,1(),,(   

  
 Example 

Use only NAND gates to implement f(a2, a1, a0) = a2.a1.a0 + a2.a1’.a0’ +a2’.a1’.a0 
  
Solution: 
 
 
 
 
 
 

 Example 
Use only NOR gates to implement f(a2, a1, a0) = (a2’+a1+a0’) + (a2’+a1’+a0) + (a2’+a1+a0) 
  
Solution: 
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2.8.  Methods of Function Minimization (reducing the number of literals in an expression) 

 
It is important to minimize the function prior to implementation.  Minimization of literals and operators 
reduces the number of gates needed to implement the function therefore reducing the cost of 
implementation.  In this section Systematic Algebraic Reduction (SAR) minimization techniques will be 
discussed. The SAR technique is effective for automation but tedious for human use.  On the other hand, 
Karnaugh Map (K-Map) that will be discussed later is a visual tool that is more effect for human use to 
minimize functions. 
. 
. 
 Systematic Algebraic Reduction (SAR) technique uses algebraic theorems and postulates. Although 

you could start applying various algorithms until you find one that reduces the function, our goal is to 
introduce systematic techniques that can be described in a step-by-step process (algorithm) and 
consistently applied. 
 
 Usage 

Most Computer Aided Design (CAD) packages use the SAR technique for function minimization.  
Although SAR is not guaranteed to reduce the function to a minimum, it is the most effective 
algorithm available. 
 

 Process 
Here is the step-by-step algorithm for a Systematic Algebraic Reduction(SAR): 

(1) Expand the function into its Standard sum of products (SOP) form 
(Include all variables; writing variables in order in all terms makes it easier to recognize 
patterns.) 
 

(2) Compare all pairs of products for: 

(a)  Adjacency Theorem: “ 1exp2exp.1exp2exp.1exp  ” 

and 
(b) Idempotency Theorem: “ expexpexp  ” 

 
**Note: The reduction process may have to be repeated a number of times. 
 

(3) Once you have done all reductions possible in step 2, See if the Consensus Theorem 
applies 

3exp.1exp2exp.1exp3exp.2exp3exp.1exp2exp.1exp   

 

 Example: Using SAR, minimize the function F= )).().(( CBCACBA   

Solution: 
1) Use the truth table to derive the min-terms 

 
A   B  C F 
0   0   0 0 
0   0   1 1 
0   1   0 0 
0   1   1 1 
1   0   0 0 
1   0   1 1 
1   1   0 0 
1   1   1 1 

 
2)  Write the function in compact Min-term form 
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     F = CBACBACBACBA ........   
 
3) Apply Adjacency Theorem to all pairs as possible. 
    (another way is drawing double head arrows showing relationship between two terms) 
 

    

CACBACBATerm

CBCBACBATerm

AppicableNotTerm

ApplicableNotTerm

CBCBACBATerm

CACBACBATerm

.....)4&3(

.....)4&2(

)3&2(

)4&1(

.....)3&1(

.....)2&1(












 

  
Therefore: 

   F=  CACBCBCA ....   
 
4) Perform a second pass of Adjacency theorem. 
 

  F=  CACBCBCA ....   

   
 Therefore: 
  F= C + C = C 
 

In this case we did not need to apply the Consensus Theorem since the answer cannot be 
simplified further. 

 
 In general, Systematic Algebraic Reduction (SAR) methods are best suited for computer 

programming.  K-maps, which will be described in the next section are best suited for human use 
up to 4 variables since it is graphic. 
 

c

C  
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2.9.  Karnaugh-map or K-map 

K-map is the best tool for minimization of five or fewer variables functions for humans.  K-maps are 
graphic and require pattern-matching which is one of human’s strongest abilities.  Many believe that 
humans solve problems by creative pattern-matching. 
  

 K-map is a number of squares which are labeled using reflective gray code (each code is only 1 
change from an adjacent code).  For a given square, the user enters 0 or 1 corresponding to the 
function value at the inputs represented by the labels. 

 
  Here are K-map examples for 2, 3, and 4 Variables: 

 
 Each of the squares will contain a 1 if the function is 1 (min-term locations) and 0 otherwise. You 

may also use “-“, which reflects the “don’t care” (can be 0 or 1, whichever gives us the lowest 
Literal Count, LC). 
 
The Literal Count (LC) is proportional to the number of gates needed during the implementation, 
so the less the better. 
 

 Here is the location of each min-term on a Karnaugh-Map:  

 
 

0 1 

2 3 

0     1 

0 

1 

 
F(A,B)=AB 
2-Variables 

B 
A 0 1 

2 3 

0     1 

00 

01 

11 

10 

 
F(A,B,C) 

    3-Variables 

C 
AB 

6 7 

4 5 

0 1 

4 5 

00   01    11   10 

00 

01 

11 

10 

F(A,B,C,D) 
4-Variables 

CD 
AB 

3 2 

7 6 

  

  

 

  

 12   13    15    14 

8      9      11   10 

A B C D    Min-term,m 

0  0  0  0 0 
0  0  0  1 1 
0  0  1  0 2 
0  0  1  1 3 
0  1  0  0  4 
0  1  0  1   5 
0  1  1  0 6 
0  1  1  1 7 
1  0  0  0  8 
1  0  0  1 9 
1  0  1  0          10 
1  0  1  1          11 
1  1  0  0          12 
1  1  0  1          13 
1  1  1  0          14 
1  1  1  1          15 

 
F(A,B) 

2-Variables 

 
F(A,B,C) 

3-Variables 
F(A,B,C,D) 
4-Variables 

0 0 

0 1 

0     1 

0 

1 

B 
A 1 0 

0 0 

0     1 
C 

AB 

0 1 

0 0 

1 1 

0 0 

00   01    11   10 

00 

01 

11 

10 

CD 
AB 

0 1 

1 0 

1 1 

1 0 

0 1 

0 1 

00 

01 

11 

10 
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 Example: Use K-map to minimize F(A,B,C) = CBACBACBACBA ........    
Solution:  
1. Use a truth table to identify all the Min-terms (Over time you can do this mentally, so it would 

not be necessary to draw it). 
 

A   B  C F Min-term, mi 
0   0   0 0 0 
0   0   1 1 1 
0   1   0 0 2 
0   1   1 1 3 
1   0   0 0 4 
1   0   1 1 5 
1   1   0 0 6 
1   1   1 1 7 

 
2. Fill in the K-map: 

a. Select the K-Map that matches the number of variables in your function,  (3 for the 
Example) 

b. Draw the K-map (remember the labels are reflective Gray Code) 
c. Enter the value of the function for the corresponding min-term. If the value of the 

function is unspecified then enter – which means don’t care. 
 

 
3. The next step is to group as many neighboring ones as possible. Cells with one variable is 

complemented are referred to as neighboring cells: 
a. Grouping adjacent min-terms (boxes) is applying the Adjacency theorem graphically, 

i.e. 

   CCACA  .. . 
b. The goal is to get as large a grouping of 1s as possible  

   (Must form a full rectangle – cannot group diagonally) 

0 1 

0 1 

0     1 

00 

01 

11 

10 

 
F(A,B,C) 

3-Variables 

C 
AB 

0 1 

0 1 
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4. For each identified group, look to see which variable has a unique value. In this case,  
F(A,B,C) = C since F’s value is not dependent on the value of A and B.  

 
 More K-map related definitions: 

 Example: A function with the following K-Map 

 
 An Implicant is the product term where the function is evaluated to 1 or complemented to 0. An 

Implicant implies the term of the function is 1 or complemented to 0.  Each square with a 1 for the 
function is called an implicant (p). If the complement of the function is being discussed, then 0’s 
are called implicants (r). 
Note: To find the complement of F, apply the same rules to 0 entries in the K-map instead of 1. 
 

 A Prime Implicant of a function is a rectangular (each side is powers of 2) group of product 
terms that is not completely contained in a single larger implicant. 
 

 An Essential Prime Implicant of a function is a product term that provides the only coverage for 
a given min-term and must be used in the set of product terms to express a given function in 
minimum form. 
 

 An Optional Prime Implicant of a function is a product term that provides an alternate covering 
for a given Min-term and may be used in the set of product terms to express a function in a 
minimum form. Some functions can be represented in a minimum form in more than one way 
because of optional prime implicants. 
 

 A Redundant Prime Implicant or Nonessential Prime Implicant of a function is a product term 
that represents a square that is completely covered by other essential or optional prime 

1 1 

0 1 

00   01    11   10 

00 

01 

11 

10 

F(A,B,C,D) 
4-Variables 

CD 
AB 

0 0 

1 0 

0 1 

1 0 

0 

0 0 

1 

Redundant Implicants 

Essential Prime  
Implicant 

(Optional) Prime 
Implicant 

Minimized function = CBADBDCB .....   

0 1 

0 1 

0     1 

00 

01 

11 

10 

 
F(A,B,C) 

3-Variables 

C 
AB 

0 1 

0 1 
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Implicants.  
 

 Example: Write the minimized SOP function represented by the following K-Map 

 
Solution:   
 
 
 
 
 
 
 
 
 

 Example:  
use K-map to write the minimized SOP and POS forms of  the following function: 

  )27,26,25,24,8,7,6,5,4,3,2,1,0(),,,,( EDCBAF  

 
Solution:   
 
 
 
 
 
 
 
 
Example:  
use K-map to write the minimized SOP and POS forms of  the following function: 

  )15,13,10,8,2,0(),,,,( EDCBAF  

 
Solution:   
 
 
 
 
 
 
 
 
 
 

  

1 1 

1 1 

00   01    11   10 

00 

01 

11 

10 

CD 
AB 

0 1 

0 0 

0 0 

1 0 

1 1 

1 1 



Digital Logic Design  Page 52 

2.10.  Special Case: “Don’t Care” Terms  

 In K-map, we can use the unspecified values of a function “don’t care” as 1 or 0, allowing us to create 
larger cubes to write products with smaller Literal Count (LCs) 
 Example: F(W,X,Y,Z) with unspecified values (don’t cares, “-“) 

 
 
We have an option of assuming “-“ as 0 or 1 whichever ends up with a lower Literal Count (LC) 
and therefore lower hardware (gates) cost during the implementation phase.  Here is one 
minimized function representing the K-Map function: 
 

 
F(W,X,Y,Z) = YXWZYZWZYX ......    
For this function the Literal Count (LC) is 10. 
 
Sometimes it makes sense to use the 0s and write the complement to get a lower LC. 

 
),,,( ZYXWF  = YWZXZYW ....    

For this function, the Literal Count (LC) is 7. 
 
Function in POS form 

),,,( ZYXWF  = )').().(''( YWZXZYW   

 
 Representing “don’t care” min-terms in compact form. 

  )5,4,1(md    “md” refers to “don’t care” min-terms. 

0 1 

1 1 

00   01    11   10 

00 

01 

11 

10 

YZ 
WX 

- - 

- 0 

1 0 

0 - 

1 1 

1 0 

0 1 

1 1 

00   01    11   10 

00 

01 

11 

10 

YZ 
WX 

- - 

- 0 

1 0 

0 - 

1 1 

1 0 

0 1 

1 1 

00   01    11   10 

00 

01 

11 

10 

YZ 
WX 

- - 

- 0 

1 0 

0 - 

1 1 

1 0 
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2.11.  XOR Properties and Applications 

 K-map patterns 
Checkerboard pattern: alternating cells and diagonal cells of 1s and 0s on a K-map is a sign of XOR 
or XNOR. 

 
 XOR properties: 

 Commutative  
ABCCBA   

 
 Associative 

ABCCBA  )()(  

 
 Rubber band effect (The bar can be put anywhere and the result remains unchanged) 

BABABABA   
 

 XOR is 1 when there is an odd number of 1’s in the XOR operands 
Note: This feature is used to do single bit error checking, which is adding an extra bit to the 
data to ensure that the number of 1’s is odd. (This is known as odd parity). 
 

 XNOR is 1 when there is an even number of 1’s in the XNOR operands 
Note that this feature is used to do single bit error checking, which is adding an extra bit to 
the data to ensure that the number of 1’s is even. (This is known as even parity). 
 

 XNOR 4-bit Comparator Design 
 

 
 

A0 
B0 

1 if A0 = B0 

A1 
B1 

A2 
B2 

A3 
B3 

A=B  1 if A0 = B0 and  
A1 = B1 and A2 = B2  
and A3 = B3 . 

0 1 

0 1 

1 0 

1 0 

AB 
C 0    1 

00 

01 

11 

10 

0 1 

0 0 

1 0 

0 0 

AB 
C 0    1 

00 

01 

11 

10 

0 0 

0 0 

1 1 

1 1 

AB 
C 0    1 

00 

01 

11 

10 

Checkerboard pattern 
F = CBA   

Diagonal Cells 

F = ).( CBA   

Alternating Cells 
F = BA  
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2.12.  Additional Resources 

 
 Wakerly, I. Digital Design. (2006) Prentice Hall  

Chapter 4 “Combinational Logic Design Principles” 
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2.13.  Problems 

Refer to www.EngrCS.com or online course page for complete solved and unsolved problem set. 
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Chapter 3.  Analyzing and Synthesizing Combinational Logic Circuits 
 

3.1.  Key concepts and Overview 

 
 Standard Logic and Schematic Layout 

 Designing Logic Circuits 

 Compressing Truth Tables & K-Maps 

 Glitches and Hazards 

 Types of Functions and Delays 

 Beyond Standard Logic (Encoders, Decoders, PLD, GAL, ROM, PROM, …) 

 Additional Resources 

 Problems 
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3.2.  Standard Logic and Schematic Layout (Review) 

This section describes Small Scale Integration circuits which are commonly used for smaller projects. It 
also provides an understanding of the basics of computer design. 
 
Basically, computers regardless of complexity, can be designed using these simple gates as building 
blocks.  We will start by discussing the most fundamental gates which are AND, OR and NOT. 
 
 
 AND Function (F=A.B) 

 
 Truth Table  

A B F 
0 0 0 
0 1 0 
1 0 0 
1 1 1 

 
 Symbols & Operation 

 Recommendation is to use the shapes for simple gates; and box (non-shape) for more 
complex logic 

 When using in a schematic mark the IC ID (D#) and Pin # on the schematics 
 A couple of other representations using switches (Relays, Transistors) 

 

 
 

U
A 
B 

F 

A 
 
B 

F 
& 
 
U
1 

F 

A B 

n.o. n.o. 

Vcc = H = 1 

n.o. 

n.o. 

n.c. n.c. 

GND = L = 0 

F    0=L=VL 

         1=H=VH 
 

IEEE:  Shape Distinctive Graphics 
Symbol 

IEC:  Non-Shape Distinctive 
Graphics Symbol 

Pass Logic Switching Circuit 
   0: Button is  Not pressed 
   1: Button is pressed 

Regenerative Logic Switching 
Circuit 

A 
 

B 
 

1 
2 

3 

1 

2 
3 
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 Different Switches   
Instead of mechanical switches, we can also use electronic switches: 
 
 A normally open (n.o.) switch is closed when pressed.  

 
 A normally close (n.c.) switch is open when pressed 

 
 

 Example of setting up a LED and a switch 

 
 

U
A 
B 

F 1 
2 

3 

GND 

GND 

R 

 R 

F=1  LED on  
F=0  LED off  

Vcc 

Switch open  F=1 
Switch closed  F=0 

Note:  Typically R=1 k is used.  

N
 
 

- 
V 
+ 

When Current Flows the 
Relay opens 

Spring 

contact 

Relay as n.c. 

Gate 

Source 

Drain 

Base 

Emitter 

Collector 

PMOS FET as n.c. 
Négative Channel Métal 

Oxide Semiconductor 
 

Field Effect Transistor 

PNP BJT as n.c. 
Bipolar Junction 

Transistors 

N
 
 

- 
V 
+ 

When Current Flows the Relay 
closes 

Spring 

contact 

Relay as n.o. 
NMOS FET as n.o. 

Positive Channel Metal Oxide 
Semiconductor 

 
Field Effect Transistor 

NPN BJT as n.o. 
 

Bipolar Junction Transistors 

Gate 

Drain 

Source 

Base 

Collector 

Emitter 
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 Physical packaging 
 

 
 

Through Hole Device ( 2 to 100 pins) 
 
 
 

 
Surface Mount Device Package (2 to 100 pins) 

 
  
 

 
PIN Grid Array (>100 pins) 
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 Number of possible functions for an n-variable input equals )2(2
n

  

For example, a device with 2 input may have one of the possible )2( 2

2 =24 =16 functions. 
 

2-Input 
X  Y F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 
0   0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 
0   1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 
1   0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 
1   1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 
 GND And      OR        Vcc 

 
 Analyzing Logic Circuits 

 Draw a system diagram and identify input/output signals 

 
 Based on the schematic, write out the Boolean algebraic equation 

f(x, y, z) = ? 
 

 Based on the equation, do the K-map or truth table 
 

 Review the truth table to understand the function of the circuit 
 

 Example 
Analyze the following circuit: 

 
 System Diagram 

 

System 
A 
 
 
B 

F(A,B) 

B 

F(A,B) 

A 

System 
X1 
…. 
 
Xn 

Y1 
…. 
 
Yn 
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 Algebraic equation 
F(A,B) = {(A’.B)’.(A.B’)’}’ 
 

 Truth Table 
A B F(A,B) 
0 0 0 
0 1 1 
1 0 1 
1 1 0 
 

 This circuit is implementing an exclusive OR. 
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3.3.  Designing Logic Circuits 

The process of combinational logic design is best described in six steps: 
 

1) Draw the system diagram and identify input and output variables. 
2) Write out the truth table for the function. 
3) Use K-maps or CAD to minimize the function and write the algebraic function. 
4) Identify the logic gates required and draw the schematic to implement the terms of the 

algebraic function.  The schematic should include: 
 Designer and project name. 
 Component identification and pin numbers. 
 List of all the pins that are connected to Vcc and Ground, and are not use. 

All Connecting lines must be either vertical or horizontal (No diagonal or curved lines).  
Additionally, a dot is used to mark an actual connection when two lines cross over each 
other. 

 
Note: Hardware Description languages such as VHDL or Verilog HDL or State CAD by Visual 
Software Solutions, can also be used to document the design. 
 

5) Implement (pay attention to layout and ease of support/use). 
6) Test (each design must have a test plan). 

 
Remember that the design process is an iterative process;  it is important to use the learning from 
later steps of the design process to improve earlier work.  The best designs typically have many 
design iterations before the final design has been completed. 

 
 Example 
Design a 4-key digital lock that can be opened only when every other keys are pressed. 
 

Project Name 

Designer Name 

Date 

ID Component Desc. No Conn. Vcc Gnd 
U1 U1, 74LS32 4-6, 8-13 14 7 

 

X Y 

Z U1 
3 

1 

2 

Vcc 

Gnd 

1k 1k 
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Solution: 
 

1) Draw the system diagram and Identify input and output variables.. 
 

 
 Input and output value definition: 

Ki =1 when key “i” is pressed and Ki =0 when key “i” is not pressed. 
L0=1 causes the lock to open 
 

2) Write out the truth table for the function: 
 
  Input Output 

K0 K1 K2 K3 L0 
0 0 0 0 0 
0 0 0 1 0 
0 0 1 0 0 
0 0 1 1 0 
0 1 0 0 0 
0 1 0 1 1 
0 1 1 0 0 
0 1 1 1 0 
1 0 0 0 0 
1 0 0 1 0 
1 0 1 0 1 
1 0 1 1 0 
1 1 0 0 0 
1 1 0 1 0 
1 1 1 0 0 
1 1 1 1 0 

 
3) Use K-map or CAD to minimize the function and write the algebraic function. 

 
 
 
 
 

 
 

Key 
Controller 

K0 
 
K1 
 
K2 
 
K3 

L0 

K0 K1 K2 K3 

Keypad 
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4) Identify the logic gates required and draw the schematic to implement the terms of the 
algebraic function. 

 
 

5) Implement (pay attention to layout and ease of support/use). 
 

6) Test (outline test plan). 
 
 

 Example 
Design a 4-key digital lock that can be opened only when 2 or more adjacent keys are pressed. 
 

 
 
Solution: Student Exercise. 
 

K0 K1 K2 K3 

Keypad 

Project: 

Designer: 

Date: 

ID Component Desc. No Conn. Vcc Gnd 
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 Fan-out and Fan-in 
1) Fan-out:  The number of gate inputs that can be driven by a single output (for LS chips. the 

fan-out limit is 20) 
2) Fan-in:  The number of gate  inputs that may be connected together.  Typically, fan-out is the 

limitation factor for LS.  
 
 

 Using NAND or NOR gates 
NAND and NOR gates can be substituted for each other.  Basically, NOR implements POS and 
NAND implements SOP.  A function can equally be written as POS or SOP. 
 
We will explore NAND gates here and similar concepts also apply to NOR gates. 
 

 NAND is one the most desirable basic gates for three reasons: 
 
1) NAND gates are faster than other gates such as AND. 
2) NAND gates can be used to make all other gates such as inverters, ANDs and ORs 

(Demorgan’s Theorem is the basis of this statement.)   
 
Therefore NAND is said to be “functionally complete” since it can be used to build any other 
function.  Below are examples of Inverter and OR function implementation. 

 
3) NANDs are available in more variety (#of input) than AND, OR gates 

 
 

INVERTER OR 
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3.4.  Combinational Logic Analysis and Design 

Below is a summary of design and analysis process steps for a combinational logic device: 
 

 

Device 
Schematics Functional 

Definition 

Design Process 
1) System Diagram 
2) Truth Table 
3) K-Map 
4) Ouput Expression 
5) Schematics 

Analysis Process 
1) System Diagram 
2) Output Expression 
3) Truth Table 
4) Functional Definition 
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3.5.  Compressing Truth Tables and K-maps 

 
 The process of compressing truth tables. 

 Truth table compression is done by: 
1) Row compression(use OR function). 

 
A B F2 F2c 
0 0 0 F2(0,B)=0 
0 1 0 
1 0 1 F2(1,B)=

B  1 1 0 
 

In the above table, we are applying Shannon’s Expansion Theorem 

BBBBFBBFBF  0.1.)1(..)0(.'2  which can be compressed to 

 
A F2 c 
0 0 
1 B  

 
 

2) In general, any truth table can be compressed by applying the Shannon’s Expansion 
Theorem with respect to the least significant bit, as shown below: 

  
A B C F3 F3 c 
0 0 0 0 0 
0 0 1 0 
0 1 0 0 C  
0 1 1 1 
1 0 0 1 1 
1 0 1 1 
1 1 0 1 C  
1 1 1 0 

 
So we can compress it to 

 
A B F3 c 
0 0 0 
0 1 C  
1 0 1 

1 1 C  
 

 Example 
Compress function F(x,y,z) = Σ(1,3,6,7): 
  a) about z 
  b) about x 
 a) about x, y & z 
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 The concept of compressing around a variable using Shannon’s Expansion Theorem also applies 
to K-maps. The example below uses C as the reference variable: 

 
 4-variable (multivariable) expression of K-map Compression. 

 

 
 
 Plotting, Filling, and Reducing Compressed K-maps 

 The steps to compress a K-map are: 
(1) Plot the truth table and then compressed K-map. 
(2) Choose cube sizes that result in minimum expressions for the function by covering each 

map-entered variable separately, treating other map-entered variables as 0s and all 1s as 
“don’t cares”. 

(3) Choose cube sizes that result in minimum expressions for the function by covering the 1s 
in the map that are not complementary-covered. 

WX F 
0 0  Y  
0 1   ZYZY ..   
1 1   ZYZY ..   
1 0   ZY.  

W  X  Y  Z     F 

 0  0  0  0     1 
 0  0  0  1     1 
 0  0  1  0     0 
 0  0  1  1     0 
 0  1  0  0     1 
 0  1  0  1     0 
 0  1  1  0     0 
 0  1  1  1     1 
 1  0  0  0     1 
 1  0  0  1     0 
 1  0  1  0     0 
 1  0  1  1     0 
 1  1  0  0     1 
 1  1  0  1     0 
 1  1  1  0     0 
 1  1  1  1     1 
 

1 1 

1 0 
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0 0 

1 0 

1 0 

1 0 

1 0 

0 0 

1 0 

Z  Z 

0     1 
Y 

WX 

 Z 

 0 

00 

01 

11 

10 

Compare Compare 

Z  

Z  

Compare 

0 0 

0 1 

0     1 
C 

AB 

1 0 

1 1 

00 

01 

11 

10 

O 

C 

AB 

C

1 

00 

01 

11 

10 

K-map 
Compressed K-map 

Compare 
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 Example of plotting, filling and reducing a compressed K-map directly from the compressed K-
map and expanding to an uncompressed form. 

 
 

 A 6-variable example of compressed K-map is described by: 

  )13().15,14,.12,7,.6,5,4,.1,.0(),,,,,( mdZYZYYZYDCBAF  

Where m = m(A,B,C,D) 
 
Minimize the function. 

