YOour roots to success...

DIGITAL SIGNAL PROCESSING

11 B.Tech(ECE) Il semester
(NRCM-R20)



Course outcomes

CO1 Interpret, represent and process discrete/digital signals and
systems.

CO2  Thorough understanding of time domain and frequency domain
analysis of discrete time signals and systems.

co3 To apply DFT for the analysis of digital signals & systems.

co4  Ability to design & analyze DSP systems like FIR and IR Filter.

co5 Design multi rate signal processing of signals through systems..
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Course Learning Outcome

CLO1

Understand how digital to analog (D/A) and analog to digital
(A/D) converters operate on a signal and be able to model these
operations mathematically..

CLO2

Define simple non-periodic discrete-time sequences such as the
Impulse and unit step, and perform time shifting and time-
reversal operations on such seguences..

CLO3

Given the difference equation of a discrete-time system to
demonstrate linearity, time-invariance, causality and stability, and

hence show whether or not a given system belongs to the
Important class of causal, LTI systems.
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The term signal is generally applied to something that
conveys information.

Signals may, for example, convey information about
the state or behavior of a physical system.

As another class of examples, signals are synthesized
for the purpose of communicating information between
humans or between humans and machines.

Although signals can be represented in many ways, In
all cases, the information Is contained in some pattern
of variations.

Signals are represented mathematically as functions of
one or more independent variables

/




A signal is a pattern of variation of some form
Signals are variables that carry information

Examples of signal include:

Electrical signals
Voltages and currents in a circuit

Acoustic signals
Acoustic pressure (sound) over time
Mechanical signals
Velocity of a car over time

Video signals
Intensity level of a pixel (camera, video) over time
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Mathematically, signals are represented as a function of one or more independent
variables.

For instance a black & white video signal intensity is dependent on x, y coordinates
and time t f(x,y,t)

On this course, we shall be exclusively concerned with signals that are a function of
a single variable: time

fit) |
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Humans are the most advanced signal processors
speech and pattern recognition, speech synthesis,...

We encounter many types of signals in various applications
Electrical signals: voltage, current, magnetic and electric fields,...
Mechanical signals: velocity, force, displacement,...

Acoustic signals: sound, vibration,...
Other signals: pressure, temperature,...

Most real-world signals are analog
They are continuous in time and amplitude
Convert to voltage or currents using sensors and transducers

Analog circuits process these signals using
Resistors, Capacitors, Inductors, Amplifiers,...

Analog signal processing examples
Audio processing in FM radios

\ Vid .. liti I TV sets
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On this course, we shall be particularly interested in signals with certain
properties:

Periodic signals: a signal is periodic if it repeats itself after a fixed period T,
i.e. x(t) = x(t+T) for all t. A sin(t) signal is periodic.

Even and odd signals: a signal is even if x(-t) = x(t) (i.e. it can be reflected in the axis
at zero). A signalis odd if x(-t) = -x(t). Examples are cos(t) and sin(t) signals,
respectively.

Exponential and sinusoidal signals: a signal is (real) exponential if it can be

represented as x(t) = Ce. A signal is (complex) exponential if it can be
represented in the same form but C and a are complex numbers.

Step and pulse signals: A pulse signal is one which is nearly completely zero, apart

from a short spike, d(t). A step signal is zero up to a certain time, and then a
constant value after that time, u(t).

These properties define a large class of tractable, useful signals and will be further
considered in the coming lectures

- /




Accuracy limitations due to
Component tolerances
Undesired nonlinearities
Limited repeatability due to
Tolerances
Changes in environmental conditions
Temperature
Vibration
Sensitivity to electrical noise
Limited dynamic range for voltage and currents
Inflexibility to changes
Difficulty of implementing certain operations
Nonlinear operations
Time-varying operations

 Diffculte of ctoring informats /
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Signal-processing systems may be classified along the same
lines as signals.

That is, continuous-time systems are systems for which both
the input and the output are continuous-time signals, and

discrete-time systems are those for which both the input
and the output are discrete-time signals.

Similarly, a digital system is a system for which both the
input and the output are digital signals.

Digital signal processing, then, deals with the
transformation of signals that are discrete in both amplitude
and time

- /
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Represent signals by a sequence of numbers
Sampling or analog-to-digital conversions

Perform processing on these numbers with a digital processor

Digital signal processing
Reconstruct analog signal from processed numbers
Reconstruction or digital-to-analog conversion

digital digital
signal signal

analog__|  A/p | DSP =

signal

Analog input — analog output
— Digital recording of music
Analog input — digital output
— Touch tone phone dialing
Digital input — analog output
— Text to speech
Digital input — digital output
— Compression of a file on computer

D/A

analog
signal
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@ signal: function of one or more variables that conveys information about
some (usually physical) phenomenon

@ for function f(t.1,....t,), each of {1} is called independent variable,
function value itself referred to as dependent variable

@ examples of signals:

@ voltage or current in electronic circuit

@ position, velocity, and acceleration of object

@ forces or torques in mechanical system

o flow rates of liquids or gases in chemical process
o digital image, digital video, digital audio

o stock market index
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@ number of independent variables (i.e., dimensionality)

@ one: one-dimensional (e.g., audio)
@ more than one: multi-dimensional (e.g., image)

@ continuous or discrete independent variables

@ continuous: continuous-time (e.g., voltage waveform)
@ discrete: discrete-time (e.g., stock market index)

@ continuous or discrete dependent variable

@ continuous: continuous-valued (e.g., voltage waveform)
@ discrete: discrete-valued (e.g., digital image)

@ continuous-valued continuous-time: analog (e.g., voltage waveform)

@ discrete-valued discrete-time: digital (e.g., digital audio)

N
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@ sequence: discrete-time signal

@ Independent variables enclosed in parentheses for continuous-time signal
(e.g., x(1)) and brackets for discrete-time signal (e.g., x|n])

x(r) x[n)
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@ unit pulse (unit sample)

STl
i — 0O
J[n] = & . i
O otherwise . o _ _
ol v -
@ unit step
u[n] B 1 5 .00 —L,FLLLV"J
o 0O otherwise = 1 -l ] e

© Sinusoids and complex exponentials

x1[n] = Ae(j:.gfr(,won + 0) e x2[n] has real and imaginary parts;
x2[n] = a known as a single-frequency signal.

©@ Exponentials

x[n] = a"u[n] (0 < a < 1) x[n] = a"u[—n] x[n] = a="u[—n]
A‘\T I S ] \) T ) »\1
\ Na'{/ut S‘AQ,. e\APwW n ‘.{fto—s%&o_— *!-' --31 '\ =

exp — R R, J



Discrete Time signals

The signals, which are defined at discrete times are known as discrete signals. Therefore, every
independent variable has distinct value. Thus, they are represented as sequence of numbers.

Although speech and video signals have the privilege to be represented in both continuous and
discrete time format; under certain circumstances, they are identical. Amplitudes also show
discrete characteristics. Perfect example of this is a digital signal; whose amplitude and time
both are discrete.

A Discrele-Time Signal
a5

= 05 T-‘! T? I T

= i a i = l‘* T =s—

The figure above depicts a discrete signal’s discrete amplitude characteristic over a period of
time. Mathematically, these types of signals can be formularized as;

x={x[n]}, —eo<n<oo
Where, n is an integer.

It is a sequence of numbers x, where nth number in the sequence is represented as x[n].
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[Signals]

e Signal: a continuous-time signal x(¢) (discrete-time signal x[n]) is

a function of an independent continuous variable ¢ (discrete
variable n).
e Elementary continuous-time signals:
1. z(t) = e%°%, 85 = 0g + jwp (complex exponential)
r(t) = /¥ 545 = jwp (periodic complex exponential)
x(t) = e7°, sp = 0p (real exponential)
r(t) = coswpt = Re{e?“"!'} (sinusoidal signals)
impulse function: 4(%)

unit function: w(t)

= AU A

ramp funection: r(f)
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e Elementary discrete-time signals:

7

7.

S N

T

xr
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2y, 20 = rpe?*? (complex exponential)

elthon oo = 7% (periodic complex exponential)
ras20 = Tp (real exponential)

cos Qon = Re{e’?"] (sinusoidal signals)

impulse function: d[n]

unit function: u[n]

ramp function: r[n]

e We will treat continuous-time and discrete-time signals

separately but in parallel.

N




\ Classification of signals.

1. continuous-time x(f) vs. discrete-time x[n]

e Usually a discrete-time signal x[n] is obtained from a
continuous time signal x(f) by sampling:

xrn]| =x(nT), n=0,+1,+2... for some fixed T.

2. even vs. odd signals

e even (real): x(—t) = x=(¢)

e odd (real): z(—t) = —x(t)
e symmetric (complex): x(—t) = x* (1)
e anti-symmetric (complex): x(—t) = —x*(¢)

N
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Any signal z(t) can be decompose into the even part x.(f) and
the odd part z,(t) by:

v(t) = 5lz(t) + 2(—1)] + 5 x(t) —2(~1))

il
2
where

Tall) = %[T(t) + z(—t)] and z,(t) = %[:r(t) — ()]

e It is easy to check that z.(t) = ze(—1) , To(t) = —2,(1).
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3. periodic vs. aperiodic signals

e A signal z(t) (z[n]) is called a periodic signal if there exist real
number 7' (integer N ) such that:

r(t+T)=2z(t) (z[n+ N|==z[n]).

e The smallest T (Np) such that :

z(t +Tp) = z(t) (xz[n+ No) = z[n])
is called the (fundamental) period of z(t) (xz[n]).

e %— }%%) is called the fundamental frequency (”"d of 2(t) (z[n]).

SecC

e 2(t) (z[n]) is called aperiodic if it is not periodic.

N y,
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4. deterministic vs. random

e deterministic signal z(%)
= x(tp) 1s a number, no uncertainity

e random signal x(t)
= x(tp)is a random variable (with some probability specificatior
x(t) = random signal = random process = stochastic process

5. energy signal vs. power signal

e for a continuous signal x(%):
E = [T _x2(t)dt: energy

%
P=limp_ .. —+ f__'-;?_ x2(t)dt : power

@
= = [2, 22(t)dt if z(t) is periodic with period T
= &




e for a discrete signal z[n]
E=5%"> __ x[n]: energy
P =1lim, .. 5% S N1 22[n]: power
= LSV 122[n] periodic with period N
e x(t)(x[n]) is an energy signal
if < F <o
or i1s a power signal
)< P<od
e A signal x(t) (z[n]) can not be an energy signal and a power
signal simultaneously.

y,
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Pros
Accuracy can be controlled by choosing word length
Repeatable
Sensitivity to electrical noise is minimal
Dynamic range can be controlled using floating point numbers
Flexibility can be achieved with software implementations
Non-linear and time-varying operations are easier to implement
Digital storage is cheap
Digital information can be encrypted for security
Price/performance and reduced time-to-market

Cons
Sampling causes loss of information
A/D and D/A requires mixed-signal hardware
Limited speed of processors

Quantization and round-off errors




Analog
Systems

Time Signals

j‘ Continuous-
and Systems

» Analytical techniques
* Analog electronics

Interface
Systems

ADC

DAC

Digital
Systems

Discrete-Time
Signals and
Systems

* Numerical techniques
» Digital electronics




Processing

Analog Band-limited Digital Processed Output Analog
input signal signal digital signal signal output
> Analog > > DS Reconstruction
filter ADC processor = DACG - filter -
| |
i i 1 H |
I v I v I
v Analog to Digital : Digital to Analog v
Taavoid Converter : Converter Tasanvoid
aliasing for [ aliasing for
sampling " sampling

Computer /
microprocessor / micro
controller/ etc.

Practical approximation of idecal A/D converter

Xeld) Antialiasing xXa(r) Samglc A/D xglnl
e filter _— ﬁgld | converter
H(J€2) P | R =1/T E=1/T | |

e J v
Discrete-time
Practical approximation of ideal D/A converter el

: IReconstructio Sample D/A
~——t filter i —— converter |-t
: . hold ,
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The main function of the low-pass antialiasing filter is to
band-limit the input signal to the folding frequency without
distortion.

It should be noted that even if the signal is band-limited, there is
always wide- band additive noise which will be folded back to
create aliasing.

