INDEX

o

Title

UNIT-I: Introduction to Machine learning

Feature Selection

Feature Normalization

Dimensionality Reduction

UNIT-11 Regression models

Gradient Descent

Evaluation Metrics

Decision Trees

Ol N|ofg|[dhlW N[|2

Naive Bayes Classifier

K-Nearest Neighbor(KNN) Algorithm

Logistic Regression

UNIT —I11 Neural Network Representation

ArtificialNeural Networks

Back propagation Algorithm

Convolutional Neural Networks

Recurrent neural networks

UNIT-1V: Cross validation

Bias-Variance Trade off

Regularization

Overfitting, Underfitting

UNIT-V Clustering

Markov Decision Process

Q-learning

UNIT-I

Introduction: Introduction to Machine learning, Supervised learning, Unsupervised
learning, Reinforcement learning. Deep learning. Feature Selection: Filter, Wrapper
Embedded methods. Feature Normalization:- min-max normalization, z-score
normalization, and constant factor normalization Introduction to Dimensionality

Reduction : Principal Component Analysis(PCA), Linear Discriminant Analysis(LDA)

Introduction

1.1 Definition of Machine Learning

Arthur Samuel, an early American leader in the field of computer gaming and artificial
intelligence, coined the term “Machine Learning” in 1959 while at IBM. He defined machine
learning as “the field of study that gives computers the ability to learn without being
explicitly programmed.” However, there is no universally accepted definition for machine

learning. Different authors define the term differently. We give below two more definitions.

Machine learning is programming computers to optimize a performance criterion
using example data or past experience. We have a model defined up to some
parameters, and learning is the execution of a computer program to optimize the
parameters of the model using the training data or past experience.

The field of study known as machine learning is concerned with the question of how

to construct computer programs that automatically improve with experience.

In the above definitions we have used the term “model” and we will be using this term at
several contexts later. It appears that there is no universally accepted one sentence definition

of this term. Loosely, it may be understood as some mathematical expression or equation, or

some mathematical structures such as graphs and trees, or a division of sets into disjoint
subsets, or a set of logical “if . . . then . .. else . ..” rules, or some such thing. It may be noted

that this is not an exhaustive list.

Definition of learning

A computer program is said to learn from experience E with respect to some class of tasks T
and performance measure P, if its performance at tasks T, as measured by P, improves with

experience E.

Examples:

i) Handwriting recognition learning problem

* Task T: Recognising and classifying handwritten words within images

« Performance P: Percent of words correctly classified

« Training experience E: A dataset of handwritten words with given classifications
ii) A robot driving learning problem

* Task T: Driving on highways using vision sensors

« Performance measure P: Average distance traveled before an error

« training experience: A sequence of images and steering commands recorded while

observing a human driver

iii) A chess learning problem

« Task T: Playing chess

« Performance measure P: Percent of games won against opponents
« Training experience E: Playing practice games against itself

A computer program which learns from experience is called a machine learning program or

simply a learning program. Such a program is sometimes also referred to as a learner.

1.1.2 How machines learn
Basic components of learning process:

The learning process, whether by a human or a machine, can be divided into four
components, namely, data storage, abstraction, generalization and evaluation. Figure 1.1

illustrates the various components and the steps involved in the learning process.

Data storage Abstraction Generalization Evaluation

Inferences ——)

SIS oo

Figure |.1: Components of learning process

Data storage: Facilities for storing and retrieving huge amounts of data are an important
component of the learning process. Humans and computers alike utilize data storage as a

foundation for advanced reasoning.

* In a human being, the data is stored in the brain and data is retrieved using electrochemical

signals.

» Computers use hard disk drives, flash memory, random access memory and similar devices

to store data and use cables and other technology to retrieve data.
Abstraction

The second component of the learning process is known as abstraction. Abstraction is the
process of extracting knowledge about stored data. This involves creating general concepts
about the data as a whole. The creation of knowledge involves application of known models

and creation of new models.