 

AB    CD 00    01   11    10 

00 

01   

11  

10 

Y 0
  

0 Y

1 1
  

Z 1 

Y Z
  

1 - 

0 0
  

0 0
- 

AB    CD 00    01   11    10 

00 

01  

11  

10 Step1. Compressed K-Map Step 3. 
Map-entered variable  0 
Complementary-covered 1  don’t care 
1   1   &   0   0 
 

Step 2.  
1  don’t care 
 0   0 
No change to Variables 
  
 
Implicants: Group variables 
Individually  

AB    CD 00    01   11    10 

00 

01   

11  

10 

Y 0
  

0 Y
- - Z - 

Y Z
  

- - 

0 0 0 0 

p2 p3 

p1 

0 0
  

0 0 

- 1
  

0 - 

0 0
  

1 - 

0 0
  

0 0 P4 

p5 

0 

Z 

1 

Z

XY 

00 
 
01 
 
11 
 
10 

0 

0 

1 

1 

XY     Z 

00 
 
01 
 
11 
 
10 

0 

1 

1 

0 

0        1 

Compressed K-Map Uncompressed K-
Map 

Definition: A complementary covered 1 in a compressed K-map is a 1 that is covered 
with a map-entered variable and covered again with the complement same map-
entered variable. 

p3 = X.Y  
(Redundant Prime Implicant) 

p1 = Y.Z 

p2 = ZX .  

F(X,Y,Z)= Y.Z+X. Z  
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 F(A,B,C,D,Y,Z) = p1 + p2 + p3 + p4 + p5 = DBADCBAYCBYCAZCB ...........   
 
Although you can use the compressed K-map and apply both steps, it is recommend that you 
draw both graphs until you are comfortable with the process. 
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3.6.  Glitches and Their Causes 

 
 A glitch is a momentary error condition on the output caused by unequal signal paths delays in the 

circuit.  This may appear as an additional pulse high or low that will go away once the circuit reaches 
a steady state condition (after the signal has propagated through the circuit completely) 
 
 Glitches can occur when a hazard condition exists (Function and Logic Hazards) 

 
1) Functional Hazard 

 Exists when there is a problem due to two or more inputs are changing at the same time. 
 May be static when output is not changing or dynamic when the output changes. 
 Cannot be removed by additional circuitry 

 
2) Logic Hazards 

(1) Exists when there is a problem due to a single input change. 
(2) May be static when output is not changing or dynamic when the output changes. 
(3) Can be removed by additional circuitry 

 

 Example:  Use Function F(A,B,C)= CBCA ..   to show both function and logic static hazards 
”Static means before and after the Glitch the output is the same” 
(User DeMorgan’s Theorem to use only NAND Gates) 
 
Step 1.  Generate a K-map and draw a schematic.  Both of these drawings will assist in 
identifying unequal propagation path and, therefore, delays through the circuit. 
 

 
 
Step 2.  Take a look at any logic static hazards that exist and if they may cause a glitch. 
Note: when a single input is changing. 
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Step 3.  Take a look at any Function Static hazards that exist, and if they may cause a Glitch. 

Hint: Look for two or more input changing simultaneously. 

 
**Note: A system hazard does not have any impact on the functionality if: 

 The inputs are not changed to trigger the hazard condition. 
or 

 The output will not be used until the input is stabilized. 
 

00 

01 

11 

10 

0     1 A
C 

M4(100)  m3 (011) 
Function static Hazard 

A 

B 

C 

C1 

F 

During NAND Propagation delay C=C1=0 therefore F=0 during the delay which is a Logic 0 Glitch. 

F= 1 1  
so is a static 1 hazard logic 0 glitch 

16 

00 01 

02 13 

17 

14 05 

Side Bar 
If F=0  0 but has a high glitch, then it is 
called static 0 hazard. For example, m0 
to m5. 

F Logic 1 glitch 
 
F= 0  0 so static 0 
hazard 

00 

01 

11 

10 

0        1 A
C 

16 

00 01 

02 13 

17 

14 05 

m7 (111)  m6 (110) 
Logic static Hazard 

A 

B 

C 

C1 

F 

During NAND propagation delay C=C1=0; therefore 
F=0 during the delay. This is a Logic 0 Glitch. 

To remove this logic static 
hazard, add a term that covers 
both m6 & m7 
 

00 

01 

11 

10 

0      1 AB 

1

0 0

0 1

1

1 0

F(A,B,C)= BACBCA ...   
This is a logic hazard-free 
function 
The process is called the Chain 
Link Rule. 

C 
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 Dynamic Hazards 
A dynamic hazard occurs when an output changes from 0 to 1 or from 1 to 0. 
(in static hazard case: output before and after the glitch was the same) 

 
 Typically dynamic hazards are produced by multi-level or cascading logic circuits 

 
 Example F= CBA   which means F=1 when odd number of inputs are 1.  Identify 

dynamic hazards in this circuit. 
 
Step 1. Do the K-map  

 
Depending on the amount delay through each gate, you may or may not have a dynamic 
hazard.  Typically, simulation software such as B2 Logic , PSpice, and Electronic Work 
Bench is used to compare maximum and minimum propagation delay for each component to 
find any dynamic hazards. 
 
If we assume the right amount of delay through the gate, it can be shown that we can cause 
dynamic hazards in the following paths:  

 
Dynamic hazards are by far the hardest problem to identify.  Once the hazards are identified, strategic 
delays can be implemented to correct the problems. 
 

Logic 1 glitch 

Cell 5 to 2 or Cell 6 to 1 
causes Dynamic 1 to 0 hazard 

F2 (10) 
t 

Logic 0 glitch 

Cell 2  to 5 or Cell 1 to 6 
causes Dynamic 0 to 1 hazard 

t 
F2 (01) 

00 11 

12 03 

06 17 

14 05 

00 
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0        1 AB 
C 

Logic 1 glitch 

Dynamic 1 to 0 hazard 

F2 
t 

Logic 0 glitch 

Dynamic 0 to 1 hazard 

t 
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3.7.  Types of Functions and Delays 

 
 Trivial Functions, one or zero input 

 GND, Vcc, Buffer, and Inverter 
We use tp to refer to propagation delay through a gate. 
 

 Simple Functions contain one sum or one product but may be complemented  
 For example: 

 
 
 Simple functions may be one or two-level depending on the complements. 
 To find the delay through a gate you need to refer to the part’s specification from the 

manufacturer.  
 For example a 74LS02 (NR gate) for RL = 2Kohms and CL = 15 pF: 

(a) Maximum propagation delay time Low to High Level output tPLH = 13 ns 
(b) Maximum propagation delay time High to Low Level output tPHL = 10 ns 
(c) Sometime we use the average worst case propagation delay time  

        tsu=( tPLH + tPHL )/2 
(d) To find the maximum delay through a cascading circuit, tp of each component in the 

path must be added to find the total worst case delay through the circuit. 
 

 Complex Functions contain multiple levels of sums and/or products 
 The delay for each path needs to be calculated by adding the propagation delay, tp, for each 

component in the path.  For example 

If the tp is the time delay for each component then: 
  *  delay from input A to output  F is 3*tp. 
  *  delay from input C to output  F is 4*tp. 
 

 For a multi-output complex function, at times there is an opportunity to share product terms 
among the output’s to lower Literal Count (LC) and, therefore, reducing the number of gates. 
 
 

A 

F 
C 
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 Example: Given the following K-maps for F1 and F2 outputs of a three input system, find the 
optimum design: 

 
 Commonly-used complex functions have been implemented as ICs, and are crucial to the 

ability to develop complex functionality.  Using individual gates consumes too much PC board 
space and wiring to be realistic.   
 
The next section introduces some of the most common complex function available on the 
market.  
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F1(A,B,C) = CCBA ..  
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F2(A,B,C) = CBCBA ...   
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A smaller F1 could have been written, but the fact that m1 can be shared between F1 
and F2, results in a more minimized total solution (F1 and F2). 
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3.8.  Beyond Standard Logic: Applications 

 Precision Timers “555” 
This device is a precision timer that may be configured for a variety of applications.  The most 
common use of the NE 555 is an application to generate square waves that may be used as a clock 
signal in digital design.  In order for NE 555 to generate the clock signal, it may be configured as 
shown below: 
 

  
  
 Example 

Given the component values in the introduction of NE 555 (above), draw the clock (square wave) 
signal generated and determine the period, frequency and duty cycle for the signal. 
 
Solution: 
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 Example 
Using 555 timer, design a circuit that generates a clock signal with frequency of 2.5 Khz and 75% 
duty cycle.  Show your work including component value calculations, timing diagram and resulting 
schematics. 
 
Solution: 
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 Encoders 
Function: 2n input  n output 
Example: 74LS148 "8 to 3 encoder" 
Note: You can design these circuits using the 6-step design, K-map, and SSI gates. 
 
 

 

 
 
Notes: 

 EI is the output-enable input and should be set to “L” for normal operation. 
 Remember that: 

 “L” is the same as “0”, Gnd or 0 volts. 
 “H” is the same as “1”, Vcc or +5 volts. 
 “X” means don’t care, it can be high or low. 
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 Decoder, also called minterm generator 
Function: n  input  2n output 
Example: 74LS138 "3 to 8 Decoder/Demux"  
 

 
 

 
 



Digital Logic Design  Page 81 
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  BCD to 7-segment display driver 
Function: Binary Coded Decimal Digits (4 inputs “0-9”)  7 output “one per segment” 
Example:74LS47 

 

 

74LS47 
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Note:  The output is active low and open collector: 

 H, Inactive and OFF are same  
 Active, L and ON are the same. 
 In order to light up LEDs,  each LED in the 7-segment display should be wired as shown below. 

 
The 1 KΩ resistors limits the current through the LED to 5 mA. 

Output 

1 KΩ 

Vcc Cathode        LED    Anode 

74LS47 
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74LS47 
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3.9.  Programmable Logic Devices (PLDs) 

PLDs allow a designer to implement his/her design on a single chip.  The main advantages of PLDs are 
speed of implementation,  ease of implementation and low overall cost at low quantities.  Most projects 
use PLDs during the design phase because of the stated reasons.  During production when the quantities 
are higher, the design is typically implemented with one-time factory-programmed devices that are able to 
implement the design. 
 
A summary of PLD’s is shown below – the size in-terms of input/output and function, is growing on a daily 
basis. Most designs will prototype using one of these devices until they have enough quantity to justify a 
custom chip. 
 

Device Type AND Array Connection OR Array Connections 
PROM -Programmable Read Only 
Memory 

Fixed at the Factory Customer programmable 
with Fuses 
 

PLA - Programmable Logic Array Customer programmable 
with Fuses 

Customer programmable 
with Fuses 
 

PAL – Programmable Array Logic, 
also called GAL - Generic Array Logic 
 

Customer programmable 
with Fuses 

Fixed at the Factory 

 
 Introducing Key Symbols used in PLD Design 

 Fuse Types Symbols 

 
(1) Product Terms (Example) 

(a) The output has a pull-up resistor that is not shown, and if all fuses are blown then the 
output will be H. 

(b) If all fuses are intact, then they may place an X in the And symbol. 

 
 

(2) Sum Terms (Example) 
(a) The output has a pull-down resistor (not shown), and if all fuses are blown, then the 

output will be L. 
(b) If all fuses are intact, then they may place an X in the OR Symbol. 

A1 A0 

01.AA  

No Fuse  
Fixed Connection at 

factory 

Intact Fuse  
Programmable 

Connection 

Blown Fuse  
Connection Broken after 

Programming 
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(3) Erase ability 

Some devices allow the blown fuses to be re-fused by: 
(a) Ultraviolet Light (through a small window on the top) 
(b) Electrically (typically at much higher voltage and current than normal operation) 

”This type is referred to as EE-type.” 
 

There are also universal programming units available that allow for fuse map input/output which 
adheres to the Joint Electronic Device Engineering Council (JEDEC) Standard. 
 

 Programmable Read Only Memory (PROM) 
A typical PROM may have 16 inputs with 216 outputs.  This device would be called a 64K PROM.  
PROM is typically used during development and once the product is in production, Read Only 
Memory(ROM) will be used. 
 
ROM is a one-time factory-only programmable device which is the reason why it is called Read 
Only Memory.  The initial ROM set up is costly but the cost per part is significantly lower than that 
of PROM. 
 
The following diagram shows the PROM internal diagram:  
 

 

 PROM Example:  Implement F(A0,A1)= 1010 .. AAAA   

  
Since all the minterms are available, all we have to do to get the desired output is to OR the 
appropriate minterms and then blow fuses for all the minterms not needed for the function.   

An(MSB) …       A0(LSB) 
 

m0 

m1 

m(2n+1 -1) 

Factory set 
Intact Fuse 

n-bit input 

AND array connections 
are set in factory F0        …       Fm 

 

Programmable OR array connections 

p3  p2  p1  p0 

p0 + p3 
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F(A0,A1)=∑(1,2), which means fuses 0 and 3 need to be blown. 

 
 

 Example 
Draw the fuse map for the smallest PROM that implements the function: 
 
   f(a2,a1,a0) = a2’.a1.a0 + a2’.a1.a0’ + a2.a1 

 
Note:  Only draw the minterms that are used 
 
Solution: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

A1                A0 

m0 

m1 

F0 

m2 

m3 

Fuse Map 
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 Example 
Use a PROM to design a 4-byte memory that contain 10, 50, 90 and 20 in location 0 to 3.  
Show the system diagram and PROM fuse map. 
Note:  Only draw the minterms that are used 
 
Solution: 
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 Programmable Logic Arrays (PLA) 
PLAs are similar to PROMs with the added flexibility of programmable AND array connections. 
PLAs are the most flexible of the Program Logic Devices since both the AND and OR array 
connections are field programmable.  The drawbacks of the PLA technology are that they have 
the highest cost per unit and the longest propagation delays. 

 

 PLA Example:  Implement F(A0,A1)= 1010 .. AAAA   

PLAs allow both the AND and OR array connections to be programmed. The complete fuse 
map shows both the AND and the OR fuses. There may be opportunities to share product 
terms between the outputs to improve efficiency. 

 

00 11 

12 03 

0 

1 

0        1 A0 
A1 

p2 

p1 

An        …       A0 
 

p0 

p1 

p(2n+1-1) 

Factory set 
Intact Fuse 

n-bit input 

Programmable AND array 
connections F0        …       Fm 

Programmable OR array 
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 Programmable Array Logic (PAL) or Generic Array Logic (GAL) 
PAL and GAL are two different way to refer to this technology.  PALs are: 
 
 Easiest to use, since only the AND array connection is programmable. 
 Best suited for non-standard complex combination logic implementation. 
 Available in variety of sizes.  The larger versions are called Field Programmable Gate Array 

(FPGA).  The version that can be configured at the factory for larger volume design is called 
Gate Arrays.   

 Able to implement feeding back the outputs to and array for improved functionality. 
 Available with 3-state outputs (1, 0, high impendence) which are controlled by input, OE. 

 
(1) OE=0  output = open  (which can be used to drive the pin as an input which is why 

sometime 3-state pins are referred to as I/O) 

(2) OE=1  output = input  

 
 

 Example – Implement f(A5, A4, A3, A2, A1, A0) = A’5A4A3A2A1A0 + A’5A4A’3A’2A’1A0 + A5A’4A’3A2A1A0  
 
  a) using PROM 
  b) using PAL 
 
Solution: 

A1                A0 

p0 

p1 

F0 
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 PALs or GALs are named based on the number of inputs and outputs (PALxxyzz) where: 

 
 “xx” is the number of maximum AND array inputs 
 “y” represent the type of output 

 Combination output: H is active High, L is active low, P is programmable 
 Registered outputs:  R is registered (Contains memory devices), RP is registered 

with programmable polarity. 
 Versatile: V indicates programmable output macro-cells which can be configured to 

be either combinational or registered.  
 “zz” represents the maximum number of dedicated outputs. 

 
For example: PAL16L8 is active-Low output with 16 inputs and 8 outputs. 
 

 PALs and GALs are programmed using Universal programmers which use JEDEC fuse map 
file format. Some of the other names commonly used to refer to these devices based on their 
complexity or size are: 
 
 Simple Programmable Logic Devices (SPLD) 
 
 Complex Programmable Logic Devices (CPLD) 

 

 PAL usage example:  Implement F(A0,A1)= 1010 .. AAAA   

Here again only one Fuse map is needed (AND array connection).  Also need to consider if 
there are any terms that can be shared. In this case we do not have any shared terms.  

An       …      A0 

p0 

p1 

p(2n+1-1) 

n-bit input 

Programmable AND array 

. . . 

p(2n+1) 

OE0 

OE1 

. . 

Factory set 
Intact Fuse 



Digital Logic Design  Page 92 

 
 Benefits of PLDs over individual gates: 

 Shorter design time (rapid prototype). 
 Allow for rapid design changes. 
 Decreased PC board real estate. 
 Improved reliability since they require fewer packages and interconnections. 
 

 Signal Polarity Convention 
There are two types of convention: Positive Logic Convention (PLC) and Direct Polarity Indication 
(DPI). It is recommended that polarity be consistent unless there is a practical reason to change 
polarity.  
 
  Positive Logic Convention (PLC) 

 Other name for PLC: True Form.  
 PLC has been used so far and we will continue to use it in the rest of the text.  It is best 

suited for working with logic (ones and zeros). 
 

 Direct Polarity Indication (DPI) 
 Other name for DPI: Complemented Form. 
 DPI is also referred to as the mixed signal since each signal can have polarity attached to it 

For example W(H) is W in positive logic which is the same as )(LW  

 DPI is preferred by engineers who need to be aware of voltage levels correlating with the 
active levels 

 Here is a comparison of DPI and PLC signal naming  
 

PLC Signal Name DPI signal Name Type of Signal 
A A(H) or )(LA  Active High 

A  )(HA or A(L) Active Low 

Use bubble “o” to indicate 
negation 

Use wedge to indicate 
polarity (Low) 

 

 Write signal name with no 
over bar and change to 
Active low with polarity 
indicator. 

 

 
(1) Double complementation can be used to write equivalent signal names in a number of 

formats 

A1     …       A0 
 

p0 

p1 

OE0 

Fuse Map 

F(A0,A1) 
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(a) )()()()( LAHALAHAA   

(b) )()()()( LAHAHAHAA   

 
 

(2) To fully specify a circuit, you need to provide a Signal List (SL) in addition to function.  If 
the SL is not provided, then it will be assumed to be positive logic. 

(a) PLC    F=A.B + C.D; SL:  DCBAF ,,,,  

(b) DPI    F=A.B + C.D; SL: F(H), A(H), B(L), C(L), D(H) 
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3.10.  Additional Resources 

 
 Wakerly, I. Digital Design. (2006) Prentice Hall  

Chapter 6 “Combinational Logic Design Practices” 
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3.11.   Problems 

Refer to www.EngrCS.com or online course page for complete solved and unsolved problem set. 
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Chapter 4. Introduction to Feedback Circuits and Sequential Logic Analysis 

 
This is the first section in Sequential Logic Design and Analysis. 
 

4.1.  Key concepts and Overview 

 SR flip-flops  

 Asynchronous Sequential Logic Issues  

 Finite State Machines (Sequential Logic Circuits) 

 Additional Flip-Flop Circuits 

 Sequential Circuit Analysis 

 Debouncing Switches 

 Additional Resources 

 Problems 
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4.2.  SR Flip-Flops 

SR flip-flops are the simplest form of single-bit memory (latch).  A Latch is also known as a bi-stable 
memory device.  Flip-flop is used to store value of input.  
 
 SR flip-flops have set and reset inputs.  The circuit for a SR flip-flop is shown below: 

 
 Q+ is used to refer to the next output state when the current output state is Q 
 Unlike combinational logic, sequential logic Q+ is dependent on the value of previous output Q. 

Q+ (S, R, Q) = RQS   

Note: Q+  is dependent on inputs S and R as well as current state, q. 
 

 
 
 Present-State/Next-State (PS/NS) Table 

The PS/NS table is the sequential circuit equivalent to combinational circuit’s truth table. As it can be 
seen from the following example, instead of output, PS/NS table has current and next state: 

 
 Present                       External 
State(PS)                Input Signal 
Q  S R 

Next State  
(NS)  
Q+                     Comment 

 
 
Additional Comment 

 0 0 0   0 hold 0 Q is stable , Qnew = Q 
 0 0 1   0 hold 0 Q is stable , Qnew = Q 

 0 1 0   1 set Q is unstable, Qnew = Q+ after ∆t = Q  

 0 1 1   0       normally not allowed Q is stable , Qnew = Q, reset dominant 
 1 0 0   1 hold 1 Q is stable , Qnew = Q 

 1 0 1   0 reset Q is unstable, Qnew = Q+ after ∆t = Q  

 1 1 0   1 hold 1 Q is stable , Qnew = Q 

 1 1 1   0       normally not allowed Q is unstable , Qnew = Q+ after ∆t = Q ,  

reset dominant 
 
 
 Compressed Characteristic Table 

Compressed Characteristic Table is another way to describe sequential circuit that is simpler to 
generate than PS/NS table while provide most of the information required.  Compressed 
Characteristic table is commonly used in sequential circuit design and analysis.  Below is an example 
of Compressed Characteristic table for SR flip-flop. 

 

∆t 
(delay) 

Q Q+ 
R 

S 

RQSQ   

“Characteristic equation” 

Feedback signal, Q 

Feed Forward Signal 

QS   
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 K-map for flip-flops 

K-maps can be generated based on flip-flops PS/NS table.  The following K-map is for a SR flip-flop. 

 
 Note: 

Minterms 3, 4 and 7 are unstable and shown on K-map without an underlined.  As stated earlier, 
unstable state will change after the ∆t delay. 

 

0 1 

0 0 

0 0 

1 1 

SR 
Q 

00 
 

01 
 

11 
 

10 

0      1 

Q+ (S,R,Q)  = RSRQ ..   

S   R   Q+ 
 
0   0    Q 
0   1    0 
1   0    1 
1   1    0  (reset dominant) 
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4.3.  Asynchronous Sequential Logic Issues 
A circuit that uses latches (flip-flops) but does not use a clock to synchronize all signals is called 
Asynchronous Sequential Logic.  Here we will explore the issues that may be present in asynchronous 
design. 
 

 Race Condition 
For example (SR flip-flop) 
 S R Q = 000  

S changes to 1  S R Q = 100 (unstable or transitory state)  Q+ = 1 (refer to table)   
S R Q = 101 (after delay) A stable state.  This state will be maintained until the External input 
changes. 
 

 
 
If the S and R inputs change quickly (one after another) before the output settles into a new 
stable state, the input provides a race condition (each trying to change the output first).  If the 
output becomes a predictable stable state, then the race is non-critical. 
 

A critical race occurs if the circuit output ends in an unpredictable stable state. 
 
 Example of a Critical Race 

S R Q = 110 
SR are changed simultaneously to 00 
 S may change first  S R Q = 010  Q+ = 0 Stable state 

next R changes, SRQ = 0 0 0      Q+ = 0 Stable state 

 
 

 R may change first  S R Q = 100  Q+ = 1 Unstable state 
next S changes, SRQ = 0 0 1      Q+ = 1 Stable state 
 

1 

0 1 

0 0 

0 0 

1 

SR 
Q 
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10 

0      1 

0 1 

0 0 

0 0 

1 1 

SR 
Q 

00 
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11 
 

10 

0      1 
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Note that depending on if S changed first (case 1) or R changed the first (Case 2), final state 
will be different, which means we have a critical race. 
 

 To insure proper operation of well-designed asynchronous sequential logic circuits (no critical 
race), allow only one external input signal to change at a time. This mode of operation is referred 
to as “fundamental operating mode”. 

 
 Transient, Meta-Stable State or Unstable Equilibrium State Output 

This is another failure mode of latch circuits which causes the output to oscillate between 1 and 0 and 
the final state may be unpredictable. 
 The cause may be: 

 Runt pulses 
If two inputs feeding a gate are changed nearly simultaneously, a runt pulse may be 
produced at the output of the gate. 

 Positive runt pulse    
A positive-going pulse that begins with a value of 0 but doesn’t achieve the value of 1 

 Negative runt pulse 
A negative-going pulse that begins with a value of 1 but doesn’t achieve the value of 0 
 

1 

0 1 

0 0 

0 0 

1 

SR 
Q 

00 
 

01 
 

11 
 

10 

0      1 
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4.4.  Finite State machine 

 State Diagram 
A state diagram is a graphical method of showing each state and the movement to other steps based 
on the new values of external inputs.  Here are the steps (example for SR flip-flop): 

 

 
 Finite State Machine or Simple State Machine is used to describe a sequential logic circuit 

 
 A completely specified state machine is one for which all input conditions are used to specify 

each next state condition. For a completely specified machine, the “sum = 1 rule” applies which 
says that all outgoing conditions from a state must sum up to 1. 
 
For example for state 0 of the SR flip-flop, a completely specified state machine, the outgoing 
conditions sums up to 0   

 Sum of Outgoing Conditions 1.)(  RSRS  

 
 An incompletely specified state machine is one which is missing some input condition. You may 

interpret them as “don’t care” conditions.  
 
