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CO’s Course outcomes

CO1 Interpret, represent and process discrete/digital signals and 

systems.

CO2 Thorough understanding of time domain and frequency domain 
analysis of discrete time signals and systems.

CO3 To apply DFT for the analysis of digital signals & systems.

CO4 Ability to design & analyze DSP systems like FIR and IIR Filter.

CO5 Design multi rate signal processing of signals through systems..



UNIT– I

REVIEW OF DISCRETE

TIME SIGNALS AND

SYSTEMS



CLO’s Course Learning Outcome

CLO1 Understand how digital to analog (D/A) and analog to digital 

(A/D) converters operate on a signal and be able to model these 

operations mathematically..

CLO2 Define simple non-periodic discrete-time sequences such as the 

impulse and unit step, and perform time shifting and time-

reversal operations on such sequences..

CLO3 Given the difference equation of a discrete-time system to 

demonstrate linearity, time-invariance, causality and stability, and

hence show whether or not a given system belongs to the 

important class of causal, LTI systems.



Signal

s
⦿ The term signal is generally applied to something that 

conveys information.

⦿ Signals may, for example, convey information about 

the state or behavior of a physical system.

⦿ As another class of examples, signals are synthesized 

for the purpose of communicating information between 

humans or between humans and machines.

⦿Although signals can be represented in many ways, in

all cases, the information is contained in some pattern

of variations.

⦿Signals are represented mathematically as functions of

one or more independent variables



What is a Signal?
⦿ A signal is a pattern of variation of some form

⦿ Signals are variables that carry information

Examples of signal include:

Electrical signals

⚫ Voltages and currents in a circuit 

Acoustic signals

⚫ Acoustic pressure (sound) over time 

Mechanical signals

⚫ Velocity of a car over time

Video signals

⚫ Intensity level of a pixel (camera, video) over time



How is a Signal

Represented?

t

Mathematically, signals are represented as a function of one or more independent 
variables.

For instance a black & white video signal intensity is dependent on x, y coordinates 
and time t f(x,y,t)

On this course, we shall be exclusively concerned with signals that are a function of
a single variable: time

f(t)



Signal Processing

⦿ Humans are the most advanced signal processors

⚫ speech and pattern recognition, speech synthesis,…

⦿ We encounter many types of signals in various applications

⚫ Electrical signals: voltage, current, magnetic and electric fields,…

⚫Mechanical signals: velocity, force, displacement,…

⚫ Acoustic signals: sound, vibration,…

⚫ Other signals: pressure, temperature,…

⦿ Most real-world signals are analog

⚫ They are continuous in time and amplitude

⚫ Convert to voltage or currents using sensors and transducers

⦿ Analog circuits process these signals using

⚫ Resistors, Capacitors, Inductors, Amplifiers,…

⦿ Analog signal processing examples

⚫ Audio processing in FM radios

⚫ Video processing in traditional TV sets



Signal Properties
On this course, we shall be particularly interested in signals with certain 

properties:

Periodic signals: a signal is periodic if it repeats itself after a fixed period T,

i.e. x(t) = x(t+T) for all t. A sin(t) signal is periodic.

Even and odd signals: a signal is even if x(-t) = x(t) (i.e. it can be reflected in the axis 
at zero). A signal is odd if x(-t) = -x(t). Examples are cos(t) and sin(t) signals, 
respectively.

Exponential and sinusoidal signals: a signal is (real) exponential if it can be
represented as x(t) = Ceat. A signal is (complex) exponential if it can be
represented in the same form but C and a are complex numbers.

Step and pulse signals: A pulse signal is one which is nearly completely zero, apart 
from a short spike, d(t). A step signal is zero up to a certain time, and then a 
constant value after that time, u(t).

These properties define a large class of tractable, useful signals and will be further 
considered in the coming lectures



Limitations of Analog Signal

Processing

⦿ Accuracy limitations due to

⚫ Component tolerances

⚫ Undesired nonlinearities

⦿ Limited repeatability due to

⚫ Tolerances

⚫ Changes in environmental conditions

○ Temperature

○ Vibration

⦿ Sensitivity to electrical noise

⦿ Limited dynamic range for voltage and currents

⦿ Inflexibility to changes

⦿ Difficulty of implementing certain operations

⚫ Nonlinear operations

⚫ Time-varying operations

⦿ Difficulty of storing information



Signal-processing

systems
⦿Signal-processing systems may be classified along the same 

lines as signals.

⦿That is, continuous-time systems are systems for which both 
the input and the output are continuous-time signals, and

⦿discrete-time systems are those for which both the input 
and the output are discrete-time signals.

⦿Similarly, a digital system is a system for which both the 
input and the output are digital signals.

⦿ Digital signal processing, then, deals with the 
transformation of signals that are discrete in both amplitude 
and time



Digital Signal

Processing

⦿ Represent signals by a sequence of numbers

⚫ Sampling or analog-to-digital conversions

⦿ Perform processing on these numbers with a digital processor

⚫ Digital signal processing

⦿ Reconstruct analog signal from processed numbers

⚫ Reconstruction or digital-to-analog conversion

digital

• Analog input – analog output

– Digital recording of music

• Analog input – digital output

– Touch tone phone dialing

• Digital input – analog output

– Text to speech

• Digital input – digital output

– Compression of a file on computer

A/D DSP D/A
analog  
signal

analog  
signal

digital  
signalsignal





Classifications of

Signal





Basic Discrete Time Signals



















Pros and Cons of

DSP

⦿ Pros

⚫ Accuracy can be controlled by choosing word length

⚫ Repeatable

⚫ Sensitivity to electrical noise is minimal

⚫ Dynamic range can be controlled using floating point numbers

⚫ Flexibility can be achieved with software implementations

⚫ Non-linear and time-varying operations are easier to implement

⚫ Digital storage is cheap

⚫ Digital information can be encrypted for security

⚫ Price/performance and reduced time-to-market

⦿ Cons

⚫ Sampling causes loss of information

⚫ A/D and D/A requires mixed-signal hardware

⚫ Limited speed of processors

⚫ Quantization and round-off errors



Analog, digital, mixed signal

processing



Digital Signal

Processing



Sampling and 

reconstruction



Sample and hold

(S/H)circuit



A/D converter



A/D converter



Quantization noise



D/A conversion



D/A conversion



Reconstructio
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Reconstructio

n



Reconstructio

n



Reconstructio

n



Signal

s

⦿ Continuous-time signals are functions of a real argument

x(t) where t can take any real value

x(t) may be 0 for a given range of values of t

⦿ Discrete-time signals are functions of an argument that takes values from a 
discrete set

x[n] where n  {...-3,-2,-1,0,1,2,3...}

Integer index n instead of time t for discrete-time systems

x may be an array of values (multi channel signal)

⦿ Values for x may be real or complex





Discrete-time Signals and

Systems

⦿Continuous-time signals are defined over a continuum of 
times and thus are represented by a continuous 
independent variable.

