

Department of Computer Science and Engineering

MACHINE LEARNING AND ITS APPLICATIONS UNIT WISE QUESTION BANK

UNIT-I					
Introduction and Feature Engineering					
S.No	Questions	BT	CO	PO	
Part – A (Short Answer Questions)					
1	What is the fundamental difference between Supervised Learning and Unsupervised Learning?	L1	CO1	PO1	
2	Define Machine Learning and state its goal.	L1	CO1	PO1	
3	What is Semi-supervised Learning?	L1	CO1	PO1	
4	State the objective of the Find-S algorithm in concept learning.	L1	CO1	PO2	
5	What is Feature Engineering?	L1	CO1	PO1	
6	Differentiate between Feature Selection and Feature Extraction.	L1	CO1	PO3	
7	Define Min-Max Normalization	L1	CO1	PO1	
8	Briefly explain the purpose of z-score normalization	L1	CO1	PO5	
9	What is the Curse of Dimensionality?	L1	CO1	PO5	
10	Name two popular Filter Methods used for Feature Selection	L1	CO1	PO2	
Part – B (Long Answer Questions)					
11	Explain the different types of Machine Learning (Supervised, Unsupervised, Semi-supervised, and Reinforcement Learning) with a suitable real-world application for each.	L2	CO1	PO2	
12	Describe the steps involved in the Concept Learning process using the Find-S algorithm .	L2	CO1	PO3	
13	Explain Feature Normalization techniques (Min-Max normalization, z-score normalization, and constant factor normalization) and discuss when each should be applied.	L2	CO1	PO2	
14	Detail the importance of Feature Engineering in the Machine Learning pipeline.	L2	CO1	PO1	
15	Describe the three categories of Feature Selection techniques: Filter, Wrapper, and Embedded methods .	L2	CO1	PO2	
16	Explain the principle and working of Principal Component Analysis (PCA) as a dimensionality reduction technique.	L2	CO1	PO5	
17	Explain the difference between Classification and Regression problems in Supervised Learning, providing two examples.	L2	CO1	PO3	
18	Discuss the role of Dimensionality Reduction . When is it necessary, and what are its potential benefits?	L2	CO1	PO1	
19	Describe the procedure for Linear Discriminant Analysis (LDA) and its primary application in a classification context.	L3	CO1	PO1	
20	Explain the concept of Deep Learning and how it relates to	L3	CO1	PO1	

	Machine Learning and Artificial Intelligence.			
UNIT-II Supervised Learning – I (Regression and Classification)				
S.No	Questions	BT	CO	PO
Part – A (Short Answer Questions)				
1	What is the Cost Function in the context of regression, and what is its role?	L1	CO2	PO2
2	What is the primary objective of a Regression model?	L1	CO2	PO2
3	Define Overfitting in a machine learning model.	L1	CO2	PO2
4	What is the 'Naive' assumption in the Naive Bayes Classifier ?	L1	CO2	PO2
5	What are the Support Vectors in a Support Vector Machine (SVM)?	L1	CO2	PO1
6	Define the F1-Score and explain why it is used instead of simple accuracy for imbalanced datasets.	L1	CO2	PO1
7	How is the "K" determined in the K-Nearest Neighbors (KNN) algorithm?	L1	CO2	PO2
8	Differentiate between Precision and Recall .	L1	CO2	PO1
9	What is the main difference between Simple Linear Regression and Multiple Linear Regression ?	L1	CO2	PO1
10	Briefly explain the concept of Decision Tree Pruning .	L1	CO2	PO1
Part – B (Long Answer Questions)				
11	a) Describe the process of building a predictive model using Simple Linear Regression . Include the equation and the role of the Cost Function (like MSE).	L2	CO2	PO2
	b) Explain the working of Logistic Regression . Why is it considered a Classification algorithm even though its name contains "Regression"?	L2	CO2	PO2
12	a) Explain the K-Nearest Neighbors (KNN) algorithm for classification. What is a major disadvantage, and how can it be mitigated?	L2	CO2	PO1
	b) Describe the working of Decision Tree algorithms like ID3 or C4.5 . How do they select the best feature to split on?	L2	CO2	PO2
13	a) Explain the Support Vector Machine (SVM) algorithm. How does it find the optimal hyperplane for classification?	L2	CO2	PO1
	b) Explain how a Confusion Matrix is used to evaluate the performance of a classification model. Define True Positive , True Negative , False Positive , and False Negative in this context.	L2	CO2	PO1
14	a) Discuss the concepts of Bias and Variance in Machine Learning and explain the Bias-Variance Tradeoff . 8. How does Naive Bayes work? Explain the process of classification using Bayes' Theorem.	L2	CO2	PO3
	b) Discuss the evaluation metrics for Regression models, such as Mean Squared Error (MSE) and Mean Absolute Error (MAE) , and their relative advantages.	L3	CO2	PO3
15	a) Explain Polynomial Regression . When is it used, and what is its main risk in modeling?	L2	CO2	PO1
UNIT-III Supervised Learning – II (Neural Networks)				