Note:  For the incompletely specified state machine, the sum of outgoing conditions of all states 
are not equal to 1. 
 

 Algorithmic State Machine (ASM) Chart 
An ASM chart is similar to the programming flow chart and is an equivalent of the state diagram used 
to describe a sequential logic circuit (or Finite State Machine).   
 
The chart uses three symbols: 
 

 Rectangle is the state box (equivalent to circles in state diagram) 
 

 Diamond is the decision box (equivalent to inputs next to the lines in state diagram) 
one of two paths provide the exit from decision box: 
 

S   R   Q+ 
 
0   0    Q 
0   1    0 
1   0    1 
1   1    0   
(reset dominant) 

Step 1. Write the 
Compressed 
Characteristic Table  

Step 2. Present State 
/Next State (PS/NS) 
Table  

S  R   Q     Q+ 
 
0   0    0      0 
0   0    1      1 
0   1    0      0 
0   1    1      0 
1   0    0      1 
1   0    1      1 
1   1    0      0 
1   1    1      0 
 

Step 3.  Draw a circle for each state 
 (one output, Q, so 2 –state) 
Step 4.  Draw arrow showing change 
for each possible input in each state.  

Q=0 Q=1 

Hold 0 
S R 
0 0 
0 1 
1 1 

RS   

Reset 
S R 
1 1 
0 1 
=R 

Hold 1 
S R 
0 0 
1 0 

R  
Set 
S R 
1 0 

RS.  
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 If condition is true, T or “1” path is taken 
 If condition is false, F or ”0” path is taken 

 
 Oval shape is used for start, end and  output box  

 
 Example - Below is an ASM Chart example for a SR flip-flop derived from the state diagram: 

 State exit conditions are the decision conditions in ASM. 
 Emphasis is on state changes.  All conditions that do not change the stay are not shown 

on the ASM chart. 
 

 
 Timing Diagram 

Another tool for describing the functionality of a sequential logic circuit is the timing diagram.  
Although the timing diagram is not as scalable as State diagrams or ASM chart, it provides the timing 
relationship between input and out signals. 
 
 Basic definitions used in timing diagrams 

 Timing Events 
External input changes that cause changes in the output of a sequential logic circuit are 
called timing events. 

 Rise Time (tPLH) 
The time it takes for a signal to go from a 10% to 90% value (an ideal timing diagram 
assumes 0 seconds) 

 Fall Time (tPHL) 
The time it takes for a signal to go from a 90% to 10% value (an ideal timing diagram 
assumes 0 seconds) 

 Pulse Width 
The time it takes for a signal to go from a 50% value on the rising edge to 50% value on the 
falling edge. 

 Average Propagation delay 
In order to simplify a timing diagram, gate delays may be represented by an average 
propagation delay tp where tp =( tPHL + tPLH)/2  
(an ideal timing diagram assumes 0 seconds) 

Q=0 

Q=1 

RS.  

R  
True False 

False 

The advantage of ASM is that it has two outputs 
from each decision so it is clear if both conditions 
are addressed and therefore the state machine is 
completely specified. 

True 
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 An ideal timing diagram for an SR flip-flop 
SR flip-flop discussed so far is an asynchronous sequential logic circuit since this latch circuit does 
not rely on a system clock for synchronization. 

 

 
Note: This is an ideal timing diagram where propagation delays are not shown. 
 

 Design of Asynchronous Sequential Logic Circuit 
Asynchronous Circuit does not rely on a clock which means that hazards may be a design problem. 
 
 A couple of rules to avoid logic hazards and critical races: 

 Rule 1 – One external input signal change at a time (fundamental mode) 
 Rule 2 – Before the next external signal is allowed to change, the circuit must be given time 

to reach a new stable state. (The circuit path with the longest delay dictates the speed of the 
circuit.) 
 

Q 

R 

S 

Timing event 
 
State time  
(time between events) 

1 2 3 

90% 

50% 

10% 

Pulse Width 

tPLH tPHL 
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 Applying the Design Steps to an SR flip-flop 

 
Note: This circuit encounters a critical race condition when SR transitions from 11 to 00. 
 

 Designing a Clock Circuit (another simple asynchronous sequential logic circuit) 
 Start with state diagram 

 
 Flow the design process 

 
 Timing Diagram 

 
You can increase the period T by one of the following methods: 

 Adding to ∆t (more buffer) 
 Adding more NOT gates (must be an odd number of gates) 
 Adding an RC circuit and adjusting the time constant 

 

Timing Event 1 2 3 4 5 

Clock (CLK) 

Propagation Delay, tp = Not Gate delay + ∆t 
Period T = 2tp 

Frequency f = 1/T=1/(2tp) 
Duty Cycle DC = tp/T = tp /(2tp) = ½ = 50%  
 

T 

tp 

Q+ = Q  

Step 1. Write the 
Compressed 
Characteristic Table  

Step 2. Draw 
Compress K-map 

Step 3.  Draw the schematic  
(since Q is used for Q+,  we need a delay element) 

Q  ∆t 
(delay) 

Q+ Q=CLK 

Q=0 Q=1 

S   R   Q+ 
 
0   0    Q 
0   1    0 
1   0    1 
1   1    0   

Step 1. Write the 
compressed 
characteristic table  

Step 2. Draw  the 
compressed K-map 

Step 3.  Draw the schematic  
(since Q is used for Q+, we need a delay element) 

0 0 1 Q 

SR 
00   01    11    10 

RSQ

RSRQQ





)(

..
 

Apply DeMorgan’s 
Theorem twice. 

∆t 
(delay) 

Q+ 
R 

S 

Q 

Q

Since Q and Q  are provided, it is call a “double-rail 

output”.  If Q was the only output, then it would be 
called a single-rail output. 
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 In practice, most designs use crystal oscillators which oscillate at a precise frequency, providing 
more reliable system clock. 
 

 Design of Gated Sequential Logic Circuit 
Providing another input which controls when the inputs can affect the outputs (latching the inputs) 
increases the functionality of the latch circuit. The resulting circuit is called a latched or gated circuit. 
 
 Gated Circuit Types 

Latches may be classified based on their input control types: 
 
 Level activated: Latches input when the control is at a given logic level (High or Low 

depending on design) 
 Edge Trigger: Latches input when the control changes level (rising- or falling-edge, 

depending on design) 
 Pulse-triggered: Latches input when the control is pulsed (a rising-edge followed by a falling-

edge) 
 

    Gated S-R flip-flop (latch) Circuit 
 

 
 This circuit allows inputs to affect the outputs only when C=1.  When C=0, the latch holds the 

last state value at its output.  This is an example of high-level activated SR flip-flop. 

∆t 
(delay) 

Q+ 

R 

S 

Q 

Q’ 
(Not always shown) 

C 

S 
 
C 
 
R 

Q 
 
  
 

Q’ 

Block Diagram 
Gated SR Latch Using NOR gates 
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 The state diagram showing the effect of Latch Control (C) on the state change. 

 
Note:  This circuit, like the SR Latch Circuit, has a critical race when CSR  transitions from 
111 to CSR=100.  To prevent this issue, it is possible not to allow CSR=111. 
 

Q=0 Q=1 

Hold 0 
C S R 
1 0 0 
1 0 1 
1 1 1 
0 0 0 
0 0 1 
0 1 0 
0 1 0 

 

Reset 
C S R 
1 1 1 
1 0 1 

 

Hold 1 
C S R 
1 0 0 
1 1 0 
0 0 0 
0 0 1 
0 1 0 
0 1 0 Set 

C S R 
1 1 0 

When C=0,  there is no state change 

Q=0 Q=1 

C.S.R’ 

C’ + S’ +R 

C.R 

C’+R’ 

* Another form of State Diagram for the same circuit is shown below: 



Digital Logic Design  Page 107 

4.5.  Additional Flip Flops 

 D flip-flop (or D-latch) 
Although we have talked about SR flip-flop first, there are many other types of flip flops.  Each have 
their own set of advantages and disadvantages.  D flip-flop is the most commonly used flip-flops due 
to its simplicity.  Additionally, D flip-flop does not have an inherent critical race. 
 
SR flip-flops can be modified using NAND gates to create a D flip flop as shown in the following 
diagram:  

 
The D flip-flop may be referred to as “gated D Latch”, a transparent D latch, a level sensitive flip-flop 
or data flip-flop. Symbol and Compressed Characteristic table is shown below: 
 

 
Note: When C=0 (inactive), the last value of D is driving the output. Also it can be shown that it does 
not contain critical race and is logic hazard free. 
 

 Explore the specifications for 74LS373 “level activated” and 74LS374 “Positive-edge 
triggered”. Refer to Course Website for the complete specifications including:  
 
 Set up time (tsu) 
 Hold time (th) 
 Sampling interval, tsi = (tsu+ th) 

The Minimum tsi is required for proper operation of the circuit. 
 3-state output.  

 
 Although there are pulse, level activated flip flop and edge-triggered D latches, it is recommended 

that new design use edge-triggered flip-flops. 
 
 Basic edge-triggered flip-flop 

One ways to create a narrow pulse is by using the following circuit: 
 

D flip-flop Symbol 

D 
 
C 

Q 
 

Q’ 

C  D    Q+ 
0   0    Q 
0   1    Q 
1   0     0 
1   1     1 

Compressed Characteristic 
Table  

Q=0 Q=1 

C.D 

C’ + D’ 

C.D’ 

C’ +D 

State Diagram 

∆t 
(delay) 

Q’ 

Q Q+ 

Enable Control, 
C 

D set 

reset 
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So you can use this design to implement a positive-edge-triggered D flip-flop circuit with 
preset and clear inputs.  

 

∆t 
(delay) 

Q’ 

Q Q+ 

C 

D 

(Clear)’ 

(PreSet)’ 

Circuit Diagram 

X 
Y Z X 

Y 

Z 

 tp  tp  
A pulse is generated only during the rising edge 
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 Symbols 
 

 Application:  using D flip-flops with clear to build a shift register 

 
 Edge-Triggered and Pulse-Triggered Flip Flop Comparison 

A pulse enable the input to change the output.  The pulse can be negative or positive 
depending on the flip-flop design. Here is a comparison of hold time requirement for positive-
edge and positive-pulse triggered flip-flop. 

 

 
 A pulse-triggered flip-flop has much longer sampling interval than an edge-triggered flip-

flops; therefore, all new designs use Edge-triggered flip-flops to improve speed. 
 

C 
Positive-Edge  
Triggered flip-

flop 

C 
Positive-Pulse 
Triggered flip-

flop 

tw = th 

tsu   th 

tsi 

ts = Set up time 
th = Hold time 
tw = Pulse width 
tsi = Sampling interval = tsu + th  
 
Shaded area is the area where 
data must be stable. 

D1        Q1 
 
   CLK 
 
Clear’ 

D2        Q2 
 
   CLK 
 
Clear’ 

D3       Q3 
 
   CLK 
 
Clear’ 

D4        Q4 
 
   CLK 
 
Clear’ 

CLOCK 

Vcc 

b0 (LSB) b3 (MSB) b1 b2 

Data 

GND 

CLK 

DATA 1D 
 
   C1 

Q 
 

Q 
 

Q 
 

Q’ 
 

Positive-Edge-Triggered D Flip-Flop 
(triangle called dynamic indicator) 

 

CLK 

DATA 1D 
 
   C1 

Q 
 

Q 
 

Q 
 

Q’ 
 

Negative-Edge-Triggered D Flip-Flop 
(Bubbled triangle indicator) 
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 A pulse-triggered flip-flop is also called “master-salve” due to its implementation which 
require two D-type flip-flop in a master-salve set up as shown below: 

 

 
The D flip-flop is the most commonly used bi-stable memory device. The other two kinds used are J-K 
and T flip-flops. 
 

 J-K Flip Flops 
Below is a negative-edge triggered JK flip flop.  As in other flip-flops, the inputs J and K are called 
“excitation inputs”. 

 
 

S 
 
1J 
 
 C1 
 
1K 
 
R 

PRE’ 
 
J 
 
CLK 
 
K 
 
CLR’ 

Q 
 
 
 
Q’ 

J  K   Q+     Comment 
0  0    Q      no change 
0  1    0       reset condition 
1  0    1       set condition 
1  1    Q’      toggle 

Symbol 

Characteristic equation:  Q+ = J.Q’ + K’.Q 

Characteristic Table 

 
            Q 
D 
 
 
C 

S 
            
D 
 
 
C 
    
R 
         

C 

D 

Q 
Q 

Q’ 

Set 

Reset 

or 

S 
            
D 
 
 
C 
    
R 
         

Q 

Q’ 

Set 

D 

C 

Reset 

Postponed output symbol 
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 Toggle or T Flip Flops 
 

 
 Using a JK flip-flop to implement a negative-edge-triggered T flip-flop: 

 

 
 Using D flip-flop to implement a positive-edge-triggered T flip-flop: 

 
 

 

 
1D 
 
 C1 
 
 
 

D=Q+ Q 
 
 
 
Q’ 

T 
 
CLK 

S 
 
1J 
 
 C1 
 
1K 
 
R 

PRE’ 
 
T 
 
CLK 
 
 
 
CLR’ 

Q 
 
 
 
Q’ 

J=K=T   Q+     Comment 
0  0  0      Q      no Change 
0  1         Invalid 
1  0         Invalid 
1  1  1      Q’      toggle 

Symbol 

S 
 
1T 
 
 C1 
 
 
 
R 

PRE’ 
 
T 
 
CLK 
 
 
 
CLR’ 

Q 
 
 
 
Q’ 

    T    Q+     Comment 
    0     Q      no Change 
    1     Q’      toggle 

Symbol 

Characteristic equation:  Q+ = T’.Q + T.Q’ 

Characteristic Table 
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4.6.  Sequential Circuit Analysis 

Flip-flops may be used to design circuits with feedback, such as counters, shift registers, sequence 
detectors and controllers.  
 
Feedback systems are classified as synchronous when all changes are synchronized with the system 
clock.  Feedback systems that do not use the system clock and change as the input change are called 
asynchronous.   
 
Synchronous systems are preferred over asynchronous systems since they will not have hazards and 
other synchronization issues. 
 
Synchronous systems are also referred to as synchronous finite state machines (FSM). 
 
A FSM utilizes a system clock that adheres to the following definitions: 
  *  Each period of system clock represents a State-Time 
  *  A state represents the state of the flip-flop outputs (value of outputs) 
  *  Synchronous external inputs    Xs 
 *  Current machine state, flip-flop outputs  Ys 
 *  Synchronous state machine external outputs  Zs 
 
Synchronous state machines may be implemented in one of three models based on the characteristic of 
its output (Moore, Mealy or mixed-type synchronous state machine): 
 

 Moore-type Synchronous Finite State Machine 
outputs are a function of the state of the machine Z1(Y1, Y2, Y3) 
 
A Binary counter is a good example of Moore machine since the output of the flip-flops can be 
used to represent the count. 

 

 
 Mealy-type Synchronous Finite State Machine 

Outputs are a function of the state of the machine and external inputs. Z1 (Y1, Y2, …X1, X2, …) 

Excitation 
Forming Logic 

(Combinational)  
 

Flip Flops 
 

Input     
        Output 
 
 Clock System  

Clock 

External  
Inputs (Xs) 

Moore output 
Forming Logic 

(Combinational) 

Moore  
External Output 
Zs(Ys) 

Ys 
Excitation 

input 

Feedback 
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 Mixed-type Synchronous Finite State Machine 
Some outputs are Mealy-type and others are Moore-type. 
 

 
 Analyzing Synchronous Systems (General) 

There are five steps in analysis of this type of circuit: 
 

1) Assign a present state variable to each flip flop in the synchronous system. 
Yi represents flip-flop outputs for i = 1, 2, 3, … 
 

2) Write the excitation-input equation for each of the flip-flops and the external-output 
(Moore and/or mealy equations).  After completing this step, Di, Ji Ki, Ti should be 
defined where i=1, 2, 3 … {# of flip-flops used}. 
 

3) Substitute the excitation input equation into the characteristic equations of the flip-
flops to obtain the “next state” equations. 
  For D flip-flops       Yi+ = Di                      for i=1, 2, 3, … 
  For J-K flip-flops    Yi+ = Ji.Yi’ + Ki’.Yi      for  i=1, 2, 3, … 
  For T flip-flops        Yi+ = Ti  <XOR>  Yi             for i=1, 2, 3, … 
 

4) Obtain a PS/NS table or a composite K-map using the next state and external-out 
(Mealy and/or Moore) equations. Separate K-maps can be used for the external 

Excitation 
Forming Logic 

(Combinational)  
 

Flip Flops 
 

Input     
        Output 
 
 Clock System  

Clock 

External  
Inputs (Xs) 

Mealy 
External Output 
Zs(Ys, Xs) Ys 

Excitation 
input 

Feedback 

Mealy Output 
Forming Logic 

(Combinational) 

Moore Output 
Forming Logic 

(Combinational) 

Moore  
External Output 
Zs(Ys) 

Excitation 
Forming Logic 

(Combinational)  

Flip Flops 
 

Input     
        Output 
 
 Clock System  

Clock 

External  
Inputs (Xs) 

Mealy 
External Output 
Zs(Ys, Xs) Ys 

Excitation 
input 

Feedback 

Mealy Output 
Forming Logic 

(Combinational) 
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outputs if desired. 
 

5) Use the PS/NS table or the composite K-map to obtain a state diagram, ASM chart or 
timing diagram to show the behavior of the circuit. 

 
 Apply the five step analysis technique to the following circuit: 

 

Note: This is a Mealy-type machine since the output depends on external input and flip-flop outputs. 
 

 
1) Assign a present state variable to each flip flop in the synchronous system. 

Yi representing flip-flop outputs for i = 1, 2, 3, … 
Solution:  Refer to the schematics 
 

2) Write the excitation-input equation for the flip-flops and the equation for the external-output 
(Moore and/or mealy equations).  After this step is completed,  the values of Di, Z should be 
defined for all flip-flops. 
 
Solutions: 
  D1 = X’.Y1’.Y2 
  D2 = Y1’.Y2 + X 
  Z = Y1.Y2.X 
 

3) Substitute the excitation-input equation into the characteristic equations for the flip-flops to 
obtain the “next state” equations. 
 
D flip-flops       Yi+ = Di                       for i=1, 2, 3, … 
 
Solutions: 
      Y1+ = D1 = X’.Y1’.Y2 
      Y2+ = D2 = Y1’.Y2 + X 
 

4) Obtain a PS/NS table or a composite K-map using the next state and external-output (Mealy 
and/or Moore) equations. Separate K-maps can be used for the external outputs if desired. 
Solutions: 

X 

D1 
 
  C1 

D2 
 
  C2 System 

Clock 

Q1’ 

Q2 

Q2’ 

Q1 
Z Y1 

Y2 



Digital Logic Design  Page 115 

 
 

5) Use the PS/NS table or the composite K-map to obtain a state diagram, ASM chart or timing 
diagram to show the behavior of the circuit. 
 
Solutions: 
Since there are two flip-flop, the state machine has 4 states. 

 

00 

01 
10 

11 

Classic State machine  
*  Links show input, output in 1s and 0s 
*  State is inside the circles 
  
In the case of Moore machines, outputs must be inside the circle because they only depends on 
the current state. 
 
Note: A simplified State machine shows the links between states  in Boolean expressions. 

1,0 

1,0 

1,1 

0,0 

0,0 

1,0 

0,0 

Notes 
1)  State 00 is reset 
 
2)  Output Z=1 only when the input 
sequence is 101, so this could be 
“101” pattern detector. 
 
3)  State “10” is referred to as 
“illegal state”, “unused state” or an 
“unreachable state”. 
 
4) One way to ensure you don’t end 
up in illegal state is to have a power 
on reset. 

Y1Y2 

X,Z 
Legend 

0,0 

Y1   Y2   X   Y1+  Y2+  Z 
0      0     0    0       0     0 
0      0     1    0       1     0 
0      1     0    1       1     0 
0      1     1    0       1     0 
1      0     0    0       0     0 
1      0     1    0       1     0 
1      1     0    0       0     0 
1      1     1    0       1     1 

PS/NS Table Composite K-map where: 
     Ys and Xs are independent variables 
     Ys+ and Zs are Dependent 

OR 

00,0 01,0 

11,0 01,0 

00,0 01,1 

00,0 01,0 

Y1+ Y2+, Z 

X 

Y1Y2 
00 

01 

11 

10 

0              1 
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An alternative method is the use of Algorithmic State Machine (ASM) chart to describe the functionality. 

 
 
 Analysis of JK Flip-Flop Circuits 

Apply the 5-step FSM analysis  to the following circuits: 

 
 

1) Assign a present state variable to each flip flop in the synchronous system. 
Yi representing flip-flop outputs for i = 1, 2, 3, … 
Solution:  Refer to the schematics 
 

2) Write the Excitation-input equation for JK flip-flop and the equation for the external-output. 
 
 
 
 
 
 

3) Substitute the excitation-input equation into the characteristic equations for the flip-flops to 
obtain the “next state” equations. 
  For J-K flip-flops    Yi+ = Ji.Yi’ + Ki’.Yi      for  i=1, 2, 3, … 
 

J1      Q1 
 
K1     Q1’ 

 
 C1 

System 
Clock 

J2      Q2 
 
K2     Q2’ 

 
 C2 

Z X 
Y1 Y2 

00 

X 

01 

X 

11 

X 

10 

X 

(illegal 
State) 

(Reset 
State) 

0 

0 

0 

0 

1 
1 

1 

1 

Z 

Mealy Output 

Note: When Z is not shown, it is assumed the output is 0. 
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 Y1+ =  
 
Y2+ =  
 
 

4) Obtain a PS/NS table. 

 
5) Use the PS/NS table or the composite K-map to obtain a state diagram to show the behavior 

of the circuit. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 Input Date Synchronization 

Synchronized systems have to accept external-inputs that may not be synchronized with the system 
clock.  Typically, an input is synchronized with the rising or falling edge of the system clock prior to 
using it in the system: 
 
 In-Phase Synchronization is when the input is synchronized with the rising edge of the system 

clock. 
 Anti-Phase Synchronization is when the input is synchronized with the falling edge of the system 

clock. 

 

Rising  
Edge 

Falling 
Edge 

Y1    Y2    X    Y1+  Y2+   Z 
0      0     0     
0      0     1     
0      1     0     
0      1     1     
1      0     0     
1      0     1     
1      1     0     
1      1     1     

PS/NS Table 
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4.7.  Debouncing Mechanical Switches 

Mechanical switches bounce for a few milliseconds before stabilizing in their new position.  Meaning, the 
switch will open and close repeatedly (bounce) when switch is changed to closed position.  If the switch is 
used as an event or an input where each transition is considered a new input then the designer is 
required to debounce the switch before using the switch value in the rest of the system. 
 
There are numerous approaches to debouncing a switch output.  Here are four typical approaches to 
debouncing: 
 
 RC Circuit Debounce 

The most basic approach is to use a Resistor and Capacitor (RC) circuit to debounce switches.  This 
method uses the time constant )( RC  to slow the circuit eliminating the bounce.  R and C value 

will be selected based on duration of switch bounce.  Here is the simplest form: 
 

 
The drawback of this approach is that “Out” transition from low to high may be too slow for use in 
digital circuits. 
 

 Flip Flop Design 
 SR Flip Flop Variation 

This method uses a variation of SR Flip Flop to debounce a switch output as shown below:  
 

 

+5V 

GND 

A 

B 

Out 

Vcc 

GND 

Out 
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 D Flip Flop with Set & Reset 
This approach uses a D Flip Flop with Set and Clear to debounce the switch output as shown 
below 

 
 

 
 Software Debounce 

In systems with microprocessor, it may be advantages to programmatically debounce the switch.  
This is done by reading the value of switch over a period of time that is longer than debounce time for 
the switch.  The read value will be accepted only if the value is the same across two or more reading. 
 
 

 
 

Set               Q 
 
Clear 
 
D        Clock 

Vcc 

GND 

Out 

Switch in  
Position A 

Change Switch 
to Position B 

Change Switch 
to Position A 

A 

B 

Out 
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4.8.  Additional Resources 

 
 Wakerly, I. Digital Design. (2006) Prentice Hall  

Chapter 7 “Sequential Logic Design Principles” 
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4.9.  Problems 

Refer to www.EngrCS.com or online course page for complete solved and unsolved problem set. 
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Chapter 5. Sequential Circuit Design & Techniques 

 

5.1.  Key concepts and Overview 

 Synchronous Finite State Machine Design (Classical Technique and Examples) 

 State Assignment Encoding, Shift Register Counters, and Enable Inputs 

 Inspection Design Methods for Finite State Machines (Inspection Techniques) 

 Additional Resources 

 Problems 
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5.2.  Synchronous Finite State Machine Design (Classical Design) 

 Common Examples of Synchronous FSM 
 Up and Down Binary Counters 
 Shift Registers 
 Sequence Detectors 
 Controllers 

 
 The Seven-Step Design Process for Synchronous Sequential Design (Classical Design) 

 
1) Organizing the Design Specifications –Use one or more of the following tools:  

System Diagram, Timing Diagram, State Diagram or ASM Chart. 
 