⦿Discrete-time signals are defined at discrete times and thus 
the independent variable has discrete values.

⦿Analog signals are those for which both time and amplitude 
are continuous.

⦿Digital signals are those for which both time and amplitude 
are discrete.



Signal Types
⦿ Analog signals: continuous in time and amplitude

⚫ Example: voltage, current, temperature,…

⦿ Digital signals: discrete both in time and amplitude

⚫ Example: attendance of this class, digitizes analog signals,…

⦿ Discrete-time signals: discrete in time, continuous in amplitude

⚫ Example: hourly change of temperature

⦿ Theory of digital signals would be too complicated

⚫ Requires inclusion of nonlinearities into theory

⦿ Theory is based on discrete-time continuous-amplitude signals

⚫Most convenient to develop theory

⚫ Good enough approximation to practice with some care

⦿ In practice we mostly process digital signals on processors

⚫ Need to take into account finite precision effects



Signal Types

⦿Continuous time –

Continuous amplitude

⦿Continuous time –

Discrete amplitude

⦿Discrete time –

Continuous amplitude

⦿Discrete time –

Discrete amplitude















Discrete-time Signals and

Systems

⦿Continuous-time signals are defined over a continuum of 
times and thus are represented by a continuous 
independent variable.

⦿Discrete-time signals are defined at discrete times and 
thus the independent variable has discrete values.

⦿Analog signals are those for which both time and 
amplitude are continuous.

⦿Digital signals are those for which both time and 
amplitude are discrete.



Impulse

Response







LCCD

E







FIR and IIR

Systems







Problem:









The convolution sum and 

Methods of evaluating the convolution sum

⦿ convolution is an operation (integration or summation, for
continuous and discrete time, respectively) that relates the output of
a linear and time-invariant (LTI) system to its input and its impulse
response.

⦿Convolution is one of the primary concepts of linear system theory. It
gives the answer to the problem of finding the system zero-state
response due to any input—the most important problem for linear
systems.

⦿ The main convolution theorem states that the response of a system
at rest (zero initial conditions) due to any input is the convolution of
that input and the system impulse response.



Representation of Discrete-Time

Signals

⦿ We assume Discrete-Time LTI systems

⦿ The signal X[n] can be represented using 
unit sample function or unit impulse 
function: [n]

⦿ Remember:



x[n]   x[k ] [n  k ]
k 

notes

⦿ Notations:

x0[n]  x[n][n  0]  x[0] [n  0]  x[0], n  0

x1[n]  x[n][n 1]  x[1][n 1]  x[1], n  1

x[k ],nk

0,else
x[n] [n  k ]  



Convolution for Discrete-Time Systems

⦿ LTI system response can be described using:

⦿ For time-invariant: [n-k]h[n-k]

⦿ For a linear system: x[k][n-k]x[k]h[n-k]

⦿ Remember:

⦿ Thus, for LTI:

⦿ We call this the convolution sum

⦿ Remember:



x[n]   x[k ] [n  k ]
k 

System

 

k  k 

x[n]   x[k ] [n  k ] y[n]   x[k ]h[n  k ]  x[n]* h[n]



k 



y[n]   x[k ]h[n  k ]  x[n]* h[n]
k 

y[n]   h[k ]x[n  k ]  h[n]* x[n]

h[n]*[n  n0 ]  h[n  n0 ]*[n]  h[n  n0 ]

Impulse Response of a System

[n] h[n]



Convolution for Discrete-Important Properties

⦿ By definition

y[n]  h[n]* [n]  h[n]

⦿ Remember (due to time-invariance property):

h[n]*[n  n0 ]  h[n  n0 ]*[n]  h[n  n0 ]

⦿ Multiplication

 [n]g[n  n0 ]   [n]g[n0 ]



The convolution sum and 
Methods of evaluating the convolution sum

Convolution Sum.
 x[n] is a signal as a weighted sum of basis function; time-shift version of the unit 

impulse signal. x[k] represents a specific value of the signal x[n] at time k.

 The output of the LTI system y[n] is given by a weighted sum of time-
shifted impulse response. h[n] is the impulse response of LTI system H.

 The convolution of two discrete-time signals y[n ] and h[n] is denoted as



xn  xkn  k
k



yn  xkhn  k
k



xn*hn  xkhn k
k



Steps for Convolution Computation.

Step 1: Plot x and h versus k since the convolution sum is on k.

Step 2: Flip h[k] around the vertical axis to obtain h [- k].

Step 3: Shift h [-k] by n to obtain h [n- k].

Step 4: Multiply to obtain x[k] h[n- k].

Step 5: Sum on k to compute

Step 6: Index n and repeat Step 3-6.



k

yn xn*hn  xkhn  k











Properties of Convolution

⦿Commutative , Associative , Distributive













Convolution Sum:Analytical Method







Graphical Procedure for Convolution 

Sum



Problem:















Problems on Convolution

Sum

1. Given the following block diagram

⚫ Find the difference equation

⚫ Find the impulse response: h[n]; plot h[n]

⚫ Is this an FIR (finite impulse response) or IIR system?

⚫ Given x[1]=3, x[2]=4.5, x[3]=6, Plot y[n] vs. n

⚫ Plot y[n] vs. n using Matlab

⦿ Difference equation

⦿ To find h[n] we assume x[n]=[n], thus y[n]=h[n]

⚫ Thus: h[0]=h[1]=h[2]=1/3

⦿ Since h[n] is finite, the system is FIR

In terms of inputs: y[n ]   x[k ]h[n  k ]  x[n ] * h[n ]
k  

y[n ]   h[k ]x[n  k ]  h[n ] * x[n ]
k  

 ... x[n  3]h[3]  x[n  2]h[2]  x[n 1]h[1]  x[n  0]h[0]  x[n 1]h[1]  ....

 x[n  2]h[2]  x[n  1]h[1]  x[n  0]h[0]

⦿

y[n] 
1

(x[n] x[n 1] x[n  2])  
3

3
y[n]  h[n] 

1
([n] [n 1] [n  2])

Figure: FIR system contains finite number 
of nonzero terms



Problem1. – cont.

⦿ Given the following block diagram

⚫ Find the difference equation

⚫ Find the impulse response: h[n]; plot h[n]

⚫ Is this an FIR (finite impulse response) or IIR system?

