212 NARSIMHA REDDY
Y~ ENGINEERING COLLEGE

An Autonomous Institution] Affiliated to JNTUH | Approved by AICTE
e Accredited by NBA & NAAC with "A" Grode

‘
’—/&\‘\

23CS608:SOFTWARE TESTING

METHODOLOGIES
Asia Tasleen Gangaiah P
Assistant Professor Assistant Professor

Pruthvi raj B
Assistant Professor

Maisammaguda (V], Dhulapally (P)

Mear Kompally, Medchal (M), Secunderabad — 500 100.
=] principal@nrcmec.org

() 5949092454 & www.nremec.org

e

UNIT-I
Introduction

Introduction to Software Testing

Purpose of Testing

The primary purpose of software testing is to
ensure that the software system is reliable,
functions as expected, and meets the
requirements specified by the users and

stakeholders. Testing helps identify defects
early, improves product quality, and ensures
that the final product is dependable and user-
_friendly.

Sy

el

*|dentify defects early

It refers to discovering bugs, errors, or flaws in

t
C

ne software during early stages of
evelopment (e.g., during requirements review,

C

esign review, unit testing) rather than after

release.
Early detection can happen even before full
system testing — within modules, components,

r during integration.

*Ensure software quality and reliability

Ensuring software quality and reliability
means verifying that the software
consistently performs its intended functions
correctly, without failures, under all expected
conditions. Testing helps confirm that the
software meets the required standards,
behaves predictably, and provides a stable

~ Dichotomies in Testing

Static Testing

Testing without executing the code.

Focuses on reviewing documents, code, and design.

Detects errors early in the development cycle.

Examples: Code review, walkthroughs, inspections, static analysis

tools.

Dynamic Testing

Testing by executing the code.

Validates the functional behavior and performance of the

software.
Detects runtime errors.

Examples: Unit testing, Integration testing, System testing,
yeeeptance testing.

—

Black-Box Testing
Tester does not know internal code or structure.
Focuses on input-output behavior and functional
requirements.

Suitable for functional testing.
Techniques: Equivalence partitioning, Boundary value
analysis, Decision tables.

White-Box Testing
Tester knows the internal logic and code structure.
Focuses on paths, conditions, and code coverage.
Suitable for unit and structural testing.

Techniques: Statement coverage, Branch coverage, Path

Functional Testing

Tests what the system does.

Ensures each function works as per requirements.

Based on user requirements and use cases.

Examples: Unit testing, Integration testing, System testing,

User acceptance testing.

Non-Functional Testing

Tests how well the system performs.

Evaluates quality attributes such as speed, security,

reliability.

Examples: Performance testing, Load testing, Usability
Mggcurity testing.

AR
\ AN _
—

o N

‘Manual Testing

Test cases executed by a human tester.

Useful for usability, exploratory, and ad-hoc testing.
No programming skills required.

Slower and more prone to human errors.
Automation Testing

Automated tools/scripts execute test cases.
Suitable for regression, performance, and repetitive

tests.
Reqwres programmlng/scrlptmg skills.

Model for Testing
1. Requirements Phase

Testing starts by reviewing requirements.
Aim: Identify missing, incorrect, or ambiguous
requirements.

Output: Test basis and initial test scenarios.

2. System Design Phase

Testers review architectural and design documents.
|dentify design-level errors before coding begins.
Reepare high-level test cases and plan test strategy.

3. Coding Phase
Developers write code and testers prepare detailed

test cases.
Unit tests designed to validate logic at the smallest

component level.

4. Testing Levels (Layered Testing)

The model defines four main test levels:
a) Unit Testing

Tests individual components or functions.

Performed by developers.
Ensures each module works correctly.

b) Integration Testing

Tests how modules interact with each other.
Detects interface and data flow issues.

c) System Testing

Tests the complete, integrated system.

Ensures the system meets all functional and non-
functional requirements.

d) Acceptance Testing

Performed by end users or clients.

Valldates that the system is ready for deployment

5. Test Planning and Execution Planning

includes scope, strategy, tools, schedule,

and resources.

Execution includes running test cases,

reporting defects, and retesting.

6. Feedback and Iteration

Defects detected during testing are fixed,

and testing is repeated.
| orovement.

Consequences of Bugs

Software bugs can cause a wide range of negative effects
depending on the severity, location, and timing of the defect.
These consequences can impact users, developers, organizations,
and even safety-critical systems.