2) Determine the number of flip-flops based on the number of states 
At this point, designer may choose to design a full encoding or one-hot encoding.  Full 
encoding utilize all possible combinations of the flip-flops and the following inequality is used 
to decide the number of flip-flops: 
          2#flip-flop ≥ # States 
 
The other encoding option is one-hot encoding where state is defined by which flip-flop’s 
output is 1.  So the number of flip-flop is equal to the number of States. 
 
Once the number of flip-flops is determined, assign one variable for each of the flip-flop 
output. 
 

3) Assign a unique code to each state (a specific value for present state variables) 
 

4) Select the flip-flop type to be used, draw the Present State/Next State (PS/NS) table, 
determine the excitation input equations and the Moore and/or Mealy output equations. 
 
Remember the excitation input and next state relationship flip-flops: 

        

YKYJYor
YK

YJ
FlopFlipJK

YTYorYYTFlopFlipT

DYorYDFlopFlipD

... 


















 

Note: D flip-flops are generally preferred for most synchronous sequential designs. 
 

5) Draw the circuit schematic (paper or CAD tool). 
 

6) Perform a simulation to test the functionally of the design. 
 

7) Implement the design with hardware. 
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 EXAMPLE - Design a 2-bit binary up-counter with a ripple carry output (RCO) using D flip-flops.  The 
input CLR’ is an asynchronous input that overrides the clock.   

Step1)  Design specifications using a timing diagram 

 **Notes: 
  1) Tclk is the clock period and ST is the state time. 
  2) The first two events are less and then more than Tclk. 
   3)  Y1Y2 are the states (counts). 
   4) RCO is a Moore output indicating when the maximum count has been reached. 
 
For completeness, we can also show the state diagrams.  Although a timing diagram is more complete, 
the state diagram is simpler to understand, since it does not contain the clock timing information. 
 

 
Another way to show the functionality of this circuit is to use a PS/NS table. 
Note: The ”Next state, NS” is the estate of the machine during the next clock cycle. 

a 
00, RCO’ 

d 
11, RCO 

b 
01, RCO’ 

c 
10, RCO’ 

State = Y1Y2,Z 
CLR’ 

CLK 

CLR’ 

Y1 (msb) 

Y2 (lsb) 

RCO 

a 
ST > Tclk 

c 
ST < Tclk 

Asynchronous Reset 

b 
ST = Tclk 

c 
ST = Tclk 

d 
ST = Tclk 

a 
ST = Tclk 

b 
ST = Tclk 

Timing Events 1              2                            3                     4                     5                     6                      7                     8                     9 
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Step 2)  Determine the number of flip-flop based on the number of states. 
  For full encoding (#states = 4) ≤ 2(#flip-flop = 2) . 
 
Step 3) Assign Unique code to each state. 
  Already done in the state diagram.  
 
Step 4) Write the excitation-input equations 
  The D flip-flop excitation equation is D = Y+. 

  All we need is the K-map for each of the desired outputs Y1+ ,Y2+, RCO: 

 

0      1       0 0 

1 

0 

1 

00 

01 

11 

10 

Y1Y2 

D1 = Y1+  
D1 = Y1’.Y2 + Y1.Y2’ 
D1 = Y1 XOR Y2 

1 

0 

0 

1 

00 

01 

11 

10 

Y1Y2 

D2 = Y2+ 
D2 = Y2’ 

0 

0 

1 

0 

00 

01 

11 

10 

Y1Y2 

RCO 
D2 = Y1.Y2 

Excitation-inputs and output RCO equations 
derived from separate K maps  

(These equations are also called design equations) 

00 

01 

11 

10 

1       0      0 

0       0      1 

1       1      0 

A composite K-map is a short 
hand for multiple K-maps. 

Y1Y2     Y1+   Y2+  RCO 

Asynchronous      Present       Next           Present 
Clear Input           State           State           Output 
CLR’                     Y1   Y2       Y1+   Y2+      RCO 
1                            0      0         0       1           0 
1                            0      1         1       0           0 
1                            1      0         1       1           0 
1                            1      1         0       0           1 
0                            X     X         0       0           0 

Present State / Next State (PS/NS) Table 

Present       Next           Present 
State           State           Output 
Y1   Y2       Y1+   Y2+      RCO 
 0      0         0       1           0 
 0      1         1       0           0 
 1      0         1       1           0 
 1      1         0       0           1 

Simplified PS/NS Table 
(Note: CLR’=0   Y1Y2=00) 
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Step 5) Draw the Circuit Schematic. 

Steps 6 & 7) Testing and hardware implementation will be skipped for this example. 
 
 A Second Application of the Classical Design Process: 

Design a synchronous sequential circuit called “Div-by-3”, having an output Z that divides the system 
clock frequency fCLK by 3.  The output duty cycle of two-thirds (2 CLK cycle high, 1 cycle low).  Design 
the circuit using positive-edge-triggered flip-flops. 
  
Step1)  Design Specifications Using a Timing Diagram 

 
 Step 2)  Determine the number of  flip-flop based on the number of State 
  (# state = 3) ≤ 2(#flip-flop = 2) Assuming Full Coding  
 
Step 3) Assign a unique code to each state 
  a: 00, b:01; C:11 
 
Step 4) Write the excitation-input equations 
  The D flip flop excitation equation is D = Y+ 

CLK 

CLR’ 

Z (output)  

Y1(msb) 

a 
ST = Tclk 

b 
ST = Tclk 

c 
ST = Tclk 

a 
ST = Tclk 

b 
ST = Tclk 

Timing Events            1                     2                     3                     4                      5                     6                     7 

b 
ST = Tclk 

1 Tclk’ 

2 Tclk’ 

Y2 

D1              
               Q1 
  CLK 
              Q1’ 
R1 

D2              
               Q2 
  CLK 
               Q2’ 
R2 

CLR’ 

SYS CLK 

RCO 

Y1 

Y2 

Y2’ 

D1 

D2 
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  All we need is the composite K-map for each of the desired outputs Y1+ ,Y2+, Z: 

 
 
Step 5) Draw the Circuit Schematic 

 
 A third application of the classical design process (using T flip-flop): 

Design a synchronous sequential circuit identical to the previous example, except implement the 
design using T flip-flops instead of D flip-flops. 
  
Step1)  Design Specifications using a Timing Diagram 

1D              
                 Q 
  CLK 
                 Q 
R 

1D              
                 Q 
  CLK 
                 Q 
R 

CLR’ 

SYS CLK 

Y1 

Y2 

Y2’ 

D1 

D2 

Z 
Y1’ 

0      1       1 00 

01 

11 

10 

1       1      1 

0       0      0 

-       -        - 

“-“ means don’t care 

Y1Y2     Y1+   Y2+      Z 

D1 = Y1+ = Y1’.Y2 
D2 =Y2+ = Y1’ 
Z = Y1’ 

10 State is never reached. 
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 Step 2)  Determine the number of flip-flop based on the number of State 
  (#state = 3) ≤ 2(#flip-flop = 2) Assuming Full Coding  
 
Step 3) Assign a Unique code to each state 
  a: 00, b:01; C:11 
 
Step 4) Write the excitation-input equations: 

 The T flip-flop excitation and characteristic equations are Y+ = T XOR Y  and T = Y+ XOR Y 
Note: You may derive general excitation equation from re-arranging the characteristic table 
for the Tflip flop to obtain the excitation table for the T flip-flop as shown below: 
 

 
 Write the PS/NS table (for T & JK, this intermediate step is helpful) 

 

Y1  Y2   Y1+  Y2+  T1  T2  Z 

0    0     0     1     0    1   1 

0    1     1     1     1    0   1 

1    1     0     0     1    1   0 

1    0     -      -      -     -   0 

Unused States 

T   Y+ 

0   Y 
1   Y’ 

T   Y    Y+ 

0   0     0 
0   1     1 
1   0     1 
1   1      0 

Characteristic 
table 

Output Excitation 
table 

Y  Y+    T 

0   0     0 
0   1     1 
1   0     1 
1   1     0 

Input Excitation 
table 

T = Y+ XOR Y 
Input Excitation Eq. 

CLK 

CLR’ 

Z (output)  

Y1(msb) 

a 
ST = Tclk 

b 
ST = Tclk 

c 
ST = Tclk 

a 
ST = Tclk 

b 
ST = Tclk 

Timing Events            1                     2                     3                     4                      5                     6                     7 

c 
ST = Tclk 

1 Tclk’ 

2 Tclk’ 

Y2 
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 Draw the composite K-map for each of the desired outputs Y1+ ,Y2+, Z: 

 
 
Step 5) Draw the Circuit Schematic 

 
 
 Another Application of the Classical Design Process (using JK flip-flops) 

Design a synchronous sequential circuit identical to the previous example, except implement the 
design using JK flip-flops. 
  
Step1)  Design Specifications Using a Timing Diagram 

CLK 

CLR’ 

Z (output)  

Y1(msb) 

a 
ST = Tclk 

b 
ST = Tclk 

c 
ST = Tclk 

a 
ST = Tclk 

b 
ST = Tclk 

Timing Events            1                     2                     3                     4                      5                     6                     7 

c 
ST = Tclk 

1 Tclk’ 

2 Tclk’ 

Y2 

T1              
               Q1 
  CLK 
               Q1’ 
R1 

T2              
              Q2 
  CLK 
              Q2’ 
R2 

CLR’ 

SYS CLK 

Y1 

Y2 

Y2’ 

T1 

T2 

Z 

Y1’ 

00 

01 

11 

10 

T1 =  Y2 
T2 = Y1’ Y2’ + Y1Y2 = Y1 XNOR Y2 
Z= Y1’ 
 
Note:  “-“ means don’t care 

Y1Y2         T1       T2       Z  

0 1 1 

1 0 1 

1 1 0 

- - - 
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 Step 2)  Determine the number of flip-flop based on the number of states 
  (#states = 3) ≤ 2(#flip-flop = 2) assuming full encoding. 
 
Step 3) Assign Unique code to each state 
  a: 00, b:01; C:11 
 
Step 4) Write the excitation-input equations 
  The JK flip-flop excitation equation is   JK   Y+ = J.Y’ + K’.Y 
  You may derive the general excitation equation from the characteristic table for the JK 
  flip-flop to obtain the excitation table for the JK flip-flop, as shown below: 
 

  Write the PS/NS table for JK, flip-flops (this intermediate step is helpful) 

 

 Draw the Composite K-map for each of the desired outputs Y1+ ,Y2+, Z: 

 

00 

01 

11 

10 

Y1Y2         J1       K1       J2        K2         Z  

0 1 1 

1 0 1 

0 1 0 

- - - 

0 1 

0 1 

1 0 

- - 

J1 = Y1’.Y2 
K1 = Y1 + Y2’ 
J2 = Y1’  
K2 = Y1  
Z = Y1’ 
Note:  “-“ means don’t care 

Y1  Y2   Y1+  Y2+   J1   K1   J2   K2   Z 
0    0     0     1     0    1      1    0    0  
0    1     1     1     1    0      1    0    1 
1    1     0     0     0    1      0    1    1 
1    0     -      -      -     -      -     -     -  

Unused State 

J  K   Y     Y+ 

0   0   0     0 
0   0   1     1 
0   1   0     0 
0   1   1     0 
1   0   0     1 
1   0   1     1 
1   1   0     1 
1   1   1     0 

Characteristic 
table Output Excitation 

table 

Y  Y+    J  K 

0   0     0   - 
0   1     1   - 
1   0     -    1 
1   1     -    0 

Input Excitation  
table 

Note: “-“ = don’t care 

J = Y+ 

K = Y+’ 
Input-Excitation Eq. 

J   K    Y+ 

0   0     Y 
0   1     0 
1   0     1 
1   1     Y’ 
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Step 5) Draw the Circuit Schematic 

 
Step 6) Test (with a test plan) 
Step 7) Implement 
 

 Determining the Maximum Clock Frequency of a Synchronous State Machine 
The maximum clock frequency that a system can handle is driven by the set-up, hold and margin 
times required by the flip flops in the synchronous system. 

 
We can see that the clock frequency is limited by fmax =1/TCLK(min) as shown below: 
 
 TCLK(min)  = tpff(max) + tpcomb(max) + tmarg) + tsu + th  where 
  tpff(max) = Maximum propagation delay time through flip-flop from the clock tick to Q output 
  tcomb(max) = Maximum propagation delay time through combinational logic 
  tmarg) = Margin time, it is always a good design practice to allow for tolerances. 
  tsu = Set-up time requirement  
  th = Hold time requirement 
 
  Note: We assume that th + th(marg) < tpff(min) + tpcomb(min) 
 
 EXAMPLE - Timing  

 Determine the absolute maximum clock frequency for the divide-by-3 synchronous machine 

CLK 

TCLK (min) 

tpff (max) 

Tpff (min) 

tpcomb (max) Tpcomb (min) 

tsu (marg)        tsu          th             th(marg) 

INPUT 

OUTPUT 

1J              
1 K            Q 
  CLK 
                 Q 
R 

1J              
1K             Q 
  CLK 
                 Q 
R 

CLR’ 

SYS CLK 

Y1 

Y2 

Y2’ 

J1 
K1 

Z 

Y1’ 

J2 
K2 
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 74LS08 AND gate  

tpcomb: Min at 3 ns and Max. at 18 ns 
 75LS175 D-flip-flop 

tpff: Min at 0 ns and Max. at 42 ns 
tsu: Min at 20 ns 
th: Min at 0 ns  

 The fastest clock speed 
TCLK(min)  = tpff(max) + tpcomb(max) + tmarg) + tsu  = 42 + 18 + 0 + 20 =  80 ns  
FCLK(max) = 1/TCLK(min) = 1/80*10-9 = 12.5 MHz  
 
12.5 MHz is significantly slower than today’s technology, where the average personal 
computer clock frequency is many GHz. 
 

 Example – Design 
Design a system (Finite State Machine, FSM) that cycles through the following colors as shown 
below: 
 

 
 

Red Yellow Blue Black 

White Green Violet Cyan 

1D              
                 Q 
  CLK 
                 Q 
R 

1D              
                 Q 
  CLK 
                 Q 
R 

CLR’ 

SYS CLK 

Y1 

Y2 

Y2’ 

D1 

D2 

Z 
Y1’ 

tpcomb tpff 
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5.3.  State Assignment Encoding, Shift Register Counters, and Adding an Enable Input 

 Full-encoding compared to one-hot encoding 

 Full encoding uses all possible combinations of flip flop outputs to represent states, so the 
equation 2#flip-flop ≥ #states is used to determine the number of flip-flops required. Full encoding: 
 
 leads to minimum number of Flip Flops. 
 best used with Simple Programmable Logic Devices (SPLDs) and Complex Programmable 

Logic Devices (CPLDs). 

 One-hot encoding, on the other hand, allows only one flip-flop outputs to be active (or “hot”) at 
any one time.  So the equation #flip-flop = #states is used to determine the number of flip-flops 
required. One-hot encoding: 
 
 leads to larger number of flip-flops. 
 best used with Field Programmable Gate Arrays (FPGAs).  FPGAs, which are sometime 

referred to as “a sea of flip-flops”, has made the use of one-hot encoding a viable approach 
due its overabundance of flip-flops. 
 

 Power-on Reset Circuit 
With either type of encoding there may be illegal and/or unreachable states.  Additionally, when your 
system is turned on initially or regains power after an interruption, it is important for it to recover in a 
predefined state. 
 
A power-on reset circuit ensures that a reset is generated immediately after a power up condition.  
This could be used to preset or reset flip flops into the desired state. 
 
Using RC circuits, we can design circuits that generate active high or low signals, depending on our 
needs, as shown below: 
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 Additional Types of Shift Registers: 

 Parallel in/Parallel out 
 Parallel in/Serial out 
 Serial in/Parallel out 
 Serial in/Serial out 

 
 Additional Types of Counters: 

 Ring Counters; a 1 is shifted through each flip-flop while all the other flip-flop outputs are 0. 
(one hot encoding is a recommended design) 

 Twisted Ring Counters (or switch tail ring counter, Johnson counter, mobius counter) 
 Linear Feedback Shift Register Counter (or maximum length shift counters) 

Depending on design it will count all possible states, but skips all 0s and 1s states. 
 
Recommendation:  Reader is encouraged to explore full definition of these counters and others 
through independent research. 
 

 Adding an Enable Input 
It may be necessary to stop the count at times and then continue counting. In this section we will 
design a “Full-Encoded Stoppable Counter”.  This counter will count up as long as EN is asserted; 
otherwise it will stop the counting.   
 

GND 

Vcc=+5V 

Diode 

Schmitt 
Trigger 

Vc CLR CLR’ 

C=10 uF 

R=10 KΩ 

        On 
Vcc   
        Off 
        5V 
Vc  
        0V 

        H 
CLR   
        L 

        H 
CLR’   
        L 

RC with C grounded 

GND 

Vcc=+5V 

Vc CLR’ CLR 

C=10 uF 

        On 
Vcc   
        Off 
        5V 
Vc  
        0V 

        H 
CLR’   
        L 

        H 
CLR   
        L 

RC with R grounded 

R=10 KΩ 

Power is off      Power is on 

Time it takes the Vc = 5(1- e – t/RC ) 

to trigger the Schmitt trigger 
Time it takes the Vc = 5 (e – t/RC ) to 
trigger the Schmitt trigger 
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 State Diagram for a three-bit (Y1Y2Y3) Full-Encoded Stoppable Counter 

 
 Most standard counters such as 74XX160, 74XX161, 74XX162, 74XX163 have similar 

designs. 
 RCO can be used to enable the next counter in the cascade (if one exists) to start counting. 

 
 Below is a composite K-map for a 3-bit binary up stoppable counter with enable input EN, 

asynchronous clear input CLR, and ripple-carry out RCO. 
 

The flip-flop input excitation equation and RCO output equation can be derived from the composite K-
map or (need 3 flip-flops): 
 
D1=Y1+ = EN.Y1’.Y2.Y3 + Y1.Y2’+Y1.Y3’+EN’.Y1 
D2=Y2+ = EN.Y2’.Y3 + Y2.Y3’+ EN’.Y2 
D3=Y3+ = EN.Y3’ + EN’.Y3 
RCO = Y1.Y2.Y3 
 
 This counter can be designed with one-hot encoding using 8 flip flops. 

 

000 

001 

001 

010 

011 

100 

010 

011 

100 

101 

101 

110 

111 

000 

110 

111 

000 001 011 010 100 101 111 110 
Y1Y2Y3 

0 

1 

Note: CLR=1  Y1Y2Y3 = 000 

0 0 0 0 0 0 1 0 RCO 

Y1+ Y2+ Y3+ 

EN 

EN’ 

EN’ 

EN’ 

EN’ 

EN’ EN’ 

EN’ 

EN’ 
EN 

EN 

EN 

EN EN 

EN 

EN 

EN 
000 

RCO’ 

001 
RCO’ 

010 
RCO’ 

011 
RCO’ 

100 
RCO’ 

101 
RCO’ 

110 
RCO’ 

111 
RCO 
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 Using Enable in Synchronous circuits 
In order to maintain the benefits of a synchronous system (avoiding clock glitches), it is important that 
the clock to all of the components be the same (uninterrupted).  Here is what NOT TO DO: 

 
 
Instead, if you need to enable a flip-flop, use one with enable capability designed in or use the MUX 
as shown: 

 
Flip-flops with enable allows the designers to focus on the input/output synchronization.  Enabled flip-
flops simply require a connection to the enable pin, similar to the Clear and Preset signals. 
 

1D 
D 
EN 
 
ClK 

0 
1  S0 

1D 
 
1EN 
 
   CLK 
 

1D 

EN 
CLK 

D 



Digital Logic Design  Page 137 

5.4.  Inspection Design Methods for Finite State Machines 

The classical design methods are limited to a small number of inputs, states and outputs since the K-
maps required become too difficult to draw and work with. 
 
The Inspection Design Method provides ways to write the excitation equation for flip-flops by inspection 
from a timing diagram, a state diagram, or ASM chart of a synchronous Finite State Machine.  By 
observing or inspecting the present state (PS) and next state (NS) for each state variable, the D, T and J-
K excitation equations can be written. 
 
The equations derived using inspections are not typically minimum equations. There are two inspection 
methods: 

 Set-Hold 1 Method 
or 

 Clear-Hold 0 Method 
 

 Set - Hold 1 Method for obtaining D excitation-input equations  
We use the following table to write D excitation equations directly from a state diagram, ASM chart or 
timing diagram. 
 

Present State 
(PS/NS) 

  Yi     Yi+ 

 
Di 

 
Comment 

User for 1s 
(Set-Hold 1) 

Use for 0s 
(Clear-Hold 0) 

0     0 
0     1 
1     0 
1     1 

0 
1 
0 
1 

Hold 0 transition 
Set transition 
Clear transition 
Hold 1 transition 

 
Di 
 

Di 

Di’ 
 

Di’ 
 

 
 The “Set-Hold 1 Method” can be used to obtain the D excitation equations for the 1s of each 

state variable (flip-flop outputs)  
Di = ∑ (PS.external input conditions for set) + ∑ (PS.external input conditions for hold 1) 
 for i=1, 2, 3… 
 
Note: This method solves for the 1’s of the function. 
 

 We could also apply the “Clear-Hold 0 Method” to obtain the D excitation equations for the 0s 
of each state variable (flip-flop outputs) 
Di’ = ∑ (PS.external input conditions for clear) + ∑ (PS.external input conditions for hold 0) 
  for i=1,2,3,… 
Note: This method solves for the 0’s of the function and it is equivalent to the  first method. 
 

For both of the methods, if we have not completely specified FSM meaning and some state 
values are don’t care, enter them as such so that we can use them in later reduction processes. 
 

 Example -  Obtaining the D excitation-input equations from a state diagram  
Obtain the excitation equations for the following state diagram of a mixed (Mealy-Moore) 
machine. 
 
  State   Y1Y2 
  Input    STOP 
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Output    Z0 Z1 

 
 By observing (or inspecting) all set  transitions (Y1 =0    Y1+=1) and all Hold 1 transitions 

(Y1 =1    Y1+=1) we can write the D1 excitation equation from the state diagram: 
D1 = Y1’.Y2 + Y1.Y2’ + Y1.Y2.STOP 
 

 Repeat the previous step for D2 using Y2 transitions 
By observing (or inspecting) all transitions (Y2 =0    Y2+=1) and all Hold 1 transitions (Y2 
=1    Y2+=1) we can write the D1 excitation equation, from the state diagram: 
D2 = Y1’.Y2’.STOP’ + Y1.Y2’ + Y1.Y2.STOP 
 
Note: We could also look for the 0’s function using Clear-hold 0 method to find D1’ and D2’ 
 

 Based on the state diagram Z0 is a Moore-type output since it only depends on the state 
variables (flip-flop outputs). 
 
We will use a K-map with state variables to find minimized the Z0 equation. 

 
Z1 is a Mealy-type output since it depends on both the state variables and external input 
We will use a K-map with state variables plus external input to find minimize Z1 equation 

 
 Example - Design a 2-bit up-and-down counter using the inspection design Method. 

 Draw system diagram 
 
 
 
 

0 0 

0 0 

Z0 = Y1.Y2.STOP’ 

STOP 
Y1Y2 

0 
 
1 

00     01    11     10 

1 0 

0 0 

1 0 

0 0 

Z0 = Y1’.Y2’ 

Y1 
Y2 

0 
 
1 

0      1 

a 
00,Z0 

b 
01,Z0’ 

c 
10,Z0’ 

d 
11,Z0’ 

STOP, Z1’ STOP, Z1’ 

STOP’, Z1’ 

STOP’, Z1 
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 Draw the Present/Next State Table 
 
 
 
 
 
 
 
 
 

 Write the Excitation-Input Equations 
Di = (PS.external input for set) + (PS.external input for hold 1 ) 
 
 
 
 
 
 
 
 

 Draw the schematics 
 
 
 
 
 
 
 
 
 
 

 Set-Clear Method for obtaining T Excitation-Input Equations 
The following table will be used to write T excitation equations directly from a state diagram, ASM 
chart, or a timing diagram. 
 

 
Present State 

(PS/NS) 
  Yi     Yi+ 

 
Ti 

 
Comment 

User for 1s 
(Set-Hold 1) 

Use for 0s 
(Clear-Hold 0) 

0     0 
0     1 
1     0 
1     1 

0 
1 
1 
0 

Hold 0 transition 
Set transition 
Clear transition 
Hold 1 transition 

 
Ti 
Ti 
 

Ti’ 
 
 

Ti’ 
 
 The “Set – Clear Method” can be used to obtain the T excitation equations for the 1s of each 

state variable (flip flop outputs) 
Ti = ∑ (PS.external input conditions for set) + ∑ (PS.external input conditions for clear) 
  for i = 1,2,3,… 
 
Note: This method solves for the 1’s of the function. 
 