When an analog voltage is connected directly to an ADC, the
conversion process can be adversely affected if the voltage is
changing during the conversion time.

The guality of the conversion process can be improved by using a
sample-and- hold (S/H) circuit.

Input signal Butput signal
HER Xoutl £/
o : §
R i v ls P

X;.(1) o/c J\/\/\/—l—x‘,m(t) P ¢ ¢ ;

S = Sample I c 5

(a) H [ P . §-4 !

S ‘H S H S H S H: 8 'H t

(b)




@ Since the sampling operation is performed by the S/H circuit, the
role of S/H is to sample z.(¢) as instantaneously as possible and
to hold the sample value as constant as possible until the next

sample.

e Thus, the output of the S/H circuit can be modelled as a
staircase waveform where each sample value is held constant until
the acquisition of the next sample.

T
-

1 S/H Input S/H Output

| S

N\

P W,

L L 1 1 1 i L L

0 10 20 30 40 50 60 70 30 90 4

@ Note that the S/H system is linear but time-varying.

. J




x(1) x[n] =x(nT) 3 xg4lnl ...61010]11..
——— Sampler - Q;:i::,t:tz‘;er # Coder L EEEE Y
Fim
i
(a)
Digital Signal x4[r] Discrete - Time Signal
; x[n] = x(nT)

——

Continuous- Time Sighal :
x(®)

nT

@ Quantization converts a continuous-amplitude signal =(¢) into a
discrete-amplitude signal o 4[n].

e In theory, we are dealing with discrete-time signals; in practice,
we are dealing with digital signals.

N Y,




The major difference between ideal and practical conversion is
that an ADC generates sample values that are known with finite
precision.

The ADC is the device in which both quantization and binary
coding of the sampled signal take place.

A B-bit quantizer can represent 2% different numbers.

If the input amplitude range is divided into K quantization
intervals of equal width A (quantization step) and the output
levels are uniformly spaced, the resulting quantizer is called
uniform.

x=

T - \T s iz (x
2 T 7T Sy T : o)
T - : | ~ Decision
[E—— 1 % b 2T el lovel
T=———1 001 “Fx T2 L

=
g | - \\\A B Il{g;nsn'uction
= 0 = —a 000 ' ' : 1 . 000 ; 4
2 VY 1 9 74 _SA  1117| A 34 sA 7A x
S == 111 22 2 pre.f2 2 2 2
Al e 110 —< 24| 110
e S]] / 34l 101
- B _-211390 . —~A |- 100
R 1041y
2 | i
code words Range (2Y,)




@ The two major types of error introduced by an ADC are aliasing
error and gqguantization error.

1 y— . .w\'c(t)\ . <. /.\'q(t)
o A ee(t) = xg(1) — xo (1) pF .
ok 4
-1} . : e . . ; ; :
0 02 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 %

@ Since quantization i1s a nonlinear operation, analysis of quanti-

zation error i1s done using statistical techniques.

@ If there is a large number of small quantization intervals, the
signal x.(#) can be assumed to be approximately linear between
quantization levels. In this case:

A

e-(t) Ex4(t) — xA(t) = Q_Tta — T 'SE ST

@ Then the mean squared quantization error power 1s

A2
=5 f lec®| 5
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A band-hmited signal can be reconstructed from a sequence of
samples using the ideal DAC described by

() — Z xzn]lgpr(t —nT) = Z x[n]|sinc(t/T — n)
T TL

A system that implements the above formula. for an arbitrary
function g, (¢), is known as a practical digital-to-analog converter
(DAC).
The function g,-(¢) i1s also known as the characteristic pulse of a
DAC. At each sample time ¢ = n7’, the converter generates a
pulse g,.(t — nT") scaled by z[n].
In particular, the switch-and-hold DAC performs the following
operation

rsu(t) = Z xqn] gsu(t — nT)

where

Lo e ]
il = {1, o<t<T 2sin(QT/2) —,a1/2

a—— GSH(]Q) —= 9
%

0, otherwise




@ The S/H circuit cannot completely eliminate the spectral replicas
mtroduced by the sampling process.
@ Moreover, 1t introduces amplitude distortion in the Nyquist band

| FL] < Fga/2.

Idea!l bandlimited

Sample and holc}/

|Gsual 182 H
‘\y

interpolator
gl 3 £2)

x

LGl ) 2)

R L

@ To compensate for the effects of the S/H circuit, we can use an

analog post-filter H,-(7€2) so that Gsy (Q2) H,-(32) = G 1. (752):

QT /2

eI2T /2

H, (402) = {0

N

sin(Q27/2)

?

12| < /T

otherwise

Y,




@ A general formula that describes a broad class of reconstruction
processes 1s given by

Tt} = Z x[nlg,-(t — nT)

T

where g,-(f) is an interpolating reconstruction function.

@ The process of fitting a continuous function to a set of samples i1s
known as an interpolation.

xlnlg,(t — nT) x[n]
xc(2)

|
(n—DT nT (n+DT g
@ Thus. if the interpolation function has duration greater than or

equal to 7', the addition of the overlapping copiles “fills the gaps”
between samples.

N /
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@ In the Fourier domain, the interpolation formula becomes

Xrla8h) = Zw[n]Gr(]ﬂ)e—JQT = G (952) Z z[n]e 7T

X (25T

o Consequently, we obtain

X, (592) = G (492) X(eJQT) '

e Specifically, if we choose g,.(t) so that

Gr(10) = Gpr(IN) = {0 Q| > Q. /2

then X,.(7Q2) = X.(y€2) and, therefore, z,.(t) = z.(t).

N /
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e Evaluating the inverse Fourier transform of Gz (7£2), we obtain

sin(wt/T")
wt/T

gr(t) = geL(t) = = sinc(t/T")

@ In this case we obtain:

The ideal interpolation formula

sin (w(t — n1") /T
wolt) = 3 aln) e

n

@ The system used to implement the ideal interpolation is known as

an izdeal DAC.

x|[n] - DAC > X.(1)
=T




@ To understand the meaning and implications of the i1deal
interpolation we look more closely at the sinc function ggr (%).

Zn (1)
Gy (j€2) & — 2._'_r P
e 7
A /\ /.\ P ! «Q
AT ~AT —rP\/—T 0 T 37 ~—4r — 4 0 i

@ We note that gpr(f) = 0 at all ¢t = nT', except at ¢t = 0 where
gpr.(t) = 1. Thus, it is always true that z,.(nT") = z.(nT")
regardless of whether aliasing occurred during sampling.

=x[0]

U 1)g (e -T)

£% x A1)

x{0]g 1)




Continuous-time signals are functions of a real argument
x(t) where t can take any real value
x(t) may be O for a given range of values of t

Discrete-time signals are functions of an argument that takes values from a
discrete set

x[n] wheren € {...-3,-2,-1,0,1,2,3...}
Integer index n instead of time t for discrete-time systems
x may be an array of values (multi channel signal)

Values for x may be real or complex




What is a system?

* asysfem 1s a device (machine). process or algonthm which has (multiple) inputs and
(multiple) outputs. Digital systems are implemented using either software or digital cir-
cuitry. Analog (electrical) systems are implemented using circuit devices such as resis-
tors. operational amplifiers and capacitors. This class 1s concerned only with the devel-
opment of digital systems.

The basic elements of a DSP system are:
¢ A/D converter (sampler. quantizer and anfi-aliasing filter)
¢ DSP
¢ D/A converter (hold and anti-imaging filter)
¢ XA modulator (if not A/D and D/A) — This 1s called the “all digital” solution

Digital Hardware

X|t = T

] " A/D > or — D/A y[]’
DSP
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Continuous-time signals are defined over a continuum of
times and thus are represented by a continuous
independent variable.

Discrete-time signals are defined at discrete times and thus
the independent variable has discrete values.

Analog signals are those for which both time and amplitude
are continuous.

Digital signals are those for which both time and amplitude
are discrete.




Analog signals: continuous in time and amplitude
Example: voltage, current, temperature,...
Digital signals: discrete both in time and amplitude
Example: attendance of this class, digitizes analog signals,...
Discrete-time signals: discrete in time, continuous in amplitude
Example: hourly change of temperature
Theory of digital signals would be too complicated
Requires inclusion of nonlinearities into theory
Theory is based on discrete-time continuous-amplitude signals
Most convenient to develop theory
Good enough approximation to practice with some care
In practice we mostly process digital signals on processors
Need to take into account finite precision effects
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®Continuous time - ]
Continuous amplitude W o
|

®Continuous time - N — H

Discrete amplitude
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Signal Basics

® Continuous time (CT) and discrete timme (DT) signals

CT signals take on real or complex values as a function of an independent
variable that ranges over the real numbers and are denoted as a(7).

DT signals take on real or complex values as a function of an independent
variable that ranges over the integers and are denoted as x[z].

Note the subtle use of parentheses and square brackets to distinguish between
CT and DT signals.

(1) ‘ [ ax[n]




Discrete-Time Signals

« Sampling Is the acquisition of the values of a
continuous-time signal at discrete points In time

* X(f) Is a continuous-time signal, x[n] Is a
discrete-time signal

X|n| =x(nT,| where T, is the time between samples

N y,




Discrete Time Exponential and
Sinusoidal Signals

* DT signals can be defined in a manner analogous to
their continuous-time counter part

_al. = A.Sm (=1 N +9) Discrete Time Sinusoidal
= A sin (2I'Fn+ B) Signal
x[n] = a” Discrete Time Exponential

n = the discrete%hc'f”nneal
A = amplitude

8 = phase shifting radians,

N_ = Discrete Period of the wave
1/N,=F_=Q_/2 'l = Discrete Frequency

N




Operations of Signals

« Sometime a given mathematical function may
completely describe a signal .

* Different operations are required for different
purposes of arbitrary signals.

* The operations on signals can be
Time Shifting
Time Scaling
Time Inversion or Time Folding




Time Shifting

* The original sngnal x(%t) is shifted by an
amount fo. )

~
& - 4
-2 O 2 k

. X(tr)]t—>X(t -to) > Signal Delayed—> Shift to the
rg

x(t-tg) T Delay
|

-2 0 ln-2 2 l'! [l)+2l




Time Shifting Contd.

* X()=>X(t+to) —=>Signal Advanced—>
Shift to the left

xft+ ) | Advance
|

e 0 2
“tp-2 -to -tgt2




Continuous-time signals are defined over a continuum of
times and thus are represented by a continuous
independent variable.

Discrete-time signals are defined at discrete times and
thus the independent variable has discrete values.

Analog signals are those for which both time and
amplitude are continuous.

Digital signals are those for which both time and
amplitude are discrete.




For DT systems, the answer is surprisingly simple: All we need to know is the zmpulse
response (denoted by h[n]) which is the response to a unit impulse input

5[n] & 1 ifn=20
0 if n=#0.

As an aside, we also define here the unit step function

i >
u[n]é 1 ifn=>0
0 ifnrn<O

The reason one only needs the impulse response is that we can write any signal z[n] as
a linear combination of the unit impulse function and its time-shifts:

o0

zfn] = ) z[k|o[n — K]

k=—o0

where z[k] are coefficients and d[n — k] is a time shift of §[n]. Mathematically, this is
equivalent to noting that the canonical unit vectors (i.e., {d[n — K]}, ;) form a basis for the
space of complex sequences with bounded entries (i.e., £).

N /
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The surprising conclusion 1s that the output of an LTI system 1s given by the “convolu-

tion” sum
o0

y[n] = z[n] * hn] £ Z z[k)h|n — k|

k=—o0
Observation: If we know the unit impulse response h[n| of a LTI system, we can compute
the output y[n| of an arbitrary input z[n| as y[n] = z[n] % h|n]. In this sense, a LTI system
15 fully determined by its unit impulse response.
Visualizing the calculation of convolution sum:

Step 1: Choose a value of n and consider 1t fixed.

Step 2: Plot z[k] as a function of k.

Step 3: Plot the function h[n — k| (as a function of k) by first flipping h[k| and then shift to
the right by n (if n 1s negative, this means a shift to the left by |n|.).