The process of fitting a model to a dataset is known as training. When the model has been
trained, the data is transformed into an abstract form that summarizes the original

information.
Generalization

The third component of the learning process is known as generalisation.

The term generalization describes the process of turning the knowledge about stored data into

a form that can be utilized for future action. These actions are to be carried out on tasks that
are similar, but not identical, to those what have been seen before. In generalization, the goal
is to discover those properties of the data that will be most relevant to future tasks.

Evaluation

Evaluation is the last component of the learning process. It is the process of giving feedback
to the user to measure the utility of the learned knowledge. This feedback is then utilised to

effect improvements in the whole learning process.
1.1.3 Applications of machine learning

Application of machine learning methods to large databases is called data mining. In data
mining, a large volume of data is processed to construct a simple model with valuable use, for

example, having high predictive accuracy.
The following is a list of some of the typical applications of machine learning.
1. In retail business, machine learning is used to study consumer behaviour.

2. In finance, banks analyze their past data to build models to use in credit applications, fraud

detection, and the stock market.
3. In manufacturing, learning models are used for optimization, control, and troubleshooting.
4. In medicine, learning programs are used for medical diagnosis.

5. In telecommunications, call patterns are analyzed for network optimization and

maximizing the quality of service.

6. In science, large amounts of data in physics, astronomy, and biology can only be analyzed
fast enough by computers. The World Wide Web is huge; it is constantly growing and

searching for relevant information cannot be done manually.

7. In artificial intelligence, it is used to teach a system to learn and adapt to changes so that

the system designer need not foresee and provide solutions for all possible situations.

8. It is used to find solutions to many problems in vision, speech recognition, and robotics.

9. Machine learning methods are applied in the design of computer-controlled vehicles to

steer correctly when driving on a variety of roads.

10. Machine learning methods have been used to develop programmes for playing games

such as chess, backgammon and Go.

1.2 Different types of learning

In general, machine learning algorithms can be classified into three types.
Supervised learning:

Supervised learning is the machine learning task of learning a function that maps an input to

an output based on example input-output pairs.

In supervised learning, each example in the training set is a pair consisting of an input object
(typically a vector) and an output value. A supervised learning algorithm analyzes the
training data and produces a function, which can be used for mapping new examples. In the
optimal case, the function will correctly determine the class labels for unseen instances. Both

classification and regression problems are supervised learning problems.

A wide range of supervised learning algorithms are available, each with its strengths and
weaknesses. There is no single learning algorithm that works best on all supervised learning

problems.

A “supervised learning” is so called because the process of algorithm learning from the
training dataset can be thought of as a teacher supervising the learning process. We know the

correct answers (that is, the correct outputs), the algorithm iteratively makes predictions on

the training data and is corrected by the teacher. Learning stops when the algorithm achieves

an acceptable level of performance.
Example :

Consider the following data regarding patients entering a clinic. The data consists of the
gender and age of the patients and each patient is labelled as “healthy” or “sick”.

gender | age label
M 48 sick
M &7 sick
F 53 | healthy
M 49 | healthy
F M sick
M 21 | healthy

Unsupervised learning

Unsupervised learning is a type of machine learning algorithm used to draw inferences from
datasets consisting of input data without labeled responses.

In unsupervised learning algorithms, a classification or categorization is not included in the
observations. There are no output values and so there is no estimation of functions. Since the
examples given to the learner are unlabeled, the accuracy of the structure that is output by the
algorithm cannot be evaluated.

The most common unsupervised learning method is cluster analysis, which is used for

exploratory data analysis to find hidden patterns or grouping in data.
Example :

Consider the following data regarding patients entering a clinic. The data consists of the

gender and age of the patients.

gender
M
M
F
M
F
M

Based on this data, can we infer anything regarding the patients entering the clinic?
Reinforcement learning

Reinforcement learning is the problem of getting an agent to act in the world so as to

maximize its rewards.

A learner (the program) is not told what actions to take as in most forms of machine
learning, but instead must discover which actions yield the most reward by trying them. In
the most interesting and challenging cases, actions may affect not only the immediate reward
but also the next situations and, through that, all subsequent rewards.