⚫ Given x[1]=3, x[2]=4.5, x[3]=6, Plot y[n] vs. n

⚫ Plot y[n] vs. n using Matlab

Figure 10.3

⦿ In terms of inputs:

y[n]  ... x[n  3]h[3] x[n  2]h[2] x[n 1]h[1] x[n  0]h[0] x[n 1]h[1] ....

 x[n  2]h[2] x[n 1]h[1] x[n  0]h[0]
Try for different values of n

⦿ Calculate for n=0, n=1, n=2, n=3, n=4, n=5, n=6

⚫ n=0; y[0]=0

⚫ n=1; y[n]=1

⚫ n=2; y[2]=2.5

⚫ n=3; y[2\3]=4.5

⚫ n=4; y[4]=3.5

⚫ n=5; y[5]=2

⚫ n=6; y[6]=0



Example – cont. (Graphical

Representation)

y[n]  ... x[n  3]h[3] x[n  2]h[2] x[n 1]h[1] x[n  0]h[0] x[n 1]h[1] ....

 x[n  2]h[2] x[n 1]h[1] x[n  0]h[0]

h[0]=h[1]=h[2]=1/3 x[1]=3, x[2]=4.5, x[3]=6



Basic Structures for IIR

Systems

⦿ Direct Forms

⦿ Cascade Form

⦿ Parallel Form

⦿ Feedback in IIR Systems



Basic Structures for IIR

Systems

⦿ Direct Forms

N M

y [n ]   a k y [n  k ]   bk x[n  k ]
k 1 k  0

 k

 k

1 
N

M

 k

a z

b z

 k  

k 1

H ( z )  k  0



Direct Form I (M =

N)



Direct Form II (M = N)



Direct Form II



Direct Form II



+

z-1

z-1

z-1

z-1

+

++

y[n]

z-1

z-1

+

+

+

+

x[n]

Direct Form II



Basic Structures for IIR Systems

⦿ Cascade Form

where M = M1+2M2 and N = N1+2N2 .

⦿ A modular structure that is advantageous for many types of 
implementations is obtained by combining pairs of real factors and 
complex conjugate pairs into second-order factors.

where Ns is the largest integer contained in (N+1)/2.

 

1  11

1  11

N1


k 1

N 2


k 1

k k(1  d z )(1  d z )k

M 1 M 2

k kk

(1  c z )

(1  h z )(1  h z )(1  g z )

H ( z )  A k 1 k 1

N s

 a z

 b

k 1
 21

1 k 2 k

2 k
z  1 z  2

b 0 k  b1k

1  a z
H ( z )  



Basic Structures for IIR Systems

⦿ Parallel Form

where N = N1+2N2 . If M ณN, then NP = M - N; otherwise, the first summation 

in right hand side of equation above is not included.

⦿ Alternatively, the real poles of H(z) can be grouped in pairs :

where NS is the largest integer contained in (N+1)/2, and if NP = M - N is 

negative, the first sum is not present.

NP

k k


k1

1  1

N2

(1d z )(1d z )

B (1e z1)
k k

k

kk A
1

N1

1c z
H(z) Ckz 

k0 k1

NP NS

k

 a z2

2k

1

1k

e  e z1
0k 1k

1 a z
H (z) Ck z 

k0 k1



Basic Structures for FIR

Systems

⦿ Direct Form

⚫ It is also referred to as a tapped delay line structure or a transversal 

filter structure.

⦿ Transposed Form

⦿ Cascade Form

where MS is the largest integer contained in (M + 1)/2. If M is odd, one of

coefficients b2k will be zero.

nh[n]z H (z) 
M MS


n0 k1

 0k 1k 2k
z2 )(b  b z1  b



Direct Form

⦿ For causal FIR system, the system function has only zeros (except 

for poles at z = 0) with the difference equation:

y[n] = SM
k=0 bkx[n-k]

⦿ It can be interpreted as the discrete convolution of x[n] with the 

impulse response

h[n] = bn

0

, n = 0, 1, …, M,

, otherwise.



UNIT– II

DISCRETE FOURIER

TRANSFORM AND EFFICIENT

COMPUTATION



CLO’s Course Learning Outcome

CLO4 Given the impulse response of a causal LTI system, show 

whether or not the system is bounded-input/bounded-output 

(BIBO) stable...

CLO5 Perform time, frequency and Z-transform analysis on signals.

CLO6 From a linear difference equation of a causal LTI system, draw 

the Direct Form I and Direct Form II filter realizations.



Discrete Fourier Transform

⦿ The DFT pair was given as

⦿ Baseline for computational complexity:

⚫ Each DFT coefficient requires
○ N complex multiplications

○ N-1 complex additions

⚫ All N DFT coefficients require
○ N2 complex multiplications

○ N(N-1) complex additions

⦿ Complexity in terms of real operations
○ 4N2 real multiplications

○ 2N(N-1) real additions
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  j2 / N kn
N 1


k 0

1
x[n]  X k e

N

N 1
 j2 / N kn

n0

X k  x[n]e



Discrete Fourier Transform

⦿ Most fast methods are based on symmetry properties

⚫ Conjugate symmetry

⚫ Periodicity in n and k

e j2 / N k N n  e j2 / N kN e j2 / N k n  e j2 / N kn

e j2 / N kn  e j2 / N k nN   e j2 / N k N n

106



The Goertzel Algorithm

⦿ Makes use of the periodicity

⦿ Multiply DFT equation with this factor

⦿ Define

⦿ X[k] can be viewed as the output of a filter to the input x[n]

⚫ Impulse response of filter:

⚫ X[k] is the output of the filter at time n=N

107

e j2 / N Nk  e j 2 k
 1

N 1 N 1

X k e j2 / N kN x[r]e j2 / N rn  x[r]e j2 / N rN n

r0 r0

  x[r]e j2 / N k nr u n  r
k

y n 


r



⦿ With this definition and using x[n]=0 for n<0 and n>N-1

X k  yk n
nN

e j2 / N knu n



The Goertzel Filter

⦿ Goertzel Filter

⦿ Computational complexity

⚫ 4N real multiplications

⚫ 2N real additions

⚫ Slightly less efficient than the direct method

⦿ Multiply both numerator and denominator

108

j
2

k

z1

1

1 e

k
H z

N

N
 j

2
k

11 e z N

N
j
2

k  
N

2 k 

N

 j
2

k

z1

 j
2

k 1 2


1 e
H k z 

    1 2 cos z  z1 e z 1
 1 e

 

z1





Second Order Goertzel Filter

⦿ Second order Goertzel Filter

⦿ Complexity for one DFT coefficient
⚫ Poles: 2N real multiplications and 4N real additions

⚫ Zeros: Need to be implement only once

○ 4 real multiplications and 4 real additions

⦿ Complexity for all DFT coefficients
⚫ Each pole is used for two DFT coefficients

○ Approximately N2 real multiplications and 2N2 real additions

⦿ Do not need to evaluate all N DFT coefficients
⚫ Goertzel Algorithm is more efficient than FFT if

○ less than M DFT coefficients are needed

○ M < log2N

109

H k z
1 2 cos

N

2 k 

N

 j
2

k
11 e z

z1  z2



Decimation-In-Time FFT Algorithms

⦿ Makes use of both symmetry and periodicity

⦿ Consider special case of N an integer power of 2

⦿ Separate x[n] into two sequence of length N/2
⚫ Even indexed samples in the first sequence