1. System Failures

Bugs may cause crashes, hangs, incorrect outputs, or unexpected
behavior.

Critical failures can stop business operations.

2. Security Vulnerabilities

Bugs may expose the system to hacking, data breaches, malware
cks or unauthorlzed access.

3. Financial Loss
Fixing bugs after deployment is expensive.
Organizations may lose revenue through downtime,
incorrect transactions, or refunds.
Extra cost for maintenance and patching.
4. Reduced Reliability and Quality
Frequent bugs make the system unreliable.
Users lose trust and confidence in the product.
5. Poor User Experience
Bugs can cause slow performance, unexpected errors, or
incorrect results.
ds-to user frustration and dissatisfaction.

-

'\ji\\\\\‘__“:- R
\\\ \\\f'\ffv

6. Reputation Damage
Continuous failures harm the company’s image and

market presence.
Loss of customers and reduced competitive

advantage.

7. Legal and Compliance Issues
Bugs in critical systems (healthcare, finance,

aviation) may violate regulations.
Can result in legal actions, penalties, or lawsuits.

8. Safety Risks

In safety-critical systems (medical devices,
automobiles, aircraft, nuclear plants), bugs may
cause physical harm or even loss of life.

9. Project Delays

Time spent identifying, fixing, and retesting
bugs increases project duration.

May cause missed deadlines and cost overruns.

Taxonomy of Bugs

A taxonomy of bugs is a systematic classification of
software defects based on their nature, origin, or
impact. Categorizing bugs helps in understanding
their causes, preventing future defects, and
improving the overall software quality.

1. Logical Bugs

Occur due to incorrect logic or algorithms.

Produce wrong outputs or faulty behaV|or

. Syntax Bugs
Errors in code syntax that violate programming language
rules.

Detected by compilers/interpreters.
Example: missing semicolon, misspelled keywords.
3. Runtime Bugs
Occur during execution of the program.
Often related to memory, null references, or invalid
operations.
Example: division by zero, null pointer exception.
4. Calculation / Data Bugs
sect data handling, processing, or arithmetic errors.
ors, data type mismatches.

5. Interface Bugs
Issues in interactions between modules or external systems.

Example: wrong APl usage, incompatible data formats.

6. Compatibility Bugs

Appear when software behaves differently on various
platforms.

Example: browser compatibility issues, OS-specific errors.
7. Performance Bugs

Software fails to meet required speed, response time, or
efficiency.

8. Security Bugs
Vulnerabilities that expose the system to attacks.
Example: SQL injection, insecure authentication.
9. Usability Bugs
Issues that affect user experience or Ul design.

Example: unclear navigation, mismatched button

actions.
10. Integration Bugs

Occur when combining modules, services, or
components.

11. Documentation Bugs

Errors in user manuals, help guides, or
Instructions.

Example: wrong steps or missing information.

12. Boundary/Edge Case Bugs
Occur at limits of input ranges or unexpected

Inputs.
Xxa

Flow Graphs & Path Testing

1. Flow Graphs (Control Flow Graph — CFG)

A flow graph is a graphical representation of the control structure
of a program. It shows how the control flows from one statement
to another using nodes and edges.

Key Elements

Node (Circle): Represents a statement or block of statements.
Edge (Arrow): Represents the flow of control from one node to
another.

Decision Node: A branching point (e.g., IF, WHILE).

Entry/Exit Nodes: Starting and ending points of the program.

Purpose of Flow Graphs

Helps understand program logic.
ldentifies independent paths for testing.
Used to calculate cyclomatic complexity.
Forms the foundation for path testing.

2. Path Testing
Path testing is a white-box testing technique that ensures all
possible execution paths in a program are executed at least once.
Objective

To detect logic errors by executing all independent paths derived
from the flow graph.

Key Terms
a) Path
A sequence of nodes/edges from start to end.
b) Independent Path
A path that introduces at least one new edge not included in any

other path.
c) Cyclomatic Complexity (McCabe’s Metric)

A measure of the program’s logical complexity:
Cyclomatic Complexity (V)=E-N+2
E = number of edges
N = number of nodes
It indicates the minimum number of test cases required for
omplete path coverage.

Basic Concepts of Path Testing

1. Control Flow Graph (CFG)

A graphical representation of the program’s
control flow.

Consists of nodes (statements/blocks) and edges
(control flow).

Basis for identifying paths.

— 2. Path
A sequence of nodes and edges from the entry to
the exit of the program.

Represents one possible route of execution.

