
23CS608:SOFTWARE TESTING

METHODOLOGIES

Asia Tasleen

Assistant Professor

Gangaiah P

Assistant Professor

Pruthvi raj B

Assistant Professor

UNIT-I
Introduction

Introduction to Software Testing

Purpose of Testing

The primary purpose of software testing is to
ensure that the software system is reliable,
functions as expected, and meets the
requirements specified by the users and
stakeholders. Testing helps identify defects
early, improves product quality, and ensures
that the final product is dependable and user-
friendly.

•Identify defects early

It refers to discovering bugs, errors, or flaws in
the software during early stages of
development (e.g., during requirements review,
design review, unit testing) rather than after
release.
Early detection can happen even before full
system testing — within modules, components,
or during integration.

•Ensure software quality and reliability

Ensuring
means

software
verifying

quality
that

and reliability
the software

consistently performs its intended functions
correctly, without failures, under all expected
conditions. Testing helps confirm that the
software meets the required standards,
behaves predictably, and provides a stable
user experience.

Dichotomies in Testing

Static Testing
Testing without executing the code.
Focuses on reviewing documents, code, and design.
Detects errors early in the development cycle.
Examples: Code review, walkthroughs, inspections, static analysis
tools.
Dynamic Testing
Testing by executing the code.
Validates the functional behavior and performance of the
software.
Detects runtime errors.
Examples: Unit testing, Integration testing, System testing,
Acceptance testing.

Black-Box Testing
Tester does not know internal code or structure.
Focuses on input-output behavior and functional
requirements.
Suitable for functional testing.
Techniques: Equivalence partitioning, Boundary value
analysis, Decision tables.
White-Box Testing
Tester knows the internal logic and code structure.
Focuses on paths, conditions, and code coverage.
Suitable for unit and structural testing.
Techniques: Statement coverage, Branch coverage, Path
coverage.

Functional Testing
Tests what the system does.
Ensures each function works as per requirements.
Based on user requirements and use cases.
Examples: Unit testing, Integration testing, System testing,
User acceptance testing.
Non-Functional Testing
Tests how well the system performs.

quality attributes such as speed, security,Evaluates
reliability.
Examples: Performance testing, Load testing, Usability
testing, Security testing.

Manual Testing
Test cases executed by a human tester.
Useful for usability, exploratory, and ad-hoc testing.
No programming skills required.
Slower and more prone to human errors.
Automation Testing
Automated tools/scripts execute test cases.
Suitable for regression, performance, and repetitive
tests.
Requires programming/scripting skills.
Faster execution, high accuracy, and reusable test
scripts.

Model for Testing
1. Requirements Phase
Testing starts by reviewing requirements.
Aim: Identify missing, incorrect, or ambiguous
requirements.
Output: Test basis and initial test scenarios.
2. System Design Phase
Testers review architectural and design documents.
Identify design-level errors before coding begins.
Prepare high-level test cases and plan test strategy.

3. Coding Phase
Developers write code and testers prepare detailed
test cases.
Unit tests designed to validate logic at the smallest
component level.
4. Testing Levels (Layered Testing)
The model defines four main test levels:
a) Unit Testing
Tests individual components or functions.
Performed by developers.
Ensures each module works correctly.

b) Integration Testing
Tests how modules interact with each other.
Detects interface and data flow issues.
c) System Testing
Tests the complete, integrated system.
Ensures the system meets all functional and non-
functional requirements.
d) Acceptance Testing
Performed by end users or clients.
Validates that the system is ready for deployment
and fulfills business needs.

5. Test Planning and Execution Planning
includes scope, strategy, tools, schedule,
and resources.
Execution includes running test cases,
reporting defects, and retesting.
6. Feedback and Iteration
Defects detected during testing are fixed,
and testing is repeated.
Ensures continuous improvement.

Consequences of Bugs

Software bugs can cause a wide range of negative effects
depending on the severity, location, and timing of the defect.
These consequences can impact users, developers, organizations,
and even safety-critical systems.
1. System Failures
Bugs may cause crashes, hangs, incorrect outputs, or unexpected
behavior.
Critical failures can stop business operations.
2. Security Vulnerabilities
Bugs may expose the system to hacking, data breaches, malware
attacks, or unauthorized access.
Can lead to loss of sensitive information.