⚫ Odd indexed samples in the other sequence

⦿ G[k] and H[k] are the N/2-point DFT’s of each subsequence
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DSP

N 1 N 1 N 1

X k  x[n]e j2 / N kn   x[n]e j2 / N kn   x[n]e j 2 / N kn

n0 n even n odd

   

   

2rk

N N
x[2r]W

⦿ Substitute variable
N
s
/ 2

n
1

=2r for n e
N
v

/ 2
e
1
n and n=2r+1 for odd

2r1 k

r0 r0

rk

N / 2

rk

N / 2
x[2r 1]W

N

k

N

x[2r]W
N / 21 N / 21

r0

W k

X k   x[2r 1]W

 G k W H k



 

 
r0



Decimation In Time

⦿ 8-point DFT example using decimation-in-time

⦿ Two N/2-point DFTs
⚫ 2(N/2)2 complex multiplications

⚫ 2(N/2)2 complex additions

⦿ Combining the DFT outputs
⚫ N complex multiplications

⚫ N complex additions

⦿ Total complexity
⚫ N2/2+N complex multiplications

⚫ N2/2+N complex additions

⚫ More efficient than direct DFT

⦿ Repeat same process
⚫ Divide N/2-point DFTs into

⚫ Two N/4-point DFTs

⚫ Combine outputs
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Decimation In Time Cont’d

⦿ After two steps of decimation in time

⦿ Repeat until we’re left with two-point DFT’s

112



Decimation-In-Time FFT Algorithm

⦿ Final flow graph for 8-point decimation in time

⦿ Complexity:

⚫ Nlog2N complex multiplications and additions
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DSP



Butterfly Computation

⦿ Flow graph constitutes of butterflies

⦿ We can implement each butterfly with one multiplication

⦿ Final complexity for decimation-in-time FFT

⚫ (N/2)log2N complex multiplications and additions
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In-Place Computation

115

⦿ Decimation-in-time flow graphs require two sets of registers

⚫ Input and output for each stage

⦿ Note the arrangement of the input indices

⚫Bit reversed indexing

X00  x0 X0000  x000
X01  x4  X0001  x100
X02  x2 X0010  x010
X03  x6 X0011  x110
X04  x1  X0100  x001
X05  x5  X0101  x101
X06  x3 X0110  x011
X07 x7 X0111 x111



Decimation-In-Frequency FFT Algorithm

⦿ The DFT equation

⦿ Split the DFT equation into even and odd frequency indexes

⦿ Substitute variables to get

⦿ Similarly for odd-numbered frequencies
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 
N 1

n0

nk

N
x[n]WX k 

  n 2r n 2r n 2rX 2r 
N

x[n]W
N 1 N / 21

n0

N
x[n]W

N

N 1

  x[n]W
nN / 2

 
n0

     
N / 21 N / 21

n 2r
n0


n0

X 2r  nr

N /2
x[n] x[n  N / 2] W

N
x[n]W

N

N / 21
nN / 2 2r

  x[n  N / 2]W
n0



     1

N /2

N / 21
n 2r

X 2r 1  x[n] x[n  N / 2] W
n0



Decimation-In-Frequency FFT Algorithm

⦿ Final flow graph for 8-point decimation in frequency
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⦿ DIT structure with input bit-reversed, output natural

Decimation-In-Frequency FFT Algorithm



⦿ DIT structure with input natural, output bit-reversed

Decimation-In-Frequency FFT Algorithm



⦿DIT structure with both input and output 

natural

Decimation-In-Frequency FFT Algorithm



⦿DIT structure with same structure for each 

stage

Decimation-In-Frequency FFT Algorithm



⦿A method to avoid bit-reversal in filtering 

operations is:
⚫ Compute forward transform using natural input, bit-reversed output

(as in OSB 9.10)

⚫ Multiply DFT coefficients of input and filter response (both in bit-

reversed order)

⚫ Compute inverse transform of product using bit-reversed input and

natural output (as in OSB 9/14)

⦿Latter two topologies (as in OSB 9.15 and 

9.16) are now rarely used

Decimation-In-Frequency FFT Algorithm



⦿We’ve always been talking about forward DFTs in 
our discussion about FFTs …. what about the
inverse FFT?

⦿ One way to modify FFT algorithm for the inverse
DFT computation is:

⚫ Multiply final output by

⦿This method has the disadvantage that it requires 
modifying the internal code in the FFT subroutine

N⚫ Replace by N wherever it appears
W k W k

1/ N

k0

knx[n]  N  X[k]WN ;

N 1 N 1
1 X[k]   x[n]WN 

n0

kn

Using FFTs for inverse DFTs



⦿Taking the complex conjugate of both sides of 

the IDFT equation:

⦿This suggests that we can modify the FFT 

algorithm for the inverse DFT computation by 

the following:
⚫ Complex conjugate the input DFT coefficients

⚫ Compute the forward FFT

⚫ Complex conjugate the output of the FFT and multiply b1y/ N

⦿This method has the advantage that the 

internal FFT code is undisturbed; it is widely 

used.

1

N 1


k 0

1

N
x *[n]  


*


kn  

N

N 1

 k 0 
N  X *[k]Wkn

N
X *[k ]W ; or x[n] 

A better way to modify FFT code for IDFT



⦿Introduction: Decimation in frequency is an 

alternate way of developing the FFT 

algorithm

⦿It is different from decimation in time in its 

development, although it leads to a very 

similar structure

Decimation-In-Frequency FFT Algorithm



⦿Consider the original 

DFT equation ….

⦿Separate the first half and the second half of 

time samples:

⦿ Note that these are not N/2-point DFTs

n0

N 1

NX[k]   x[n]W nk

X[k] 

n0

 Nx[n]W nk 

nN / 2

( N / 2)1 N 1

 Nx[n]W nk



n0

( N / 2)1

 nkx[n]WN  WN
( N / 2)k

( N / 2)1


n0

x[n  ( N / 2)]WN
nk



n0

( N / 2)1


k x[n] (1) x[n  ( N / 2)] WN

nk

Decimation-In-Frequency FFT Algorithm



⦿ For k even, let k  2r

⦿ For k odd, let

X[k] 
(N / 2)1


n0

k x[n] (1) x[n  ( N / 2)] WN
nk

X[k] 
(N / 2)1


n0

x[n] ( 2r 1) x[n  ( N / 2)] WN
n2r


( N / 2)1


n0

N / 2x[n] x[n  ( N / 2)]W nr

k  2r 1

X[k] 

n0

( N / 2)1

 x[n] (
2r

1) ( 1)x[n  (N / 2)] WN
n(2r1)



n0


( N / 2)1

  Nx[n] x[n  (N / 2)] W W
N / 2

n nr

x[n]  x[n  ( N / 2)] and [x[n]  x[n  ( N / 2)]]WN
⦿ These expressions are the N/2-pon int DFTs of