3. Independent Path

A path that introduces at least one new edge not
included in any previously identified path.
Ensures maximum coverage with minimum test
cases.

Predicates & Path Predicates

1. Predicates
A predicate is a logical condition that evaluates to

either true or false.

In programming and testing, predicates are typically
Boolean expressions used in decision
statements like if, while, or for.

Purpose in testing: Predicates help determine
which path a program will take in its execution.

2. Path Predicates

A path predicate is the logical AND of all predicates
along a specific path in a program’s control flow
graph (CFG).

It represents conditions that must be true for
execution to follow a particular path.

If the path has multiple decisions, the path predicate
is formed by combining the predicates at each
decision point along the path using AND (\) and OR

Achievable Paths

1. Definition of Achievable Paths

An achievable path (also called a feasible path) in a program’s
control flow graph (CFG) is:

A path through the program that can actually be executed for

some input values.
Not all pathsin a CFG are achievable because some may contain

contradictory conditions.

Achievable paths are important because testing should focus on
them; impossible paths cannot be executed and thus do not

peed test cases.

e

How to Identify Achievable Paths

Draw the Control Flow Graph (CFG) of the program.
List all possible paths from start to end.

Formulate the path predicate for each path.

Check the satisfiability of each path predicate:

f there exists at least one input that makes the

nath predicate true - path is achievable.
f no input can satisfy it & path is unachievable.

Path Sensitizing

1 Definition of Path

Sensitizing Path Sensitizing is:

The process of finding input values that will cause the
program to execute a specific path in the control flow
graph (CFG).

In other words, It “activates” a particular path by
satisfying all the predicates along that path.

This is a key step in path testing, because knowing the path
is not enough; you need actual test inputs to traverse it.

2. How Path Sensitizing Works

Steps:

Select a path in the CFG from start to end.
Formulate the path predicate: combine all decision
predicates along the path (use AND/OR/NOT
depending on branches).

Solve the path predicate to find input values that
make it true.

Use these inputs as test cases to execute the path.

Path Instrumentation
1. Definition of Path Instrumentation

Path Instrumentation is:

The technique of modifying a program to record
which paths are executed during testing.
Essentially, it allows testers to track path coverage.
Used in path testing to verify that test cases actually
traverse the intended paths.

Helps in collecting runtime information about

e execution.

2. How Path Instrumentation Works
Identify paths or decisions in the program.
Insert instrumentation code at strategic
points (e.g., before or after branches or
statements) to record:

Which decision was taken

Which path was followed
Run the program with test inputs.

Application of Path Testing
1. Definition Recap
Path Testing is a white-box testing
technique where:
Test cases are desighed to execute all
possible paths (or a representative set of
paths) in a program’s control flow graph
(CFG) Focuses on control structures like

pregad Jitions, and branches.

2. Applications of Path Testing
A. Detecting Logic Errors
Ensures that all decision outcomes are tested.
Helps find errors in conditional statements like if, switch,
or while.
Example: Missing else handling or wrong logical operators.
B. Verifying Complex Conditional Statements
Programs with multiple nested if or switch statements can
have many execution paths.
Path testing ensures each possible combination of
conditions is tested.

\4\ (>0 && y<5) | | z==10)

~—

UNIT-II
Transaction Flow Testing

A transaction flow represents the ordered sequence of
operations performed during the life cycle of a database
transaction—from initiation to completion. It is used to
understand, analyze, and test the logical behavior of a
transaction in a system.
Key Steps in a Transaction Flow
Transaction Start

The user or application initiates a transaction using

Read/Write Operations (Data Access)
The transaction performs a series of database
operations:
Read operations (R(x))
Write operations (W(x))
These steps represent the core work ©Of the
transaction.

Processing / Computation
The system performs logical computations or
ic using the data read from the

~ Validation / Checking Constraints

Ensures data integrity rules, constraints, and conditions
are satisfied.
May involve concurrency control checks (locks,
timestamp validation, etc.).

Commit or Rollback Decision
If all operations succeed - Commit
If any failure occurs - Rollback (undoes the changes)

Transaction End
After commit/rollback, the transaction is considered
completed, and resources (locks, buffers) are released.

Used to analyze business processes & logic flow.