Step 4: Compute the intermediate signal w, [k] £ z[k]h[n — k] via pointwise multiplication and
then sum this signal to obtain the result y[n|.
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A

To compute y[n + 1], one can compute h[n + 1 — k] simply by shifting Aln — k] to the right

by sample. Then, answer is computed by repeating Step 4.

x[k] I

|

-1

h[—k]

8]

(=]

o 0




A linear constant-coefficient difference equation (LCCDE),

N M

Z aryn — k| = Z_: binz[n — m|,

k=0

defines the relationship between an input sequence z[n| and an output sequence y[n|. If an
LTI system 1s causal, then 1t can be described by a LCCDE.




Example

Consider the DT system described by the LCCDE

1
yin] ~ 3yl — 1] = zfn).
We assume the system is initially at rest (i.e., causal), which is defined mathematically as
zlk] = 0 for all integer k <ky =  y[k] =0 for all integer k < ky.

It turns out that a system 1s LTT if it 1s described by a LCCDE and it 1s imitially at rest.
In this case, we can first figure out the unit impulse response of the system h{n| and then

use the convolution sum to calculate the response to uln|. It is not too hard to verify that
y[n] = (3)" uln] satisfies the above LCCDE for input z[n] = 6[n]. Therefore, we say that its

umpulse response 1s
1 n
hin|] = (3) uln|.

—

Now, we can calculate the output associated with the input z[n| = u[n], which is known
as the step response of the system. By the convolution sum, the output y[n| corresponding
to the input z[n| = u[n] is given by



ylre] — wel72] == Fa[s2]

— E : Slrz — A:]) * Falua]
=0

= i Fo[r — K.
Thas: e Brd thint -
»lo] — 1
o — gn—B
vzt = (&) +52+1=73%
l n 1 n-1 1 1__15(71)_)" | l n
yln] = (2) +(2) +...+2+1— 1_% = (2)

forn > 0and hln| =0 for n < 1.




4 - ) N

@ A causal N-th order finite impulse response (FIR) system can have its
transfer function written as H(z) = ZQ’:O h[n]z="

@ A causal LTI system that is not FIR is said to be IIR (infinite impulse
response).

e.g. exponential signal h[n] = a"u[n]:

its corresponding H(z) = 1_312_1.




Based on Impulse Response Length -

If the impulse response h[n] is of finite length, i.e.,
h[n]|=0forn<N,and n>N,, N, <N,

then it is known as a finite impulse response (FIR)
discrete-time system

The convolution sum description here is

N>
vinl= X hlklxin—k]

k=N,
The output y[n] of an FIR LTI discrete-time system can
be computed directly from the convolution sum as itis a
finite sum of products (e.g., moving-average filter &
interpolator) .. _ _ __ > 2 1ne
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Based on the Output Calculation Process -

- Nonrecursive System - Here the output can be

calculated sequentially, knowing only the present and
past input samples

- Recursive System - Here the output computation
involves past output samples in addition to the present
and past input samples

Based on the Coefficients -

- Real Discrete-Time System - The impulse response
samples are real valued

- Complex Discrete-Time System - The impulse response
samples are complex valued




-

Given a sequence,

S k= 0.1
h(k) = { 1, k=273
0 elsewhere

where k is the time index or sample number,
a. Sketch the sequence /A(k) and reversed sequence A( — k).

b. Sketch the shifted sequences A(k + 3) and A( — k — 2).
k>0 h—k)y=20
k=20, h(—0)=h0)=23
k=1, WM—-k)y=h(—(—1))=h(l) =3
k=-2,—-k)y=h(—(=2)=h?2) =1
k=-=-3,—-k)y=h(—(-=3)=h3) =1
One can verify that k= —4,h( — k) = 0. Then the reversed sequence
h( — k) 1s shown as the second plot in Figure =

As shown in the sketches, #( — k) is just a mirror image of the original
sequence h(k).




.

a. Since h(k) 1s defined, we plot it in Figure

:

Next, we need to find the

reversed sequence i( — k). We examine the following for

h(k)
39 s
e
I R . A
= S
-1 0 1 2 3 4 5
h(-kK)
» 3+
ol
— T
5 -4 -3 2 4 0 1
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b. Based on the definition of the original sequence, we know that
0)=h(1)=3, h(2) = h(3) = 1, and the others are zeros. The time 1n-
dices correspond to the following:

~k+3=0k=73
-k+3=1k=2
~k+3=2k=1
~k+3=3k=0.

Thus we can sketch /i( — k + 3), as shown mn Figure

N J




h(—Kk+3)
3 + T T
E .
1+ 7 -
—2 —1 O 1 2 3 4
: ‘ Plot of the sequence h( — k + 3) in Example
Similarly, A( — kA — 2) 1s yvielded 1in Figure
h(—k—2)
- - 3 -
......... 2 -
S — —
—6 -5 —4 -3 —2 —1 0
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convolution is an operation (integration or summation, for
continuous and discrete time, respectively) that relates the output of
a linear and time-invariant (LTI) system to its input and its impulse
response.

Convolution is one of the primary concepts of linear system theory. It

gives the answer to the problem of finding the system zero-state
response due to any input—the most important problem for linear
systems.

The main convolution theorem states that the response of a system
at rest (zero initial conditions) due to any input is the convolution of
that input and the system impulse response.




We assume Discrete-Time LTI systems 0

x[n]= > x[kIS[n-K]

K=—0o0

The signal X[n] can be represented using
unit sample function or unit impulse
function: 8[n]

_f x[kl.n=k
Remember: X[n]8 [n o k] — L 0,else

Notations:
Xo[N] = X[n]o[n—0] = x[0]o[n—0]= x[0],n=0
X,[n]=Xx[n]o[n—-1] = x[1Jo[n-1] = x[1],n =1
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® LTI system response can be described using: 1
5[] System hin1

@ For : 8[n-k]=>h[n-K]
Impulse Response of a System

© Fora : X[k]S[n-k]=>X[k]nh[n-k] 0

x[n] = Z x[k1S [n — k]

k=

® Thus, forLTI:  x[n] = i X[k]6[n —k]— y[n] = i X[kIh[n —Kk] = x[n]*h[n]

k:—w k:—OO

® Remember:

y[n]= i X[KIh[n —k]=Xx[n]*h[n]

K=—o0

y[n]= i hikIx[n —k]=h[n]*x[n]

® We call this the convolution sum

«© Remember: NINI*o[n—nc]=h[n-n,]*o[n]=h[n-n] Y.




By definition

y[n]=h[n]*o[n]=h[n]

Remember (due to time-invariance property):

Multiplication

h[n]*o[n—ne]=h[n-ne]*o[n] =h[n—n,]

6[n]g[n —n,]=o[n]g[-n,]




Convolution.Sum.

M x[n] is asignal as a weighted sum of basis function; time-shift version of the unit
impulse signal. x[K] represents a specific value of the signal x[n] at time k.

o0

XInl= 2 x[k§[n-k]

k=—00

M The output of the LTI system y|n] is given by a weighted sum of time-
shifted impulse response. h[n] is the impulse response of LTI system H.

yll= 3 xlkhln—k]

K=—00

M The convolution of two discrete-time signals y[n ] and h[n] is denoted as

o0

x[nfhn]= 2 xlkhin-K]
K k=—00




s

Steps for Convolution Computation.

Step 1: Plot x and hversus k since the convolution sum is on K.
Step 2: Flip h[k] around the vertical axis to obtain h [- k].

Step 3: Shift h[-k] by n to obtain h [n- k].

Step 4: Multiply to obtain x[K] h[n- K].

Step 5: Sum on k to compute

Step 6: Index nand repeat Step 3-6.

yl]=x[pFh]= 3 xkhn—k]

k=—00




Representation of an arbitrary sequence
Any signal x(n) can be represented as weighted sum of impulses as given below

=
xin) = Z x{k)yb(n — k)
k=—oa¢
The response of the system for unit sample input is called impulse response of the
system h(n)
~
vin) = Tlx(m)]| =T Z x(kyd(n — k)
=—

i

Z AT {8(n — k)]

Lw=—OC

-~

Z x(hvhin. k)

k=-—-x

By time invariant property, we have
x
vin) = Z x(K)Ya(n — k)
k=—2x

The above equation is called convolution sum.
Some of the properties of convolution are commutative law, associative law and

distributive law.



: W

Correlation of two sequences
It is basically used to compare two signals. It is the measure of similarity between

two signals. Some of the applications are communication systems, radar, sonar

ete:
The cross correlation of two sequences x(n) and y(n) is given by

p P
reov{l) = Z x{n)vin —1) | =0, 21, 2. ...

n==—2xX

One of the important properties of cross correlation is given by

rx_v(l) —_— ryx(~l)
The auto correlation of the signal x(n) 1s given by
o

) = Y x(nx(n —1)

N = - 00

N )
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Linear time invariant systems characterized by constant coefficient
difference equation
The response of the first order difference equation 1s given by

yin) =a™'y(=1)+ ) a'xn-k)  n>0
k=0

The first part contain initial condition y(-1) of the system, the second part contains
input x(n) of the system.

The response of the system when it is in relaxed state at n=0 or

y(-1)=0 1s called zero state response of the system or forced response.

N
V() = Zu‘x(n -k n>0()

k=()

N y
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The output of the system at zero input condition x(n)=0 is called zero input
response of the system or natural response.

The impulse response of the system is given by zero state response of the system

yuln) = ) a'd(n -k
k=(
=q" n>0

The total response of the system is equal to sum of natural response and forced
responses.

) )
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Commutative Property
x[n]* hln] = h[n]* x]n]

Properties

Distributive Property

x[n]* (I [n]+ hy[n]) =
(x[n] * Iy [n]) + (x[n2]* 7, [12])

Associative Property

x[n]* y[n]* hy[n] =
(x[m]* Iy [n]) * I [n] =
(x[m2]* My [m]) * Iy [72]

N

:

of Convolution

x[n] | y[n] h[n] | yin]
— h[n] e | pmmma
x[n] il ‘ yin]
haln] }——’
v[r] - h,[n] - h:[n] =~ y[n]
xfer] < h,[n]»h,[n] - yln]
x| - ha|n) - h | n] - yl|a|
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The Commutative Property

This can be proved as follow:

fil

T*fQ

f1lk] * folk]

&> @

= folk] * f1[K]

Z film] falk — m]

m=—25o0C

- Z filw — k] fa|w],

w =k —m




The Distributive Property

k] * (falk] + f3lk]) = filk] * falk] + filk] * fa[K]

The proof is as follow:

filk] = (falk] + f3lk Z film] (falk — m] + f3[k — ml])

m=—oC

= Z film]folk —m] + Z film] falk —m]

m=—ocC m=—0ox

= f1lk] * falk] + f1[k] * f3[K]
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The Associative Property

f1lk] = (f2lk] * f3[k]) = (f1lk] * f2]k]) = f3[K]

T he proof is as follow:

A = (Falk] = FalkD) = 32 falma] (falk — mal * falke — ma))
= io: Sf1lrea] f: f2['7772]f3[/~‘- — 1121 — 1122]
— Z Z 1A — malfalmea] falk — Al
where A\ = 721 + mo.
Then we have
filk] = (fa[k] * fa[k Z Z f1[A — mo] fa[mo] f3[k — A]
mi=—00 Mma=—00

= (f1[k] * f2[k]) * fa[K]




T he Convolution with an Impulse

OO

FAE) s E] — E flrr]o[k — 712
Since [k — 1] = 1, if K — 772 — O or 72 — &k, then

K] = S[&] = F[~].-
The shifting Property
It

f1lk] = fa[k] = c[K]

then

filk] = folk] * 6|k — n]

clk] x [k — n] = ¢k — n]

f1[k] * Ok — n] x falk]

f1[k] * falk] x 6|k — n]

clk] * 0|k — n] = c[k — n]

filk] = 0[k — n] = fo[k] *x o[k — 1]

= clk] * 0|k — n] x 0k — 1] = c|lk — n — ]

f1lk] x folk — 7]

filk — n] * faolk]

filk — n] * folk — ]




Determine c[k] = f[k] * g[k] for

FIk] = (0.8)*ulk] and g[k] = (0.3)Fu[k]

we have

c[k] = Z flmlg[k — m]

m—=0

since both signals are causal.

k
SR] — { > (08y™(0.3)F ™ £>0

— (0.3)k+1

m:O
0 k<0
. m " (0.8)k+1 s
=) Z ( ) = O G308 —03)