Decimation-In-Frequency FFT Algorithm



Decimation-In-Frequency FFT Algorithm



Continuing bydecomposingthe odd and even output points we obtain

Decimation-In-Frequency FFT Algorithm



…and replacing the N/4-point DFTsbybutterflys we obtain

Decimation-In-Frequency FFT Algorithm



The DIFFFTis the transpose of the DITFFT

⦿ To obtain flowgraph transposes:
⚫ Reverse direction of flowgraph arrows

⚫ Interchange input(s) and output(s)

⦿ DIT butterfly: DIF butterfly:

⦿Comment:
⚫ We will revisit transposed forms again in our discussion of filter 

implementation



The DIF FFTis the transpose of the DIT FFT

⦿Comparing DIT and DIF structures:
DIT FFT structure: DIF FFT structure:

⦿Alternate forms for DIF FFTs are similar to 

those of DIT FFTs



⦿ DIF structure with input natural, output bit-reversed

Alternate DIF FFT structures



⦿ DIF structure with input bit-reversed, output natural

Alternate DIF FFT structures



⦿DIF structure with both input and output 

natural

Alternate DIF FFT structures



⦿DIF structure with same structure for each 

stage

Alternate DIF FFT structures



⦿Can we do anything when the DFT size N is 

not an integer power of 2 (the non-radix 2 

case)?

⦿ Yes! Consider a value of N that is not a 

power of 2, but that still is highly factorable

…

⦿ Then let
Let N  p1p2 p3 p4... p ; q1  N / p1, q2  N / p1p2,etc.

X[k] 

n0

N 1

 x[n]W
N
nk

p1rk1q 1
  x[ p1r]WN  

r0

( p1r1)k
q11

  x[ p1r 1]WN  
r0

( p1r2)k
q11

  x[ p1r  2]WN  
r0

 ...

FFT structures for other DFT sizes



⦿ This is, of course, a DFT of size q1 of points

spaced by

q11

⦿An arbitrary term of the sum on the previous 

panel is

 x[ p1r  l]WN  
r0

( p1r l)k

1q 1
  x[ p1r  l]WN  

r0

p1rk lkWN  WN 
r0

1x[ p r  l]Wq1

q11
lk rk

p1

Alternate DIF FFT structures



⦿In general, for the first decomposition we 

use

⦿Comments:
⚫ This procedure can be repeated for subsequent factors of N

⚫ The amount of computational savings depends on the extent to

which N is “composite”, able to be factored into small integers

⚫ Generally the smallest factors possible used, with the exception of 

some use of radix-4 and radix-8 FFTs

X[k]   WN
l0

p11
lk

q11


r0

1x[ p r  l]Wq1

rk

Alternate DIF FFT structures



⦿ P1 = 2; P2 = 3;

l0 r0

1 2

X[k]   W6  x[2r  l]W3
lk rk

Example: the 6-point DIT FFT



Discrete Fourier Transform (DFT): 

Overview

⦿What?

⚫Converts a sampled function from time domain to 

frequency domain

⦿Use?

⚫DFTs reveal periodicities in input data as well as the 

relative strengths of any periodic components



Discrete Fourier Transform (DFT): 

Mathematical Interpretation
⦿



FFT: Cooley-Tukey algorithm

⦿Most common FFT algorithm

⚫Divide and conquer algorithm

⦿Methodology

⚫Breaks up DFT of N samples into N=N1N2

⦿Benefit

⚫Can be combined with any other DFT algorithm

⚫What Matlab fft function does for optimization



FFT: Cooley-Tukeyalgorithm  

Methodology



Fast Fourier Transform (FFT):

⦿ Also called chirp z-transform algorithm

⦿Methodology

⚫Expresses DFT as a convolution

⦿ Benefit

⚫Computes DFT of arbitrary sizes

⚫Can be used to compute more general transforms

⦿ Tradeoff

⚫Only O(Nlog2N) complexity for prime-sized DFTs



Fast Fourier Transform (FFT): Bluestein 

Methodology

⦿



Goertzel Algorithm

⦿



Goertzel Algorithm
⦿ Tradeoff

⚫ O(NM), N is number of DFT terms, M is the set of DFT terms to calculate

⦿ Benefit

⚫ Simple structure of algorithm makes it well suited to small processors

⚫More efficient than FFT for small number of frequencies ( if M < log2N)

⦿ Applications

⚫ Used to recognize DTMF tones produced by buttons on telephone keypad

⚫ Call progress (dial tone, busy)



UNIT– III STRUCUTRE OF IIR

FILTERS



CLO’s Course Learning Outcome

CLO7 Knowing the poles and zeros of a transfer function, make a 

rough sketch of the gain response.

CLO8 Define the Discrete Fourier Transform (DFT) and the inverse 

DFT (IDFT) of length N.

CLO9 Understand the inter-relationship between DFT and various
transforms.

CLO10 Understand the significance of various filter structures and effects 

of round-off errors.

CLO11 Understand the fast computation of DFT and appreciate the FFT 

Processing.



Introduction

⦿ Basic filter classification

⦿We put emphasis on the digital filter now, and will 
introduce to the design method of the FIR filter and IIR 
filter respectively.

Filter

Analog Filter

Digital Filter

IIR Filter

FIR Filter



⦿ IIR is the infinite impulse response abbreviation.

⦿Digital filters by the accumulator, the multiplier, and it
constitutes IIR filter the way, generally may divide into
three kinds, respectively is Direct form, Cascade form,
and Parallel form.



⦿ IIR filter design methods include the impulse
invariance, bilinear transformation, and step
invariance.

⦿We must emphasize at impulse invariance and bilinear 
transformation.



⦿ IIR filter design methods

transformation

method transformation  

method

method

lowpass filter



⦿ The structures of IIR filter

z1

z1

z1

z1

z1

z1



⦿ The structures of IIR filter

z1

z1

z1

z1

z1

z1

z1

z1



⦿ FIR is the finite impulse response abbreviation, 
because its design construction has not returned to the 
part which gives.

⦿ Its construction generally uses Direct form and Cascade 
form.



⦿ FIR filter design methods include the window 
function, frequency sampling, minimize the maximal 
error, and MSE.

⦿We must emphasize at window function, frequency 
sampling, and MSE.



⦿ The structures of FIR filter

z1

z1

z1

z1

z1

z1

z1

z1



IIR Filter Design by Impulse invariance

method

⦿ The most straightforward of these is the impulse 
invariance transformation

⦿ Let hc (t) be the impulse response corresponding
toHc (s) , and define the continuous to discrete 
time transformation by setting

⦿We sample the continuous time impulse response 
to produce the discrete time filter

h(n)  hc (nT )



⦿ The frequency response H '() is the Fourier

and hence

c c
h (nT )

transform of the continuous time function


h * (t)   (t  nT )
n

T Tk 

c  

H '() 
1
 H


j(  k

2
)






IIR Filter Design by Impulse 

invariance

method

⦿ The system function is

⦿ It is the many-to-one transformation from the s  
plane to the z plane.