 We could also apply the “Hold 0 - Hold 1 Method” to obtain the T excitation equations for the 
0s of each state variable (flip flop outputs) 
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Ti’ = ∑ (PS.external input conditions for Hold 0) + ∑ (PS.external input conditions for hold 1) 
  for i = 1,2,3,… 
 
Note: This method solves for the 0’s of the function and it is equivalent to the first method. 
 

 Example - T Excitation-Input Equations from an ASM Chart  
Obtain the excitation equations for the one-hot encoded synchronous Moore-type state machine 
from the following ASM Chart. 
 
State   Y1Y2 (S0=10 and S1=01 are used and all others are unreachable) 
Input    X1 X2 X3 
Output    Z 

 
 By observing all the sets (Y1 =0    Y1+=1) and all clears (Y1 =1    Y1+=0), we can write 

the T1 excitation equation, from the state diagram: 
 
T1 = Y2.X3 + Y1.(X1.X2.X3’) 
 

 Repeat the previous step for T2 using Y2 transitions 
By observing all the sets (Y2 =0    Y2+=1) and all clears (Y2 =1    Y2+=0), we can write 
the T2 excitation equation, from the state diagram: 
 
T2 = Y2.X3 + Y1.(X1.X2.X3’) 
 
Note that T1 and T2 were the same. This is not the norm, and just occurred for this machine. 
 

 Based on the ASM Chart , this is a Moore machine because the output depends only on the 
state variables (flip-flop output) 
Z = Y2 
 
 

 Set – Clear method for obtaining J-K Excitation-Input Equations  
The following table will be used to write the JK excitation equations directly from state diagram, 
ASM chart, or a timing diagram. 

  

Z’ 

X1.X2.X3’ 

Z 

X3’ 

CLR 

Y1 

Y2 

1 

0 

0 1 

S1 

S0 
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Present State 
(PS/NS) 

  Yi     Yi+ 

 
Ji   Ki 

 
Comment 

User for 1s 
(Set-Hold 1) 

Use for 0s 
(Clear-Hold 0) 

0     0 
0     1 
1     0 
1     1 

0     - 
1     - 
-     1 
-     0 

Hold 0 transition 
Set transition 
Clear transition 
Hold 1 transition 

 
Ji 
Ki 
 

Ji’ 
 
 

Ki’ 
**Note: “-“ indicates don’t care 
 
 The “Set – Clear Method” can be used to obtain the J-K excitation equations for the 1s of 

each state variable (flip-lop outputs) 
Ji = ∑ (PS.external input conditions for set)  when Yi = 0 for  i=1,2,3,… 
Ki = ∑ (PS.external input conditions for clear)  when Yi = 1 for  i=1,2,3,… 
 
Note: This method solves for 1’s of the function. 
 

 We could also apply the “Hold 0 - Hold 1 Method” to obtain the T excitation equations for the 
0s of each state variable (flip-flop outputs) 
Ji’ = ∑ (PS.external input conditions for hold 0)  when Yi = 0 for  i=1,2,3,… 
Ki’ = ∑ (PS.external input conditions for hold 1)  when Yi = 1 for  i=1,2,3,… 
 
Note: This method solves for 0’s of the function and it is equivalent to first method. 
 

 Example - J-K excitation Equation from state diagram  
Design a synchronous 2-bit Binary up down counter that counts up when input signal X=0 and 
counts down when input signal X=1 
 
State   Y1Y2  
Input    X 

 
 

 Use the “Set – Clear Method” to obtain the J-K excitation equations for the 1s of each state 
variable (flip-flop outputs) 
 By observing all the sets (Y1 =0    Y1+=1), we can write the J1 excitation equation, from 

the state diagram: 
J1 = Y1’.Y2.X’ + Y1’.Y2’.X = Y2’.X + Y2.X’ 
 

 By observing all the clears (Y1 =1    Y1+=0), we can write the K1 excitation equation, 
from the state diagram: 
K1 = Y1.Y2’.X + Y1.Y2.X’ = Y2’.X + Y2.X’ 
 

 Repeat Step 1 for the second Flip Flop 
Use the “Set – Clear Method” to obtain the J-K excitation equations for the 1s of each state 
variable (flip flop outputs) 
 By observing all the sets (Y2 =0    Y2+=1), we can write the J2 excitation equation, from 

the state diagram: 

a 
00 

b 
01 

c 
10 

d 
11 

X’ 
X 

X’ 
X 

X’ 
X 

X’ 
X 
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J2 = Y1’.Y2’.X’ + Y1’.Y2’.X + Y1.Y2’.X’ + Y1.Y2’.X = Y1’.Y2’ + Y1.Y2’ = Y2’ 
 

 By observing all the clears (Y2 =1    Y2+=0), we can write the K2 excitation equation, 
from the state diagram: 
K2 = Y1’Y2.X’ + Y1’Y2.X + Y1.Y2.X’ + Y1.Y2.X = Y1’.Y2 + Y1.Y2 = Y2 
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5.6.  FSM Design Examples 

 Design a 3-bit up/down binary counter.  
 
Solution: 
 

 
Step 1 – State Diagram Describing the system 

 
 

Step 2 -  8 possible state  3 Flip Flops required 
 Use D flip flop since not specified. 
 
 

Step 3 – Assign State variables and redraw state diagram 

Zero One 

Seven Six 

Note: 
Counter changes with each clock which is not shown on state diagram. 

up 

up 

up 

Two 

up 

Down 

up 

Down 
Three 

four 

down up 
down 

Down 

down 

five 

down 

up 

down 

up 

UD 
0 – up  
1 - down 

 
Up/Down 

3-bit Binary 
Counter 

c0 

c1 

c2 

count 0-7 
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Step 4 – Excitation Input and Output Equation 
Note: T= y (xor) y+ 
 
 

Present State Ext. Input  Next State 
y2 y1 y0 UD  D2=y2

+ D1=y1
+ D0=y0

+ 
0 0 0 0     
0 0 0 1     
0 0 1 0     
0 0 1 1     
0 1 0 0     
0 1 0 1     
0 1 1 0     
0 1 1 1     
1 0 0 0     
1 0 0 1     
1 0 1 0     
1 0 1 1     
1 1 0 0     
1 1 0 1     
1 1 1 0     
1 1 1 1     

Notes: 
1) State Assignment: Binary value (y2y1y0) Equivalent to the 
count. 
2) Output: same as state variables  (y2y1y0). 

y2y1y0 

UD 

000 001 

111 110 

0 

0 

0 

010 

0 

1 

0 

1 
011 

100 

1 0 
1 

1 

1 

101 

1 

0 

1 

0 
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Step 5 – Schematics 
 
 
 
 

  

00 

01 

11 

10 

y1y0   k1k0 

   

   

   

   

 

 

 

 

z2 = y2+= D2= 

y1y0   k1k0 

   

   

   

   

 

 

 

 

00       01       11        10 

00 

01 

11 

10 

y1y0   k1k0 

   

   

   

   

 

 

 

 

00       01       11        10 

00       01       11        10 
00 

01 

11 

10 

z1 = y1+= D1= z0 = y0+= D0= 



Digital Logic Design  Page 146 

 Design a 4-botton lock (red, blue, green and black) using T flip flop.  The lock will open only when 
Red, Green,Black and Red buttons are pressed in sequence. 
 

 
         Note: Assigning 2-bit value to each button will reduce the complexity of design. 
 
Solution: 
 

 
Step 1 – State Diagram Describing the system 

 
 

Step 2 -  4 possible state  2 Flip Flops required 
 Use D flip flop since not specified. 
 
 

Reset R 

RGB RG 

Note: 
All input not shown will move the FSM to Reset State. 

Red 

Green 

Black 

Red 

Key Code  
k1   k0  Color 
0    0 Red 
0   1 Blue 
1   0 Green 
1   1 Black 

 
Lock Controller 
System Diagram 

K0 

K1 

Open 
0 – Lock 
1 - Unlock 

Red Blue Green Black 
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Step 3 – Assign State variables and redraw state diagram 

 
 

Step 4 – Excitation Input and Output Equation 
Note: T= y (xor) y+ 
 
 

Present State Input Next State Excitation Input Output 
y1 y0 k1 k0 y1

+ y0
+ T1 T0 Open 

0 0 0 0 0 1    
0 0 0 1 0 0    
0 0 1 0 0 0    
0 0 1 1 0 0    
0 1 0 0 0 0    
0 1 0 1 1 0    
0 1 1 0 0 0    
0 1 1 1 0 0    
1 0 0 0 0 0    
1 0 0 1 0 0    
1 0 1 0 0 0    
1 0 1 1 1 1    
1 1 0 0 0 0    
1 1 0 1 0 0    
1 1 1 0 0 0    
1 1 1 1 0 0    

00 01 

11 10 

Note: 
All input not shown will move the FSM to Reset State. 

00/0 

01/0 

11/0 

00/1 

State Assignment  
y1   y0  State Name 
0    0 Reset 
0   1 R 
1   0 RG 
1   1 RGB 

y1y0 

k1k0/Open 
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Step 5 – Schematics 
 
 
 
 
  

00 

01 

11 

10 

y1y0   k1k0 

   

   

   

   

 

 

 

 

T0 =  

y1y0   k1k0 

   

   

   

   

 

 

 

 

00       01       11        10 

T1 =  

00 

01 

11 

10 

y1y0   k1k0 

   

   

   

   

 

 

 

 

Open =  

00       01       11        10 

00       01       11        10 
00 

01 

11 

10 
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 Design the control for a video arcade game that cost $0.50 to play.  Your design should accept 
quarter and nickel coins and have a return coin button. 
 
Solution: 
 
Step 0 – System Diagram & modularization 

 
 
 
 
 
 
 

Step 1 – State Diagram Describing the system 
 
 
 
 
 
 
 
 

Step 2 -  …… possible state  …… Flip Flops required 
 
 

Step 3 – Assign State variables and redraw state diagram 
 
 
 
 
 
 
 

Step 4 – Excitation Input and Output Equation 
 
 
 
 
 
 
 

Step 5 – Schematics 
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 Design a vending machine control that accepts nickels, quarters and dollar bills.  All products are 
priced  at $1.00.  User may select one of 25 products that will be delivered once user has deposited 
sufficient funds..  
Note: Use modularization to breakdown the design to modules to reduce the design complexity of 
each design. 
 
Solution: 
 
Step 0 – System Diagram & modularization 

 
 
 
 
 
 
 

Step 1 – State Diagram Describing the system 
 
 
 
 
 
 
 
 

Step 2 -  …… possible state  …… Flip Flops required 
 
 

Step 3 – Assign State variables and redraw state diagram 
 
 
 
 
 
 
 

Step 4 – Excitation Input and Output Equation 
 
 
 
 
 
 
 

Step 5 – Schematics 
 
 
 
 
 
 
 

  



Digital Logic Design  Page 151 

 Design a FSM for a UAV that directs it to fly to San Diego when Vancouver is rainy and fly back when 
not rainy. 
 
Solution: 
 
Step 0 – System Diagram & modularization 

 
 
 
 
 
 
 

Step 1 – State Diagram Describing the system 
 
 
 
 
 
 
 
 

Step 2 -  …… possible state  …… Flip Flops required 
 
 

Step 3 – Assign State variables and redraw state diagram 
 
 
 
 
 
 
 

Step 4 – Excitation Input and Output Equation 
 
 
 
 
 
 
 

Step 5 – Schematics 
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5.7.  Additional Resources 

 Wakerly, I. Digital Design. (2006) Prentice Hall  
Chapter 8 “Sequential Logic Design Practices” 
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5.8.  Problems 

Refer to www.EngrCS.com or online course page for complete solved and unsolved problem set. 
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Chapter 6. Finite State Machine Optimization &  Testing 

 

6.1.  Key concepts and Overview  

 State Minimization and FSM Design Process 

 State Minimization/Reduction Using Implication Chart (or Table) 

 Design for Testability (Scan test, Linear Feedback Shift Register and primitive Polynomials) 

 Additional Resources 

 Problems 
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6.2.  State Minimization and FSM Design Process 

The state minimization is done after the fourth step of the seven steps of Finite State Machine (FSM) 
classical design: 
 

1) Organize the Design Specifications –Using one or more of the following:  
Timing Diagram, State Diagram, ASM Chart or Present State/Next State (PS/NS) table 
 

2) Determine the number of flip-flops based on the number of states. 
Full encoding   2#flip-flop ≥ # states 
or 
 one-hot encoding  #flip-flop = # States   
 
Next assign one present state variable to each flip-flop output. 
 

3) Assign a unique code to each state (a specific value for present-state variables). 
 

4) Select the flip-flop type to be used, then determine the excitation input equations and the Moore 
and/or Mealy output equations. 
 
The excitation-input equations for common flip-flops are shown below: 
   JK   Y+ = J.Y’ + K’.Y 
    T     Y+ = T XOR Y 
….D    Y+ = D 
 

  
5) Draw the circuit schematic (pencil/paper or CAD tools). 

 
6) Perform a simulation to test the functionally of the design. 

 
7) Implement the design in hardware. 

 

“State Minimization using 
  implication Chart is used  
  at this point” 
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6.3.  State Minimization Using an Implication Chart (or Table) 

The Implication Chart Method is a systematic approach to find the states that can be combined into a 
single reduced state.  This method is cumbersome to do by pencil and paper, but it is well-suited for 
automation because it is a systematic approach. 
 
 Minimization procedure with an Implication Chart 

A 3-bit sequence detector example is used here to demonstrate the Implication Chart use in state 
minimization. 
 

 Problem Statement 
Design a binary sequence detector with the minimum number of states that outputs a 1 
whenever the machine has observed the serial input sequence 010 or 110. 
 

 Step 1) Use the problem statement to write the Present/Next State Table  
(It may help to first do a state diagram.) 
 

 
Input Sequence 

 
Present State 

Next State 
X=0             X=1 

Output 
X=0            X=1 

Reset S0 S1              S2 0              0 
0 
1 

S1 
S2 

S3              S4 

S5              S6 
0              0 
0              0 

00 
01 
10 
11 

S3 
S4 
S5 
S6 

S3              S4 

S5              S6 

S3              S4 

S5              S6 

0              0 
1              0 
0              0 
1              0 

 
 Step 2) Draw an implication Chart which allows entries relating every state with every other 

state as shown below:   
 Label vertically from last state (S6) to second state (S1) 
 Label horizontally from first state (S0) to next to the last state (S6) 
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In general for an n-state machine, we will have (n2 - n)/2 cells. Each of the cells in the 
implication chart relates State Sj with State Si.   
 
Note:  The order is not important. 
 

 Step 3) Fill-in each cell (Xij) in the implication table with one of the following two options: 
 X  if the Si and Sj have different outputs.  

(state output for Moore machine and transition output for the Mealy machine) 
 Transition states for Sj and Si for each of the inputs 

This means that the next states for all possible inputs must be equivalent for these states 
to be equivalent. 
 

 

 

 

 

 

 

S1 

S2 

S3 

S4 

 S5 

S6 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

S0 S1 S2 S3 S4  S5 
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After the application of previous two rules we will end up with the following table. 

Note:  At this stage,  many of the states have been eliminated. 
 

 Step 4)  
We go through the chart repeatedly until a complete pass can be done through the chart 
without making any additional X markings.  
 
 First Marking Pass – we are looking for cases where the dependencies are not valid. 

 
For example, for States S0 and S1  to be equivalent, we must have S1 – S3 equivalent 
and S2 –S4 equivalent.   
 
Since the cells relating S2 and S4 are crossed out, then the S0 and S1 cell must be 
crossed out. Continue this process (top-down and left to right) through the chart. 

S1 – S3 
S2 – S4 

S1 – S5 
S2 – S6 

S1 – S3 
S2 – S4 

 

X 
S1 – S3 
S2 – S4  

X 
 

S1 

S2 

S3 

S4 

 S5 

S6 

S3 – S5 
S4 – S6 

S3 – S3 
S4 – S4 

 

X 
 
S3 – S3 
S4 – S4 

X 
 

S5 – S3 
S6 – S4 

 

X 
 
S5 – S3 
S6 – S4 

X 
 

X 
 
S3 – S3 
S4 – S4 

X 
 

X 
 
S5 – S5 
S6 – S6 X 

 
S0 S1 S2 S3 S4  S5 

Mean S0  S1 and S1  S3 when X=0. 

Mean S0  S2 and S1  S4 when X=1. 
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 Second marking pass.  

Repeat the process with the resulting chart from the previous pass. 
 

In this pass, no change was made to the table so this is the last pass.  The table 

X 

X 
 

S1 

S2 

S3 

S4 

 S5 

S6 

S3 – S5 
S4 – S6 

X 
 

X 
 

X 
 

X 
 

X 
 
S3 – S3 
S4 – S4 

X 
 

X 
 

X 
 

S0 S1 S2 S3 S4  S5  

X S3 – S3 
S4 – S4 

 

S5 – S3 
S6 – S4 

 

X S3 – S3 
S4 – S4 

 

S5 – S3 
S6 – S4 

 

X 
 

X 
 

S5 – S5 
S6 – S6 

S3 – S3 
S4 – S4 

 

S1 – S3 
S2 – S4 

S1 – S5 
S2 – S6 

S1 – S3 
S2 – S4 

 

X 
S1 – S3 
S2 – S4  

X 
 

S1 

S2 

S3 

S4 

 S5 

S6 

S3 – S5 
S4 – S6 

X 
 
S3 – S3 
S4 – S4 

X 
 

S5 – S3 
S6 – S4 

 

X 
 
S5 – S3 
S6 – S4 

X 
 

X 
 
S3 – S3 
S4 – S4 

X 
 

X 
 
S5 – S5 
S6 – S6 X 

 
S0 S1 S2 S3 S4  S5 
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indicates that the following states are equivalent:  
 

 S0 does not have equivalent, so it will need a new designator Y0 state 
 S1 – S2 – S3 – S5 are equivalent so they can be called Y1 state 
 S4 – S6 are equivalent so they both can be called Y2 state 
 

 Step 5) Present/Next State Table for the minimized state machine:  
 

 
Input Sequence 

 
Present State 

Next State 
X=0             X=1 

Output 
X=0            X=1 

Reset Y0 Y1              Y1 0              0 
00,01 or 10 Y1 Y1              Y2 0              0 

01 or 11 Y2 Y1’              Y2 1              0 
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6.4.  Design for Testability (DFT) 

During the design phase, you need to consider the testing needs.  Here are a few key types of testing to 
consider: 
 
 Go/No Go Testing  

The goal of this test is to ensure that the product is functional before delivering it to the customer. 
This type of test indicates whether the product is functional and can be shipped or not. 
 

 Diagnostic Test 
As the name implies, this test is typically used to find which subsystem is failing, so it can be replaced 
or repaired. This type of test benefits from testability consideration during the design phase. 
 
With the proper attention to Design For Testability (DFT), the diagnostic test will: 
 
1)  Be easier to develop. 
2)  Be more effective in finding problems earlier. 
3)  Reduce downtime, and may even test while the system is operating, which leads to failure 
prediction. 
4)  Reduce cost of a failed product in production phase as well as within warranty. 
 

 Testing 
Digital designs are tested by applying test vectors, which are a set of input values and expected 
output values. 
 
 Simplification Assumptions 

In the worst case scenario, we require 2n vectors to test an n-input combinational circuit.  So, 
engineers make assumptions about the type of errors in order to simplify the process: 
 
 Single bit fault  

Here the assumption is that only one bit (or line or pin) may be stuck at 1 or 0 incorrectly. 
 
Using an 8-input AND gate to demonstrate the benefit of this simplification, instead of 
needing 28 or 256 vectors, we can fully test this circuit with the following nine vectors (walking 
the 0): 
 
[11111111]   [01111111]   [10111111]   . . . [11111011]   [11111101]   [11111110]    
 

 Test-generation programs 
When the system is more complex, it is hard to impossible to create test vectors by hand. 
There are programs designed to create test vectors based on circuit design to ensure that the 
product functions so that all design requirements (customer needs) are met. 
 
DFT methods attempt to simplify test-pattern generation by enhancing the “controllability” and 
“observeability” of logic elements in the circuit. 
 
 In a circuit with good controllability, it is easy to produce any desired values on the 

internal signals of the circuit by applying an appropriate test-vector input combination to 
the primary input.  You may even add additional inputs just for testing. 
 

 In a circuit with good observeability, any internal signal value can be easily propagated to 
a primary output for comparison with the expected output. You may even add additional 
outputs just for testing. 
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 “Bed-of-Nails” and “In-Circuit” Testing 
In a digital circuit that is on a PC board (PCB), most manufacturers use a cushion of probes 
(nails) that makes contact with every signal in the PCB.  Then it can be used to drive through the 
control points and observe the results at observation points.  
 
Although these devices are expensive, they allow the manufacturer to test a circuit in seconds 
and have the confidence that all critical circuits operate to the specification. 
 
Agilent and Tektronix are two of the largest in-circuit test solution vendors. 
 

 Scan Method 
An in-circuit test cannot test custom ICs and FPGAs, since internal signals are not accessible. 
Even with many PCBs, the high-density and surface mounting have limited their effectiveness. 
 
A scan method attempts to control and observe the internal signals of a circuit using only a small 
number of test points. 
 
A scan-path method considers any digital circuit to be a collection of flip-flops or other storage 
elements interconnected by combinational logic. 
 
The basic idea of a scan test is to control and observe the state of storage elements. It does this 
by providing a normal operation mode and a separate scan operation mode where the storage 
elements are reorganized into a giant shift register (Linear Feedback Shift Register) to test the 
storage elements  
 
Here is a sample: 

  Note: Heavier dashed lines indicate the Scan Path 
 
Note:  For a more robust scan test, input pattern are designed using Primitive polynomials.  Each 
polynomial offers a different level of coverage and error detection. This area represents an opportunity for 

Comb.  
Logic .  

  
  

Primary  
Input 

D           Q 
T 
TE 
  CLK 

D           Q 
T 
TE 
  CLK 

Comb.  
Logic 

Clock 
EN_SCAN 

SCAN IN 

D           Q 
T 
TE 
  CLK 

D           Q 
T 
TE 
  CLK 

Comb.  
Logic 

Primary  
Output 

.  
  
  

SCAN OUT 



Digital Logic Design  Page 163 

further research by the reader. 
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6.5.  Additional Resources 

 
 TBC 
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6.6.  Problems 

Refer to www.EngrCS.com or online course page for complete solved and unsolved problem set. 
 
 



Digital Logic Design  Page 166 

Chapter 7 “Verilog”.  Verilog Hardware Description Language (Verilog) 

 

7.1.  Key concepts and Overview 
 

 History 

 Introduction to Verilog VHDL 

 Syntax 

 Blacks and Assignments 

 Operators 

 Variable Types and Declarations 

 Flow Control Statements 

 Code Modularization 

 Additional Resources 

 Problems 
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7.2.  History 

 
Hardware Description Language (HDL) is used by designers to describe circuit functionality in high level 
language.  HDL design are used to implementable the hardware. 
 
The two main HDL development environments on the market are Verilog Hardware Design Language 
(Verilog) and  Very high-speed integrated circuit Hardware Design Language (VHDL).  Verilog  came on 
the market much earlier than VHDL and has a higher market share. 
 
 Verilog 

 Introduced by Gateway Automation in 1984 as a proprietary language. 
 Purchases by Synopsis in 1988 which was eventually purchased by Cadence Design Systems. 
 Cadence Design System has successfully market Verilog to a market power house. 
 Verilog was standardized as IEEE 1364 in 1995. 
 The syntax is similar to C language. 

 
 VHDL 

The US department of Defense (DOD) and the IEEE sponsored the development of VHDL – 
Standardized by IEEE in 1993. 

 Design may be decomposed hierarchically. 
 Each design element has a well-defined interface and a precise behavioral specification. 
 Behavioral specification can use either an algorithm or a hardware structure. 
 Concurrency, timing, and clocking can all be modeled (asynchronous & synchronous 

sequential circuit). 
 The syntax is a mix of Pascal and Ada software languages. 

 
This chapter focuses exclusively on Verilog Hardware Description Language commonly refered to as 
Verilog.  There are sufficient similarity in structure and concepts between VHDL and Verilog that learning 
one will significantly reduces the time required to learn the second language. 
 
This chapter does not attempt to be a complete text on Verilog HDL, rather it is intended to introduce key 
concepts underlying Verilog HDL and basic programming tools.  Most Verilog development environment 
provide an extensive reference which should be utilized in conjunction with this material. 
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7.3.  Introduction to Verilog HDL 

The process of design is shared amongst the Hardware Description Languages (Verilog & VHDL) and 
may be divided into front-end and backend as outlined below: 
 

 The Front-end section is where all the decision are made and the design is documented. 
 The Back-end section includes the implementation, and testing the product. 

 
Although this process is iterative by its very nature, it is important to understand that as the distance 
between the step that an error is discovered and the step that the correction is made increases, the cost 
(time & resource) to fix the error increases exponentially. 
 
Designer may use only one or a combination of the following approaches (levels of abstraction) to 
describe the design: 
 

 Gate or Switch level 
Design by describing the circuit in term of gates such as “and”, “or,” etc. 