S.No	Questions	BT	CO	PO
Part – A (Short Answer Questions)				
1	What is an Artificial Neuron or Perceptron ?	L1	CO3	PO4
2	What is the role of Activation Functions in a Neural Network?	L1	CO3	PO4
3	Name two common Activation Functions and their output range.	L1	CO3	PO5
4	What is the primary difference between Feedforward and Recurrent Neural Networks (RNN) ?	L1	CO3	PO5
5	Explain the concept of Forward Propagation in an ANN.	L2	CO3	PO3
6	What is the Learning Rate hyperparameter, and how does it affect the training process?	L1	CO3	PO4
7	What is a Cost Function (or Loss Function) in the context of Neural Networks?	L1	CO3	PO3
8	What is the purpose of the Convolutional Layer in a CNN?	L1	CO3	PO2
9	Explain the goal of Pooling Layers (e.g., Max Pooling) in a CNN.	L1	CO3	PO4
10	What is Batch Gradient Descent ?	L1	CO3	PO3
Part – B (Long Answer Questions)				
11	a) Describe the architecture of a Multi-Layer Perceptron (MLP) / Artificial Neural Network (ANN) . Explain the function of the input, hidden, and output layers.	L3	CO3	PO3
	b) Explain the Backpropagation Algorithm in detail. What is its main purpose, and how does it use the chain rule?	L2	CO3	PO3
12	a) Explain the need for Activation Functions . Discuss the properties and drawbacks of the Sigmoid and ReLU (Rectified Linear Unit) functions.	L2	CO3	PO4
	b) Describe the different types of Gradient Descent (Stochastic, Mini-Batch, and Batch) and compare their computational efficiency and stability during training.	L3	CO3	PO4
13	a) Illustrate the architecture of a Convolutional Neural Network (CNN) . Explain the functions of the Convolution layer and the Pooling layer with respect to image processing.	L2	CO3	PO3
	b) Explain the Perceptron Learning Process . Why can a single-layer perceptron only solve linearly separable problems?	L3	CO3	PO3
14	a) Discuss the challenges that arise when training Deep Neural Networks, such as the Vanishing Gradient Problem .	L2	CO3	PO3
	b) Explain the role of the Softmax function in the output layer of an ANN, especially for multi-class classification problems.	L3	CO3	PO3
15	a) What is Dropout in Neural Networks, and what is its role?	L2	CO3	PO4
	b) Describe how the weights and biases are initialized and updated during the learning process in an ANN.	L3	CO3	PO4

UNIT-IV
Model Validation and Ensemble Methods

S.No	Questions	BT	CO	PO
Part – A (Short Answer Questions)				
1	What is the difference between Overfitting and Underfitting ?	L1	CO4	PO3
2	Define the Holdout Method for model validation.	L1	CO4	PO3
3	What is the primary goal of Regularization in machine learning?	L1	CO4	PO3

4	What is the key difference between L1 Regularization (Lasso) and L2 Regularization (Ridge) ?	L1	CO4	PO3
5	What is the main advantage of Stratified K-Fold Cross-Validation over simple K-Fold?	L1	CO4	PO3
6	Define an Ensemble Method .	L1	CO4	PO3
7	What is the concept of Diversity in the context of Ensemble Methods?	L1	CO4	PO3
8	What is Bootstrap Aggregating (Bagging) ?	L1	CO4	PO3
9	Which ensemble method is Random Forest an example of (Bagging or Boosting)?	L1	CO4	PO3
10	What is the main idea behind the Boosting technique?	L1	CO4	PO3