[(0.8)"+1 = (0.3)"‘“] k]
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Find the zero-state response y[k] of an LTID system described by the equation
ylk + 2] — 0.6y[k + 1] — 0.16y[k] = 5f[k + 2]

if the input f[k] = 4= Fu[k] and h[k] = [(—0.2)F + 4(0.8)%] u[k].
We have

yi[k] = f[k] * hK]
— (4) " Fulk] » [(—O.Q)ku[k] + 4(0.8)ku[k]]
= (4) " Fulk] * (—0.2)%u[k] + (4) " u[k] * 4(0.8)F u[Kk]
= (0.25)*u[k] * (—0.2)*u[k] 4+ 4(0.25) u[k] * (0.8)*u[k]

Using Pair 4 from the convolution sum table:

(0.25)F+1 — (—0.2)k+! (0.25)*+1 — (0.8)F+!
+ 4 ulk]
0.25 — (—0.2) 0.25 — 0.8

ylk] = [

N




y[k] = (2.22 [(0.25)’°+1 . (—0.2)’°+1] —7.97 [(0.25)’*‘+1 . (O.8)"’+1]) ulk]

. [_5.05(0.25)’“rl _292(—0.2)F+! 4 7.27(0.8)’°+1] ulk]

Recognizing that

We can express y[k] as

ylk| =

_1.26(0.25)% 4+ 0.444(—0.2)% + 5.81(0.8)’“] u[k]

_1.26(4) % + 0.444(—0.2)% + 5.81(0.8)"'] u[k]
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The convolution sum of causal signals f[k] and g[k] is given by

Zf lglk — m]

=0

e Invert g[m] about the vertical axis (2 = 0) to obtain g[—m].

e Time shift g[—m] by k& units to obtain g[k — m]. For & > 0, the
shift is to the right (delay); for & < 0, the shift is to the left

(advance).

e Next we multiply f[m] and g[k — m] and add all the products to

obtain ¢[k]. The procedure is repeated to each value of Lk over the

range —oo to oC.

N y




Find c[k] = f[k] = g[k], where f[k] and g[k] are depicted in the Figures.

1~-fM]
”{._”(gsw
NESEE
0 1 2 3 4 i
1f_f[’"]
-.__w‘(ggyn
Tt
0 1 2 3 4

IQM]
1 -
3 (0.3)%
I ... ) hd > rS - —,A
0 1 2 3 4
IgPﬂn]
(0.3)7™
o= g - - @ -
I
g =g 0 =1 "0




|
( gl-m| 1" 5 )m]
—

Therefore o ,TT ‘ ‘ I [ L )
-4-3-2-1 01 2 3 4
k
C[k] = Z f[m]g[k - m] 1 | glk—m]
m=0 T
&3 f[m]
= Y (08)"(03 J [‘ 7
m=0 R 1 U I [ -
k I m
0.8\™
(0 3) Z (0 3) The two functions f] b — i ;
m)| and g[k — m] overlap over the interval 0 <m < k.

=9 [(0.8)"'“ . (0.3)’°+1] N
For k < 0, there is no overlap between f[m] and gk —m], so that c[k| =0 k<0 and

k] = [ (0.8)+1 (0.3)k+l] ulk].

N




Using the sliding tape method, convolve the two sequences f|k| and
glk].
e write the sequences f|k]| and g[k] in the slots of two tapes

o leave the f tape stationary (to correspond to f[m]). The g[—m]
tape is obtained by time inverting the g[m]

e shift the inverted tape by k£ slots, multiply values on two tapes in

adjacent slots, and add all the products to find ¢[k].
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For the case of £ = 0,
c0]=0x1=0
For k =
c[l] =(0x1)+ (1x1)=1
Similarly,

c2l=0x1)+(1x1)+(2x1)=3
c3]l=0x1)4+(1x1)+(2x1)4+(3x1)=6

4 =0x1)4+(1x1)4+(2x1)4+(3x1)+(4x1)=10
e[5]=0x1)4+(1x1)+(2x1)4+B3x1)4+(4x1)+(5x1)=15
6l ==0x1)+(1x1)+2x1)4+B3x1)+4x1)+(5x1)=15

. )




flk]
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1. Given the following block diagram
Find the difference equation
Find the impulse response: h[n]; plot h[n]
Is this an FIR (finite impulse response) or IIR system?
Given X[1]=3, x[2]=4.5, x[3]=6, Plot y[n] vs. n
Plot y[n] vs. n using Matlab

To find h[n] we assume x[n]=9[n], thus y[n]=h[n]

Since h[n]is finite, the system is FIR

k=—w

y[n]=h[n]= %(5[n]+5[n—1]+5[ﬂ—2])

Interms of inputs: y[n] = >  x[k]h[n - k] = x[n]*h[n]

@: i h[kIxX[n — k] = h[n]* x[n]

= ...+ X[n=3]n[3]+ x[n - 2]h[2] + x[n =1]h[1]+ x[n — O]h[O] + X[n +1]h[-1]+ ...

x[n] L

13 —>

pf?'m

. - 1
Difference equation yln]= g(x[”] +X[n=1]+X[n=2]) | Figure: FIR system contains finite number

of nonzero terms

L ——=x[n - 2]h[2] + x[n —1]n[1] + x[n — OJR[OT— /




Given the following block diagram
Find the difference equation
Find the impulse response: h[n]; plot h[n]

Is this an FIR (finite impulse response) or IIR system?

Given X[1]=3, x[2]=4.5, X[3]=6, Plot y[n] vs. n
Plot y[n] vs. n using Matlab

In terms of inputs:

y[n] = ...+ x[n —3]h[3] + X[n — 2]n[2] + X[n —1]h[1] + X[n — OJA[O] + X[n + 1]h[~1] +

— x[n — 2]h[2] + X[n —1]h[1] + x[n — O]h[O]

Calculate for n=0, n=1, n—2 n=3, n=4, n=5, n=6

: ¥nt
7L
T -]
o
! L.*J j?x (n-2]
%, ]

n=0; y[0]-0 ; :
n=1;y[ni=1 32ﬁﬁfﬁﬁfﬁﬁf?ﬁﬁﬁﬁfﬁﬁff?ﬁﬁfﬁﬁfff S
n=3; y[2\3]=4.5 R S R N
n=4; y[41=3.5 R R N R O
n=6; y[6]0 S AN AU N B N

DE I 2 3 4 q g

Try for different values of n

1 - n=0:6;

a2 - »x=[0 3 4.5 6]

3 - h=[1/3 1/3 1/3 0O]:

q - TECONW (X, )

5 - stemin, ¥, '£ill'), grid
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~ hlk]

6

LR

i

i

—1 0 1 2 3 k

0 1 2 3

ﬁ ;n n—4 n—3 n—2 n—-1 n

h[0]=h[1]=h[2]=1/3

X[1]=3, X[2]=4.5, x[3]=6

k

6
4.5
x[0 — k
] 31 [0 — k]
o - - ®» » - -
—4 —3 —2 —1 0 1 2 3 k

y[n] = ...+ x[n = 3]h[3] + X[n — 2]n[2] + X[n —1]h[1]+ X[n — O]h[O] + X[n +1]h[-1] + ....
— x[n — 2]n[2] + X[n —1]h[1] + X[n — O][O]

.

/
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Direct Forms

Cascade Form

Parallel Form

Feedback in IIR Systems




® Direct Forms

y[nl1-2 a,y[n -k]= Z b x[n — K]

M
> bz
H(z) = —=L
1-> az"
k =

1




21,’(71) v(n) ) y(n)
=1 =1
S _‘a.l S

31 21

v —;az a
B

2 ‘_‘a'N—l ¥
ot -

bM —10.N
LTI All-zero system LTI All-pole system

Requires: M + N + 1 multiplications, M + N additions, M + N memory locations




z(n)

| o
b (=)

Iy
=
=i
C
% |
'—
[~
* |
L~
1S

y b3
—anN—1 | 1 EEM —1_ -~
51 51
—anN E?_M
LTI All-pole system LTI All-zero system

Requires: M + N + 1 multiplications, M + N additions, M + N memory locations




A 4

»y(n)

hi

-
S
p—

A
-,

<+
3
¥

—‘(1.3

—

—aM=1

Y
N

»

000
S
-

—-—
I

21} oo 5(D—(D—(O—
A F 5
1|
5
I I
. |
= =
\Vg ‘Vg
R R |
——() sees(D—(D—(D—®

—am M

L A

For N>M

—aN

Requires: M + N + 1 multiplications, M + N additions, max(M, N) memory
locations




by
i) d I\ o
z(n) " 0\ y(n)
z_l 1
(] [t 0
@ N "t
z'l ’
—0) Gt
<+\: — »(+
51
—2 (!
@: Pl & >+
A 4
; _a. e E b" ! X
g}-\: ” M 1‘ :” ] » +

-
~ |

Z
—aM = by

i For N>M

—UN

Requires: M + N + 1 multiplications, M + N additions, max(M, N) memory
locations




bo .
z(n) © ¥ > (5 »y(n)
=
>
—a1 bl
51
— (9 bo
(:*): - -- - >+
-
—a b
4 4
. —AM =11 bvy-1 A
@: < -+ - >+
51
— (N ‘M
*  ForN>M
—UN |

Requires: M + N + 1 multiplications, M + N additions, max(M, N) memory

locations




Cascade Form
H(l gkz‘l)H (1-hz")(A-hiz™)
H(z)= AX=
H (1-c, z‘l)H (1-d,zY)(1-d’z?)

where M =M;+2M, and N = N;+2N,.

A modular structure that is advantageous for many types of
Implementations is obtained by combining pairs of real factors and
complex conjugate pairs into second-order factors.

N, _1 _2
H(Z)IH bOk"'blkz1 +b2kzz
o1 1l—a,, 7z —a,,z

where N. is the largest integer contained in (N+1)/2.




Parallel Form

N, B (1—e zY)
H(z)= ZCkZ +Z ¢, Z(1 dzhH(1-d;z)

77

where N = N;+2N, . If M euN, then Np = M - N; otherwise, the first summation
In right hand side of equation above is not included.

Alternatively, the real poles of H(z) can be grouped in pairs :

Np Ns -1
_ —k eOk + elkz
H(z)=) C,z +Zl e
k=0 k=1 1k 2k

where Ng is the largest integer contained in (N+1)/2, and if Np =M - N is
negative, the first sum is not present.




Direct Form

It is also referred to as a tapped delay line structure or a transversal
filter structure.

Transposed Form
Cascade Form

M Mg
H(z) =D h[nlz" =] (by +byz " +b,27%)
n=0 k=1

where Mg is the largest integer contained in (M + 1)/2. If M is odd, one of
coefficients b, will be zero.




For causal FIR system, the system function has only zeros (except
for poles at z = 0) with the difference equation:

y[n] = SM-o bix[Nn-K]
It can be interpreted as the discrete convolution of x[n] with the
Impulse response

h[n]=b, ,n=0,1,...,M,
0 . otherwise.




UNIT- I
DISCRETE FOURIER
TRANSFORM AND EFFICIENT
COMPUTATION



Course Learning Outcome

CLO4  Given the impulse response of a causal LTI system, show
whether or not the system is bounded-input/bounded-output
(BIBO) stable...

CLO5  Perform time, frequency and Z-transform analysis on signals.

CLO6 From a linear difference equation of a causal LTI system, draw
the Direct Form | and Direct Form 11 filter realizations.