3. Financial Loss
Fixing bugs after deployment is expensive.
Organizations may lose revenue through downtime,
incorrect transactions, or refunds.
Extra cost for maintenance and patching.
4. Reduced Reliability and Quality
Frequent bugs make the system unreliable.
Users lose trust and confidence in the product.
5. Poor User Experience
Bugs can cause slow performance, unexpected errors, or
incorrect results.

Leads to user frustration and dissatisfaction.

6. Reputation Damage
Continuous failures harm the company’s image and
market presence.

competitiveLoss of customers and reduced
advantage.
7. Legal and Compliance Issues
Bugs in critical systems (healthcare, finance,
aviation) may violate regulations.
Can result in legal actions, penalties, or lawsuits.

8. Safety Risks
In safety-critical systems (medical devices,
automobiles, aircraft, nuclear plants), bugs may
cause physical harm or even loss of life.
9. Project Delays
Time spent identifying, fixing, and retesting
bugs increases project duration.
May cause missed deadlines and cost overruns.

Taxonomy of Bugs

A taxonomy of bugs is a systematic classification of
software defects based on their nature, origin, or
impact. Categorizing bugs helps in understanding
their causes, preventing future defects, and
improving the overall software quality.
1. Logical Bugs
Occur due to incorrect logic or algorithms.
Produce wrong outputs or faulty behavior.
Example: wrong formula, incorrect condition.

2. Syntax Bugs
Errors in code syntax that violate programming language
rules.
Detected by compilers/interpreters.
Example: missing semicolon, misspelled keywords.
3. Runtime Bugs
Occur during execution of the program.
Often related to memory, null references, or invalid
operations.
Example: division by zero, null pointer exception.
4. Calculation / Data Bugs
Incorrect data handling, processing, or arithmetic errors.
Example: rounding errors, data type mismatches.

5. Interface Bugs
Issues in interactions between modules or external systems.
Example: wrong API usage, incompatible data formats.

6. Compatibility Bugs
Appear when software behaves differently on various
platforms.
Example: browser compatibility issues, OS-specific errors.
7. Performance Bugs
Software fails to meet required speed, response time, or
efficiency.
Example: slow loading pages, memory leaks.

8. Security Bugs
Vulnerabilities that expose the system to attacks.
Example: SQL injection, insecure authentication.
9. Usability Bugs
Issues that affect user experience or UI design.
Example: unclear navigation, mismatched button
actions.
10. Integration Bugs
Occur when combining
components.

modules, services, or

11. Documentation Bugs
Errors in user manuals, help guides, or
instructions.
Example: wrong steps or missing information.

12. Boundary/Edge Case Bugs
Occur at limits of input ranges or unexpected
inputs.
Example: handling 0, negative values, overflow.

Flow Graphs & Path Testing

1. Flow Graphs (Control Flow Graph – CFG)
A flow graph is a graphical representation of the control structure
of a program. It shows how the control flows from one statement
to another using nodes and edges.

Key Elements
Node (Circle): Represents a statement or block of statements.
Edge (Arrow): Represents the flow of control from one node to
another.
Decision Node: A branching point (e.g., IF, WHILE).
Entry/Exit Nodes: Starting and ending points of the program.

Purpose of Flow Graphs
Helps understand program logic.
Identifies independent paths for testing.
Used to calculate cyclomatic complexity.
Forms the foundation for path testing.

2. Path Testing
Path testing is a white-box testing technique that ensures all
possible execution paths in a program are executed at least once.
Objective
To detect logic errors by executing all independent paths derived
from the flow graph.

Key Terms
a) Path
A sequence of nodes/edges from start to end.
b) Independent Path
A path that introduces at least one new edge not included in any
other path.
c) Cyclomatic Complexity (McCabe’s Metric)
A measure of the program’s logical complexity:
Cyclomatic Complexity (V)=E−N+2

E = number of edges
N = number of nodes

It indicates the minimum number of test cases required for
complete path coverage.

Basic Concepts of Path Testing

1. Control Flow Graph (CFG)
A graphical representation of the program’s
control flow.
Consists of nodes (statements/blocks) and edges

(control flow).
Basis for identifying paths.

2. Path
A sequence of nodes and edges from the entry to
the exit of the program.
Represents one possible route of execution.

3. Independent Path
A path that introduces at least one new edge not
included in any previously identified path.
Ensures maximum coverage with minimum test
cases.

Predicates & Path Predicates

1. Predicates
A predicate is a logical condition that evaluates to
either true or false.
In programming and testing, predicates are typically
Boolean expressions used in decision

statements like if, while, or for.
Purpose in testing: Predicates help determine
which path a program will take in its execution.