For example, consider teaching a dog a new trick: we cannot tell it what to do, but we can
reward/punish it if it does the right/wrong thing. It has to find out what it did that made it get
the reward/punishment. We can use a similar method to train computers to do many tasks,

such as playing backgammon or chess, scheduling jobs, and controlling robot limbs.

Reinforcement learning is different from supervised learning. Supervised learning is learning

from examples provided by a knowledgeable expert.

1.3 Feature Selection

“Feature selection is a way of selecting the subset of the most relevant features from the

original features set by removing the redundant, irrelevant, or noisy features.”

While developing the machine learning model, only a few variables in the dataset are useful
for building the model, and the rest features are either redundant or irrelevant. If we input the
dataset with all these redundant and irrelevant features, it may negatively impact and reduce
the overall performance and accuracy of the model. Hence it is very important to identify and
select the most appropriate features from the data and remove the irrelevant or less important

features, which is done with the help of feature selection in machine learning.

Feature selection is one of the important concepts of machine learning, which highly impacts
the performance of the model. As machine learning works on the concept of "Garbage In
Garbage Out", so we always need to input the most appropriate and relevant dataset to the

model in order to get a better result.

In this topic, we will discuss different feature selection techniques for machine learning. But

before that, let's first understand some basics of feature selection.

What is Feature Selection?

A feature is an attribute that has an impact on a problem or is useful for the problem, and
choosing the important features for the model is known as feature selection. Each machine
learning process depends on feature engineering, which mainly contains two processes;

which are Feature Selection and Feature Extraction.

Although feature selection and extraction processes may have the same objective, both are
completely different from each other. The main difference between them is that feature
selection is about selecting the subset of the original feature set, whereas feature extraction

creates new features.

Feature selection is a way of reducing the input variable for the model by using only relevant

data in order to reduce over fitting in the model.

So, we can define feature Selection as, "It is a process of automatically or manually

selecting the subset of most appropriate and relevant features to be used in model

Page 8

building." Feature selection is performed by either including the important features or
excluding the irrelevant features in the dataset without changing them.

Need for Feature Selection:

Before implementing any technique, it is really important to understand, need for the
technique and so for the Feature Selection. As we know, in machine learning, it is necessary
to provide a pre-processed and good input dataset in order to get better outcomes. We collect
a huge amount of data to train our model and help it to learn better. Generally, the dataset
consists of noisy data, irrelevant data, and some part of useful data. Moreover, the huge
amount of data also slows down the training process of the model, and with noise and
irrelevant data, the model may not predict and perform well. So, it is very necessary to
remove such noises and less-important data from the dataset and to do this, and Feature

selection techniques are used.

Selecting the best features helps the model to perform well. For example, Suppose we want to
create a model that automatically decides which car should be crushed for a spare part, and to
do this, we have a dataset. This dataset contains a Model of the car, Year, Owner's name,
Miles. So, in this dataset, the name of the owner does not contribute to the model
performance as it does not decide if the car should be crushed or not, so we can remove this

column and select the rest of the features(column) for the model building.
Below are some benefits of using feature selection in machine learning:
It helps in avoiding the curse of dimensionality.

It helps in the simplification of the model so that it can be easily interpreted by the

researchers.
It reduces the training time.

It reduces over fitting hence enhance the generalization.

1.2 Feature Selection Techniques:

There are mainly two types of Feature Selection techniques, which are:

Supervised Feature selection techniques consider the target variable and can be used for the

labelled dataset.

Unsupervised Feature selection techniques ignore the target variable and can be used for

the unlabelled dataset.

Feature Selection Technigues

—» Missing value

—» Information gain

—» Chi-square Test

—p Fisher's Score

1.2.1 Filter Methods:

>

r

Regularization
L, L2

Random forest
Importance

— Forward Feature Selction

—* Backward Feature Selection

— Exhaustive Feature Selection

— Recursive Feature Elimination

In Filter Method, features are selected on the basis of statistics measures. This method does

not depend on the learning algorithm and chooses the features as a pre-processing step.