 Register-Transfer Level (RTL) 
RTL describes the circuit using operations and the transfer of data between registers. 

 Behavioral Level 
At this level of abstraction, the circuit is described by using state diagrams or algorithms 
describing the circuit behavior.  This level of design is less hardware implementation specific 
and easier to design. 
 

Module is the basic design unit in Verilog.  Before getting to language syntax and other specifics, let’s 
start with a sample code for a positive edge (rising edge) D-Flip Flop.  This code is using Behavioral-level 
approach since we are describing the behavior instead of specific gates (gate-level) or how the data flows 
amongst the registers (RTL). 
 
Example – Verilog 
Design a positive edge triggered D-FF using Verilog. 
 
SOLUTION: 
Verilog design starts with a system diagram showing input and output to the system. 
 

hierarchy/ 
block diagram 

(Step 1) 

coding 
 

(Step 2) 

compilation  
 

(Step 3) 

simulation/ 
verification 

(Step 4) 

timing 
verification 

(Step 7) 

fiting/Place+
route 

(Step 6) 

Synthesis 
 

(Step 5) 

Design 
Requirements 

Back-end 
Steps 

Front-end 
Steps 
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Now,  the Verilog code that describes the D flip flop design: 
 

 
  

`timescale 1ns/100ps  // time measurement unit is 1 nsec with 100 ps percision 
 
// Design a D flip flop 
module D_ff( 
  input wire clk, // clk is input of type wire  
  input wire d, // 
  output reg q    // q is output of type register 
); 
 
// Execute this block in the event of rising edge of clock 
always @ (posedge clk)  begin  // executes this following code at every clock rising edge 
 q = d; // make an assignment 
end 
 
endmodule // end of module  

D 
Flip Flop 

q 
d 

clk 
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7.4.  Syntax 

Verilog HDL Syntax is similar to C programming Language.  Below are some of the Verilog basic 
language syntax: 
 
 Identifiers 

Variables, labels and  module names are referred to as identifier.  Verilog allows identifier to be 
specified by letters or underscore followed by more letters, digits, dolor sign ($) or underscore (_) up 
to a maximum  of 1024 character.    Below are few examples of valid identifiers: 

 test_213$ 
 count 
 _count 

 
 The following reserve words (Verilog commands and keywords) should not be used as identifiers: 

 

always 
and 

assign 
attribute 

begin 
buf 

bufif0 
bufif1 
case 
casex 
casez 
cmos 

deassign 
default 

defparam 
disable 
edge 
else 
end 

endattribute 
endcase 

endfunction 

endmodule 
endprimitive 
endspecify 
endtable 
endtask 
event 

for 
force 

forever 
fork 

function 
highz0 
highz1 

if 
ifnone 
initial 
inout 
input 

integer 
join 

medium 
module 

large 
macromodule 

nand 
negedge 

nmos 
nor 
not 

notif0 
notif1 

or 
output 

parameter 
pmos 

posedge 
primitive 

pull0 
pull1 

pulldown 
pullup 
rcmos 
real 

realtime 

reg 
release 
repeat 
rnmos 
rpmos 
rtran 

rtranif0 
rtranif1 

scalared 
signed 
small 

specify 
specparam 

strength 
strong0 
strong1 
supply0 
supply1 

table 
task 
time 
tran 

tranif0 
tranif1 

tri 
tri0 
tri1 

triand 
trior 

trireg 
unsigned 
vectored 

wait 
wand 
weak0 
weak1 
while 
wire 
wor 
xnor 
xor 

 
 Comment 

Any information appearing after “//” on a line is considered comment: 
 
   // this is comment for the reader 
 
Like C, Verilog considers text between “/*” and “*/” as comment and it may span multiple lines” 
 
  /* first line of comment 
    could  add more line in the middle 
  then end here               
*/ 
 

 Case Sensitivity 
Verilog is case sensitive which means keywords and variable must be in correct case or it will not be 
consider the same.  For example Count and count are two variables.  By the way all keywords in 
Verilog are in lower case.  In this document all keywords are in bold. 
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 Number Representation 
Number may be represented in decimal form with or without sign (+12 or -24). Additionally, Verilog 
allows for a more precise description by using the following format for defining a number: 
 
 <sign><size><base><number> where 
   <sign> can be  ‘+’ or ‘-‘; if not specified, it is positive 
  <size> is the number of bits (in decimal) 
  <base> is the number base which is a letter 
   ‘b’  is binary 
   ‘o’ is Octal 
   ‘d’ is decimal 
   ‘h’ is hexadecimal 
  <number> is the number using digits available in specified base) 
 
Below are a few examples of specifying numbers: 
 

  294 // default type is decimal 
 ‘h2FA // hex number but size is not specified 
 5’b11 // 5 bit binary number ‘00011’ 
 +4’b1011 // 4 bit positive binary number ‘1011’ 
 -3’b101 // 3 bit negative binary number ‘101’ 
 5’b1110x // 5 bit positive binary number with do not care least significant bit 
 ´hff  // default 16 bit number ‘00ff’ hex 
 16´hff // explicitly defined 16 bit number ‘00ff’ hex 
 1´b1 // 1 binary 
 1´b0 // 0 binary 
 1´bx // x binary or one unknown bit  
 1´bz // one hi-z bit 
 32´H0ZX1FABX // hexadecimal 32 bits representing binary 

  //    ‘0000 zzzz xxxx 0001 1111 1010 1011 xxxx’ 
 8´b0110_1100 // 8-bit binary 01101100 
 4´b1x0z // four bits ‘1X0Z’ 
 18´o7573 // 18 bits octol or ‘000 000 111 101 111 011’ binary 
 7´d 126 // 7 bits decimal 123 or ‘01111010’  
 

 String Representation 
A string is a sequence of character enclosed in double quotes. for examples “This is an Example”. 
 

 Logic Values 
Verilog utilizes four logic values: 
 

 ‘0’ // false, low, zero 
 ‘1’ // true, high, one 
 ‘z’ or ‘Z’ // High Impendence or floating for use with tri-state devices 
 ‘x’ or ‘X’ // Uninitialized or unknown value 

 
Verilog also allow for logic strength definition which is useful for situations where multiple devices are 
driving the same wire in determining the logic present on the wire. 
 

 Module Definition 
As discussed earlier module is the basic block of Verilog and is similar in nature to function in C with 
added attributes for describing circuit design.    
 
module yourModuleName( // start with naming the module 
  input wire inPort1, // Define input, typicall wire type 
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  output reg outPortb1,  // Define input, typicall wire type 
  … 
);  // end of input/output and module external interface definition 
 
 // The code that performs the logic of this module goes here 
  statements // Module Body must be in initial block, assign or always block 
 
endmodule // end of module 
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7.5.  Blocks and Assignments 

Verilog can be used to implement both types of digital circuits: 
 

 Combinational – gates and other circuitry with no memory 
 Sequential –  flip flop and other circuitry with memory  

 
In order to handle both types of circuits , Verilog uses three types of blocks to direct the execution of 
module functionality.  The three blocks are initial, assign and always blocks, which are described in 
more detail below: 
 
 Initial Block  “initial” 

Statements in initial block are executed only once at the start of the module instantiation.  It is used to 
initialize variables and reg type elements at the start of the module.  Below is a usage example: 

Left hand side of assignments in initial block must be a variable or reg type (type with memory). 
 

 Assign block “assign” 
“assign” statement is used to create wire between two types.  This is useful in modeling 
combinational logic.  The assignment is continuous.  For example in the following statement, value of 
variable present will be set to value in next continuously as if there was a wire between them. 
 
  assign present=next; 
 
“assign” statements do not need to be in block with begin/end.  They can be on their own and 
executed sequentially.  Below is usage example of assign in a module: 

`timescale 1ns/100ps  // time unit is 1 ns with precision of 100 ps 
 
module example( // module, input and output definition 
  input wire Ain,  
 input wire Bin,  
 output wire Cout 
); 
 
integer i, count; // 
 
initial  begin // set the initial value of variables. 
  i = 0; 
  Cout =0; 
end  //initial 
 
endmodule // end of module 
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Left hand side of assignments in assign must be wire type. 
 

 Always statement “always” 
“always” block executes when an event occurs.  Events are changes in the signals listed in the 
sensitivity list of always block.   always (is on going) as the name implies and also allows for selective 
execution based on the sensitivity list. 
 
In the following example input Ain is always assigned to Cout.  As you can see this is similar function 
to assign with the difference that Cout has to a register since it is on the left hand side of an 
assignment in the always block.  In the following example we are using a delay of 15 time unit (time 
unit are defined at the beginning of code).  The value of delay is written after the “#” symbol. If no # is 
provided then there will be no delay. 

 
Verilog may be written to selectively execute the code in the “always” block by adding a sensitivity list.  
In the next example sensitivity list included Bin and clk.  Each time, either Bin’s or clk’s value change, 
statements in the “always” block execute once.  

`timescale 1ns/100ps  // time unit is 1 ns with precision of 100 ps 
 
module example( // module, input and output definition 
  input wire Ain,  
 input wire Bin,  
 output reg Cout,  
  output reg ps 
); 
 
integer i, count; 
 
initial  begin // set the initial value of variables. 
  i = 0; 
  count =0; 
end  //initial 
 
always  begin 
   Cout = Ain; // Cout takes on the value of Ain  
    # 15 ps = Bin; // ps takes on the value of Bin after 15 time unit (nsec) 
end  
endmodule // end of module 
 

`timescale 1ns/100ps  // time unit is 1 ns with precision of 100 ps 
 
module example( // module, input and output definition 
  input wire Ain,  
 input wire Bin,  
 output wire Cout 
); 
 
assign #5 Cout=Bin; // 5 unit delay (5 ns) before assignment 
 
endmodule // end of module 
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It is important to remember that always block cannot make an assignment to a wire.  The left hand 
side of assignment in “always” block needs to be a register or variable.  
 
If we go back to the d-ff example, you see that “always” can be triggered on specific type of change. 
In the following examples,  the assignment is only triggered when the positive edge (rising edge) of 
the clock is encountered. 

In “always” block, assignment may be made using a blocking assignment “=” or non-blocking 
assignments “<=”.  These two assignment operators have distinct functionality: 
 
 Blocking Assignment “=” 

Blocking Assignments execute “in series” which means each assignment is completed before 
moving on to the next assignment. This type of assignment is commonly used for combinational 
logic.   
 

`timescale 1ns/100ps  // time unit is 1 ns with precision of 100 ps  
 
// Design a D flip flop 
module D_ff( 
  input wire clk, // clk is input of type wire  
  input wire d, // 
  output reg q    // q is output of type register 
); 
 
// Execute this block in the event of rising edge of clock 
always @ (posedge clk)  begin  // executes this following code at every clock rising edge 
 q = d; // make an assignment 
end 
 
endmodule // end of module – note there is no 
 

module example( // module, input and output definition 
  input wire Ain,  
 input wire Bin,  
 output reg Cout,  
  output reg ps 
); 
 
integer i, count; 
 
initial  begin // set the initial value of variables. 
  i = 0; 
  count =0; 
end  //initial 
 
always @ (Bin, clk) begin // executes only if Bin and clk changes 
   Cout = Ain; // Cout takes on the value of Ain  
    # 15 ps = Bin; // ps takes on the value of Bin after 15 time unit (nsec) 
end  
endmodule // end of module 
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always @  (posedge clock) begin 
    ns = j & ~ ps; // Step 1. evaluate  (j & ~(ps)) , assign results to ns 
    z = ns | ps // Step 2.  evaluate  (ns | ps) , assign results to z 
    ps = ns;    // Step 3.  evaluate ns, assign results to ps 
end 

 
 Non-blocking assignment "<=" 

Non-blocking Assignment “<=” executes “in parallel”.  In other words, if there are multiple non-
blocking assignments in the always block, all statements are executed simultaneously. 
 

always @  (posedge clock) 
begin 
    ns <= j & ~ ps; // evaluate  (j & ~(ps)) , but no assignment 
    z <= ns | ps // evaluate  (ns | ps) , but no assignment 
    ps <= ns;     //evaluate ns, but no assignment 
end                // new values are assigns to ns, z and ps at end of always block 

 
In summary, blocking assignments (=) evaluate right hand side (r.h.s.) and assign the results to left 
hand side (l.h.s) immediately. In nonblocking assignments (<=) are delays until all r.h.s evaluations 
are completed.  
 
The following two code samples and associated hardware implementations show the difference 
between blocking “=” and non-blocking “<=” operators: 
 

  

Blocking Non-Blocking 
Code: 
 
// The following code makes assignments  
// sequentially; so after the first clock rising 
// edge:  
//                 out = q1 = q2 = a 
 
always @ (posedge clk) 
begin 

q1 = a;   // a is evaluated  
q2 = q1;  
out = q2; 

end 
 

Code:  
 
// The following code makes assignments  
// in parallel; so it would take three clock 
// rising edge before value of a has reached the  
//  output:  
//                     out = a 
 
always @ (posedge clk) 
begin 

q1 <= a; 
q2 <= q1;  
out <= q2; 

end 
 

Equivalent Circuit: 

 

Equivalent Circuit: 

 

D  Q a D  Q D  Q 
q1 q2 

out 

clk 

D  Q a  .   .    . 
 q1   q2   out 

clk 
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7.6.  Operators 

This section provides an overview of logical, relational, arithmetic and other operators.  This section 
provides a sampling of available operations.  Students are encouraged to explore Verilog reference 
manual for a complete list of available operations. 
 
 Logical operators 

The logical operators and, or and not as list here.  They operate on two variables and each variable 
may have one-bit, be an arrary of bits or other variable types.  Non-zero values are consider true and 
zero value is consider false. 
 

Symbol Operation 
! Negation 

&& And 
|| Or 

 
 Example – Logical Operator 

(!4'b0101))   0  // Negate 
(4'b0001 &&  4'b1001))   1 // And 
(4'b0000 &&  4'b1001))   0 // And 
 

 
 Bitwise Operators 

The following function are bitwise operators and the operands must be one bit or array of bits. 
 
 

Symbol Operation 
& And 
~ Negation 

~& Nand 
| Or 

~| Nor 
^ Xor 

~^ Xnor 
>> Right shift 
<< Left shift 

 
 Example – Bitwise Operator 

 
(~4'b0001))   1110  // Bitwise Negation 
(4'b0001 |  4'b1001))  1001 // Bitwise OR 
(4'b0001 &  4'b1001))    0001 // Bitwise AND 
a = 1 << 3;   // '1' left by 3 position.  
a = ~b ;   // inverts every bit in b and saves it in a.   
 

 
 Relational operators 

Relational operators are used to test the relative values of two scalar types. The result of a relational 
operation is always a Boolean true (1) or false (0) value. 
 

Symbol Operation 
== Equality 
!= Inequality 
> Greater than 
< Less than 
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>= Greater than or equal 
<= Less than or equal 

 
 Example – Relational Operators 

 3'b101 == 3'b110   0 //  equal (==) operator 
 3'b101 != 3'b110   1 // not equal (!=) operator 
 4’b1001 < 4’b1010  1 // Less than (<) operator 
 a = !b ;     // If b is true (non zero) then a will be 0 otherwise 1  
 

  Arithmetic Operations 
The Arithmetic operators are listed in this section  
 

Symbol Operation 
* Multiply 
/ Divide 
+ Add 
- Subtract 

% Modulus 
 

 Example – Arithmetic Operators. 
a = b + c ;  // simply adds b and c and saves it in a   

 
 Others 

Here are a couple of other useful operators: 
 
 Concatenation “{}” 

Attaches two strings or bit arrays together.  for example {A,B} … 
 
 Example – Concatenation  

new_v = {“4’b0101”, 3’b110”}  // value assigned is “0101110” 
 

 Conditional Assignment “?” 
Allows making assignments based on a condition.  
 
 Example – Conditional Assignment 

 
x=(enable)?A:B; // x=A if enable is true otherwise x=B 
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7.7.  Types and Variable Declarations 

Verilog requires explicit declaration of variables which means before using a variable it must be declared.  
In addition to variables, Verilog has the wire  type and reg types.  These two types create physical wire or 
memory correspondingly. 
 

 “wire” Type 
“wire” type as the name implies creates a wire. It must be driven which mean the wire type 
cannot be used as the left hand side of an assignment (= or <=) in an always block.  By default 
input and output ports are of the type wire. “wire” is used to connect components and can have 
strength modifiers supply0, supply1, strong0, strong1, pull0, pull1, weak0, weak1, highz0, highz1, 
small, medium, large.  
 

 Example 
wire   d; // d is declared as wire which need to be driven 
 

 Input example 
There are three ways of declaring input as wire: 

 Explicit Form 
input   a; // define a as input 
wire    a; // explicitly define a wire. 
 

 Implicit Form 
input   a; // by default, input a is of wire type 
 

 Condensed Explicit Form 
input wire a;      // in single line a is defined as input and wire. 
 

 “reg” type 
“reg” is  used to define elements that remember value if they are not driven.  It stores logic value 
(no logic strength).  You can also think of it as being a memory element or flip flop storing the 
value until it is changed. “reg” is the only valid type for the left hand side of assignment (=, <=) in 
an “always” block.  
 

 Example  
reg  q; // q value is remembered until it is change again 
 

 Output example 
There are two ways of declaring reg output: 

 Explicit Form 
output   a; // define "a" as output 
reg     a; // explicitly define reg 
 

 Condensed Explicit Form 
output reg a;      // in single line a is defined as output and reg 
 

 Variable Data Type 
A Variable Data type behaves similar to variables in C, it changes its value upon assignment and 
holds its value until another assignment.  It is similar to reg type but variable do not create wire or 
memory elements.  The five common Variable types are: 
 
 integer Type 

integer is typically a 32 bit 2’s complement integer. 
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 Example - 
integer count; // declare count as an integer 
 

 real  
Type real is typically a 64 bit using the double precision floating point IEEE Standard format. 
 
 Example - 

real earnedSalary; 
 

 realtime  
realtime is used to storing time as a real type (floating point value). 
 
 Example - 

realtime now;  
 

 time type 
The system function $time returns simulation time in time type. In most systems time is 64 bit 
unsigned integer value. 
 
 Example - 

time thisTime;  // declare thisTime to store time 
 

Any of the types may be groups as arrays by adding by adding modifier [first:last].  you may use index to 
refer to each of the array members, list[5]. But Verilog does not allow access to a range of array members 
which means, list[2:5], is an invalid operation.  Below are example of arrays: 
 

 integer [1:20] grades; // integer type array with 21 element with first element at grades[1] 
   // and the last element at grades[20] 
 

 real [0:30][0:90] gisCord; // You can even make a multi-dimension array by  
   // adding modifier [first][last] for each dimension. 

 
Vectors is array of multiple bit types by adding modifier [msb:lbs]. For example: 
 

 wire [15:0] exTest; // wire type with 16 bit with lsb at exTest[0] and msb at exTest[15] 
 

 wire [-5:5] exTest; // wire type with 11 bit with msb at exTest[-5] and lsb at exTest[5] 
 

 reg [13:-2] results; // reg type with 16 bits with lsb at results [-2] and msb at [13] 
 

 reg signed [31:0] results; // reg type with 32 bits in 2’s complement. 
 
 

 Example – Using Arrays to implement a 16-bit counter synchronous up counter 
 

module Lab7exp3code( 
  input wire clk, 
  output reg [7:0] count=0 
 ); 
 always @ (posedge clk) begin 
  count = (count == 4’hFFFF) ? (4’h0) : (count + 16'b1)  
 end 
endmodule 
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7.8.  Flow Control Statements 

Verilog much like C programming languages provides a wide variety of flow control statement.  This 
section will cover some of the most common flow control statements including “if-else”, “case’, “for”, and 
“while”. 
 

 If-else Statement 
if-else statement will execute the  “T statements” if the conditions are true and execute the “F 
statements” otherwise.  The syntax is shown below: 

 
 Example -  

 
 

 Case Statement 
Case statement is preferred approach instead of complex nested if-else statements. Case 
statements allows selection of a specific set of statements to be executed based on the specific  
values of a selection variable.  

 
 Example -  

 
case(step)  
  0 :  $display ( "starting step” );   
  1 :  $display ( "step number 2" );   
  2 :  $display ( "step 3" );   
  default : $display ( "undefined step" );   
endcase  
 

 While  Loop 
statements in “while” loop executes a code segment as long as the while condition is true.  While 

case (caseExp) // Select Variable 
  exp1   : statements 1 ; // if caseExp = exp1 then statement1 will be executed 
 exp2  : statements 2;  // if caseExp = exp2 then statement2 will be executed  
  exp3  : statements 3;  // if caseExp = exp3 then statement3 will be executed 
  default  : statements; // if none of value matched then this statement is executed 
endcase 

// simple if-else statement  
if (test == 1’b1)  begin 
 count = 2;  
  wr_data = 16’hAE; 
end 
else  begin 
 count = count - 1;  
  wr_data = 0; 
end 

if (condition) begin // condition is a logincal operation resulting in true or false  
 T Statements // if condition is true, execute T Statements 
end 
else   begin 
 F Statements // if condition is true, execute F Statements 
end 
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loop syntax is shown below: 

 
 Example -  

//this code loops 12 times, each time adding 3 to count 
count = 0; 
while (count < 12)  
  count = count +3;  
end 
 

 For Loop 

 
 Example -  

 
// This code displays counts from 0 to 30. 
for (count= 0; count < 31; count = count +1) begin  
 $display ( "Count is %d" , count);   
end  
 

  

// execute initial before starting the loop 
//if condition is true execute the body followed by executing the end expression  
//repeat 
for (initial; condition; end expression)  begin  
  Statements   // for loop body 
end 

While (condition)  begin // while condition is true the statements is executed
 Statements 
end 
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7.9.  Code Modularization 

As the code gets more complex and size increases, it is important to modularize the code by developing 
the code as multiple modules.  This approach improves code reusability, improved debugging/reliability 
and simpler design.  
 
Here is example of how multiple modules are used: 
 
 

// Modularized code  
// This module that we will use later in main 
module mod_base( 
  input wire inA, 
  input wire inB, 
  output reg outA 
);  
  assign outA=(inA)?inB:1’b0;  
 
endmodule  
 
// ite the main circuit that uses our selector  
module main( 
  input wire a, 
  output wire b 
);  
  // now used mod_base   
  mod_base U1(1’b0,1’b1, b);    // this is where the mod-base is instantiated and used. 
endmodule 
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7.10.  Summary 

 Number Representation 
<sign><size><base><number> where 
   <sign> can be  ‘+’ or ‘-‘; if not specified, it is positive 
  <size> is the number of bits (in decimal) 
  <base> is the number base which is a letter 
   ‘b’  is binary 
   ‘o’ is Octal 
   ‘d’ is decimal 
   ‘h’ is hexadecimal 
  <number> is the number using digits available in specified base) 
 

 String Representation 
A string is a sequence of character enclosed in double quotes. for examples “This is an Example”. 
 

 Logic Values 
Verilog utilizes four logic values: 
 

 ‘0’ // false, low, zero 
 ‘1’ // true, high, one 
 ‘z’ or ‘Z’ // High Impendence or floating for use with tri-state devices 
 ‘x’ or ‘X’ // Uninitialized or unknown value 

 Assignment types 
 “=” is a blocking assignment and is used for combinational logic assignment.  This operator 

allows parallel assignment so anytime the expression changes, the output will change also. 
 "<=" is a non-blocking assignment operator and is used for sequential logic. “<=” assignment 

operator results in sequential execution (blocks concurrent execution). 
 

 Example modules 

 
  

`timescale 1ns/100ps  // time measurement unit is 1 nsec with 100 ps percision 
 
// Design a D flip flop 
module D_ff( 
  input wire clk, // clk is input of type wire  
  input wire d, // 
  output reg q    // q is output of type register 
); 
 
// Execute this block in the event of rising edge of clock 
always @ (posedge clk)  begin  // executes this following code at every clock rising edge 
 q = d; // make an assignment 
end 
 
endmodule // end of module  
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 Operators 
Logical Bitwise Relational Arithmetic 

Symbol Operation 
! Negation 

&& And 
|| Or 

 

Symbol Operation 
& And 
~ Negation 

~& Nand 
| Or 

~| Nor 
^ Xor 

~^ Xnor 
>> Right shift 
<< Left shift 

 

Symbol Operation 
== Equality 
!= Inequality 
> Greater than 
< Less than 

>= 
Greater than 
or equal 

<= 
Less than or 
equal 

 

 

Symbol Operation 
* Multiply 
/ Divide 
+ Add 
- Subtract 

% Modulus 

 
 Variable Data  

 integer count; // integer number 
 real earnedSalary;   // real number 
 wire a; // net type 
 reg b; // register type 
 time type //time type 
 Any of the above types can be made into an array for example: 

  integer [1:20] grades; 
  reg [16:0] Dout; 

 

 

 

 
  

for (initial; condition; end expression)  begin 
 Statements 
end 

While (condition) begin 
 Statements 
end 

case (caseExp) // Select Variable 
  exp1   : statements 1 ; // if caseExp = exp1 then statement1 will be executed 
 exp2  : statements 2;  // if caseExp = exp2 then statement2 will be executed  
   default  : statements; // if none of value matched then this statement is executed 
endcase 

if (condition)  begin // condition is a logincal operation resulting in true or false  
 T Statements // if condition is true, execute T Statements 
end  else  begin 
 F Statements // if condition is true, execute F Statements 
end 
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7.11.  Additional Resources 

 
 Wakerly, I. Digital Design. (2006) Prentice Hall  

Chapter 5 “Hardware Description Language” 
 

 Palnitkar, S. Verilog HDL (2012) Prentice Hall 
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7.12.  Problems 

 
Refer to www.EngrCS.com or online course page for complete solved and unsolved problem set. 
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Chapter 8 “VHDL”.  VHDL Hardware Description Language (VHDL) 

 

8.1.  Key concepts and Overview 
 

 History 

 Steps in HDL design 

 Architecture and Program Structure 

 Declarations 

 Operators 

 Structural Design Elements 

 Behavioral Design Elements 

 Dataflow Design Elements 

 Additional Resources 

 Problems 
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8.2.  History 

 
Hardware Description Language (HDL) is used by designers to describe circuit functionality in high level 
language.  This VHDL design is then processed to an implementable hardware circuit design. 
 