2. Path Predicates
A path predicate is the logical AND of all predicates
along a specific path in a program’s control flow
graph (CFG).
It represents conditions that must be true for
execution to follow a particular path.
If the path has multiple decisions, the path predicate
is formed by combining the predicates at each
decision point along the path using AND () and OR
() as required by the path's flow.

Achievable Paths

1. Definition of Achievable Paths
An achievable path (also called a feasible path) in a program’s
control flow graph (CFG) is:
A path through the program that can actually be executed for
some input values.
Not all paths in a CFG are achievable because some may contain
contradictory conditions.
Achievable paths are important because testing should focus on
them; impossible paths cannot be executed and thus do not
need test cases.

How to Identify Achievable Paths
Draw the Control Flow Graph (CFG) of the program.
List all possible paths from start to end.
Formulate the path predicate for each path.
Check the satisfiability of each path predicate:

If there exists at least one input that makes the
path predicate true → path is achievable.
If no input can satisfy it → path is unachievable.

Path Sensitizing

1. Definition of Path

Sensitizing Path Sensitizing is:
The process of finding input values that will cause the
program to execute a specific path in the control flow
graph (CFG).
In other words, it “activates” a particular path by
satisfying all the predicates along that path.

This is a key step in path testing, because knowing the path
is not enough; you need actual test inputs to traverse it.

2. How Path Sensitizing Works
Steps:
Select a path in the CFG from start to end.
Formulate the path predicate: combine all decision
predicates along the path (use AND/OR/NOT
depending on branches).
Solve the path predicate to find input values that
make it true.
Use these inputs as test cases to execute the path.

Path Instrumentation

1. Definition of Path Instrumentation
Path Instrumentation is:
The technique of modifying a program to record
which paths are executed during testing.
Essentially, it allows testers to track path coverage.
Used in path testing to verify that test cases actually
traverse the intended paths.
Helps in collecting runtime information about
program execution.

2. How Path Instrumentation Works
Identify paths or decisions in the program.
Insert instrumentation code at strategic
points (e.g., before or after branches or
statements) to record:

Which decision was taken
Which path was followed

Run the program with test inputs.

Application of Path Testing

1. Definition Recap
Path Testing is a white-box testing
technique where:
Test cases are designed to execute all
possible paths (or a representative set of
paths) in a program’s control flow graph
(CFG).Focuses on control structures like
loops, conditions, and branches.

2. Applications of Path Testing
A. Detecting Logic Errors
Ensures that all decision outcomes are tested.
Helps find errors in conditional statements like if, switch,
or while.
Example: Missing else handling or wrong logical operators.
B. Verifying Complex Conditional Statements
Programs with multiple nested if or switch statements can
have many execution paths.
Path testing ensures each possible combination of
conditions is tested.
Example: if ((x>0 && y<5) || z==10)

UNIT-II
Transaction Flow Testing

A transaction flow represents the ordered sequence of
operations performed during the life cycle of a database
transaction—from initiation to completion. It is used to
understand, analyze, and test the logical behavior of a
transaction in a system.
Key Steps in a Transaction Flow
Transaction Start

The user or application initiates a transaction using
commands like BEGIN TRANSACTION or automatically
through system operations.

Read/Write Operations (Data Access)
The transaction performs a series of database
operations:

Read operations (R(x))
Write operations (W(x))

These steps represent the core work
transaction.

of the

Processing / Computation
logical

the data
The system performs
business logic using
database.

computations or
read from the

Validation / Checking Constraints
Ensures data integrity rules, constraints, and conditions
are satisfied.

May involve concurrency control checks (locks,
timestamp validation, etc.).

Commit or Rollback Decision
If all operations succeed → Commit
If any failure occurs → Rollback (undoes the changes)

Transaction End
After commit/rollback, the transaction is considered
completed, and resources (locks, buffers) are released.

Used to analyze business processes & logic flow.

Transaction Flows represent the step-by-step sequence of
operations involved in completing a business transaction. They
are used to analyze business processes, understand logic flow,
and ensure that every operation follows the correct order.
Purpose / Why We Use Transaction Flows
To visualize the logical sequence of steps in a transaction
To understand and improve business processes
To identify bottlenecks, redundancies, or missing steps
To ensure the system behaves correctly under different
conditions
Useful for testing, debugging, and validating transaction
behavior

Helps detect missing, incorrect, or redundant steps.