The filter method filters out the irrelevant feature and redundant columns from the model by

using different metrics through ranking.

The advantage of using filter methods is that it needs low computational time and does not

over fit the data.

Set of features

Selecting best feature

Learning Algorithm

Performance

Some common techniques of Filter methods are as follows::
information Gain

Chi-square Test

Fisher's Score

Missing Value Ratio

Information Gain: Information gain determines the reduction in entropy while transforming
the dataset. It can be used as a feature selection technique by calculating the information gain
of each variable with respect to the target variable.

Chi-square Test: Chi-square test is a technique to determine the relationship between the
categorical variables. The chi-square value is calculated between each feature and the target

variable, and the desired number of features with the best chi-square value is selected.
Fisher's Score:

Fisher's score is one of the popular supervised techniques of features selection. It returns the
rank of the variable on the fisher's criteria in descending order. Then we can select the

variables with a large fisher's score.

Missing Value Ratio:

The value of the missing value ratio can be used for evaluating the feature set against the

threshold value. The formula for obtaining the missing value ratio is the number of missing

Page 11

values in each column divided by the total number of observations. The variable is having

more than the threshold value can be dropped.

.. . Number of Missing values=100
Missing Value Ratio= ! g

Total number of observations

1.2.2 Wrapper Methods:

In wrapper methodology, selection of features is done by considering it as a search problem,
in which different combinations are made, evaluated, and compared with other combinations.

It trains the algorithm by using the subset of features iteratively.

Set of features

Generate
subset

Algorithm

Performance

On the basis of the output of the model, features are added or subtracted, and with this feature
set, the model has trained again.

Some techniques of wrapper methods are:

Forward selection - Forward selection is an iterative process, which begins with an empty
set of features. After each iteration, it keeps adding on a feature and evaluates the
performance to check whether it is improving the performance or not. The process continues

until the addition of a new variable/feature does not improve the performance of the model.

Backward elimination - Backward elimination is also an iterative approach, but it is the
opposite of forward selection. This technique begins the process by considering all the
features and removes the least significant feature. This elimination process continues until

removing the features does not improve the performance of the model.

Exhaustive Feature Selection- Exhaustive feature selection is one of the best feature
selection methods, which evaluates each feature set as brute-force. It means this method tries

& make each possible combination of features and return the best performing feature set.

Recursive feature elimination

Recursive feature elimination is a recursive greedy optimization approach, where features are
selected by recursively taking a smaller and smaller subset of features. Now, an estimator is
trained with each set of features, and the importance of each feature is determined

using coef_attribute or through a feature_importances_attribute.

1.2.3 Embedded Methods

Embedded methods combined the advantages of both filter and wrapper methods by
considering the interaction of features along with low computational cost. These are fast

processing methods similar to the filter method but more accurate than the filter method.

Set of features

Generate
subset

Algorithm +
Performance

These methods are also iterative, which evaluates each iteration, and optimally finds the most
important features that contribute the most to training in a particular iteration. Some

techniques of embedded methods are:

Regularization- Regularization adds a penalty term to different parameters of the machine
learning model for avoiding overfitting in the model. This penalty term is added to the
coefficients; hence it shrinks some coefficients to zero. Those features with zero coefficients
can be removed from the dataset. The types of regularization techniques are L1

Regularization (Lasso Regularization) or Elastic Nets (L1 and L2 regularization).

Random Forest Importance - Different tree-based methods of feature selection help us with
feature importance to provide a way of selecting features. Here, feature importance specifies
which feature has more importance in model building or has a great impact on the target
variable. Random Forest is such a tree-based method, which is a type of bagging algorithm
that aggregates a different number of decision trees. It automatically ranks the nodes by their
performance or decrease in the impurity (Gini impurity) over all the trees. Nodes are arranged
as per the impurity values, and thus it allows to pruning of trees below a specific node. The

remaining nodes create a subset of the most important features.
1.3 Feature normalization:

Normalization is a scaling technique in Machine Learning applied during data preparation to
change the values of numeric columns in the dataset to use a common scale. It is not
necessary for all datasets in a model. It is required only when features of machine learning
models have different ranges.