1
sTH (z) |

ze
k T T

H

s  jk

2
)


c  



IIR Filter Design by Impulse 

invariance

method

⦿ The impulse invariance transformation does
map the
the unit circle and its interior, respectively

-axis and the left-half s plajne into

esT



j



IIR Filter Design by Impulse invariance

method

⦿ The stop-band characteristics are maintained 
adequately in the discrete time frequency response
only if the aliased tails of are sufficiently small.

H c ( j)



⦿ H '(i)s an aliased version of

H '()

 / T 2 / T

H c ( j)



IIR Filter Design by Impulse invariance

method

⦿ The Butterworth and Chebyshev-I lowpass 
designs are more appropriate for impulse 
invariant transformation than are the 
Chebyshev-II and elliptic designs.

⦿ This transformation cannot be applied directly 
to highpass and bandstop designs.



IIR Filter Design by Impulse invariance 

method

produce
⦿ Hc (s) is expanded a partial fraction expansion to

⦿ And thus

N
k

A

k 1 s  sk

Hc (s) 

k

N
s tA e u(t) k  

k1

c
h (t) 

k

⦿We have assumed that there are no multiple poles

N
s nT u(n)h(n)  Ak e

k 1

k

N

s T

Ak

1
H (z) 

1 e z

k 1



IIR Filter Design by Impulse invariance method

⦿Example:

Expanding in a partial fraction

expansion, it produce

The impulse invariant transformation 

yields a discrete time design with the

system function

(s  a)2  b2c
H (s) 

s  a

1 / 2 1 / 2
c

H (s) 
s  a  jb s  a  jb



1 / 2 1 / 2
H (z)  

1 e(a jb )T z 1 1 e(a jb )T z 1



IIR Filter Design by Bilinear transformation

method

⦿The most generally useful is the 

bilinear transformation.

⦿ To avoid aliasing of the frequency response as 
encountered with the impulse invariance 
transformation.

⦿We need a one-to-one mapping from the s
plane to the z plane.

⦿The problem with the transformation is 
many-to-one.

z  esT



⦿We could first use a one-to-one transformation from 
to
strip

, whsichsco'mpresses the entire s plane into the

⦿

⦿

could be transformed to z by⦿ Then

⦿

with no effect from aliasing.

 Im(s ') 


T



T


s '

z  e s 'T



j

 '

j

 / T

 / T



sis givens 'by

⦿ The characteristic of this transformation is 
seen most readily from its effect on the 
axis.

⦿ Substituting and

s  j

j, we obtain

s '  j '

T 2

⦿ The transformation from to

s ' 
2

tanh 1(
sT

)

 ' 
2

tan 1 (
T

)
T 2



IIR Filter Design by Bilinear transformation method

but it is approximately linear at small

T T
for(


,


) in a one-to-one method
⦿ The  axis is compressed into the interval

⦿ The relationship between  ' and is nonlinear,

 ' .

  '



 '
 / T

 / T



IIR Filter Design by Bilinear transformation method

by inverting 

to produce

⦿ And setting

⦿ The desired transformation s to z is now obtained

which yields

s ' 
2

tanh 1(
sT

)
T 2

tanh( )
2 s 'T

T 2
s 

1
s '  ( ),ln z  

T

2

T
tanh( )

2

ln z
s 

(
1

1
)

2 1 z


T 1 z

T

T

2

1 s
2z 

1 s

j





IIR Filter Design by Bilinear transformation method

⦿ The discrete-time filter design is obtained from 
the continuous-time design by means of the 
bilinear transformation

H (z)  H c (s) |
s(2/T )(1 z1 )/ (1 z1 )

⦿Unlike the impulse invariant transformation, 
the bilinear transformation is one-to-one, and 
invertible.



Z Transfer Function

○ We obtain the transfer function by evaluation of the z transform 
on the unit circle

○ We can see that it is a minimum phase filter (the phase comes
back at 0 at Fe/2) because the zero of the filter is inside the unit
circle.



Z Transfer Function

○ If we change the zero z1 to 1/ z1 we get the same 

magnitude transfer function (up to a scale factor)

…

○ But a maximum phase filter (the phase goes to -

at Fe/2) because now, the zero lies outside the 

unit circle.



IIR Filter 

Synthesis

⚫Starting from frequency specifications (here 

low pass filter):

○ Fpass : passband end frequency,

○ Fstop : stopband start frequency,

○ Apass : maximum passband ripple,

○ Astop : minimum stopband attenuation.



⚫Analog prototype with analog to digital transformation 
(bilinear transform) :

○ Digital to analog frequency specification transformation using 
prewarping

○ Analog filter prototype

○ Analog transfer function to digital transfer function transformation 
using bilinear transform.

⚫Direct digital method : Yule Walker

○ Try to find the recursive filter of order N which is as close as 
possible to the frequency specifi-cations using the least square 
optimization method.



IIR Filters

Synthesis

○ Characteristics frequencies (Fp, Fa) of the target specifications 
have to be warped.

○ This warped specifications is used to compute an analog 
prototype using approximation functions :

- Butterworth

- Chebyshev I

- Chebyshev II

- Elliptic

○ Then the analog prototype is tranformed into a digital filter 
that matches target frequency specification thanks to Bilinear 
Transform (BT) (this cancels the warping introduce at the first 
step).



UNIT– IV

SYMMETRIC AND

ANTISYMMETRIC FIR

FILTERS



CLO’s Course Learning Outcome

CLO12 Design of finite impulse response (FIR) filters for a given 

specification.

CLO13 Compare the characteristics of IIR and FIR filters.

CLO14 Design of infinite impulse response (IIR) filters for a given 

specification.



Digital Filter Specifications

⦿ Only the magnitude approximation problem

⦿ Four basic types of ideal filters with magnitude responses 

as shown below (Piecewise flat)



Digital Filter

Specifications

⦿ These filters are unealisable because (one of the following is 
sufficient)

⚫ their impulse responses infinitely long non-causal

⚫ Their amplitude responses cannot be equal to a constant over a band of 
frequencies

Another perspective that provides some understanding can be obtained by 
looking at the ideal amplitude squared.



Digital Filter Specifications

⦿Consider the ideal LP response squared 

(same as actual LP response)



⦿ The realizable squared amplitude response transfer function (and its
differential) is continuous in  Such functions

⚫ if IIR can be infinite at point but around that point cannot be 
zero.

⚫ if FIR cannot be infinite anywhere.