Transaction Flows represent the step-by-step sequence of
operations involved in completing a business transaction. They
are used to analyze business processes, understand logic flow,
and ensure that every operation follows the correct order.
Purpose / Why We Use Transaction Flows

To visualize the logical sequence of steps in a transaction

To understand and improve business processes

To identify bottlenecks, redundancies, or missing steps

To ensure the system behaves correctly under different
conditions

Useful for testing, debugging, and validating transaction
behavior

Helps detect missing, incorrect, or redundant steps.

Data cleaning is a crucial process that helps detect missing,
incorr ect, or redundant steps within a dataset. It involves
identifying and correcting errors, inconsistencies, and
inaccuracies to ensure the data is accurate, consistent, and
reliable for analysis and decisio n-making. Here are some key
techniques used in data cleaning:

Handling Missing Data: Strategies include removing records
with missing values, imputing values, or using algorithms to
predict an d fill in missing values.

Removing Duplicates: Ensures each data point is unique and
accu rately represented, preventing skewing analyses and
leading to in accurate results.

Correcting Inaccuracies: Identifies and corre cts data
entry errors, such as typos or incorr ect values, ensuring
data accuracy.

Standardizing Formats: Ensures data is ente red in a
consistent manner, which is essenti al for accurate
analysis.

Transaction Flow Testing Techniques

Transaction Flow Testing Techniques

Transaction Flow Testing focuses on validating the
sequence of operations in a transaction to ensure
correctness, completeness, and reliability. The following
techniques are commonly used:

1. Transaction Flow Graph (TFG) Analysis

Represents the transaction as a graph with nodes
(steps/events) and edges (flow transitions).

ed to understand the logic flow and identify potential

.....

2. Path Testing

Derives all possible paths through the transaction flow.
Ensures every path is executed at least once.

Helps uncover logical errors, missing conditions, and
incorrect steps.

3. Use Case—Based Testing

Test cases derived from real business scenarios and user
interactions.

Ensures the system supports intended business processes
correctly.

4. Scenario Testing

Focuses on end-to-end scenarios, combining
multiple transactions.

Helps validate business workflows and their
interdependencies.

5. State Transition Testing

Used when the transaction changes system states
(e.g., order status, payment status).

Checks valid and invalid state transitions.

Dataflow Testing - Basics
Dataflow Testing is a white-box testing technique that

focuses on how data is defined, used, and moved (flows)
through a program.

It helps detect problems related to variable usage such as
uninitialized variables, unused variables, or incorrect data
manipulation.

Key Concepts

1. Definition (DEF)

A statement where a variable is assigned a value.

2. Use (USE)

A statement where a variable’s value is used.

Two types:

Computation Use (c-use) — used in calculations
Example:y = x + 2;

Predicate Use (p-use) — used in decision conditions
Example: if (x > 5)

3. Definition-Use (DU) Chain

A path between a variable’s definition and its use, without
being redefined in between.

2d to verify correct data flow.

What Dataflow Testing Detects
Variables used before initialization
Variables defined but never used
Variables redefined without being
used

Incorrect or missing definitions

Data anomalies due to improper data

Strategies in Dataflow Testing

Strategies in Dataflow Testing

Dataflow testing strategies determine how thoroughly the
definition—use (DU) chains of variables in a program must be
exercised. The common strategies are:

1. All-Defs Strategy

Ensures that every definition (DEF) of every variable is tested at
least once.

For each variable definition, test at least one path that leads to
any use (USE) of that variable.

Goal: Verify that all variable definitions are reachable and
orrect.

2. All-Uses Strategy
Ensures that every definition-use (DU) pair for each variable is tested.
Covers both:
c-use (computational use)
p-use (predicate use)
Goal: Validate that every definition is used meaningfully in both
computations and decisions.
3. All-DU-Paths Strategy
The most thorough and exhaustive strategy.
Ensures that all possible paths from each definition to each use are
executed, without redefining the variable.
Goal: Detect subtle data anomalies caused by:
Loops
Unreachable paths
Eotedinjtions

Aplolication of Dataflow Testing
Dataflow Testing is applied to examine how data moves, changes,

and Is used throughout a program. It is especially useful for identifying
errors that are not easily detected through control-flow testing alone.
1. Detecting Data Anomalies

Dataflow testing helps detect:

Undefined variable use (using a variable before it is assigned)
Unreachable definitions (variables defined but never used)
Redundant definitions (redefined before use)

Improper variable updates
These issues lead to logical errors and unexpected outputs.