The DFT pair was given as

N -1 N -1
X [k]= x[nle /M X[n] = %Z X [k]ej(zn/m)kn
n=0 =0

Baseline for computational complexity:

Each DFT coefficient requires
N complex multiplications
N-1 complex additions

All N DFT coefficients require

N2 complex multiplications
N(N-1) complex additions

Complexity in terms of real operations

4N2 real multiplications
2N(N-1) real additions

105/




Most fast methods are based on symmetry properties
Conjugate symmetry
Periodicity in n and k

e—j(Zn/N)k(N—n) _ e—j(2n/N)kNe—j(2n/N)k(—n) _ ej(27t/N)kn

e-1@r/NYn _ o=i(@/NK(nN) _ g (27 /N)(k+N)n

106/




Makes use of the periodicity gl(Bn/NNk _ giznk _ 9
Multiply DFT equation with this factor
X [k]: ej(27r/N)kN fx[r]e—j(Zn/N)rn _ ilx[r]ej(Zn/N)r(N—n)

r=0 r=0

Define y, [n]: i X[r]ej(Zn/N)k(n—r)u [n _ r]

r=—oo

With this definition and using x|n]=0 for n<0 and n>N-1

X []= v, [n]

n=N

X|K] can be viewed as the outgut of a fllter to the input x|n]|

IN kn
Impulse response of filter:

X[K] is the output of the filter at time n=N

107/




Goertzel Filter

O - O > > O
1 x|[n] viln|
7=l
H k (Z ) o .21
j=—Kk 1 -«
1-e N z -

Computational complexity

4N real multiplications

2N real additions

Slightly less efficient than the direct method
Multiply both numerator and denominator

.2_7'ck .27

—J J
1-e "N z7 l-e Nz
(1_6 N le(l_eJN Zl) 1—2COSW Z_1+Z_2

108/
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o]

Y

Second order Goertzel Filter 7

—jzﬁ k A Sy 12
H (Z ) _ 1—e V4 2 cos (LT{) _wk
k B 27[ k Cr — : ) ‘;_;'\-

_ 714772
1-2cos N

Complexity for one DFT coeffic
Poles: 2N real multiplications anc
Zeros: Need to be implement only once
4 real multiplications and 4 real additions

Complexity for all DFT coefficients
Each pole is used for two DFT coefficients
Approximately N2 real multiplications and 2N2 real additions
Do not need to evaluate all N DFT coefficients
Goertzel Algorithm is more efficient than FFT if

less than M DFT coefficients are needed
M < logzN

yiln]
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Makes use of both symmetry and periodicity
Consider special case of N an integer power of 2

Separate x|n]| into two sequence of length N/2
Even indexed samples in the first sequence
Odd indexed samples in the other sequence

X [k]: Ex[n]e—j(Zn/N)kn _ E X[n]e—j(Zn/N)kn n f X[n]e—j(Zn/N)kn

n=0 n even n odd

Substitute variables,n=2r for n eyen and n=2r+1 for odd
X[k]= > xf2rw 2+ > x[2r +1]w, >

r=0
N/2-1 N/2-1
0

X[2rW, ™ +WE > x[2r +1]W

N/2 N N/2

r= r=0

=G [k]+WH [k]
G|k] and H[Kk] are the N/2-point DFT’s of each subsequence

1o/
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8-point DFT example using decimation-in-time

Two N/2-point DFTs
2(N/2)? complex multiplications
2(N/2)? complex additions
Combining the DFT outputs

N complex multiplications
N complex additions

Total complexity
N2/2+N complex multiplications
N2/2+N complex additions
More efficient than direct DFT

Repeat same process
Divide N/2-point DFTs into
Two N/4-point DFTs
Combine outputs

x[0] o——

x[2] o——

.¥[4] O

.\’[(}I O——

x[1] o——

.1’[3] O——

.\’[5]0—)-—

% — point

DFT

l'i\"' -
— — point
2

CDFT

x[0] o>

x[4] o—>—

=~ — point
DFT

L=

x[2] o—>—

x[6] o—>—

N .

EL t

4 ~poin
DFT

m




4 A

® After two steps of decimation in time

x[0] o>

x[4] o——]

Q—' — point

4
DFT

Y

‘T — point
DFT

® Repeat until we'’re left with two-point DFT’s

x[4] o




Final flow graph for 8-point decimation in time

x 0]

x|7]

Complexity:

Nlog,N complex multiplications and additions




Flow graph constitutes of buttertflies

mth

stage

(- 1)st

stage

Y

(r+ N2)
Wy

We can implement each butterfly with one multiplication

o - 3 —

nith
stage

(m —1)st
stage

Final complexity for decimation-in-time FFT
(N/2)log,N complex multiplications and additions

14/




Decimation-in-time flow graphs require two sets of registers
Input and output for each stage
Note the arrangement of the input indices

Bit reversed indexing

X,[0] = x[o] & X,[000] = x[000]
Xo[l] = x[4] & X,[001] = x[100]
Xol2] = x[2] & X,[010] = x[o10.
Xo[B] = x|6] & X,[011] = x[110]
Xo[4] = x[t] & X,[t00] = x[o01.
Xo[5] = x[p] & X,[101] = x[101
Xol6] = xB] < X,[110] = x|011]
Xol7]= x[7] Xot11]=x[111]

s/




The DFT equation N1
X [k]=D_ x[nw ¢

NnN=

Split the DFT equation into even and odd frequency indexes

N -1 N/2-1 N =1
X[2r]= x[nW?*" = > XN+ > x[n]w,
n=0 n=0 n=N/2

Substitute variables to get

N/2-1 N/2-1 N/2-1

X[2r]= 20 xnWi + 30 xIn+ N/2W = 3 (xn]+ x[n+ N/ 2] )W,

n n=0

Similarly for odd-numbered frequencies

N/2-1

X [2r+1]= 2 (x[n]—-x[n+N/2])W 5

N/2
n=0
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® Final flow graph for 8-point decimation in frequency
X[0]
o W }{:
x[2] \ e _] X[2]
‘ Wy v x16]

X[1]
><§ Wy
X[5]




@ DIT structure with input bit-reversed, output natural
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@ DIT structure with input natural, output bit-reversed

5 X[0]

J'f[0]°—‘-—x /’f —Q P
x[]_] A ” —IX[4]
wg X

"~ WNO

3] < O eev — 0

x[4] © W .AAAA. o o X|[1]
; l‘ o ><:
LIVAVAVANAN ey X[5

X[S] \m =1 ]
0 ’

x[6] o el 1 1 :—><X[3]
0 2 3

x[7] o—»——w > i - id o X[7)




A

——
l IMED\NV//D R g
N DN,

© DIT structure with both input and output

o X[0]

x[3] o

i

LVEE

NGB, A

x[4] o X[4:

" TN SO ™

—

—

i‘
x[5
YN,
0
x[7]o_vK’L./ -

0 X[7)

1
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® DIT structure with same structure for each
St x[0]

N Wy V V > XEO-j
x%4 : "P‘ﬁ / X%lf
x[2] o WO "\m"\@"\/
B &
- -0"\@.'/@.\

x[5 /) '%‘ 1% x[5]
x[3] l ,- -'- X[6]
Wy

x[7}

—

P

x[6] ©

e e

—>— - X[7]

Wy
> O
-1 -1

e ®
-1




A method to avoid bit-reversal in filtering
operations Is:

Compute forward transform using natural input, bit-reversed output
(as in OSB 9.10)

Multiply DFT coefficients of input and filter response (both in bit-
reversed order)

Compute inverse transform of product using bit-reversed input and
natural output (as in OSB 9/14)

Latter two topologies (as in OSB 9.15 and
9.16) are now rarely used




We've always been talking about forward DFTSs in
our discussion about FFTs .... what about the

' ? N-1 N -1

inverse FFT: -3 S XIQWak: XK= 3 il
k=0 n=0

One way to modify FFT algorithm for the inverse

DFT compkutatlon

Replace "N by Wi wherever it appears
Multiply final output by 1/ N

This method has the disadvantage that it requires
modifying the internal code in the FFT subroutine




Taking the complex conjugate of both sides of
the IDFT equation:

X*[n]:—&lNZ_:l X*[k]\/\/l\lrn;or x[n]:—&l[NZ:l X*[k]WanJ'
This suggests that we can modify the FFT

algorithm for the inverse DFT computation by
the following:

Complex conjugate the input DFT coefficients
Compute the forward FFT
Complex conjugate the output of the FFT and multiply b/ N

his method has the advantage that the
Internal FFT code is undisturbed; it is widely
used.




Introduction: Decimation In frequency is an
alternate way of developing the FFT
algorithm

It IS different from decimation in time in Its
development, although it leads to a very
similar structure




Consider the original N-1

_ nk
DFT equation .... X = 2. (W

Separate the first half and the second half of
time samples:

(N/2)-1 N-1
XK= > AW+ X xinwK
n=0 N=N/2
(N/2)-1 (N/2)-1
= X WY ST i (N 2)wiK
n=0 n=0
(N/2)-1
-y [x[n]+(—1)kx[n+(N/2)]]N|{|‘k
n=0

Note that these are not N/2-point DFTs




(N/2)-1
XK= X [xinl+ (D" xin+ (N7 2)T v

n=0
For k even, let k=2r
N/2)-1 (N/2)-1
X[k]z( > [x[n]+(—1)2rx[n+(|\|/2)]]/v,(,‘2r= 2. [x[n]+x[n+(N/2)IWY",
n=0 n=0

For k odd, let k=2r+1
(N/2)-1
X[kl= > [x[n]+( 1)2" (- 1)x[n+(N/2)]]v”(2r+1)
n=0
(N/2)-1 .
— Z [x[n]—x[n+(N/2)]]WNWN/2
n=0

Theﬁ% >Erp+r( )I] d[ retp /%jﬁv(ﬂmt DFTs of




—‘;—7 — point X12]
DFT >0 X[4]
—»—0 X [6]

——0 X [1]

—»—0 X |3

%’T — point 5]
DFT >0 X[5]
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Continuing by decomposing the odd and even output points we obtain

s X ! 7 % — point X10]
x[1] O X[4]

B s s
x[3] VVV > X6}
(XX

x[4]
— - pomt
x[5] ’A‘Am X[5]
ek W —-pomt ’“31
,,/ X[71

x[7]




A

...and replacing the N/4-point DFTs by butterflys we obtain
x[O] \ > Q ®
x[l] © > C
<K w
- ]

Wy

x[2] ] \/
A
*03] 'v‘v

-
x[4] 6’% L >
x[5] / s
x[6]

x[7] Z




s

The DIF FFT is the transpose of the DIT FFT

To obtain flowgraph transposes:

Reverse direction of flowgraph arrows
Interchange input(s) and output(s)

DIT butterfly: DIF butterfly:
x[0] . o -
Wy=1 . xlm></°‘ X.lp
x[4] - T P A— R
Wo=Wy =-1
Comment:

We will revisit transposed forms again in our discussion of filter
Implementation




s

.

The DIF

[Is the transpose of the DIT FF1

® Comparing DIT and DIF structures:

DIT FFT structure:

x[0] 0
x[4] o>~
x[2] ¢
x[6] 0
x[1] o
x[5] o
x[3] o
x[7] e

NS
N s S

DIF FFT structure:

o X[0]

° X[4]

° X[2]

° X[6]

o X[1]

° X[5]

> X[3]

x[7] - £ o >0 o X|[7]

® Alternate forms for DIF FFTs are similar to

those of DIT FFTs
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® DIF structure with input natural, output bit-reversed
x[0] D Q —0—>»—0O O o X[0]
x[Z]X .A’A. WIS 0 s o X[2]

‘ w 0 WIS o X[6]

A v‘vvv &
) GOQA N LT
<[5 / o ’ -+ >=o—"0 X[5]
x[6] 5 WN o—>—0 X[3]

[ Swm N > w

x[7]
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® DIF structure with input bit-reversed, output natural
Wy
x[4 ~=o—"a 7—»01{[1]
Q e \/
x[2] - ~—o X[2]

x[6] 0 o X[3]

- VV
o .’AA LI

g
Wi 0
x[5] o S o 0 2 rNOX[S]
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X
X
X

x[3] 3

© DIF structure with both input and output

(0]

[1] @
2] @

x|[4] ©
x[5] '/
28N

x[71

RN/
Do W o XD
Vi N
ROKEL__ KKK KOK we
SIS OB g
/\“.ﬂ/% AN
VS VAN
Nw Nw/  Nw

-1




DIF structure with same structure for each

St
x[0] »—W »—0 X|{0]
0 4 0
x[1] & ' LKN _ W _ H:No)([l]
\ L1 \ ‘1 \ 1
x2la. Y/ c " ._ , o X[2]
AN
_}/

Wx

PN\
W’d""‘&‘ o
ol \‘d/\‘. AV -
AN Za Y

o X]6]




Can we do anything when the DFT size N Is
not an integer power of 2 (the non-radix 2
case)?