Data cleaning is a crucial process that helps detect missing,
incorr ect, or redundant steps within a dataset. It involves
identifying and correcting errors, inconsistencies, and
inaccuracies to ensure the data is accurate, consistent, and
reliable for analysis and decisio n-making. Here are some key
techniques used in data cleaning:

Handling Missing Data: Strategies include removing records
with missing values, imputing values, or using algorithms to
predict an d fill in missing values.

Removing Duplicates: Ensures each data point is unique and
accu rately represented, preventing skewing analyses and
leading to in accurate results.

Correcting Inaccuracies: Identifies and corre cts data
entry errors, such as typos or incorr ect values, ensuring
data accuracy.

Standardizing Formats: Ensures data is ente red in a
consistent manner, which is essenti al for accurate
analysis.

Transaction Flow Testing Techniques

Transaction Flow Testing Techniques
Transaction Flow Testing focuses on validating the
sequence of operations in a transaction to ensure
correctness, completeness, and reliability. The following
techniques are commonly used:
1. Transaction Flow Graph (TFG) Analysis
Represents the transaction as a graph with nodes
(steps/events) and edges (flow transitions).
Used to understand the logic flow and identify potential
issues.

2. Path Testing
Derives all possible paths through the transaction flow.
Ensures every path is executed at least once.
Helps uncover logical errors, missing conditions, and
incorrect steps.
3. Use Case–Based Testing
Test cases derived from real business scenarios and user
interactions.
Ensures the system supports intended business processes
correctly.

4. Scenario Testing
Focuses on end-to-end scenarios, combining
multiple transactions.
Helps validate business workflows and their
interdependencies.
5. State Transition Testing
Used when the transaction changes system states
(e.g., order status, payment status).
Checks valid and invalid state transitions.

Dataflow Testing – Basics
Dataflow Testing is a white-box testing technique that
focuses on how data is defined, used, and moved (flows)
through a program.

It helps detect problems related to variable usage such as
uninitialized variables, unused variables, or incorrect data
manipulation.
Key Concepts
1. Definition (DEF)
A statement where a variable is assigned a value.
Example: x = 10;

2. Use (USE)
A statement where a variable’s value is used.
Two types:

Computation Use (c-use) – used in calculations
Example: y = x + 2;
Predicate Use (p-use) – used in decision conditions
Example: if (x > 5)
3. Definition-Use (DU) Chain
A path between a variable’s definition and its use, without
being redefined in between.
Used to verify correct data flow.

What Dataflow Testing Detects
Variables used before initialization
Variables defined but never used
Variables redefined without being
used
Incorrect or missing definitions
Data anomalies due to improper data
flow

Strategies in Dataflow Testing
Strategies in Dataflow Testing
Dataflow testing strategies determine how thoroughly the
definition–use (DU) chains of variables in a program must be
exercised. The common strategies are:
1. All-Defs Strategy
Ensures that every definition (DEF) of every variable is tested at
least once.
For each variable definition, test at least one path that leads to
any use (USE) of that variable.
Goal: Verify that all variable definitions are reachable and
correct.

2. All-Uses Strategy
Ensures that every definition-use (DU) pair for each variable is tested.
Covers both:

c-use (computational use)
p-use (predicate use)

Goal: Validate that every definition is used meaningfully in both
computations and decisions.
3. All-DU-Paths Strategy
The most thorough and exhaustive strategy.
Ensures that all possible paths from each definition to each use are
executed, without redefining the variable.
Goal: Detect subtle data anomalies caused by:

Loops
Unreachable paths
Redefinitions
Missing uses

Application of Dataflow Testing
Dataflow Testing is applied to examine how data moves, changes,

and is used throughout a program. It is especially useful for identifying
errors that are not easily detected through control-flow testing alone.

1. Detecting Data Anomalies
Dataflow testing helps detect:
Undefined variable use (using a variable before it is assigned)
Unreachable definitions (variables defined but never used)
Redundant definitions (redefined before use)

Improper variable updates
These issues lead to logical errors and unexpected outputs.

2. Validating Correct Data Usage
It ensures:
Every variable definition flows correctly to its use
No variable is used in decision-making or computation without
proper value
No variable remains unused unnecessarily
This improves the semantic correctness of the program.
3. Improving Reliability of Complex Code
Ideal for:
Loops
Branching code
Nested conditions
Modules with multiple variable interactions
Dataflow testing ensures hidden data-related bugs are caught
early.