~ 2. Validating Correct Data Usage

It ensures:

Every variable definition flows correctly to its use

No variable is used in decision-making or computation without
proper value

No variable remains unused unnecessarily

This improves the semantic correctness of the program.
3. Improving Reliability of Complex Code

Ideal for:

Loops

Branching code

Nested conditions

Modules with multiple varlable interactions

4. Enhancing Code Maintainability
By identifying redundant or unused
variables and definitions, it helps:
Clean up dead code

Reduce confusion

Simplify future modifications

This results in cleaner and more

Domain Testing — Domains & Paths

1. Domains in Domain Testing
A domain is a set of input values for which the program behaves
similarly or produces similar outcomes.
What are Domains?
Input values are grouped into regions (domains) where the
program logic behaves the same.
Each domain is separated by boundaries.
Testing ensures the program handles:
Valid domains
Invalid domains
Boundary values

A s

Purpose of Domains
To check correctness of the program for all
Input regions.
To detect:
Missing conditions
Wrong boundary conditions
Incorrect decision logic
Domain-specific logical errors

= 2 Pathsin Domain Testing

Paths represent the different execution routes the
program takes depending on the domain (input region).
What are Paths?
When input moves from one domain to another, the
program may follow a different control-flow path.
Domain testing ensures each path is tested for:

Correct execution

Proper boundary handling

No missing/incorrect logic

=

Types of Paths
Interior Paths
Executed within a single input domain.
Example: Only valid inputs (e.g., 10, 20, 50).
Boundary Paths
Paths executed when inputs lie on or near domain
boundaries.
Example: Inputs at 0O, 1, 99, 100.
Cross-Domain Paths
Occur when input transitions from one domain to
another.
fetps detect incorrect branching or transitions.

.

Nice & Ugly Domains

In Domain Testing, input values are divided into regions
(domains). The structure of these domains affects how
easy or difficult the testing becomes. Based on this,
domains are categorized as Nice Domains and Ugly
Domains.

1. Nice Domains

Definition

A Nice Domain is a domain that is:

Well-defined with simple, straight boundaries
Easy to analyze and test

Characteristics of Nice Domains

Boundaries are simple (linear conditions such as <, >,
<=, >=)

No missing regions

Input points inside the domain behave similarly
Testers can predict boundaries easily

Fewer errors and easier test case generation

.....

\\\\\\\.\ e

\\\\\\

= 2 Usly Domains

Definition

An Ugly Domain is a domain that is:
Discontinuous

Has gaps, holes, or multiple sub-
domains

Has complex, irregular boundaries

ird to analyze and test
T

Characteristics of Ugly Domains Boundaries
may be non-linear, complex, or combined
with multiple conditions
Domain may be split into several disjoint
segments
Hard to identify valid and invalid regions
Increased chance of:

Missing paths
Incorrect conditions

\“‘t"‘_h

INOd™Y=LEIJTE erects
\\\‘\\\ ——
QLN s

Domain & Interface Testing

1. Domain Testing

Definition

Domain Testing focuses on testing the input domain of a
program—i.e., all possible input ranges, boundaries, and
conditions.

It validates how the program behaves for various input regions
(domains).

Purpose

To detect boundary errors, missing conditions, and invalid
domain handling

0 ensure proper classification of inputs into valid and invalid

2. Interface Testing

Definition

Interface Testing checks how different modules,
components, or systems interact with each other.
It ensures that data is passed correctly, and
communication between components is error-free.

Purpose

To ensure correct integration between modules

To validate data flow, parameter passing, and message
formats

__detect

mismatch errors between connected

UNIT-II

Paths, Path Products & Reqgular Expressions

1. Paths

Definition: A path is a sequence of nodes and edges followed
during the execution of a program from entry to exit in a control
flow graph (CFG).

Types of Paths

Simple Path: No repeated nodes (except possibly start/end in
loops)

Independent Path: Adds at least one new edge not included in
previously identified paths

FeaS|bIe Path: Can actually be executed with some input Infeasible
- —=Rath: Cannot be executed due to logical constraints

= 2. Path Products

Definition

A path product is a method of representing paths
compactly by multiplying the possible choices at each
decision point.

Purpose of Path Products

Summarize multiple paths ldentify

combinations of branches

Help in calculating the number of possible paths
Useful for deriving test cases

Path Products & Path Expressions
1. Path Products

Definition

A Path Product is an algebraic representation of all possible
paths in a program.

It is formed by multiplying (combining) the choices available
at each decision point.