Yes! Consider a value of N that I1s not a
power of 2, but that still is highly factorable

""" Let N = p1p2p3ps...pv; q1=N/p1, g2 =N/ pipy,etc.
Then let

N-1
X[kl = 3 x[nwK
n=0

g1 g -1 q
o S st e E g 2
r=0 r=0 r=0




An arbitrary term of the sum on the previous
panel is

1
qt X[ p1r + I]W,\(I p1r+1)k
r=0

q—1 J1
=5 o+ WP WK WIS xpyr o+ 1w
r=0 r=0

This Is, of course, a DFT of size a; of points
spaced by n




In general, for the first decomposition we

use
pi-1 - a7t "
XK1= 2. WN 2. x[pyr+1Wg,
=0 r=0

Comments:

This procedure can be repeated for subsequent factors of N

The amount of computational savings depends on the extent to
which N is “composite”, able to be factored into small integers

Generally the smallest factors possible used, with the exception of
some use of radix-4 and radix-8 FFTs




P,=2; P, =3;
2

1
X[k]= > Wek > x[2r + jwg¥
=0 r=0

Tl Sevdners S Pymdut bedtwelive, st Draltaom

=i¥] X
witwlw, < W

- %" <

=5 Xy

D= OO

= l';'n"'n'j.l ' | "'
e lwlwd v w,im
=53] ' > JH]

Wt wiw,lr wi




What?

Converts a sampled function from time domain to
frequency domain

Use?
DFTs reveal periodicities in input data as well as the




©®
: —i2rEn
« Equation: X =Y z,-e W

e |Interpretation:
X, 1s original continuous time signal

N is the frequency of the sampling rate which denotes
the number of values to transform

Result 1s a sequence of magnitudes at N frequencies

« Runtime Complexity

- To transform N values, the DFT performs N complex

multiplications of x, with e+ and N-1 additions of the
resulting values

_ O(NZ)




Most common FFT algorithm
Divide and conquer algorithm

Methodology
Breaks up DFT of N samples into N=N;N,

Benefit
Can be combined with any other DFT algorithm
What Matlab fft function does for optimization




inputs: N — N lN o)

Id DFT of size N: 3
=~ 2d DFT of size N, xN,

reinterpret 1d inputs:
N] /\
multiply by N “twiddle factors”

>
>
>
N, =
& . rranspose N
= 2

.

b. » Nl E

— = contiguous >

first DFT columns, size /N, finally, DFT columns, size NV,

(non-contiguous) (non-contiguous)




Also called chirp z-transform algorithm

Methodology
Expresses DFT as a convolution
Benefit

Computes DFT of arbitrary sizes
Can be used to compute more general transforms

Tradeoff
Only O(Nlog,N) complexity for prime-sized DFTs




Substitution:

Convolution of 2 sequences:




» Use

Response (lIR) band-pass filter

Coefficients of DFT found by comparing signal energy
before and after filter to see where in the frequency
range it lies

Second Order Recursive Goertzel Filter

g Input Cutput
1_‘? ,r_;'lz—; E + 3
- Hfi(z) = oy o
i(#) 1-2 cos(— )z +272 heos(anf i)z | -e A
| Ll O—0® B
Where f.1s desired frequency and ’
f. 1s sampling frequency : ’




Tradeoff
O(NM), N is number of DFT terms, M is the set of DFT terms to calculate
Benefit
Simple structure of algorithm makes it well suited to small processors
More efficient than FFT for small number of frequencies ( if M < log,N)
Applications
Used to recognize DTMF tones produced by buttons on telephone keypad
Call progress (dial tone, busy)




UNIT- Il STRUCUTRE OF IIR
FILTERS



Course Learning Outcome

CLO7  Knowing the poles and zeros of a transfer function, make a
rough sketch of the gain response.

CLO8  Define the Discrete Fourier Transform (DFT) and the inverse
DFT (IDFT) of length N.

CLO9 Understand the inter-relationship between DFT and various
transforms.

CLO10 Understand the significance of various filter structures and effects
of round-off errors.

CLO11 Understand the fast computation of DFT and appreciate the FFT
Processing.




Basic filter classification

We put emphasis on the digital filter now, and will
introduce to the design method of the FIR filter and IIR
filter respectively.

Analog Filter

Filter »  FIR Filter

Digital Filter

IR Filter




lIR is the infinite impulse response abbreviation.

Digital filters by the accumulator, the multiplier, and it
constitutes IIR filter the way, generally may divide into
three kinds, respectively is Direct form, Cascade form,
and Parallel form.




transformation.




® IR filter design methods

lowpass filter

v

transformation

method

transformation
method

method




The structures of IIR filter




The structures of IIR filter
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form.




® We must emphasize at window function, frequency
sampling, and MSE.




The structures of FIR filter




The most straightforward of these is the impulse
invariance transformation

Let h.(t) be the impulse response corresponding

toH_(s) , and define the continuous to discrete
time transformation by setting

We sample the continuous time impulse response
to produce the discrete time filter

h(n) =h,(nT)




The frequency response H '(w) is the Fourier
transform of the continuous time function

h M) = > h.(nT)5 (t—nT)

N=—0o0

and hence

Hi@) =L S H | jo-kZE)!
T °IL T |




The system function is
1 . 2m
H(Z)lz:eST:T Z HC’VLS_Jk T )|J

Itis the many-to-one transformation from the s
plane to the z plane.




® The impulse invariance transformation does
map the -axis and the left-half s pgnweinto
the unit circle and its interior, respectively

jo




H (@i)S an allased version of H;(jo)

B

/T 2n /T ()

The stop-band characteristics are maintained
adequately in the discrete time frequency response

onIy if Ec?(g)allased tails of are sufficiently small.

H©) |




The Butterworth and Chebyshev-I lowpass
designs are more appropriate for impulse
invariant transformation than are the
Chebyshev-II and elliptic designs.

This transformation cannot be applied directly
to highpass and bandstop designs.




H.(s) is expanded a partial fraction expansion to
produce
Ho(5) =Y~

k1S Sk

We have assumed that there are no multiple poles

(0= S A h(n) =Y Ae*Tu(n)
And thus (1 .Z;Ake 1t ;




Example: H (5= S*2
’ (s+a)® +b?
Expanding in a partial fraction
1/2 1/2

Xpansi ' H (s) = +
expansion, it produce .(s) stasib sta_ip

The impulse invariant transformation

vields a discrete time design with the

. 1/2 1/2
system function H(z) = : e T

_p-a+jp)T 51




The most generally useful is the
bilinear transformation.

0 avoid aliasing of the frequency response as
encountered with the impulse invariance
transformation.

We need a one-to-one mapping from the s
plane to the z plane.

The problem with the transformation is
many-to-one.
7 — esT




We could first use a one-to-one transformation from
to , whgichqompresses the entire s plane into the
strip

<Im(s') <

B
—| 3

Tt
T jo

Then 7 — @sT  could be transformed to z by

with no effect from aliasing.




The transformation from to $s gives'by

s'= 2 tanh (31

T 7
The characteristic of this transformation is

seen most readily from its effect on the
axis.

Substituting and J® we obtain
S = jQ) S ' — j(D !

m':gtan‘l(ﬂ)
T 2




The ¢y axis is compressed into the interval
for(-= . ) in a one-to-one method

The relationship between w 'and @ is nonlinear,
but it is approximately linear at small "' .

O~
()]

n/T?%

-n/T




™

® The desired transformation S to Z is now obtained

by inverting s'= 2 tanh (3"

T 2 :
to produce 5= Tétanh(%)

® And setting s'= (Ti)}n z  which yields

jo
s = 2 tanh(!"2)
T 2

2 (l—z‘1
T 1+z7°

)




The discrete-time filter design is obtained from
the continuous-time design by means of the
bilinear transformation

H(z) = H.(s) |s=(2/T)(1—z-1)/(1+z—1)
Unlike the impulse invariant transformation,

the bilinear transformation is one-to-one, and
invertible.




.

We obtain the transfer function by evaluation of the z transform
on the unit circle

Linear magnitude

2 o o8
fag)

| | 1 | 1 1 | 1 1
0 00z 0.1 015 02 025 03 03 04 045 05

| | 1 | 1 1 | 1 1
0 oo 01 018 02 025 03 03 04 045 05
frequency (normalized to sampling frequency)

We can see that it is a minimum phase filter (the phase comes

b_aclk at 0 at F./2) because the zero of the filter is inside the unit
circle.




If we change the zero z,to 1/ z, we get the same
magnitude transfer function (up to a scale factor)

Linear magnitude

2 o o o
i

| | 1 | 1 1 | 1 1
0 0os 01 D1s 02 025 03 D03 04 045 045

| | 1 | 1 1 | 1 1
0 oos 01 015 02 02 03 03 04 045 05
frequency (normalized to sampling frequency)




Starting from frequency specifications (here
low pass filter):

$11ag. (dB)

| PR
. Fsiz f(H
Fpass Fstn:up ® |: I:I

Foass - Passband end frequency,
Fstop - Stopband start frequency,
. maximum passband ripple,

stop . MINIMumM stopband attenuation.

Apass
A




Analog prototype with analog to digital transformation
(bilinear transform) :
Digital to analog frequency specification transformation using
prewarping
Analog filter prototype

Analog transfer function to digital transfer function transformation
using bilinear transform.

Direct digital method : Yule Walker

Try to find the recursive filter of order N which is as close as
possible to the frequency specifi-cations using the least square
optimization method.




Characteristics frequencies (F, F,) of the target specifications
have to be warped.

This warped specifications is used to compute an analog
prototype using approximation functions :

- Butterworth
- Chebyshev |
- Chebyshev I

- Elliptic
Then the analog prototype is tranformed into a digital filter
that matches target frequency specification thanks to Bilinear

Transform (BT) (this cancels the warping introduce at the first
step).




UNIT- IV
SYMMETRIC AND
ANTISYMMETRIC FIR
FILTERS



Course Learning Outcome

CLO12 Design of finite impulse response (FIR) filters for a given
specification.

CLO13  Compare the characteristics of IR and FIR filters.

CLo14 Design of infinite impulse response (IIR) filters for a given
specification.
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© Only the magnitude approximation problem

Hpp(e/®) His(e’®)

+1 1

—T —mc2 mcl wcl ®Wc2 1t




These filters are unealisable because (one of the following is
sufficient)

their impulse responses infinitely long non-causal

Their amplitude responses cannot be equal to a constant over a band of
frequencies

Another perspective that provides some understanding can be obtained by
looking at the ideal amplitude squared.




— T —oc 0 oc U




The realizable squared amplitude response transfer function (and its
differential) is continuous in ® Such functions

if IR can be infinite at point but around that point cannot be
zZero.

if FIR cannot be infinite anywhere.
Hence previous differential of ideal response is unrealizable
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effectively need to have an
approximation of the delta
functions in the differential

This is a necessary condition




s

For example the magnitude response
as indicated below

of a digital lowpass

filter may be given

™




® In the passband 0<w <®,we require that
‘G(elw)‘~1 with a deviation N

‘G(e )‘<1+8 0 <o,
© In the stopband ®s S® =Twe require that
G(e“”)‘ ~ 0 with adeviation 0,

G(eiw)gé‘)s, ®s <o/ <




Filter specification parameters
© W, - passband edge frequency
© ®s - stopband edge frequency
® 0, - peak ripple value in the passband
® §, - peakripplevaluein the stopband




Practical specifications are often given in terms of
loss function (in dB)

Peak passband ripple
G (w)=-20l0g,, G(¢'°) ¢B

Minimum stopband attenuation
o, =—20l0ogy,,(1-6,) dB

oy =—20109,4(05)




®In practice, passband edge frequencyF

and stopband edge frequencyk, are
specified in Hz

© For digital filter design, normalized
bandedge frequencies need to be
computed from specifications in Hz using

®, ="= ~=2nFT

o, =2 = s _onpT

R R




o Example - Let kHz, kHz, and
kHz

® Then FT _ ot
_2n(7x10%)
)
P 25%x103
- 21 (3x10°)
Y 25%x103

0.56m

=0.24m1




® The transfer function H(z) meeting the
specifications must be a causal transfer
function

o For IIR real digital filter the transfer
function is areal rational fupction of

Po + plz_l + p22—2 "+ Py 2~
H (z) =
(2) dy+d,;zt+d,z%+=+dyz M

® H(z) must be stable and of lowest order N
or M for reduced computational complexity




® FIR real digital filter transfer function is a
polynomial in z=1 (order N) with real coefficients

H(z) = > h[n]z"

® For reduced computational complexity, degree N of
H(z) must be as small as possible

©If alinear phase is desired then we must have:
® (More on this later)

h[n]=+h[N - n]
N Y




Advantages in using an FIR filter -
(1) Can be designed with exact linear phase

(2)Filter structure always stable with quantised
coefficients

Disadvantages in using an FIR filter - Order of an FIR filter
is considerably higher than that of an equivalent IIR filter
meeting the same specifications; this leads to higher
computational complexity for FIR




The transfer function is given by

H (2) = I:g:h(n).z“

The length of Impulse Response is N
All poles are at

Zeros can be placed an?where on the z-plane




Thus for linear phase the second term in the

fundamental phase relationship must be identically
zero for all index values.