4. Enhancing Code Maintainability
By identifying redundant or unused
variables and definitions, it helps:
Clean up dead code
Reduce confusion
Simplify future modifications
This results in cleaner and more
maintainable code.

Domain Testing – Domains & Paths
1. Domains in Domain Testing
A domain is a set of input values for which the program behaves
similarly or produces similar outcomes.
What are Domains?
Input values are grouped into regions (domains) where the
program logic behaves the same.
Each domain is separated by boundaries.
Testing ensures the program handles:

Valid domains
Invalid domains
Boundary values

Purpose of Domains
To check correctness of the program for all
input regions.
To detect:

Missing conditions
Wrong boundary conditions
Incorrect decision logic
Domain-specific logical errors

2. Paths in Domain Testing

Paths represent the different execution routes the
program takes depending on the domain (input region).
What are Paths?
When input moves from one domain to another, the
program may follow a different control-flow path.
Domain testing ensures each path is tested for:

Correct execution

Proper boundary handling
No missing/incorrect logic

Types of Paths
Interior Paths

Executed within a single input domain.
Example: Only valid inputs (e.g., 10, 20, 50).

Boundary Paths
Paths executed when inputs lie on or near domain
boundaries.
Example: Inputs at 0, 1, 99, 100.

Cross-Domain Paths
Occur when input transitions from one domain to
another.
Helps detect incorrect branching or transitions.

Nice & Ugly Domains

In Domain Testing, input values are divided into regions
(domains). The structure of these domains affects how
easy or difficult the testing becomes. Based on this,
domains are categorized as Nice Domains and Ugly
Domains.
1. Nice Domains
Definition
A Nice Domain is a domain that is:
Continuous
Convex (no holes or gaps)

Well-defined with simple, straight boundaries
Easy to analyze and test
Characteristics of Nice Domains
Boundaries are simple (linear conditions such as <, >,
<=, >=)
No missing regions
Input points inside the domain behave similarly
Testers can predict boundaries easily
Fewer errors and easier test case generation

2. Ugly Domains

Definition
An Ugly Domain is a domain that is:
Discontinuous
Has gaps, holes, or multiple sub-
domains
Has complex, irregular boundaries
Hard to analyze and test

Characteristics of Ugly Domains Boundaries
may be non-linear, complex, or combined
with multiple conditions

Domain may be split into several disjoint
segments
Hard to identify valid and invalid regions
Increased chance of:

Missing paths
Incorrect conditions
Boundary-related defects

Domain & Interface Testing

1. Domain Testing
Definition
Domain Testing focuses on testing the input domain of a
program—i.e., all possible input ranges, boundaries, and
conditions.
It validates how the program behaves for various input regions
(domains).
Purpose
To detect boundary errors, missing conditions, and invalid
domain handling
To ensure proper classification of inputs into valid and invalid
categories

2. Interface Testing

Definition
Interface Testing different modules,
components,

how
interact

It ensures

checks
or systems
that data is passed correctly,

with each other.
and

communication between components is error-free.
Purpose
To ensure correct integration between modules
To validate data flow, parameter passing, and message
formats

To detect mismatch errors between connected
components

UNIT-III
Paths, Path Products & Regular Expressions
1. Paths
Definition: A path is a sequence of nodes and edges followed
during the execution of a program from entry to exit in a control
flow graph (CFG).
Types of Paths
Simple Path: No repeated nodes (except possibly start/end in
loops)
Independent Path: Adds at least one new edge not included in
previously identified paths
Feasible Path: Can actually be executed with some input Infeasible

Path: Cannot be executed due to logical constraints
(e.g., contradictory conditions)

2. Path Products

Definition
A path product is a method of representing paths
compactly by multiplying the possible choices at each
decision point.
Purpose of Path Products
Summarize multiple paths Identify
combinations of branches
Help in calculating the number of possible paths
Useful for deriving test cases

Path Products & Path Expressions
1. Path Products
Definition
A Path Product is an algebraic representation of all possible
paths in a program.
It is formed by multiplying (combining) the choices available
at each decision point.
Key Idea
At every decision node, outgoing branches represent
options.
These options are written inside parentheses with +
(choice/OR).