Key Idea

At every decision node, outgoing branches represent
options.

hese options are written inside parentheses with +

P~ Path Expressions
Definition
A Path Expression is a regular-expression-like notation
used to describe the structure of paths in a control-
flow graph, including loops and repeated sequences.
Symbols Used
Concatenation (sequence): AB - A followed by B
Choice/Union: A + B > either Aor B

Kleene Star *: A* - A repeated zero or
more times

Parentheses for grouping

Purpose

Represent sets of paths compactly
Handle loops gracefully

Avoid writing infinite paths explicitly

Reduction Procedure

The Reduction Procedure is a systematic method used
in path testing to convert a control flow graph into a
single regular expression (called a path expression)
that represents all possible execution paths in the
program.

It works by eliminating intermediate nodes of the

graph one by one and replacing them with equivalent
nath products.

Why Reduction Procedure?

To convert a graph - mathematical
expression

To compute all possible paths compactly
To help generate test paths for white-box
testing

To simplify complex graphs by eliminating

= Reduction Steps (Simple Guide)

1. Start with full flow graph
Nodes typically:
Entry > A—-> B> C - Exit
2. Remove one node at a time
When removing node B, compute equivalent expressions for
paths going:
Incoming - B - Outgoing
3. Continue reducing
Until only:
RENTRY,EXIT
4. Final result
lpath expression, which represents all feasible paths from Entry

WS

Applications of Path Expressions

Path Expressions are algebraic expressions that
represent all possible execution paths in a
program. They are derived from control flow
graphs using path products, regular expressions,

and reduction procedures.
They are widely used in white-box testing to

analyze and generate test paths.

1. Test Case Generation

Path expressions compactly represent all feasible
naths.

-rom the final expression, testers can extract:
ndependent paths

L.oop handling paths (0, 1, many iterations)
Decision-based test paths

This helps in designing effective and minimal test
cases.

2. ldentification of Feasible and Infeasible
Paths

Path expressions show the exact structure of
paths.

Thus they help in:

Detecting dead code (path not present)
dentifying infeasible paths

~inding redundant paths

his increases the testability of the program.

Regular Expressions & Flow Anomaly Detection

1. Regular Expressions in Path Testing
Regular Expressions are used to represent the complete behavior
of a program's control flow.

Example

If the flow graph has:

Path A followed by B, then either Cor D
The regular expression is:

A B (C +D)

Where:

Concatenation - sequence of operations
alon (9 selection / branchmg

2. Flow Anomaly Detection

Flow anomalies occur when variables are used in an
unexpected or illegal order.

In Dataflow testing, we focus on operations on
variables:

d - define

u - use

k = kill (or un-define)

A flow anomaly is detected when the sequence of

Decision Tables
Decision Tables are a structured way to represent

complex decision logic in a tabular form. They show
conditions, actions, and rules in a compact and
systematic manner.

They are widely used in software testing and business
rules analysis.

1. Components of a Decision Table

Conditions — Boolean expressions or criteria to

Condition Alternatives — Possible
values for each condition (e.g., True /
False)

Actions — Operations to be performed
based on conditions (e.g., Approve,
Reject)

Rules Combination of condition

UESmsRRing to specific actions

Types of Decision Tables

Limited Entry Table
Conditions have only True/False values. Example:
Yes/No, On/Off.

Extended Entry Table

Conditions can take multiple values beyond True/False.
Example: High/Medium/Low

Path Expressions in Logic Testing

1. Purpose of Path Expressions in Logic Testing
Represent all possible logical paths in a program
ldentify independent and dependent paths
Generate test cases to cover all logical scenarios
Detect missing or redundant conditions

Ensure thorough decision/branch coverage

2. Representation

Symbols Used

Concatenation (AB) - Execute A then
B

Union / Choice (A + B) > Either Aor B
Kleene Star (A*) - Repeat A zero or

— Grouping of paths

el

KV Charts (Karnaugh-Veitch Charts)

Karnaugh-Veitch (KV) Charts, also known as Karnaugh
Maps (K-Maps), are graphical tools used to simplify Boolean
expressions and logic functions. They provide a visual
method to minimize logic circuits and reduce the number of
gates.
1. Purpose of KV Charts Simplify
Boolean expressions Identify
redundant terms Reduce logic

it complexity

a L X

designimmafficient combinational circuits

2. Structure of a KV Chart

Grid Format: Each cell represents a unique

combination of input variables.

Rows & Columns: Represent input variable

combinations in Gray code order (only one

bit changes between adjacent cells).