⦿ Hence previous differential of ideal response is unrealizable



⦿ A realisable response would
effectively need to have an 
approximation of the delta
functions in the differential

⦿ This is a necessary condition



⦿ For example the magnitude response
as indicated below

of a digital lowpass
filter may be given



⦿ In the passband

⦿ In the stopband

with a deviation

G(e j )  1 with a deviation
0   p we require that

G(e j )  0 s

s   we require that

p 

j

1 p  G(e )  1  p ,   p

s    G(e j )   ,
s



Filter specification parameters

- passband edge frequency

- stopband edge frequency

- peak ripple value in the passband

- peak ripple value in the stopband

⦿ p

⦿ s

⦿  p

⦿ s



⦿ Practical specifications are often given in terms of 
loss function (in dB)

⦿

⦿ Peak passband ripple

dB

⦿Minimum stopband attenuation

p   20log10 (1 p ) dB

s   20 log10 ( s )

10 G(e j )G ( )   20 log



computed from specifications in Hz using

FF
p 2F T

T

pp

p  
 2F

⦿In practice, passband edge frequencyFp 

and stopband edge frequencyFs are 
specified in Hz

⦿For digital filter design, normalized 

bandedge frequencies need to be

FF
s

T

s

T

T

s
s

2F
 2F T


 



⦿Example - Let 

kHz

⦿ Then

kHz, kHz, and

pF  7 sF  3

TF  25

0.56
2 (7103 )


25103p

 0.24
25103

 
32 (310 )

s



⦿The transfer function H(z) meeting the 

specifications must be a causal transfer 

function

⦿For IIR real digital filter the transfer 
function is a real rational funz c1tion of

⦿H(z) must be stable and of lowest order N

or M for reduced computational complexity

Selection of Filter Type

M
zM  p

H (z) 
1d0  d1z  d2 z   dN z

2

2 N
2

1p0  p1z  p z



⦿ FIR real digital filter transfer function is a
polynomial in (order N) with real coefficients


n

N

h[n] zH (z) 
n0

⦿ For reduced computational complexity, degree N of
H(z) must be as small as possible

⦿ If a linear phase is desired then we must have:

⦿(More on this later)

h[n]   h[N  n]

z1



Selection of Filter Type

⦿Advantages in using an FIR filter -

(1) Can be designed with exact linear phase

(2)Filter structure always stable with quantised 
coefficients

⦿Disadvantages in using an FIR filter - Order of an FIR filter 
is considerably higher than that of an equivalent IIR filter 
meeting the same specifications; this leads to higher 
computational complexity for FIR



Finite Impulse Response

Filters

⦿ The transfer function is given by

⦿ All poles are at .

⦿ Zeros can be placed anywhere on the z-plane


N 1

n0

⦿ The length of Impulse Response is N

nh(n).zH (z) 

z  0



FIR: Linear

phase

⦿Thus for linear phase the second term in the 
fundamental phase relationship must be identically 
zero for all index values.

⦿Hence

⦿1) the maximum phase factor has zeros which are the 
inverses of the those of the minimum phase factor

⦿2) the phase response is linear with group delay 
(normalised) equal to the number of zeros outside the 
unit circle



FIR: Linear phase

⦿It follows that zeros of linear phase FIR trasfer

functions not on the circumference of the unit

circle occur in the form

ie
 ji 

1



⦿ For Linear Phase t.f. (order N-1)

⦿ h(n)  h(N 1 n)
⦿ so that for N even:

N 1  
2


n  0

 n H ( z )  h (n ) .z
N 1

n  N
2

 h (n ) .z  n



N 1
2



N 1
2


n  0

 n  h ( N  1  n ).z  ( N 1 n )h (n ).z



N 1
2


n 0

n 0

 m h(n)z n  z m  N 1 n



⦿ for N odd:

⦿ I) On

+ve sign

 



 


H (z) 

N 1
1


 
n m N 1

2
z  z  h

2

n0

2


N 1

h(n). z

C : z w1 e have for N even, and




 
 

 


1
2

2

2n0

N 1
H (e )  e  .  2h(n).cosT  n 

 jT  N 1 N
jT



⦿ II) While for –ve sign

⦿ [Note: antisymmetric case adds

 
 2

rads

N  1  








j 2 h (n ).sin T  n 

n  0

  1
2

2  . H (e )  e
 jT  N 1  N

jT

 / 2

to phase, with discontinuity at  0 ]

⦿ III) For N odd with +ve sign




 
  

 

2

2 N  1
h

 j T  N  1 

H ( e j T )  e



 

   


2

N  3  

2


n  0

2 h ( n ) . c o s  T  n 
N  1   



⦿ IV) While with a –ve sign

⦿[Notice that for the antisymmetric case to 

have linear phase we require

The phase discontinuity is as for N even]



 

  
2

2

2
 


n0  

 N 1  N 3

2 j.h (n ).sin T  n 
N  1  

 jT

  H (e jT )  e

2
 
 

h  N  1   0 .



⦿The cases most commonly used in filter 

design are (I) and (III), for which the 

amplitude characteristic can be written as 

a polynomial in

2
cos

T



Design of FIR filters: Windows

(i) Start with ideal infinite duration

(ii) Truncate to finite length. (This produces
unwanted ripples increasing in height near
discontinuity.)

(iii) Modify to

Weight w(n) is the window

h(n)

~
h (n)  h(n).w(n)



Windows

Commonly used windows

⦿ Rectangular

⦿Bartlett

⦿Hann

⦿ Hamming

⦿

⦿ Blackman

⦿

⦿Kaiser

2

N  1
n N

1 
2 n

 
 N

1  c o s 
2 n 

 


N
0.54  0.46 cos

2n 







 
 NN

0 .4 2  0 .5 co s
2n   0 .0 8 co s

4n 

J 0 (  )
2 n




J 0  


 
2 1  

N  1


 



Kaiser window

⦿Kaiser window

β Transition width 
(Hz)

Min. stop attn 
dB

2.12 1.5/N 30

4.54 2.9/N 50

6.76 4.3/N 70

8.96 5.7/N 90



Example

• Lowpass filter of length and

L o w p a s s Filter D e s i gn e d U s i n g H a n n w i n d o w

c   / 2
Lo w p as s Filter Des igned Using H am m i n g w i n d o w

0 0 .2 0 .4 0 .6 0 .8 1 0 0.2 0.4

-1 0 0

-5 0

0

 /

0.6 0.8 1

-100

-50

0

 /

0 0.2 0.4 0.6 0.8 1

-100

-50

/

Lowpass Filter Designed Using Blackman window 

0



Frequency Sampling Method

to find

• In this approach we are given H (k )and need

• This is an interpolation problem and the 

solution is given in the DFT part of the course

• It has similar problems to the windowing 

approach

1 zN1 N 1

k0
N .z1

1 e

H (z)   H (k ).
N j

2
k

H (z)



Linear-Phase FIR Filter Design by Optimisation

⦿Amplitude response for all 4 types of linear-

phase FIR filters can be expressed as

where H( )  Q( ) A( )

cos(/2),

 for Type 1

for Type 2

for Type 3

for Type 4


sin( / 2),

Q()  
sin(),

1,



Linear-Phase FIR Filter Design by Optimisation

⦿Modified form of weighted error function

E ( ) W ( )[Q( ) A( )  D( )]

where

Q ( )
W ( )Q( )[A( )  D ( )]

W~ ()[A()  D~()]

W~ ( ) W ( )Q( )

D~()  D() / Q()



⦿Optimisation Problem - Determine

which minimise the peak absolute value

over the specified frequency bands

construct the original

h[n]
A(e j )and hence

⦿After a~[k ] has been determined,

L ~ k)  D~( )]
k0

of
E ( ) W~ ( )[  a[k ]cos(

a~[k]

  R



Linear-Phase FIR Filter Design by Optimization

Solution is obtained via the Alternation

Theorem

 The optimal solution has equiripple behaviour consistent 

with the total number of available parameters.