The two main HDL solutions on the market  are Verilog Hardware Design Language (Verilog) and  Very 
high-speed integrated circuit Hardware Design Language (VHDL).  Although Verilog  came on the market 
much earlier than VHDL, they both have equal market share currently. 
 
 Verilog 

 Introduced by Gateway Automation in 1984 as a proprietary language. 
 Purchases by Synopsis in 1988 which was eventually purchased by Cadence Design Systems. 
 Cadence Design System has successfully has successfully market Verilog to a market power 

house. 
 The syntax is similar to C language. 

 
 VHDL 

The US department of Defense (DOD) and the IEEE sponsored the development of VHDL – 
Standardized by IEEE in 1993. 

 Design may be decomposed hierarchically. 
 Each design element has a well-defined interface and a precise behavioral specification. 
 Behavioral specification can use either an algorithm or by a hardware structure. 
 Concurrency, timing, and clocking can all be modeled (asynchronous & synchronous 

sequential circuit). 
 

This chapter focuses on VHDL exclusively.  There are sufficient similarity in structure and concepts 
between VHDL and Verilog that learning Verilog is expected to be a simple process. 
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8.3.  Steps in VHDL design 

The process of design may be divided into front-end and backend.  Where: 
 The Front-end section includes all the decision are made and the design is documented. 
 The Back-end section includes the implementation and testing and the product. 

Although this process is iterative by its nature, as the distance between the step that an error is 
discovered and the step that the correction is made increases, the cost (time & resource) increases 
exponentially. 
 
 
 Program Structure 

 
 VHDL was designed with principles of structured programming in mind and borrowed ideas from 

Pascal and Ada Software Languages. 
 

 VHDL Code has two parts (entity & architecture) 
 Entity 

A declaration of a module’s inputs and outputs.  Entity is viewed as a wrapper for the 
architecture, hiding what’s inside, while providing access for another module to use the 
functionality. 
 

 Architecture 
A detailed description of the module’s internal structure or behavior. 

 

 
 

 VHDL is hierarchical, meaning that a higher-level entity may use other entities while hiding lower 
level entities from the higher level ones as shown by the following diagram:  

Entity Declaration 

Architecture  
     Definition 

-- Eight-bit comparator 
entity ent_compare is 

port( A, B: in bit_vector(0 to 7); 
 EQ: out bit); 

end ent_compare; 
 
architecture arc_compare of ent_compare is 
begin 

EQ <= ‘1’ when (A = B) else ‘0’; 
end arc_compare1; 

hierarchy/ 
block diagram 

(Step 1) 

coding 
 

(Step 2) 

compilation  
 

(Step 3) 

simulation/ 
verification 

(Step 4) 

timing 
verification 

(Step 7) 

fiting/Place+
route 

(Step 6) 

Synthesis 
 

(Step 5) 

Design 
Requirements 

Back-end 
Steps 

Front-end 
Steps 
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 General VHDL Semantics 

VHDL similar to other languages has many constructs and rules.  The following list contain some of 
the most common Semantics: 
  
 Code can span multiple lines and files for larger designs. 

 
 Comment field starts with “--" and ends at the end of line. 

 
 Each statement must be terminated with a “;”. 

 
 VHDL ignores space and line breaks which allows for readability formatting. 

 
 VHDL has many reserved words (or keywords) that cannot be redefined such as: 

Entity, Port, Is, In,  Out, End, Architecture, Begin, When, Else, Not, ... 
 

 Reserve words and identifiers are not case-sensitive 
 

 User Defined Identifiers 
These are names used to refer to variables, signals, types, processes, function, types, 
architecture and entities. User defined identifiers names must adhere to the following 
requirements: 
 
 Must begin with a letter and contain letters, digits and underscores. 
 Underscore cannot follow each other and cannot be the first or last character. 
 Reserve words are not allowed.  

 

Architecture A 

Entity A 

Architecture B 

Entity B 

Architecture C 

Entity C 

Architecture D 

Entity D 

Architecture E 

Entity E 

Architecture F 

Entity F 
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8.4.  Entity and Architecture 

The remainder of this document discusses the VHDL infrastructure, common structures and syntax.  The 
reader is encouraged to use the VHDL development tools such as Active-HDL from Aldec to implement 
the ideas discussed in this text.  Additionally, the reader is encouraged to use the online documentation 
and help section of these products to explore related capabilities of VHDL. 
 
This section focuses on the core framework of VHDL (Entity and Architecture). 
 
 Entity Declaration 

Entity code describes the system diagram which includes definition of input and output.  It does not 
provide any information on the internal function of the device. 
 

entity entity_name is 
 port ( 
  signal_names : mode signal_type; 
  signal_names : mode signal_type; 
  . . . 
  signal_names : mode signal_type); 
end entity_name;  

 
 “entity_name” 

A user defined identifier to name the entity. 
 

 “signal_names” 
A comma-separated list of one or more user-selected identifiers to name external-interface 
signals. 
 

 “mode” 
”Signal_type” for mode may be set to one of the following four reserved words in order to 
specifying the signal direction: 
 

 “in” 
The signal is an input to the entity. 

 “out” 
The signal is an output of the entity.  Note that the value of such a signal cannot be “read” 
inside the entity’s architecture, only by other entities that use it. 

 “buffer” 
The signal is an output of the entity, and its value can be also be read inside the entity 
architecture. 

 “Inout” 
The signal can be used as an input or an output of the entity.  This mode is typically used 
for three-state input/output pins on PLDs. 
 

 Signal-type 
A built-in or user-defined signal type.  Discussed later.  Note there is no “;” after the last signal-
type. 
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 Architecture Definition 
Architecture code defines the function of the device.  It is highly recommend that pseudo code or 
other high level design be completed prior to writing the architecture code. 
 

architecture architecture_name of entity_name is 
 signal declarations; 
 type declarations; 
 constant declarations; 
 function declarations; 
 procedure declarations; 
 component declarations; 
begin 
 concurrent_statement; 
 . . .  
 concurrent_statement; 
end architecture_name;  

 
 “architecture_name” is a user-defined identifier, and “entity_name” is also a user defined identifier 

for the entity.  The concurrent-statements can appear in any order since they are executed 
currently.  The Declaration statement may also appear in any orders.. 
 



Digital Logic Design  Page 194 

8.5.  Declarations 

 Signal and Variable Declarations 
Signal declaration gives the same information about a signal as in a port declaration, except that 
mode specification is not required. Syntax for signal declaration is shown below: 
 
 signal signal_names : signal_type; 
 
Any number of signals can be defined within architecture, and they roughly correspond to the named 
wires in a logic diagram. 
 
It is important to note that symbol “<=”  is used to assign a value to a signal. For example to assign a 
value of 4 to a signal stemp, it needs to be written as follows: 
 stemp <= 4;  
 
 
VHDL variables are similar to signals except that they do not have a physical significance in a circuit.  
Variables are used within functions, procedures and processes (not used in architecture definition).  
The variable declaration syntax is as follows: 
 
  variable variable_name : variable_type; 
 
It is important to note that symbol “:=”  is used to assign a value to a variable. For example to assign 
a value of 4 to a variable vtemp, it need to be written as follows: 
  vtemp := 4;  
 

 “type” Declarations 
All signals, variables and constants in a VHDL program must have an associated “type.”  Each “type” 
specifies the range of values that object can take on.  “type” may be pre-defined or user defined. 
 
 Pre-Defined Types: 

 
 Bit 

Takes on ‘0’ and ‘1’ values 
 Bit-vector 

array of bits 
 Boolean 

True, False { EQ <= True;} 
 Integer 

A whole number ranging from -231+1 through +231-1 {count <= count + 2;} 
 Real  

1.0, -1.0E5   {V1 := V2 / 5.3} 
 Character 

All of the ISO 8-bit character set – the first 128 are the ASCII Characters. {CharData <= ‘X’;} 
Note:  The symbol ‘ is used for character definition. 

 String 
An array of characters  {msg<=”MEM:”  & Addr;} 
Note:  The symbol “ is used for string definition. 

 Time 
1 us, 7 ns, 100 ps  {Q<=’1’ after 6 ns;} 
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 Predefined Operators 
VHDL is a strongly typed language which means that the complier issues error messages if types 
in an operation or assignment do not perfectly match. 
 
The integer and Boolean Operations are the most commonly used VHDL operation and operands 
in each operation group must have the correct type in order for the operation to be compiled 
correctly. 
 
Following table list some of the most common operations: 
 

Integer Operators Boolean Operators 
+ 
- 
* 
/ 

mod 
rem 
abs 
** 

addition 
subtraction 
multiplication 
division 
module division 
module remainder 
absolute value 
exponentiation 

and 
or 

nand 
nor 
xor 

xnor 
not 

AND 
OR 
NAND 
NOR 
Exclusive OR 
Exclusive NOR 
Complementation  

 
 User-Defined Types 

Although VHDL provides an extensive list of pre-defined types, user may need to define new 
types using the user-defined type capabilities of VHDL.  The flowing pages, describe the most 
common user-defined type constructs:  
 
 Numeration 

Numeration enables the user to define a type that can only accept a predefined set of values.  
The following syntax, allow definition of numeration type and its use to build two different type 
of arrays: 
 
type type_name is (value_list);  -- Value-list is a comma-separated list of all 
  -- possible values of the type 
 
-- create an array of type-name with an ascending order from start to end 
subtype subtype_name is type_name range start to end;   
 
-- create an array of type-name with a descending order from start to end 
subtype subtype_name is type_name range start downto end; 
 
 Example  – Write a code segment to define an array that starts from 20 to -4 with each 

element value restricted to either red, green, or blue. 
 
type COLORS is (“red”, -- User-define types are typically in Capital Letters 
  “green”, 
 “blue”, 
 ); 
subtype my_colors is COLORS range 20 downto -4; 
 

 Example- Define a complete logic type that includes hi-z, weak and forcing. 
 
type STD_ULOGIC is ( 
  ‘U’,  -- Uninitialized 
  ‘X’, -- Forcing Unknown 
  ‘0’,  -- Forcing 0 
 ‘1’,  -- Forcing 1 
 ‘Z’,  -- High Impedance 
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 ‘W’,  -- Weak  Unknown 
 ‘L’,  -- Weak   0 
 ‘H’,  -- Weak   1 
 ‘-’,  -- Don’t care 
  ); 
subtype STD_LOGIC is resolved STD_ULOGIC 
 
 

 Array 
The following list represent the most common use of array constructs: 
 
  type type_name is array (start to end) of element_type; 
 type type_name is array (start downto end) of element_type; 
 type type_name is array (range_type) of element_type; 
 type type_name is array (range_type range start to end) of element_type; 
 type type_name is array (range_type range start downto end) of element_type; 
 
 Inside the VHDL program statement array element can be accessed using array name of 

indices.  Note that the leftmost element is the first. 
 
Examples: 
type monthly_count is array (1 to 12) of integer;   -- 12 element array m(5) 
type byte is array (7 downto 0) of STD_Logic;      --  8 element array b(3) 
type statcount is array (traffic_light_state) of integers;  -- 4 element array s(reset) 
 
 

 Array literals can be specified by listing values in parentheses or using one of the pattern 
shortcuts. 
 
Examples (N is a 4-bit array): 
N := (‘1’, ‘1’, ‘1’,’1’);   -- set all elements to character 1 
N := (“1111”);  -- set all elements to character 1 
 
Examples (B is a 8-bit array): 
B:= (0=>’0’, 4=>’0’, others =>’1’); -- set B=”01110111” 
B:= (‘0’,’1’,’1’,’1’,’0’,’1’,’1’,’1’);  -- set B=”01110111” 
 

 Array Slice 
A subset of an array can be accessed using the array slice functionality. For example, to 
only look at sixth to ninth elements of an array M, use one of the following expressions: 
 
  M(6 to 9) or M(9 downto 6) -- Element in these arrays are stored in opposite  
   -- order. 
 

 Concatenation Operator, “&” 
A Concatenation Operator is used to combine (Concatenate) arrays or array elements as 
shown by the following examples: 
 
’0’ & ’1’ & ”1Z” results in the string “011Z” 
B(6 downto 0) & B(7) results in a 1-bit rotate left of the 8-bit array B. 
 

 Unconstrained array 
In some application, the designer required an array but at the declaration, its number of 
elements or range is unknown.  For these applications, array may be declared using the 
unconstrained range definition “<>”.  The following example demonstrates the syntax for 
declaring a unconstrained range array: 
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type type_name is array (type range <>) of element_type; 
 
The most important array type in VHDL is the IEEE 1164 standard user-defined logic type 
std_logic_vector which is defined as an ordered set of std_logic bits.  If we want to create 
unconstrained array of std_logic_vector with an integer index, use the following 
declaration: 
 
type STD_LOGIC_VECTOR is array (integer range <>) of STD_LOGIC; 

 
 Constant declarations 

Constants are used to improve readability, portability and maintainability of the code.  Constant name 
is typically in capital letters and is descriptive of its use.  The constant declaration syntax is shown 
below: 
 
  constant constant_name : type_name := value; 
 
Below are some examples constant declarations and note the assignment operation is the same as 
one used for variable “:=”: 
 
  constant BUS_SIZE: integer := 32; -- Width of component 
  constant MSB: integer := BUS_SIZE-1; -- Bit number of MSB 
  constant DEF_OUT : character := ‘Z’; -- Default Output constant as character Z 
 

 Function definitions 
A function is a subprogram that accepts a number of parameters (Parameters must be defined with 
mode “in”) and returns a result.  Each of the parameters and the result must have a pre-determined 
type.   
 
Functions may contain local types, constants, variables, nested functions and procedures.  All 
statements in the function body will be executed sequentially.  Below is the simplified syntax of 
function definition: 
 
function function-name ( 
 signal_names : signal_type; -- arguments (mode is in) 
 signal_names : signal_type;  
 . . .  
 signal_names : signal_type; 
) return return_type is -- one return value which replaces the function
 type declaration 
 constant declaration 
 variable declaration 
 function definitions 
 procedure definitions 
begin  -- Start of the main body of the function 
 sequential_statement 
 … 
 sequential_statement 
end function_name; 
 
 Example—implementing “A but not B” function 

 
entity AbutNotB is 
  port (X, Y, in BIT;    -- X, Y are input of BIT type 
           Z:  out Bit);     -- Z is output of BIT type 
end AbutNotB 
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architecture AbutNotB_arch of AbutNotB 
 
function ButNot (A, B: bit) return bit is    -- function definition 
begin 
  if B = ‘0’ then return A; 
  else return ‘0’; 
end if; 
end ButNot; 
 
Begin  
  Z<= ButNot (X,Y); -- function call 
end AbutNotB_arch; 
 

 Procedure Definitions 
A procedure is similar to the function in that it is a subprogram that accepts input parameters but: 
 

  A procedure does not have a return values. 
  A procedure’s parameters may be constants, signals, or variables, each of whose modes 

may be in, out, or inout.  This means that by setting the value of the arguments (out, inout), 
the value may be returned to the calling program. 
 

Here is the simplified syntax for procedures: 
 
  procedure procedure_name ( formal_parameter_list )  
 procedure procedure_name ( formal_parameter_list ) is  
  procedure_declarations  
 begin  
  sequential statements  
 end procedure procedure_name;  
 
 Example – A procedure to implement the functionality of a rising edge-triggered D flip-flop. 

 
procedure dff (signal Clk,Rst,D; in std_ulogic;  
  signal Q: out std_ulogic) is 
begin 
  if Rst <= ‘1’ then Q <= ‘0’; 
  elsif rising_edge(Clk) then Q <= D;  
  end if; 
end procedure 
 
 

 Libraries 
Similar to other high Level languages, VHDL uses libraries to aggregate already completed 
functionality and make it available to designer for reuse.  VHDL supplies a number of general libraries 
such as IEEE standard libraries and the designer can create local libraries for future use. 
 
The following syntax is used to include a library in a design. This statement should be included prior 
to the entity and architecture definitions. 
 
  library library_name; 
 
Each of the general VHDL library packages contain definitions of objects that can be used in other 
programs. A library package may include signal, type, constant, function, procedure, and component 
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declarations. 
 
Once a library is included using the library statement, use statement shown below is used to include 
the desired library package in the design. 
 
use package_name 
 
When using VHDL functions, the description of function includes guidance on which library packages 
are required for the function. 
 
 Example – The following two statements brings in all the definitions from the IEEE standard 1164 

package: 
 
  library IEEE; 
  use IEEE.Std_Logic_1164.all; 
 
Std_Logic_1164.all contains the following: 

 type std_ulogic: unresolved logic type of 9 values;  
 type std_ulogic_vector: vector of std_ulogic;  
 function resolved resolving a std_ulogic_vector into std_ulogic;  
 subtype std_logic as a resolved version of std_ulogic;  
 type std_logic_vector: vector of std_logic;  
 subtypes X01, X01Z, UX01, UX01Z: subtypes of resolved std_ulogic containing the 

values listed in the names of subtypes (i.e. UX01 contains values 'U', 'X', '0', and '1', etc.);  
 logical functions for std_logic, std_ulogic, std_logic_vector and std_ulogic_vector;  
 conversion functions between std_ulogic and bit, std_ulogic and bit_vector, 

std_logic_vector and bit_vector and vice-versa;  
 functions rising_edge and falling_edge for edge detection of signals.  
 x-value detection functions, is_x, which detect values 'U', 'X', 'Z', 'W', '-' in the actual 

parameter.  
 

IEE 1164 Standard Logic Package (released in the 1980s) defines many functions that operate 
on the standard types of std_logic and std_logic_vector.  IEEE 1164 replaces these proprietary 
data types (which include systems having four, seven, or even thirteen unique values) with a 
standard data type having nine values, as shown below: 
 

Value Description 
'U' Uninitialized 
'X' Unknown 
'0' Logic 0 (driven) 
'1' Logic 1 (driven) 
'Z' High impedance 
'W' Weak 1 
'L' Logic 0 (read) 
'H' Logic 1 (read) 
'-' Don't-care 

 
These nine values make it possible to accurately model the behavior of a digital circuit during 
simulation. 
 
 The std_ulogic data type is an unresolved type, meaning that it is illegal for two values (such 

as '0' and '1', or '1' and 'Z') to be simultaneously driven onto a signal of type std_ulogic. 
 

 If you are describing a circuit that involves multiple values being driven onto a wire, then you 
will need to use the type std_logic. Std_logic is a resolved type based on std_ulogic. 
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Resolved types are declared with resolution functions. 
 

 Example: NAND gate coupled to an output enable  
Note: Even though it is not necessary we will use the resolved type “std_logic” 
 

library ieee; 
use ieee.std_logic_1164.all; 
 
entity nandgate is 

port (A, B, OE: in std_logic; Y: out std_logic); 
end nandgate; 

 
architecture arch1 of nandgate is 

signal n: std_logic; 
begin 

n <= not (A and B); 
Y <= n when OE = '0' else 'Z'; 

end arch1; 
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8.6.  Operators 

This section provides an overview of logical, relational, arithmetic and other operators.  Although, this is 
an extensive listing, reader is encouraged to explore additional operators through the online 
documentation available on the development environment. 
 
 Logical operators 

The logical operators and, or, nand, nor, xor and xnor are used to describe Boolean logic operations, 
or perform bit-wise operations, on bits or arrays of bits. 
 

Operator Description Operand Types Result Types 
and And Any Bit or Boolean type Same Type 
or Or Any Bit or Boolean type Same Type 

nand Not And Any Bit or Boolean type Same Type 
nor Not Or Any Bit or Boolean type Same Type 
xor Exclusive OR Any Bit or Boolean type Same Type 

xnor Exclusive NOR Any Bit or Boolean type Same Type 
 
 
 Relational operators 

Relational operators are used to test the relative values of two scalar types. The result of a relational 
operation is always a Boolean true or false value. 
 

Operator Description Operand Types Result Type 
= Equality Any type Boolean 
/= Inequality Any type Boolean 
< Less than Any scalar type or discrete array Boolean 

<= Less than or equal Any scalar type or discrete array Boolean 
> Greater than Any scalar type or discrete array Boolean 

>= Greater than or equal Any scalar type or discrete array Boolean 
 

 
 Arithmetic Operations 

The Arithmetic operators have been grouped into add/subtract, multiply/divide and sign operators. 
 
 Add/Subtract Operators 

The adding operators can be used to describe arithmetic functions or, in the case of array types, 
concatenation operations. 

 
Operator Description Operand Types Result Type 

+ Addition Any numeric type Same type 
- Subtraction Any numeric type Same type 
& Concatenation Any numeric type Same type 
& Concatenation Any array or element type Same array type 

 
 

 Multiply/Divide Operators 
These operators can be used to describe mathematical functions on numeric types. It is important 
to note that synthesis tools vary in their support for multiplying operators. 
 

Operator Description Operand Types Result Type 
* Multiplication Left: any integer or floating point type. 

Right: same type 
Same as left 

* Multiplication Left: any physical type. Same as left 
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Right: integer or real type. 
* Multiplication Left: integer or real type. 

Right: any physical type. 
Same as right 

/ Division Left: any integer or floating point type. 
Right: same type 

Same as left 

/ Division Left: any integer or floating point type. 
Right: same type 

Same as left 

/ Division Left: integer or real type. 
Right: any physical type. 

Same as right 

mod Modulus Any integer type  Same type 
rem Remainder Any integer type  Same type 

 
 
 Sign Operators 

A Sign operator can be used to specify the sign (either positive or negative) of a numeric object or 
literal. 
 

Operator Description Operand Types Result Type 
+ Identity Any numeric type Same type 
- Negation Any numeric type Same type 

 
 
 Other operators 

The exponentiation and absolute value operators can be applied to numeric types, in which case they 
result in the same numeric type. The logical negation operator results in the same type (bit or 
Boolean), but with the reverse logical polarity. The shift operators provide bit-wise shift and rotate 
operations for arrays of type bit or Boolean. 
 

Operator Description Operand Types Result Type 
** Exponentiation Left: any integer type 

Right: integer type  
Same as left type 

** Exponentiation Left: any floating point type 
Right: integer type 

Same as left type 

abs Absolute value Any numeric type Same as left type 
not Logical negation Any Bit or Boolean type Same as left type 
sll Shift left logical Left: Any one-dimensional array of Bit or 

Boolean 
Right: integer type 

Same as left type 

srl Shift right logical Left: Any one-dimensional array of Bit or 
Boolean 
Right: integer type 

Same as left type 

sla Shift left arithmetic Left: Any one-dimensional array of Bit or 
Boolean 
Right: integer type 

Same as left type 

sra Shift right arithmetic Left: Any one-dimensional array of Bit or 
Boolean 
Right: integer type 

Same as left type 

rol Rotate left Left: Any one-dimensional array of Bit or 
Boolean 
Right: integer type 

Same as left type 

ror Rotate right Left: Any one-dimensional array of Bit or 
Boolean 
Right: integer type 

Same as left type 
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8.7.  Behavioral Design  

VHDL design may be conducted using structural or behavioral approach.  In structural design, the basic 
building blocks are defined using components and the rest of design defines the interconnection between 
these components.  Structural design is the closest approximation to using the physical component with 
wiring diagram. In other words, it is the simply a textual description of a schematic. 
 
The strength of VHDL is based on its ability to compile description of circuit behavior to a fully defined and 
implementable design.  This is referred to as behavioral design which is much simpler than the structural 
design and is commonly used for design.  
 
Behavioral design relies of data flow elements to define functionality which is described in the next 
section.  Another useful VHDL statement is process: 
 
 Characteristics  

 A process is a list of sequential statements that executes in parallel with other concurrent 
statements and processes in the architecture.. 

 Using process, a designer can specify a complex interaction of signals and events in a way that 
executes in essentially zero simulated time during the simulation.  This characteristic is useful in 
synthesizing and modeling combinational or sequential circuits.  