Cell Values: Typically 1 (true) or O (false) for
ne function output

~_..;g\\“\\§;\,j\\\

= 3. Rules for Using KV Charts

Group 1s (or Os for POS) in rectangular blocks
Size must be a powerof 2 (1, 2, 4, 8§, ...)

Groups can wrap around edges

Minimize the number of terms in the expression

Include each 1 in at least one group

Choose the largest possible groups to maximize

simplification

el

4. Advantages of KV Charts

Quick visual simplification of
logic expressions

Minimizes errors compared to
algebraic simplification

Helps in designing optimal
circuits

2ctive for up to 4—6 variables
e

Specifications in Logic-Based Testing

Logic-Based Testing is a white-box testing technique that derives test
cases from the logical conditions and decision structures in a program.
The specifications define what to test, how to test, and expected
outcomes based on the program’s logic.

1. Definition of Specifications

Specifications in logic-based testing refer to the formal description of
program logic including:

Conditions (e.g., if x> 0)

Decisions/Branches (e.g., if-else, switch)

Logical combinations (AND, OR, NOT)

Loops and iterations (for, while)

2. Components of Specifications
Input Conditions — Boolean expressions that determine
flow
Actions — Operations performed when conditions are
true/false
Decision Rules — Mapping from conditions to actions
Expected Outcomes — Result of executing each logical path
3. Purpose of Specifications in Logic Testing
Ensure all decisions are tested
Cover all true/false branches
Detect mlssmg, incorrect, or redundant conditions

is for systematic test-case design

4. Types of Specifications Used

Decision Tables — Map conditions to actions for all
rules

Predicate Logic Expressions — Formalize conditions
(e.g., X>0ANDY < 10)

Control Flow Graphs (CFGs) — Represent sequences
of logical decisions

Boolean Expressions — Identify independent paths
and combinations

UNIT-IV
State and State Graph

State testing strategies are based on the use of finite
state machine models for software structure, software
behavior, or specifications of software behavior.

Finite state machines can also be implemented as
table-driven software, in which case they are a
powerful design option.

~—A state is defined as: “A combination of circumstances or
attributes belonging for the time being to a person or
thing.”

For example, a moving automobile whose engine is
running can have the following states with respect to its
transmission.

Reverse gear

Neutral gear

First gear

Second gear

hird gear

" For example, a program that detects the
character sequence “ZCZC” can be in the
following states.

Neither ZCZC nor any part of it has been

detected.
Z has been detected. ZC

has been detected. ZCZ
has been detected.
/CZC has been detected.

= Good State Graphs and Bad

What constitutes a good or a bad state graph is
to some extent biased by the kinds of state
graphs that are likely to be used in a software
test design context.

Here are some principles for judging.

The total number of states is equal to the
product of the possibilities of factors that make

For every state and input there is exactly one
transition specified to exactly one, possibly the
same, state.

For every transition there is one output action
specified. The output could be trivial, but at
least one output does something sensible.

For every state there is a sequence of inputs
that will drive the system back to the same

can never be left, the initial state can
e entered again.

State C cannot be entered.

1,2 1,2
States A and B are not reachable

Two transitions are specified for
an input of 1 in state A

State Testing

1. Definition of State Testing

State Testing (also called State-based Testing) is a white-
box/black-box testing technique where the behavior of
the system is tested based on its states and transitions.
The goal is to ensure that the system behaves correctly
when moving from one state to another due to events or
inputs.

It is particularly useful for systems where outputs depend
not only on the current input but also on the current
(e g., vending machines, login systems,
e nrotocols).

\\

2. Key Concepts
State: A condition of the system at a particular point in
time.
Event/Trigger: An input or action that causes a state
change.
Transition: Movement from one state to another caused
by an event.
Initial State: The state of the system before any event
occurs.
Final State: The state where the system completes or
terminates.

fe—~Grgph / State Transition Diagram: Visual

and transitions.

\\\\\\\.\ e

3. Steps in State Testing

Identify all states: List all possible states of the system.

Identify events or inputs: Determine what triggers cause state
changes.

Draw state graph/diagram: Represent all states as nodes and
transitions as arrows labeled with events.

Define test cases:

State coverage: Test each state at least once.
Transition coverage: Test each transition between states.
Event coverage: Ensure all events causing transitions are
tested.