Hence

1) the maximum phase factor has zeros which are the
inverses of the those of the minimum phase factor

2) the phase response is linear with group delay

(normalised) equal to the number of zeros outside the
unit circle




© It follows that zeros of linear phase FIR trasfer
functions not on the circumference of the unit
circle occur In the form

[pieijei 11




®© For Linear Phase t.f. (order N-1)

© h(n) = +h(N —1-n)
® so that for N even:
N~ -1 _
H(z) = é h(n).z7" £ I\IZlh(n).z"“
n=0 nzl\%
Nz_l Nz_l
— h(n).z7"+ Y h(N -1-n).z-(N-1-n)
n=0 n=0
N -1




® for N odd:

. Zlh(n)[ ”+z_m]+h(N 1) (N 1)

@l) On ¢ 1z _ye have for N even, and
+ve sign

H(el“Ty=e o (%) N/zlzh(n) cos(mT(n— Nz_lj)

=0




® II) While for —ve sign
_ jl\% 1

n=0

)

)

i2h(n).sin (@T (n _ 2—1)

® [Note: antisymmetric case adds ™ /2
to phase, with discontinuity at® =0 ]

@III) For N odd V\rll’[h +ve sign

. — jJoT
H(el®")=¢ (

rads

2

+ :IZZ:Zh(n).cos[o)T (n . _1)1L




® 1V) While with a —ve sign

(N -3 ]

—joT[N=1]
H(eloTy=¢e L2

I\

Lnioz j.h(n).sin [m (n _ '\'2—‘1)7

® [Notice that for the antisymmetric case to
have linear phase we require

h('\'z‘l\}: 0.

The phase discontinuity is as for N even]

/




® The cases most commonly used In filter
design are (1) and (lll), for which the
amplitude characteristic can be written as
a polynomial In

(:os(’o—T
2




(i) Start with ideal infinite duration th(n)§

(ii) Truncate to finite length. (This produces
unwanted ripples increasing in height near
discontinuity.)

(iii) Modify to h(n) = h(n).w(n)

Weight w(n) is the window




Commonly used windows

Rectangular 1 - % < N —1
Bartlett 14 cos(znnj
N

Hann o

. 0.54+0.46¢cos| =——
Hamming N

0.42 + 0.5cos 2mn + 0.08cos ann

Blackman N \

Jo B\/ _(N—IZE )2_/10
Kaiser (L \ )] ()




2.12
4.54
6.76
8.96

Kalser window

Transition width
(Hz)

1.5/N
2.9/N
4.3/N
5.7/N

Min. stop attn
dB

30
50
/70
90




Example

Lowpass filter of length  and W, =T /2

Lowpass Filter Designed Using Hann window Lowpass Filter Designed Using Hamming window

0 0
-50 \(/\ -50 W
-100 Vm N\m -100 0
] |
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
oln . . . . o/t
Lowpass Filter Designed Using Blackman window
0
-50




« In this approach we are given H (k)and need
to find H (2)

 This Is an interpolation problem and the
solution is given in the DFT part of the course

Tk

1
+ It has similar problems to tHefindofving
approach

H(z)= 1 N'H k). 1-2"
N k=0




© Amplitude response for all 4 types of linear-
phase FIR filters can be expressed as

where Ho) =Q(®)A(w)

" for Type 1
‘cos(oo/Z), for Type 2
Q) = sin(m), for Type 3
sin(w/2), for Type 4




® Modified form of weighted error function

E (@) =W (@)[Q(®)A@®) - D(®)]
=W (0)Q(@)[A(®) - 2]

=W (0)[A(®) - D(w)]
where

W () =W (@)Q(®)
D(®)=D(®)/Q(w)




© Qptimisation Problem - Determine & [K]

which minimise the peak absolute value
_ L _ ~
°'E (0) =W (0)[ 3 &[K]cos(wk) - D()]
k=0

over the specified frequency bands , < R

® After a[k] has been determined,

construct the original A(ej@)emd hence
h[n]
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. N

Lingar-Pnase Fli Filtar Dasizn oy Ootimization

" SHILRIGH S SbrAieViA the Alterhatich™
with the total numbe available parameters.

eorem
® Parks and McClellan used the Remez algorithm to develop a

procedure for designing linear FIR digital filters.




Kaiser’s Formula:

— 201094 (/0 ;05)
14.6(0, —,)/ 2w

©le N iIs inversely proportional to transition
band width and not on transition band
location

N

112




Hermann-Rabiner-Chan’s Formula:
D.6 ,0)-F@® ,0)[(® —» )/2n]?
N ~ p s p s S p

(0 —w,)/2m

where

_ 2

D_ (0 p ,83) = [al(log10 O p) + az(log10 0 IO) + a?)]log10 SS

+[a4(|0910 8 p)2 + a'S(I()glo 6 p) + a'6]

WIIJ[ZHS ,,05) =0, +b,[log,, 0, —109,,0,]
a, = 0.005309, a, =0.07114, a, =-0.4761
a, =0.00266, a; =0.5941, a, =0.4278
b, =11.01217, b,=0.51244




® Formula valid for o, 205

o Fof? §§gh§°8nﬁlr8 PRRVITE Y0y Bectrewsts RS BtamEt
tO)yGI)rI'If s?)ggpcigo%lsgrge not nal‘er)c,dincreasé Rlter ordeéﬁntil

they are met




® Fred Harris’ guide:

N A

20(0, —,)/ 2

where A Is the attenuation in dB
® Then add about 10% to it

112




MODULE- V APPLICATIONS OF
DSP



Course Learning Outcome

CLO15 Understand the tradeoffs between normal and multi rate DSP
techniques and finite length word effects.

CLO16  Understand the signal interpolation and decimation, and explain
their operation

CLO17 Explain the cause of limit cycles in the implementation of IIR
filters.




!

Time-Domain Characterization

* An up-sampler with an up-sampling factor
L, where L is a positive integer, develops an
output sequencey, [n] with a sampling rate
that is L times larger than that of the input
sequence x[n]

* Block-diagram representation

A —— |t — x,[7]




* Up-sampling operation is implemented by
inserting equidistant zero-valued samples
between twoTtbnsecutive samples of x[n]

* |[nput-output relation

x[n/L], n=0,£L,+2L,---
0, otherwise

xu[”] h




* Figure below shows the up-sampling by a

factor of 3 of a sinusoidal sequence with a

frequency of 0.12 Hz obtained using
Program 10 _1

Input Sequence . N Output sequence up-sampled by 3
1 Yy ,.-.,UI k& T OCI ! C:- T ' ' N I
o n
-: 't 3 ¥
051 . 0.5
£ TT | ¢ H [ E T T
E o .:J_r; @ 117 —E_ mmmm?mmmmmmmmmmmmﬂ
: ) | : |
D51 4 . 0.5 i
A o
] i
_1 ! %:l ! "‘-} Lo € 1 1 il |I|l.:I 1 1 ':I }
0 10 20 30 40 50 0 10 20 30 40 50
Time mdex n Time index 1
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* |npractice, the zero-valued samples inserted

by the up-sampler are replaced with
appropriate nonzero values using some type

of filtering process

* Process is called interpolation and will be
discussed later

. )
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* Figure below shows explicitly the time-
dimensions for the up-sampler

x[n]=x,(nT)— | t |— V]

B {xﬂ(w;L)ﬂ n=0.+L 2L,

0 otherwise
Input sampling frequency Qutput sampling frequency
1 : |
Fr == Fp =LFp =




Up-Sampler

Frequency-Domain Characterization

* Consider first a factor-of-2 up-sampler
whose input-output relation in the time-
domain is given by

xu[n] =

(x[n/2], n=0,+2,+4,...

-0, otherwise




]

* |n terms of the z-transform, the input-
output relation is then given by

X (2)= ixu[n]z_ﬁ = ZJ:: [n/2]z7"

n=—00 =—%
1 even

= i x[m] z7" = X(z°)

M=—auC
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* |n asimilar manner, we can show that for a
factor-of-L up-sampler
L
Xz.r(z):X(Z )

e On the unit circle, for z = ¢/“ the input-

output relation is given by

X, (e/”)= X(e/™)
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. Figure below shows the relation between
X(e/?)and X, (e/“¥or L =2in the case of a
typical sequence x[n]

f\f\f\f
/\/\/\/\/\/\=




* Ascan be seen, a factor-of-2 sampling rate
expansion leads to a compression of X (e’®)
by a factor of 2 and a 2-fold repetition in
the baseband (0, 27|

* This process is called imaging as we get an
additional “image” of the input spectrum
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* Similarly in the case of a factor-of-L sampling

rate expansion, there will be additional
images of the input spectrum in the hasbbahd

* Lowpass filtering of removes the
images and in effect “fills in” the zero-valued
samples in with Hﬁt&?&olated sample_'L_1
values

x,|n|
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Time-Domain Characterization

 An down-sampler with a down-sampling
factor M, where M is a positive integer,
develops an output sequence y[n] with a

sampling rate that is (1/M)-th of that of the
input sequence x[n]

* Block-diagram representation

x[n] —.l M |— yIn]




( W

* Down-sampling operation is implemented by
keeping every M-th sample of x[n] and
removing in-between samples to

generate y[r{ —1
* |nput-output relation

y[n] = x[nM]

i )
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* Figure below shows the down-sampling by
a factor of 3 of a sinusoidal sequence of

frequency 0.042 Hz obtained using Program

10 2
Input Sequence
1 R ' T 1
G Yl e

e 11T alo Q| o

=
;:‘. LN
ST
—
—5 °
)
— o
———o©
—5 °©
5
Amplitude
=
I;E Lh
=L
<l
S
_E:I

Amplinide

o=

Lh
2
R
,3"'—?_@_
- —
[2—

=

Lh

o

|

}

o

Output sequence down-sampled by 3

|

!

o

—_

i

4 S h ih R
& || & | 1 J © © s
1 ' s U ' 'm‘} 1 d ! & Ly h i
0 10 2[_:' _ 30 40 50 0 10 20 30 40 50
Time mdex n Time mdex n




* Figure below shows explicitly the time-
dimensions for the down-sampler

xln)=x,(nl) — l M | —— y|n]=x_ (nMI)

Input sampling frequency Output sampling frequency
o] o Fr ]
r=7 TR




Frequency-Domain Characterization

* Applying the z-transform to the input-output
relation of a factor-of-M down-sampler

y{n|= x| Mn]

we get

o0
Y(2)= Y x[Mnlz™
N=—00
 The expression on the right-hand side cannot be
directly expressed in terms of X(z)




.

* To get around this problem, define a new
sequence x;.[n]:

x[n], n=0,+t M, +2M,...