2. Path Expressions

Definition
A Path Expression is a regular-expression-like notation
used to describe the structure of paths in a control-
flow graph, including loops and repeated sequences.
Symbols Used
Concatenation (sequence): AB → A followed by B
Choice/Union: A + B → either A or B

Kleene Star *: A* → A repeated zero or
more times
Parentheses for grouping
Purpose
Represent sets of paths compactly
Handle loops gracefully
Avoid writing infinite paths explicitly

Reduction Procedure

The Reduction Procedure is a systematic method used
in path testing to convert a control flow graph into a
single regular expression (called a path expression)
that represents all possible execution paths in the
program.
It works by eliminating intermediate nodes of the
graph one by one and replacing them with equivalent
path products.

Why Reduction Procedure?
To convert a graph → mathematical
expression
To compute all possible paths compactly
To help generate test paths for white-box
testing
To simplify complex graphs by eliminating
nodes

Reduction Steps (Simple Guide)

1. Start with full flow graph
Nodes typically:
Entry → A → B → C → Exit
2. Remove one node at a time
When removing node B, compute equivalent expressions for
paths going:
Incoming → B → Outgoing
3. Continue reducing
Until only:

RENTRY,EXIT
4. Final result
A path expression, which represents all feasible paths from Entry
to Exit.

Applications of Path Expressions

Path Expressions are algebraic expressions that
represent all possible execution paths in a
program. They are derived from control flow
graphs using path products, regular expressions,
and reduction procedures.
They are widely used in white-box testing to
analyze and generate test paths.

1. Test Case Generation
Path expressions compactly represent all feasible
paths.
From the final expression, testers can extract:
Independent paths
Loop handling paths (0, 1, many iterations)
Decision-based test paths
This helps in designing effective and minimal test
cases.

2. Identification of Feasible and Infeasible
Paths
Path expressions show the exact structure of
paths.
Thus they help in:
Detecting dead code (path not present)
Identifying infeasible paths
Finding redundant paths
This increases the testability of the program.

Regular Expressions & Flow Anomaly Detection

1. Regular Expressions in Path Testing
Regular Expressions are used to represent the complete behavior
of a program's control flow.
Example
If the flow graph has:
Path A followed by B, then either C or D
The regular expression is:
A B (C + D)
Where:
Concatenation → sequence of operations
Union (+) → selection / branching
Closure (*) → loops (0 or more times)

2. Flow Anomaly Detection
Flow anomalies occur when variables are used in an
unexpected or illegal order.
In Dataflow testing, we focus on operations on
variables:
d → define
u → use
k → kill (or un-define)
A flow anomaly is detected when the sequence of
actions violates normal data usage rules.

Decision Tables
Decision Tables are a structured way to represent
complex decision logic in a tabular form. They show
conditions, actions, and rules in a compact and
systematic manner.
They are widely used in software testing and business
rules analysis.
1. Components of a Decision Table
Conditions – Boolean expressions or criteria to
evaluate (e.g., Age > 18)

Condition Alternatives – Possible
values for each condition (e.g., True /
False)
Actions – Operations to be performed
based on conditions (e.g., Approve,
Reject)
Rules – Combination of condition
values mapping to specific actions

Types of Decision Tables

Limited Entry Table

Conditions have only True/False values. Example:

Yes/No, On/Off.

Extended Entry Table

Conditions can take multiple values beyond True/False.
Example: High/Medium/Low

Path Expressions in Logic Testing

1. Purpose of Path Expressions in Logic Testing
Represent all possible logical paths in a program
Identify independent and dependent paths
Generate test cases to cover all logical scenarios
Detect missing or redundant conditions
Ensure thorough decision/branch coverage

2. Representation
Symbols Used
Concatenation (AB) → Execute A then
B
Union / Choice (A + B) → Either A or B
Kleene Star (A*) → Repeat A zero or
more times
Parentheses () → Grouping of paths

KV Charts (Karnaugh-Veitch Charts)

Karnaugh-Veitch (KV) Charts, also known as Karnaugh
Maps (K-Maps), are graphical tools used to simplify Boolean
expressions and logic functions. They provide a visual
method to minimize logic circuits and reduce the number of
gates.
1. Purpose of KV Charts Simplify
Boolean expressions Identify
redundant terms Reduce logic
circuit complexity
Help in designing efficient combinational circuits

2. Structure of a KV Chart
Grid Format: Each cell represents a unique
combination of input variables.
Rows & Columns: Represent input variable
combinations in Gray code order (only one
bit changes between adjacent cells).
Cell Values: Typically 1 (true) or 0 (false) for
the function output