 Parks and McClellan used the Remez algorithm to develop a

procedure for designing linear FIR digital filters.



FIR Digital Filter Order Estimation

Kaiser’s Formula:

N 
 20 log10 (  p s )

14.6(s  p ) / 2

⦿ie N is inversely proportional to transition 

band width and not on transition band 

location



FIR Digital Filter Order Estimation

⦿Hermann-Rabiner-Chan’s Formula:

with

(s  p ) / 2

D ( , )  F ( , )[(  ) / 2 ]2

p s p s s p

where

D ( , )  [a (log  )2  a (log  )  a ]log 
p s 1 10 p 2 10 p 3 10 s

N 

4 10 p 5 10 p 6[a (log  )2  a (log  )  a ]

F ( p , s )  b1  b2[log10  p  log10  s ]

a1  0.005309, a2  0.07114, a3  0.4761

a4  0.00266, a5  0.5941, a6  0.4278

b1  11.01217, b2   0.51244



FIR Digital Filter Order Estimation

 ⦿Both formulae provide only an estimate of the required

filter order N

 ⦿If specifications are not met, increase filter order until

they are met

by interchanging and

⦿ Formula valid for  p   s

⦿ For  p   s, formula to be used is obtained

 p s



FIR Digital Filter Order Estimation

⦿ Fred Harris’ guide:

where A is the attenuation in dB

⦿ Then add about 10% to it

A

20(s  p ) / 2
N 



MODULE– V APPLICATIONS OF

DSP



CLO’s Course Learning Outcome

CLO15 Understand the tradeoffs between normal and multi rate DSP 

techniques and finite length word effects.

CLO16 Understand the signal interpolation and decimation, and explain 

their operation

CLO17 Explain the cause of limit cycles in the implementation of IIR 

filters.
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Digital Signal ProcessingAnd Its Benefits

By a signal we mean any variable that carries or contains some kind of information 
that can be conveyed, displayed or manipulated.

Examples of signals of particular interest are:

- speech, is encountered in telephony, radio, and everyday life



- biomedical signals, (heart signals, brain signals)

⦿ ECG

Tomography

0 1 2 3 4 5 6 7 8

2.6

2.4

2.2

2

1.8

1.6

1.4

1.2

1

0.8



Significant features of ECG

waveform

⦿ A typical scalar electrocardiographic lead is shown in 

Fig. 1, where the significant features of the waveform 

are the P, Q, R, S, and T waves, the duration of each 

wave, and certain time intervals such as the P-R, S-T, 

and Q-T intervals.



⦿ Sound and music, as reproduced by the

compact

disc player

⦿ Video and image,

⦿ Radar signals, which are used to determine the range and bearing of distant targets



•Most of the signals in our environment are analog such 
as sound, temperature and light

•To processes these signals with a computer, we must:

1. convert the analog signals into electrical signals, e.g., using a 
transducer such as a microphone to convert sound into 
electrical signal

2. digitize these signals, or convert them from analog to digital, 
using an ADC (Analog to Digital Converter)



Steps in Digital Signal Processing

•Analog input signal is filtered to be a band-limited 

signal by an input lowpass filter

•Signal is then sampled and quantized by an ADC

•Digital signal is processed by a digital circuit, often a 

computer or a digital signal processor

•Processed digital signal is then converted back to an 

analog signal by a DAC

•The resulting step waveform is converted to a smooth 

signal by a reconstruction filter called an anti-imaging 

filter



Whydo we need DSPs

⦿ DSP operations require a lot of multiplying and adding 

operations of the form:

A = B*C + D

⦿ This simple equation involves a multiply 

and an add operation

⦿ The multiply instruction of a GPP is very 

slow compared with the add instruction

⦿ Motorola 68000 microprocessor uses 

10 clock cycles for add

74 clock cycles for multiply



•Digital signal processors can perform the 

multiply and the add operation in just one clock 

cycle

Most DSPs have a specialized instruction 

that causes them to multiply, add and save 

the result in a single cycle

This instruction is called a MAC (Multiply, 

Add, and Accumulate)



Attraction of DSP comes from key advantages such as :

* Guaranteed accuracy: (accuracy is only determined by the number of bits used)

* Perfect Reproducibility: Identical performance from unit to unit

ie. A digital recording can be copied or reproduced several times with no 

loss in signal quality

* No drift in performance with temperature and age

* Uses advances in semiconductor technology to achieve:

(i) smaller size

(ii) lower cost

(iii) low power consumption

(iv) higher operating speed

* Greater flexibility: Reprogrammable , no need to modify the hardware

* Superior performance
ie. linear phase response can be achieved 

complex adaptive filtering becomes possible



Disadvantages of

DSP

* Speed and Cost

DSP techniques are limited to signals with relatively low bandwidths 

DSP designs can be expensive, especially when large bandwidth signals 

are involved.

ADC or DACs are either to expensive or do not have sufficient 

resolution for wide bandwidth applications.

*DSP designs can be time consuming plus need the necessary resources 

(software etc)

* Finite word-length problems

If only a limited number of bits is used due to economic considerations 

serious degradation in system performance may result.



 The use of finite precision arithmetic makes it necessary to quantize
filter calculations by rounding or truncation.

 Roundoff noise is that error in the filter output that results from 
rounding or truncating calculations within the filter.

 As the name implies, this error looks like low-level noise at the filter 
output



Application Areas
Image Processing Instrumentation/Control Speech/Audio Military

Pattern recognition spectrum analysis speech recognition secure communications

Robotic vision noise reduction speech synthesis radar processing

Image enhancement data compression text to speech sonar processing

Facsimile position and rate digital audio missile guidance

animation control equalization

Telecommunications Biomedical Consumer applications

Echo cancellation patient monitoring cellular mobile phones

Adaptive equalization scanners UMTS

ADPCM trans-coders EEG brain mappers digital television

Spread spectrum ECG Analysis digital cameras

Video conferencing X-Ray storage/enhancement internet phone etc.