Part – B (Long Answer Questions)

11	a)	Explain the K-Fold Cross-Validation technique. Why is it preferred over the simple Holdout method for model evaluation?	L2	CO4	PO3
	b)	Describe the Bias-Variance Tradeoff in detail. How do model complexity, overfitting, and underfitting relate to this tradeoff?	L3	CO4	PO3
12	a)	Discuss the causes of Overfitting and list three different techniques to prevent it.	L2	CO4	PO3
	b)	Explain Lasso (L1) and Ridge (L2) Regularization . Discuss how L1 regularization can be used for Feature Selection .	L3	CO4	PO3
13	a)	Explain the working of Bagging . How does it help to reduce the variance of the model?	L3	CO4	PO3
	b)	Describe the working of the Random Forest algorithm. Explain how it leverages both bagging and feature randomness to improve performance	L13	CO4	PO3
14	a)	Explain the concept of Boosting (e.g., AdaBoost or Gradient Boosting). How does it sequentially combine weak learners to create a strong learner?	L2	CO4	PO3
	b)	Compare and contrast Bagging and Boosting techniques based on their goal (reducing bias/variance), how they train models (parallel/sequential), and their base learners.	L3	CO4	PO3
15	a)	Explain Leave-One-Out Cross Validation (LOOCV) . When might this method be computationally expensive or impractical?	L2	CO4	PO3
	b)	Describe the concept of Stacking (Stacked Generalization). How does it use a meta-model to combine the predictions of diverse base models?	L2	CO4	PO3

UNIT-V

Unsupervised and Reinforcement Learning

S.No	Questions	BT	CO	PO
Part – A (Short Answer Questions)				
1	Give two real-world applications of Unsupervised Learning .	L1	CO5	PO3
2	State the primary difference between K-Means and K-Nearest Neighbors (KNN) .	L1	CO5	PO3
3	What are the disadvantages of using Euclidean distance in the K-Means algorithm?	L2	CO5	PO3
4	What kind of data is the K-Modes clustering algorithm suitable for?	L2	CO5	PO3
5	What is the key distinction between Agglomerative and	L2	CO5	PO3

	Divisive Hierarchical Clustering?			
6	Define the terms Exploration and Exploitation in Reinforcement Learning (RL) .	L1	CO5	PO3
7	What is a Markov Decision Process (MDP) ?	L1	CO5	PO3
8	What is the main advantage of DBSCAN over K-Means clustering?	L1	CO5	PO3
9	Explain the concept of non-associative learning in RL.	L2	CO5	PO3
10	What is a Q-Table in Q-learning ?	L1	CO5	PO3
Part – B (Long Answer Questions)				
11	a) Compare and contrast Supervised Learning and Unsupervised Learning based on data type, objective, and common algorithms used. b) Explain the working principle of the K-Means Clustering algorithm. Detail the steps involved in the process.	L2	CO5	PO3
12	a) Explain Hierarchical Clustering . Describe the procedures for both Agglomerative (Bottom-Up) and Divisive (Top-Down) methods. b) Describe the clustering methods K-Modes and K-Prototypes . Explain their suitability for different types of data (categorical and mixed).	L2	CO5	PO3
13	a) Explain DBSCAN (Density-Based Spatial Clustering of Applications with Noise) . Define the core, border, and noise points in this algorithm. b) Describe the key components of a Reinforcement Learning model: Agent, Environment, State, Action, and Reward .	L2	CO5	PO3
14	a) Explain the fundamental Exploration vs. Exploitation Trade-off in Reinforcement Learning. Why is balancing this trade-off crucial? b) Describe the working of the Q-Learning algorithm. Write down the Bellman equation (Q-function update rule) and explain the role of the learning rate and discount factor	L3	CO5	PO3
15	a) Discuss the various applications of Clustering techniques in different domains, such as market segmentation, image analysis, and anomaly detection. b) Compare the learning mechanism of Reinforcement Learning with that of Supervised and Unsupervised Learning.	L2	CO5	PO3

* **Blooms Taxonomy Level (BT)** (L1 – Remembering; L2 – Understanding; L3 – Applying; L4 – Analyzing; L5 – Evaluating; L6 – Creating)