3. Rules for Using KV Charts

Group 1s (or 0s for POS) in rectangular blocks
Size must be a power of 2 (1, 2, 4, 8, …)

Groups can wrap around edges
Minimize the number of terms in the expression
Include each 1 in at least one group
Choose the largest possible groups to maximize
simplification

4. Advantages of KV Charts

Quick visual simplification of
logic expressions
Minimizes errors compared to
algebraic simplification
Helps in designing optimal
circuits
Effective for up to 4–6 variables

Specifications in Logic-Based Testing

Logic-Based Testing is a white-box testing technique that derives test
cases from the logical conditions and decision structures in a program.
The specifications define what to test, how to test, and expected
outcomes based on the program’s logic.
1. Definition of Specifications
Specifications in logic-based testing refer to the formal description of
program logic including:
Conditions (e.g., if x > 0)
Decisions/Branches (e.g., if-else, switch)
Logical combinations (AND, OR, NOT)
Loops and iterations (for, while)
These specifications are used to design test cases that cover all possible
logical scenarios.

2. Components of Specifications
Input Conditions – Boolean expressions that determine
flow
Actions – Operations performed when conditions are
true/false
Decision Rules – Mapping from conditions to actions
Expected Outcomes – Result of executing each logical path
3. Purpose of Specifications in Logic Testing
Ensure all decisions are tested
Cover all true/false branches
Detect missing, incorrect, or redundant conditions
Provide a basis for systematic test-case design

4. Types of Specifications Used
Decision Tables – Map conditions to actions for all
rules
Predicate Logic Expressions – Formalize conditions
(e.g., X > 0 AND Y < 10)
Control Flow Graphs (CFGs) – Represent sequences
of logical decisions
Boolean Expressions – Identify independent paths
and combinations

UNIT-IV
State and State Graph

State testing strategies are based on the use of finite
state machine models for software structure, software
behavior, or specifications of software behavior.

Finite state machines can also be implemented as
table-driven software, in which case they are a
powerful design option.

A state is defined as: “A combination of circumstances or
attributes belonging for the time being to a person or
thing.”

For example, a moving automobile whose engine is
running can have the following states with respect to its
transmission.

Reverse gear
Neutral gear
First gear
Second gear
Third gear

Fourth gear State graph -

For example, a program that
character sequence “ZCZC” can
following states.
Neither ZCZC nor any part

detects the
be in the

of it has been
detected.
Z has been detected. ZC
has been detected. ZCZ
has been detected.
ZCZC has been detected.

Good State Graphs and Bad

What constitutes a good or a bad state graph is
to some extent biased by the kinds of state
graphs that are likely to be used in a software
test design context.
Here are some principles for judging.
The total number of states is equal to the
product of the possibilities of factors that make
up the state.

For every state and input there is exactly one
transition specified to exactly one, possibly the
same, state.

For every transition there is one output action
specified. The output could be trivial, but at
least one output does something sensible.
For every state there is a sequence of inputs
that will drive the system back to the same
state.

State Testing

1. Definition of State Testing
State Testing (also called State-based Testing) is a white-
box/black-box testing technique where the behavior of
the system is tested based on its states and transitions.
The goal is to ensure that the system behaves correctly
when moving from one state to another due to events or
inputs.
It is particularly useful for systems where outputs depend
not only on the current input but also on the current
state (e.g., vending machines, login systems,
communication protocols).

2. Key Concepts
State: A condition of the system at a particular point in
time.
Event/Trigger: An input or action that causes a state
change.

Transition: Movement from one state to another caused
by an event.
Initial State: The state of the system before any event
occurs.
Final State: The state where the system completes or
terminates.
State Graph / State Transition Diagram: Visual
representation of all states and transitions.

3. Steps in State Testing
Identify all states: List all possible states of the system.
Identify events or inputs: Determine what triggers cause state
changes.
Draw state graph/diagram: Represent all states as nodes and
transitions as arrows labeled with events.
Define test cases:

State coverage: Test each state at least once.
Transition coverage: Test each transition between states.
Event coverage: Ensure all events causing transitions are
tested.

Execute tests: Simulate events and check whether the system
moves to the correct states.

Testability Tips
1. What is Testability?
Testability is the degree to which a software system or
component facilitates testing to ensure it behaves as
expected. High testability allows defects to be detected
quickly and reliably.