Execute tests: Simulate events and check whether the system

Testability Tips
1. What is Testability?
Testability is the degree to which a software system or
component facilitates testing to ensure it behaves as
expected. High testability allows defects to be detected
quickly and reliably.
2. General Testability Tips
A. Design-Level Tips
Modular Design:
Break the system into independent modules or
components.

e
\ I

-

toealate and test each part separately.

=

Low Coupling & High Cohesion:
Modules should depend minimally on others (low coupling).
Each module should focus on a single task (high cohesion).
Clear State Transitions:
Ensure the system states are well-defined.
Avoid ambiguous or hidden state changes.
Use Standard Interfaces:
Standard APIs or interfaces make it easier to test and mock
components.
Logging & Monitoring:
Add logs for important actions and state changes.
Helps trace errors during testing.

UNIT-V

Matrix of Graph
The Matrix of a Graph

A graph matrix is a square array with one row and
one column for every node in the graph.

Each row-column combination corresponds to a
relation between the node corresponding to the
row and the node corresponding to the column.

The relation for example, could be as simple as the
link name, if there is a link between the nodes.

Some of the things to be observed:

There is a place to put every possible direct connection or
link between any and any other node. The entry at a row
and column intersection is the link weight of the link that
connects the two nodes in that direction.

A connection from node i to j does not imply a connection
from node j to node i.

If there are several links between two nodes, then the
entry is a sum; the “+” sign denotes parallel links as usual.

Some Graphs and their

Matrices -

@& [o]

& . &

o)

Q

Relations

A relation is a property that exists between two objects of
interest.

For example,

“Node a is connected to node b” or aRb where “R” means “is
connected to”.

“a>=b” or aRb where “R” means greater than or equal”.

A graph consists of set of abstract objects called nodes and a
relation R between the nodes.

If aRb, which is to say that a has the relation Rto b, it s
denoted by a link from a to b.

For some relations we can associate properties called as link
weights.

Transitive Relations
A relation is transitive if aRb and bRc implies aRc.
Most relations used in testing are transitive.
Examples of transitive relations include: is connected to, is
greater than or equal to, is less than or equal to, is a
relative of, is faster than, is slower than, takes more time
than, is a subset of, includes, shadows, is the boss of.
Examples of intransitive relations include: is acquainted
with, is a friend of, is a neighbor of, is lied to, has a du
chain between.

Reflexive Relations

P
A relation R is reflexive if, for every a, aRa.
A reflexive relation is equivalent to a self loop at every node.

Examples of reflexive relations include: equals, is acquainted with, is a

relative of.
Examples of irreflexive relations include: not equals, is a friend of, is on

top of, is under.
Symmetric Relations

A relation R is symmetric if for every a and b, aRb implies bRa.

A symmetric relation mean that if there is a link from a to b then there is

also a link from b to a.
A graph whose relations are not symmetric are called directed graph.

Antisymmetric Relations

A relation R is antisymmetric if for every a and b, if aRb and

bRa, then a=b, or they are the same elements.
Examples of antisymmetric relations: is greater than or
equal to, is a subset of, time.

Examples of nonantisymmetric relations: is connected to,
can be reached from, is greater than, is a relative of, is a
friend of

Equivalence Relations

An equivalence relation is a relation that satisfies the
reflexive, transitive, and symmetric properties.

Equality is the most familiar example of an equivalence

~ If a set of objects satisfy an equivalence relation, we say that they
form an equivalence class over that relation.

The importance of equivalence classes and relations is that any
member of the equivalence class is, with respect to the relation,
equivalent to any other member of that class.

The idea behind partition testing strategies such as domain
testing and path testing, is that we can partition the input space
into equivalence classes.

Testing any member of the equivalence class is as effective as
testing them all.

™ The Powers of 3 Matrix

Each entry in the graph’s matrix expresses a relation
between the pair of nodes that corresponds to that entry.
Squaring the matrix yields a new matrix that expresses the
relation between each pair of nodes via one intermediate
node under the assumption that the relation is transitive.
The square of the matrix represents all path segments two
links long.

The third power represents all path segments three links
long.

~ Node Reduction Algorithm (General)

The matrix powers usually tell us more than we want to know
about most graphs.

In the context of testing, we usually interested in establishing

a relation between two nodes-typically the entry and exit
nodes.

In a debugging context it is unlikely that we would want to know
the path expression between every node and every other node.
The advantage of matrix reduction method is that it is more
methodical than the graphical method called as node by node
removal algorithm.

Select a node for removal; replace the node by equivalent links
that bypass that node and add those links to the links they
parallel.