Xine71] = i 0, otherwise
* Then A A
Y(z)= ix[Mn]z_" = ixim [Mn]z™"
N=—0o0 N=—a0
met[k]f]” = Xipe(z'')
k=—o0
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* Now, x. [n]can be formally related to x[n]
through

X | 2| =c|n] x|n]

(1, n=0+M,+2M.,...

gln]=- .
+ A convenient t&present3SRUPE[n] is given
by
1 i kn
C[”’]=H 2. Wy
where AL E=0

—j2x/ M
Ww = @ J <
: ’ :
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* Consider a factor-of-M down-sampler
defined by y[n] = x[nM]
* Its outputy|n]| for aninput xj|n|=x|n—ig]
then given by
nilnl|=x[Mn|=x[Mn—n]

* From the input-output relation of the
down-sampler we obtain
vin—ng|=x{M(n—ny)]
= x[Mn— My # y[n]
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* Taking the z-transform of x; .[n]=c[n]- =md]
making use of

1 M —
C[n]_ﬂ Z A{
we arrive at
= ] = M-1 o 3

111'(( )_ ZC[H X[I’I]_ —M Z Z W]W X[I’I].;

Jh=—5C n=—o\ k=0

1 M-l o ]\ B 1 M-—1
M ]Z( Z’C[n] Mn- " — Z X( ]
! n——o0

N )




* Consider a factor-of-2 down-sampler with

an input x[n] whose spectrum is as shown
below

X'

CNSININ

* The DTFTs of the output and the input
sequences of this down-sampler are then
related as

Y(ejm) _ %{X(eiﬂz) 4 X(_ejm;,.-Z)}
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* Now X(—e/?'2)= X (/2™ implying
that the second term X (—e/®/2) in the
previous equation is simply obtained by
shifting the first term X (e/®’ 2)to the right
by an amount 2 as shown below

-------------------------------------------

l 1 i i i Fa
_am -t n ¢ ax
Aliasing Aliasing
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* The plots of the two terms have an overlap,
and hence, in general, the original “shape” of

X (e/®)is lost when x[n] is down-sampled as
indicated below

2¥(e1®)

L]




* Aliasing is absent if and only if

X(e®)=0 for|ozn/M
as shown below for M =2

X(e/®) = O for | > /2

AN [\WA /.

27 (™)

AVINVAYE
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 Sampling periods have not been explicitly
shown in the block-diagram representations of
the up-sampler and the down-sampler

* This is for simplicity and the fact that the
mathematical theory of multirate systems can
be understood without bringing the sampling
period T or the sampling frequency into

the picture
Iy
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* The up-sampler and the down-sampler are
linear but time-varying discrete-time
systems

* We illustrate the time-varying property of a
down-sampler

* The time-varying property of an up-sampler
can be proved in a similar manner

N
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A complex multirate system is formed by an
interconnection of the up-sampler, the
down-sampler, and the components of an
LTI digital filter

* |[n many applications these devices appear
in @ cascade form

* An interchange of the positions of the
branches in a cascade often can lead to a
computationally efficient realization




* To implement a fractional change in the
sampling rate we need to employ a cascade
of an up-sampler and a down-sampler

* Consider the two cascade connections
shown below

x[n]—{l M —{] L — [ 7]

x[n]—t L M |— y,[n]




* A cascade of a factor-of-M down-sampler and
a factor-of-L up-sampler is interchangeable
with no change in the input-output relation:

if and only if M and L are relatively prime, i.e.,
M and L do né}tlﬁ? ﬁ]éﬁ't\’fiommon factor that
Isan integer k>1




* Two other cascade equivalences are shown
below

Cascade equivalence #1

x{n]—} M |~ H(2) [—~nln]

= x[n] = HEZ"HHA| M — y 7]

Cascade equivalence #2

x[n] =t L = HEY—y,[n]

= x[n]— H(z)l Lt — y,[n]
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* From the sampling theorem it is known
that a the sampling rate of a critically

sampled discrete-time signal with a
spectrum occupying the full Nyquist range
cannot be reduced any further since such a
reduction will introduce aliasing

* Hence, the bandwidth of a critically
sampled signal must be reduced by lowpass

filtering before its sampling rate is reduced
by a down-sampler

N y
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* Likewise, the zero-valued samples

introduced by an up-sampler must be
interpolated to more appropriate values for

an effective sampling rate increase

 We shall show next that this interpolation
can be achieved simply by digital lowpass
filtering

* We now develop the frequency response
specifications of these lowpass filters
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* Since up-sampling causes periodic
repetition of the basic spectrum, the
unwanted images in the spectra of the up-
sampled sighal x,[n]must be removed by
using a lowpass filter H(z), called the
interpolation filter, as indicated below

X, [F’?]h

x|n]|— Tt

H(z) |- y[~]

* The above system is called an interpolator

.




On the other hand, prior to down-sampling,
the signal v[n] should be bandlimited to

<7/ M

by means of a lowpass

filter, called the decimation filter, as
indicated below to avoid aliasing caused by

down-sampling

x[n]—

 H(2)

lm

. 3n]

The above system is called a decimator




Interpolation Filter Specifications

* Assume x[n] has been obtained by sampling

a continuous-time signaXt_(7) at the Nyquist
rate

. If X, (jQ)and X(e’“denote the Fourier
transforms of x_(#)and x[n], respectively,
then it can be shown

- 1 & (jo- 27k
Xy =— T x,| L=

1, k=—o \ 1, /
 wherel, is the sampling period
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* Since the sampling is being performed at the

Nyquist rate, there is no overlap between
the shifted spectraskdfjw /1)

* |f we instead sample x,(7)at a much higher

rate 7' =L-1,yielding y[n], its Fourier
transform Y (e’ )is related to X (jQ3hrough

;m)_ Z Y [jf’ﬂjzﬂ'k}_£ Z {j(ﬂj2ﬂk]
T, r ) I, I,/L
- /
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* |n practice, a transition band is provided to
ensure the realizability and stability of the
lowpass interpolation filter H(z)

* Hence, the desired lowpass filter should have

a stopband edge at and a passband
edge closeto to reddcetRé Histortion of
the spectrum of ¥{n] Dy

\_
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 If isthe highest frequency that needs to be
preséved in x[n], then

 Summarizing th(’te)ltge(gﬁ(cétions of the lowpass

interpolation filter are thus given by

L, |o|<o,/L

:i(}.} m/L<|\o <

|H(e-f"”)




* |n a similar manner, we can develop the
specifications for the lowpass decimation filter
that are given by

|H(eff”)

m——

1, |o<o./M

0, 7/M<|o<r




* There are two possible such cascade
connections as indicated below

_'H(f(’z) ;lM '_"TL —"'H”(Z)—*

—pT [ |— H”(g)_.. Hd(z) ;l M —

* The second scheme is more
computationally efficient since only one of
the filters, or LS adequateﬁm(z)
ser¥&d€hoth the interpolation and the
decimation filter




* Hence, the desired configuration for the
fractional sampling rate alteration is as
indicated below where the lowpass filter
H(z) has a stopband edge frequency given

by
. T 7T
M, =nmin| —,
(L M]

T H A -




* The lowpass decimation or interpolation

filter can be designed either as an FIR or an
IR digital filter

* In the case of single-rate digital signal
processing, lIR digital filters are, in general,
computationally more efficient than
equivalent FIR digital filters, and are
therefore preferred where computational
cost needs to be minimized




* This issue is not quite the same in the case
of multirate digital signal processing

* To illustrate this point further, consider the
factor-of-M decimator shown below

x[n]— H(2) M—l M (- y[n]

* |f the decimation filter H(z) is an FIR filter of
length N implemented in a direct form,
then

N-1
vinl= > hlm|x[n—m]

*-
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* Now, the down-sampler keeps only every M-
th sample of v[n] at its output

* Hence, it is sufficient to compute v[n] only for
values of n that are multiples of M and skip
the computations of in-between samples

* This leads to a factor of M savings in the
computational complexity
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* Now assume H(z) to be an IIR filter of order K
with a transfer function

V) _ gy PO

where A(2) D(z)

K
P(z)= 3 p,z "
n=0

K
D(z)=1+>d, z"
O O NN SN S ==



* |ts direct form implementation is given by

win|=—-dwln-1]-d,wn-2]---
—dﬂm{n‘— |+ x[ 7]
v[n|= p]OI n +p n—1|+ dpiltw[ﬁ

* Since v[n eing Hown-samp
sufficient to compute v[n] only for values of n

that are integer multiples of M




* However, the intermediate signal w[n] must
be computed for all values of n

* For example, in the computation of
VM |=poWIM |+ ppWM =1]|+---+ px WM - K]

K+1 successive values of w[n] are still
required

* As aresult, the savings in the computation
in this case is going to be less than a factor
of M




( N
 For the case of interpolator design, very
similar arguments hold

* |[f H(z) is an FIR interpolation filter, then the
computational savings is by a factor of L (since
v[n] has zeros between its consecutive
nonzero samplesd —1

* On the other hand, computational savings is
significantly less with IIR filters
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Digital Signal Processing And Its Benefr

(S

By a signal we mean any variable that carries or contains some kind of information
that can be conveyed, displayed or manipulated.

Examples of signals of particular interest are:

speech, is encountered in telephony, radio, and everyday life

Spaecech signal wwaveforrm for thhe Hindi word SAaKSHAaSAT
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2.6

biomedical signals, (heart signals, brain signals)

2.4r

2.21

1.8

1.6

1.2

1

0.8
1

Tomography




A typical scalar electrocardiographic lead is shown In
Fig. 1, where the significant features of the waveform
arethe P Q, R, S, and T waves, the duration of each
wave, and certain time intervals such as the P-R, S-T,
and Q-T intervals.
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® Video and image,

® Radar signals, which are used to determine the range and bearing of distant targets

Analog Gyro 062.8" ¥
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eTo processes these sighals with a computer, we must:

convert the analog sighals into electrical signals, e.g., using a
transducer such as a microphone to convert sound into
electrical signal

digitize these signals, or convert them from analog to digital,
using an ADC (Analog to Digital Converter)
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Steps in Digital Signal Processing

Analog input signal is filtered to be a band-limited
signal by an input lowpass filter

Signal is then sampled and quantized by an ADC
*Digital signal is processed by a digital circuit, often a
computer or a digital signal processor

*Processed digital signal is then converted back to an
analog signal by a DAC

*The resulting step waveform is converted to a smooth
signal by a reconstruction filter called an anti-imaging

filter

-
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Why do we need DSPs

DSP operations require a lot of multiplying and adding
operations of the form:

A=B*C+D

This simple equation involves a multiply
and an add operation
The multiply instruction of a GPP is very
slow compared with the add instruction
Motorola 68000 microprocessor uses

10 clock cycles for add

/4 clock cycles for multiply




e

Digital signal processors can perform the
multiply and the add operation in just one clock

cycle

Most DSPs have a specialized instruction
that causes them to multiply, add and save
the result in a single cycle

This instruction is called a MAC (Multiply,
Add, and Accumulate)
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*
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Guaranteed accuracy: (accuracy is only determined by the number of bits used)
Perfect Reproducibility: Identical performance from unit to unit

ie. A digital recording can be copied or reproduced several times with no
loss in signal quality

No drift in performance with temperature and age

Uses advances in semiconductor technology to achieve:
(i) smaller size
(ii) lower cost
(iii) low power consumption
(iv) higher operating speed

Greater flexibility: Reprogrammable , no need to modify the hardware

Superior performance
ie. linear phase response can be achieved

complex adaptive filtering becomes possible




* Speed and Cost

DSP techniques are limited to signals with relatively low bandwidths
DSP designs can be expensive, especially when large bandwidth signals
are involved.

ADC or DACs are either to expensive or do not have sufficient
resolution for wide bandwidth applications.

*DSP designs can be time consuming plus need the necessary resources
(software etc)

* Finite word-length problems
If only a limited number of bits is used due to economic considerations

serious degradation in system performance may result.




The use of finite precision arithmetic makes it necessary to quantize
filter calculations by rounding or truncation.

Roundoff noise is that error in the filter output that results from
rounding or truncating calculations within the filter.

As the name implies, this error looks like low-level noise at the filter
output
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Application Areas

Image Processing Instrumentation/Control Speech/Audio Military
Pattern recognition spectrum analysis speech recognition secure communications
Robotic vision noise reduction speech synthesis radar processing
Image enhancement data compression text to speech sonar processing
Facsimile position and rate digital audio missile guidance
animation control equalization

Telecommunications Biomedical Consumer applications

Echo cancellation patient monitoring cellular mobile phones
Adaptive equalization  scanners UMTS

ADPCM trans-coders EEG brain mappers digital television

Spread spectrum ECG Analysis digital cameras

Video conferencing X-Ray storage/enhancement internet phone etc.