2. General Testability Tips
A. Design-Level Tips
Modular Design:

Break the system into independent modules or
components.
Easier to isolate and test each part separately.

Low Coupling & High Cohesion:
Modules should depend minimally on others (low coupling).
Each module should focus on a single task (high cohesion).

Clear State Transitions:
Ensure the system states are well-defined.
Avoid ambiguous or hidden state changes.

Use Standard Interfaces:
Standard APIs or interfaces make it easier to test and mock
components.

Logging & Monitoring:
Add logs for important actions and state changes.
Helps trace errors during testing.

UNIT-V

Matrix of Graph

The Matrix of a Graph
A graph matrix is a square array with one row and
one column for every node in the graph.
Each row-column combination corresponds to a
relation between the node corresponding to the
row and the node corresponding to the column.
The relation for example, could be as simple as the
link name, if there is a link between the nodes.

Some of the things to be observed:
The size of the matrix equals the number of nodes.

There is a place to put every possible direct connection or
link between any and any other node. The entry at a row
and column intersection is the link weight of the link that
connects the two nodes in that direction.

A connection from node i to j does not imply a connection
from node j to node i.

If there are several links between two nodes, then the
entry is a sum; the “+” sign denotes parallel links as usual.

Relations
A relation is a property that exists between two objects of
interest.
For example,
“Node a is connected to node b” or aRb where “R” means “is
connected to”.
“a>=b” or aRb where “R” means greater than or equal”.
A graph consists of set of abstract objects called nodes and a
relation R between the nodes.
If aRb, which is to say that a has the relation R to b, it is
denoted by a link from a to b.
For some relations we can associate properties called as link
weights.

Transitive Relations
A relation is transitive if aRb and bRc implies aRc.
Most relations used in testing are transitive.
Examples of transitive relations include: is connected to, is

greater than or equal to, is less than or equal to, is a
relative of, is faster than, is slower than, takes more time
than, is a subset of, includes, shadows, is the boss of.
Examples of intransitive relations include: is acquainted

with, is a friend of, is a neighbor of, is lied to, has a du
chain between.

Reflexive Relations

A relation R is reflexive if, for every a, aRa.

A reflexive relation is equivalent to a self loop at every node.

Examples of reflexive relations include: equals, is acquainted with, is a
relative of.
Examples of irreflexive relations include: not equals, is a friend of, is on
top of, is under.

Symmetric Relations

A relation R is symmetric if for every a and b, aRb implies bRa.

A symmetric relation mean that if there is a link from a to b then there is
also a link from b to a.
A graph whose relations are not symmetric are called directed graph.

A graph over a symmetric relation is called an undirected graph.
The matrix of an undirected graph is symmetric (aij=aji) for all i,j)

Antisymmetric Relations
A relation R is antisymmetric if for every a and b, if aRb and
bRa, then a=b, or they are the same elements.
Examples of antisymmetric relations: is greater than or
equal to, is a subset of, time.
Examples of nonantisymmetric relations: is connected to,
can be reached from, is greater than, is a relative of, is a
friend of
Equivalence Relations

An equivalence relation is a relation that satisfies the
reflexive, transitive, and symmetric properties.

Equality is the most familiar example of an equivalence
relation.

If a set of objects satisfy an equivalence relation, we say that they
form an equivalence class over that relation.

The importance of equivalence classes and relations is that any
member of the equivalence class is, with respect to the relation,
equivalent to any other member of that class.

The idea behind partition testing strategies such as domain
testing and path testing, is that we can partition the input space
into equivalence classes.

Testing any member of the equivalence class is as effective as
testing them all.

The Powers of a Matrix

Each entry in the graph’s matrix expresses a relation
between the pair of nodes that corresponds to that entry.
Squaring the matrix yields a new matrix that expresses the
relation between each pair of nodes via one intermediate
node under the assumption that the relation is transitive.
The square of the matrix represents all path segments two
links long.

The third power represents all path segments three links
long.

Node Reduction Algorithm (General)

The matrix powers usually tell us more than we want to know
about most graphs.
In the context of testing, we usually interested in establishing
a relation between two nodes-typically the entry and exit
nodes.
In a debugging context it is unlikely that we would want to know
the path expression between every node and every other node.
The advantage of matrix reduction method is that it is more
methodical than the graphical method called as node by node
removal algorithm.
Select a node for removal; replace the node by equivalent links
that bypass that node and add those links to the links they
parallel.