 A process statement can be used anywhere a concurrent statement can be used. 
 A process statement has visibility within the scope of an enclosing architecture.  This means that 

the types, signals, constants, functions and procedures defined in architecture are visible to the 
process.  But the variable, type, constant, function and procedure defined in the process are not 
visible to the architecture. 

 A process can not declare signals therefore only variable declarations are available in Process. 
 

 Syntax of a VHDL process statement 
 
process (signal_name, signal_name, … , signal_name) 
  type declarations 
  variable declarations 
 constant declarations 
  function declarations 
  procedure declarations 
begin 
  sequential_statement 
  . . . 
  sequential_statement 
end process; 
 
As a quick reminder, process executes statements sequentially and does not allow signal declaration 
within its scope.  As discussed earlier, variable assignment operation is “:=” which is different from 
signal assignment “<=”. But the declaration is similar to signal declaration as shown below: 
 
  variable variable_names : variable_type; 
 
 

 Process operations 
A process is always either running or suspended. The list of signals passed is called the “sensitivity 
list” which determines when the process runs.  Below is an overview of process life cycle: 
 

 Process is initially suspended. 
 When any of the signals in the sensitivity list changes value, the process starts execution with 

the first sequential-statement in the process. 
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Process runs until no other signal in the sensitivity list changes value as a result of running 
the process. 

 In simulation, all the statements in the process execute instantly (no elapsed time from start 
to end of the process). 
 

It is possible to write a process that never suspends.  For example, a process with X in its sensitivity 
list and containing the statement “X <= not X”.  This process will never suspend will continuously 
change.  This is not a useful process and is similar to infinite loop. Most simulators will detect the 
error and terminate after few thousand iterations. 
 
Finally, the sensitivity list is optional; a process without a sensitivity list starts running at time zero in 
simulation. One application of such a process is to generate an input waveform for the test bench. 
 

 Example – Design a prime number detector using process-based data flow architecture.  
 
architecture prime4_arch of prime is  
begin 
  process(N) 
   variables N3L_N0, N3L_N2L_N1, N3L_N1_N0, N2_N1L_N0: STD_LOGIC; 
  begin 
   N3L_N0  := not N(3) and N(0); 
  N3L_N2L_N1  := not N(3) and not N(2) and N(1); 
  N3L_N1_N0  := not N(3) and not N(1) and N(0); 
  N2_N1L_N0  := N2 and not N(1) and N(0); 
   F <= N3L_N0 or N3L_N2L_N1 or N2L_N1_N0 or N2_N1L_N0; 
  end process 
end prime4_arch; 
 
Note:  Within the prime4_arch we have only one concurrent statement and that is the process. 
 
 

  Example – Design a Rising Edge D-Flip Flop.  
 
entity ent_DFF is  
begin 
  port( 
   D, clk, : in std_logic; 
   Q : out  std_logic 
   ); 
end ent_DFF; 
 
architecture arc_DFF of ent_DFF is  
begin 
pdf: process(clk) 
  begin 
   if (clk = ‘1’) then 
    q <= D; 
   end if; 
  end process pdf; 
end arc_DFF; 
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8.8.  Dataflow Design Elements 

A behavioral design relies on VHDL’s dataflow elements in describing the desired behavior.  The 
remainder of this section is focused on the most commonly used dataflow elements. 
 
 Concurrent “when signal” assignments  

 Syntax 
signal_name <= expression;    -- Concurrent signal assignment statement 
 
signal_name <= expression when boolean_expression else   -- conditional concurrent 
  expression when boolean_expression else  -- signal assignment statements 
  . . .  
  expression when boolean_expression else   
  expression ; 

  
 

 Example— Use the Dataflow elements to write the architecture for the prime number detector 
(behavioral design). 
 
architecture prime2_arch of prime is  
  signal N3L_N0, N3_N2L_N1, N2L_N1_N0, N2_N1L_N0: STD_LOGIC; 
begin 
  N3L_N0 <= 1 when (not N(3) and N(0)) else 0 ; 
  N3L_N2L_N1 <= 1 when (not N(3) and not N(2) and N(1)) else 0; 
  N2L_N1_N0 <= 1 when (not N(2) and N(1) and N(0)) else 0; 
 N2_N1L_N0 <= 1 when (N(2) and not N(1) and N(0)) else 0; 
  F <= 1  when (N3L_N0 or N3L_N2L_N1 or N2L_N1_N0 or N2_N1L_N0) ; 
end prime2_arch; 
 
The prime number detector can also be implemented using conditional concurrent assignment 
statements. 
 

 Concurrent “selected signal” assignment 
This statement evaluates the given expression when it matches one of the choices, then it assigns 
the corresponding signal_value to signal_name. 
 
 Syntax 

 
with expression select 
 Signal_name <=  signal_value when choices, 
   signal_value when choices, 
   . . .  
   signal_value when choices, 
   signal_value when others; 
 
 The choices for the entire statement must be mutually exclusive. 
 The statement with keyword others will be used when none of the other choices matches the 

expression results. 
 Choices may be a single value of expression of a list of values, separated by vertical bars “|”.  

 
 Example – Implement a prime number detector using selected signal assignment. 

 
architecture prime3_arch of prime is  
begin 
  with N select 
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   F <= ‘1’ when “0001”, 
    ‘1’ when “0010”, 
    ‘1’ when “0011” | “0101” | “0111”, 
    ‘1’ when “1011” | “1101”, 
    ‘0’ when others; 
end prime2_arch; 
 

 Sequential “If-then-else” statement 
This sequential statement will give us the ability to make decisions, based on the value of a Boolean-
expression to execute a sequential statement or not. 
 
 Syntax of “If-then-else” statement simple to fully nested 

 
if Boolean-expression then sequential-statement -- do only on true  
end if; 
 
if Boolean-expression then sequential-statement -- handle true and false 
else sequential-statement 
end if; 
 
if Boolean-expression then sequential-statement -- nested if statements 
elsif Boolean-expression then sequential-statement 
…  
elsif Boolean-expression then sequential-statement 
end if; 
 
if Boolean-expression then sequential-statement 
elsif Boolean-expression then sequential-statement 
…  
elsif Boolean-expression then sequential-statement 
else sequential-statement -- catch all else 
end if; 
 

 Example – using “If-then-else” statements to implement the prime number detector 
 
architecture prime5_arch of prime is 
begin 
  process(N) 
   variable NI: Integer; 
  begin 
    NI :=CONV_INTEGER(N); 
    if NI=1 or NI=2 then F <= ‘1’; 
    elsif NI=3 or NI=5 or NI=7 or NI=11 or NI=13 then F <= ‘1’; 
    else F <= ‘0’; 
    end if; 
  end process; 
end prime5_arch; 
 

 Sequential “Case” statement 
This statement evaluates the given expression, finds a matching value in one of the choices, and 
executes the corresponding sequential-statements. 
 
Note: Choice may take multiple values using vertical bar operator “|” 
 
 Syntax  

case expression is  
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  when choices => sequential-statements 
  … 
  when choices => sequential_statements 
  when others sequential_statements   -- do if none of choices match 
end case; 
 
Use case statement instead of if-then-else if possible since it is easier to synthesize. 
 

 Example – Prime number detector using case statement 
 
architecture prime6_arch of prime is 
begin 
  process(N) 
  begin 
   case CONV_INTEGER(N) is  
    when 1  =>   F <= ‘1’; 
   when 3 | 5 | 7| 11 | 13   =>  F <= ‘1’; 
   when others =>  F <= ‘0’; 
   end case; 
  end process; 
end prime6_arch; 
 

 Sequential “Loop” Statements 
There are three types of loops that are useful in synthesizing repeated structures. 
 
 Sequential “Basic Loop” Statement syntax 

This creates an infinite loop which is useful when doing modeling. 
 
loop 
  sequential-statement 
  . . . 
  sequential-statement 
end loop; 
 

 Sequential “For Loop” Statement syntax 
the identifier is implicitly declared and will have the same type as the range. The identifier may be 
used inside the loop only. 
 
for identifier in range loop 
  sequential-statement 
  . . . 
  sequential-statement 
end loop; 
 
The two sequential statements “exit” and “next” may be used in the loop body: 
 “exit” terminates the loop and continues with the next statement after the loop. 
 “next” starts the next iteration through the loop, bypassing the remaining statement in the 

current iteration. 
 

 Sequential “While Loop” statement syntax 
The identifier is implicitly declared and will have the same type as the range. The identifier may 
be used inside the loop only. 
 
while Boolean_expression loop 
  sequential_statement 
  . . . 
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  sequential_statement 
end loop; 
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8.9.  Additional Resources 

 
 Wakerly, I. Digital Design. (2006) Prentice Hall  

Chapter 5 “Hardware Description Language” 
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8.10.  Problems 

 
Refer to www.EngrCS.com or online course page for complete solved and unsolved problem set. 
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Chapter 9. Commercial Digital Integrated Circuits and Interface Design 

 

9.1.  Key concepts and Overview 

 Output Types 

 Logic Families 

 XOR Properties and Applications 

 Multiplexers and DeMultiplexers (MUXes and DEMUXes) 

 Adder & Subtractor Design 

 Multiplier Design 

 Arithmetic Logic Unit (ALU) 

 Additional Resources 

 Problems 
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9.2.  Output Types 

 Totem-Pole or Push-Pull Output 
Totem-Pole output uses two complementary transistors to force the output to Vcc or ground.  The 
advantage is that the output is set to one value.  Disadvantages are: 
 

 Multiple outputs cannot be connected together. 
 Circuit is constantly using power since there is a path between Vcc and ground. 

 

 
 Open Collector or Drain Output 

This type of output will connect to low voltage when the output is 0, but it is not connected to anything 
(High Impedance) when the output is 1.  Therefore it needs a pull up resistor to make sure it is 
connected to high, otherwise, it is floating resulting in an unknown value. 
 
The advantage of this type of output is that the designer can connect multiple outputs together to 
create a wired AND.  

IC (TTL) 

GND 

Internal 
Output 

Vo 

Vcc 

IC (CMOS) 

GND 

Internal 
Output 

Vo 

Vcc 

p-Channel 

n-Channel 
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 Open Collector/drain is useful for creating a wired “AND” by connecting the outputs together and 

have one pull up resistor.  This is also known as: Virtual AND, Dot-AND or Distributed AND.  
Below are three points to consider in relation to this type of configuration: 
 

 When all are high, then the pull up resistor provides the 1 output since all outputs are 
open 

 If any one of the outputs go low then the output will short to ground and output is 0 (Logic 
AND) 

 Symbols used to show the Wired-AND are shown below:  

 

.  

. 

. 

&  

.  

. 

. 

&  

.  

. 

. 

IEC International Symbols for the Function  

.  

. 

. 

IEC alternate 
Symbol  

IEEE alternate 
Symbol  

&  

IC, TTL  

GND 

Internal 
Output 

Vo 

Vcc 

IC (MOS) 

GND 

Internal 
Output 

Drain 

Collector 

Pull up Resistor 
required 

Vo 

Vcc 

Pull up Resistor 
required 

Source 

Gate 

Is used to indicate an open collector or Drain output 
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 A wired-OR can be created by using the DeMorgan’s Theorem: BABA .  

 
 Example - Using Wired-OR to implement F= DCBACBA  ....  with the Signal List  

SL: F, A, B, C, D. 
.

 
 

 Tri-State, 3-State or High impendence-State Output  
An input is used to decide if the output is being driven (enabled).   
 If the output is enabled, then it behaves like a normal 2-state device 
 If the output is disabled, then the output has high impedance (referred to as “hi-Z”).   
 74LS125 is a good example: 

 
Input Output 

OE A F 
1 X Z 
0 1 1 
0 0 0 

Notes:  

Indicates a 3-state output 

A F 

OE 

A    B   C    D 

Wired-AND 

F 

A 

B 
A+B 

Wired-OR 

Vcc Vcc 
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 Z indicates high impendence (output is not connected internally) 
 X indicates “don’t care” 

 
 One of the most common uses of a tri-state output is for a microprocessor memory bus 

where you may have multiple memory banks connected but you only want one to be 
interacting with the processor at a time. 

 
 
  

Microprocessor 

Data bus 
(bidirectional) 

Control bus 
(unidirectional) 

Address Bus 
(unidirectional) 

CE_RAM 

ADDR  RD  WR  DATA 

CE_ROM 

ADDR  RD  DATA 

CE_RAM 

ADDR  RD  WR  DATA 

Decoder 

1       0 

0  1  2  3    

a bits 

c bits 

d bits 
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9.3.  Logic Families 

 
 TTL (Bipolar Junction Transistor Logic) 

First technology to get to market 

 CMOS (Complementary Metal Oxide Semiconductor) 
Used for low power 

 Integrated-Injection Logic (I2L) 
Bipolar Transistor and Open-collector output used for the wired-AND function. 

 Emitter-Coupled Logic (ECL) 
High-speed and high-power-requirement solutions. 
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9.4.  Multiplexer (MUX)/DeMultiplexer (DMUX) Design 

Multiplexers (MUX) and DeMultiplexers (DMUX) are used to route signals between networks with unequal 
number of signal lines. There are many applications that need one line for control or monitoring, but also 
need to analyze the data in a more compressed format.  The application can be in communication, power, 
control, etc. 
 
For example:  You are building a security system that needs to control 200 entry ways.  Each entry way 
will provide one input (Open/Close).  Instead of running the 200 wires to the control, we could DMUX it 
into 8-bits (2n = 256 when n=8). This means that only 8 lines are needed to go to the control instead of 
200. 
 

 An example of using a 1 to 8 DMUX and a 8 to 1 MUX  

 
 

 Building a Large Scale MUX from Smaller MUXes 
 Typically use a cascading tree of MUXes to build a larger MUX : 

 Identify the number of MUX-ed outputs needed: 
n ≥ {ln(#input lines} / {ln 2}  where n is the smallest integer that satisfies the equation and 
indicates the number of outputs. 

 If you have J-to-K MUX available then you will need  n/K levels 
 

 Example of implementing a 4-to-1 MUX using 2-to-1 MUXes 

MUX D0_i 

D1_i 

S0 S1 S2 

DMUX The signal can be used for 
computation or reduce the 
number of wires required to 
communicate 

Output  Input 
Connect one of D0-D7 to output 

D2_i 

D3_i 

D4_i 

D5_i 

D7_i 

D6_i 

D0_o 

D1_o 

D2_o 

D3_o 

D4_o 

D5_o 

D7_o 

D6_o 

S0 S1 S2 

Selects the input line that will be 
connected to the output. 

Selects the output line that will be 
connected to the input. 
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 Example of implementing a 256-to-1 MUX using 8-to-1 MUXes. 
 
Diagram of 256 to 1 MUX. 

 
Diagram of a 256-to-1 MUX using 8-to-1 MUXes:  

F 

D0 

D255 

.  

. 

. 

S0 

S7 

D0 

D1 S 

0

1 

D2 

D3 S 

0

1 

S0 

S0 

S 

0

1 

S1 

Cascade Level 2 Cascade Level 1 

F 
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D248 

D255 

S 

0 

 

7 

Cascade Level 1 Cascade Level 2 

. . . 
0 

1 2 

D0 

D7 

S 

S0 S1 S2  

0 

 

7 

. . . 
0 

1 2 

. 

. 

. 

S 

0 

 

7 
0 

1 2 

. 

. 

. 

Out 0 

Out 31 

S 

0 

 

7 
0 

1 2 

S 

0 

3 

7 
0 

1 2 

Cascade Level 3 

F 

F0 

F3 

S0 S1 S2  

S3 S4 S5  

S3 S4 S5  

S6 S7  Gnd 
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 Larger DMUX from smaller DMUX 
 1-to-2 DMUX Design & Symbol 

 
 The larger DMUX can be built from smaller DeMUXes by cascading the DeMUXes similar to 

MUXes.  

 For example: building a  3-to-8 DMUX using 1-to-2 DeMUXes: 

 
 

Y 
X 

W 

0 
1 
2 

EN DS 

0 
1 
2 
3 
4 
5 
6 
7 

Cascade Level 2 Cascade Level 1 

EN 

0 

D0 

D1 

0 
 
1 

EN 

0 

D14 

D15 

0 
 
1 

Z 

. 

. 

. 

DS 
”Data Select” D0 

D1 
A0 

”encoded data” 

EN 

0 

D0 

D1 

DS 

A0 

0 
 
1 
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9.5.  Adder & Subtractor Design 

 
Small adders can be shown at gate level, but for larger designs we will use an iterative modular design 
process.  This process allows us to define a circuit for the ith module, and then use it to show the overall 
design without redrawing the circuit each time. 
 

 Half Adder  
A Half Adder is the simplest form of an adder. It simply treats the carry and binary bit-addition 
separately.   
 Example: 1-bit adder 

 
 Half Subtractor 

A Half Subtractor is the simplest form of Subtractor circuit.   
 Example: 1-bit Subtractor 

 

 

Note: The Half Subtractor is the same as the Half Adder except for one input inversion.  
Universally, Subtractor are created by adding additional circuitry to an adders. 

 Full Adder 
A Full Adder is a set of single bit adders combined to make an n–bit adder.  It accepts a carry 
from a lower-significant-digit adder and produces a carry to be used by the next-higher-
significant-digit adder. 
 Example:1-bit full adder module design for ith bit. 

 

       A0    Minuend   
   -  B0    Subtrahend  

_______ 
BO1 D0 

Borrow Out 
(AND) 

Difference Bit 
Mod 2 (XOR) 

A0  B0   B01 D0 
 0   0      0     0 
 0   1      1    1 
 1   0      0     1 
 1   1      0     0 
  

Half Subtractor Process 

Truth Table 

A0 
B0 

D0 

BO1 

Gate-level Logic Circuit 

A0 
B0 

A 
B 

S S0 

CO CO1 

HS 

Half Subtractor Symbol 

       A0 
   +  B0 

_______ 
CO1 S0 

Carry Out 
(AND) 

Sum Bit 
Mod 2 (XOR) 

A0  B0   C01 S0 
 0   0      0     0 
 0   1      0     1 
 1   0      0     1 
 1   1      1     0 
  

Half Adder Process 

Truth Table 

A0 
B0 

S0 

CO1 

Gate-level Logic Circuit 

A0 
B0 

A 
B 

S S0 

CO CO1 

HA 

Half Adder Symbol 
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 Ripple-Carry Adder (RCA) 

A Ripple-Carry Adder uses Full Adders in a cascading form.  The carry from one adder is fed to 
the next most significant bit-adder. 

 
 The Ripple-Carry Adder will have to wait until all the carries have propagated through the 

circuit before output stabilizes and results are valid.  Carry-Look-ahead or carry-anticipation is 
often used to speed up the addition.  
 

 Indirect Subtraction  
Given the following facts, a Subtractor can be designed from an RCA: 
 Given A – B = A + (-B) 

 From the two’s complement, (-B)2RC = 1B  
 Use an XOR to invert B when SUB=1 (subtraction) and B when SUB=0 (addition). 

    A      B    CI 

S0 

FA0 

CO   S 

    A0      B0    CI 

    A      B    CI 

S1 

FA1 

CO   S 

    A1      B1    CI 

    A      B    CI 

S2 

FA2 

CO   S 

    A2      B2    CI 

    A      B    CI 

S3 

FA3 

CO   S 

    A3      B3    CI 

CO 
”Overflow” 

GND 

     CI        Carry In    
      A            Operand 1    
  +  B            Operand 2    

________ 
CO  S0 

Carry Out 

Sum Bit 

CI   A    B    C0  S 
0     0     0     0   0 
0     0     1     0   1 
0     1     0     0   1 
0     1     1     1   0 
1     0     0     0   1 
1     0     1     1   0 
1     1     0     1   0 
1     1     1     1   1 

Full Adder Process Truth Table 

CI
A0 
B0 

CI 
A 
B 

S S0 

CO CO1 

FA 

Full Adder Symbol 

0 0 

1 1 

0 1 

0 1 

CI, A B 0    1 

00 

01 

11 

10 

Carry Out CO =  
       A.B + CI.A + CI.B 

0 1 

0 1 

1 0 

1 0 

B 0    1 

00 

01 

11 

10 

Sum Bit S = CBA   

CI, A 

CI 
A 
B 

S 

CO 

Full Adder Circuit 
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 Carry-Anticipation or Carry Look-Ahead Adder 

This solution reduces the settling time of adders. 
 Ripple-Carry for an n-bit adder will have settling time of 3tp + 2(n-1)to since each stage will 

generate an output based on the last stage and would require 2tp (Gate propagation) to 
complete the result. 

 Carry-Look-Ahead basically adds the circuitry to calculate the carry without having to wait for 
the propagation from each stage, effectively cutting the settling time to 6tp for an n-bit adder 
when n>2. For a 1-bit adder, the setting time is 3tp, and for a two-bit adder, the settling time is 
4tp. 

 
 Carry-Save Adders 

Carry-Save Adders (CSAs) are designed to add more than two operands. 
 CSA’s are designed using Full Adders (FA)  

 The carry from one level is fed into the next significant bit of the next stage.   
 The last stage shifted by one to the left but no new output is generated. 
 The number of rows of Adders = (The number of operands to be added)  -  1 

 Example (five operands):  
 
  A0                               Operand 1 
 B0                               Operand 2 
 + C0                               Operand 3 
 -----------                                          . 
 S10                           Sum, Row 1 
 CO11              Carry Row 2 (carry Save) 
 +                D0                               Operand 4 
 ---------------                                          . 
 S21   S20                           Sum, Row 2 
 CO21              Carry Row 3 (carry Save) 
 +                E0                               Operand 5 
 ---------------                                          . 
 S31   S30                           Sum, Row 1 
 CO32  CO31              Carry Row 4 (carry Save) 
 + CO43  CO42  CO41         Carry Row 4 (no carry Save) 
 -----------------------------------                                              . 
 S43   S42     S41   S40         Sum, Row 4 (Last Row) 
 

    A      B    CI 

S0 

FA0 

CO   S 

    A0      B0    SUB 

    A      B    CI 

S1 

FA1 

CO   S 

   A1   B1 

    A      B    CI 

S2 

FA2 

CO   S 

   A2   B2 

    A      B    CI 

S3 

FA3 

CO   S 

    A3      B3 

CO 
”Overflow” 
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    A      B    CI 

FA 

CO          S 

    A0    B0   C0 

    A      B    CI 

FA 

    A1    B1   CI 

    A      B    CI 

FA 

    A2    B2   C2 

    A      B    CI 

FA 

    A3    B3   C2 

GND 

. . . 

   A      B    CI 

FA 

    A      B    CI 

FA 

    A      B    CI 

FA 

    A      B    CI 

FA 

CO          S 

CO          S CO          S CO          S 

CO          S CO          S CO          S 

. . . 

D3 D2 D1 D0 

. 

.  
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.  
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.  
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.  
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    A      B    CI 
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    A      B    CI 
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GND 
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Last Row 

Row 2 

Row 1 



Digital Logic Design  Page 226 

9.6.  Multiplier Design 

First some basics of multiplication: 

 There are two methods to implement the above multiplication operation. 
 Multiplier Design using 2-operand Adders 
 Multiplier Design using Multiple-Operand Adder 

 

            Am   … A2  A1 A0     Multiplicand (m bits)  
             Bn   … B2  B1 B0     Multiplicand (n bits)  
_____________________ 
    
             X  …  X  X  X  X    Partial Product 0 
         X  …   X  X  X  X       Partial Product 1 
                       . 
                       . 
                       . 
X  …   X  X  X  X                  Partial Product n 
______________________ 
R(m+n)      …     R2 R1 R0    Result (m+n bits) 
 
 

Truth-table for a 2-bit by 2-bit multiply 
A1  A0     B1 B0       R3  R2  R1  R0 

0   0      0    0         0     0     0     0 
0   0      0    1         0     0     0     0 
0   0      1    0         0     0     0     0 
0   0      1    1         0     0     0     0 
0   1      0    0         0     0     0     0 
0   1      0    1         0     0     0     1 
0   1      1    0         0     0     1     0 
0   1      1    1         0     0     1     1 
1   0      0    0         0     0     0     0 
1   0      0    1         0     0     1     0 
1   0      1    0         0     1     0     0 
1   0      1    1         0     1     1     0 
1   1      0    0         0     0     0     0 
1   1      0    1         0     0     1     1 
1   1      1    0         0     1     1     0 
1   1      1    1         1     0     0     1 
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9.7.  Arithmetic Logic Unit (ALU) Design 

 
The Arithmetic Logic Unit (ALU) is the heart of the computational capability of a computer. 
  
A typically ALU Block Diagram (74LS382) is shown below: 

 
S2  S1  S0 Output: F and CO 
 0     0     0 Clear 
 0     0     1 B minus A 
 0     1     0 A minus B  
 0     1     1 A plus B 
 1     0     0 A XOR B 
 1     0     1 A or B 
 1     1     0 A and B 
 1     1     1 PRESET 

 

A 

B 

CI M 

S1 

CO 

F 
ALU 

3 

3 

3 

S0 S2 
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