Although there are so many feature normalization techniques in Machine Learning, few of
them are most frequently used. These are as follows:

1.3.1 Min-max normalization

Min-max normalization (usually called feature scaling) performs a linear transformation on
the original data. This technique gets all the scaled data in the range (0, 1). The formula to
achieve this is the following:

L — Lmin

Lscaled =

Lmax — Lmin

For the three example values, min = 28 and max = 46. Therefore, the min-max normalized

values are:

28: (28 - 28) / (46 - 28) =0/ 18 = 0.00

46: (46 - 28) / (46 - 28) =18/ 18 = 1.00

34:(34-28)/(46-28)=6/18=0.33
The min-max technique results in values between 0.0 and 1.0 where the smallest value is
normalized to 0.0 and the largest value is normalized to 1.0.

1.3.2 Z-score normalizationrefers to the process of normalizing every value in a dataset

such that the mean of all of the values is 0 and the standard deviation is 1.

We use the following formula to perform a z-score normalization on every value in a dataset:

New value=(x-p)/ o

where:
X: Original value
p: Mean of data

o: Standard deviation of data

For the three example values, mean(p) = (28 + 46 + 34) / 3 =108 / 3 = 36.0. The standard
deviation of a set of values is the square root of the sum of the squared difference of each

value and the mean, divided by the number of values, and so is:

o = sqrt([(28 - 36.0)"2 + (46 - 36.0)"2 + (34 - 36.0)"2] / 3)

= sqrt([(-8.0)"2 + (10.0)"2 + (-2.0)"2] / 3)

=sqrt([64.0 + 100.0 +4.0] / 3)

=sqrt(168.0/3)

= sqrt(56.0)

=7.48

Therefore, the z-score normalized values are:

28: (28 - 36.0) / 7.48 = -1.07

46: (46 - 36.0) / 7.48 = +1.34

34: (34 -36.0) / 7.48 =-0.27

A z-score normalized value that is positive corresponds to an x value that is greater than the
mean value, and a z-score that is negative corresponds to an x value that is less than the

mean.

1.3.3 Constant Factor Normalization:

The simplest normalization technique is constant factor normalization. Expressed as a math
equation constant factor normalization is x' = x / k, where x is a raw value, X' is the
normalized value, and k is a numeric constant. If k = 100, the constant factor normalized

values are:

28:28/100=0.28

46: 46 /100 = 0.46

34:34/100=0.34

1.4 Dimensionality Reduction

Dimensionality reduction or dimension reduction is the process of reducing the number of
variables under consideration by obtaining a smaller set of principal variables.
Dimensionality reduction may be implemented in two ways.

* Feature selection

In feature selection, we are interested in finding k of the total of n features that give us the
most information and we discard the other (n—k) dimensions. We are going to discuss subset

Page 16

selection as a feature selection method.

* Feature extraction

In feature extraction, we are interested in finding a new set of k features that are the
combination of the original n features. These methods may be supervised or unsupervised
depending on whether or not they use the output information. The best known and most
widely used feature extraction methods are Principal Components Analysis (PCA) and Linear
Discriminant Analysis (LDA), which are both linear projection methods, unsupervised and

supervised respectively.

Why dimensionality reduction is useful?
There are several reasons why we are interested in reducing dimensionality.

» In most learning algorithms, the complexity depends on the number of input
dimensions, d, as well as on the size of the data sample, N, and for reduced memory
and computation, we are interested in reducing the dimensionality of the problem.
Decreasing d also decreases the complexity of the inference algorithm during testing.
When an input is decided to be unnecessary, we save the cost of extracting it.
Simpler models are more robust on small datasets. Simpler models have less variance,
that is, they vary less depending on the particulars of a sample, including noise,
outliers, and so forth.

When data can be explained with fewer features, we get a better idea about the
process that underlies the data, which allows knowledge extraction.
When data can be represented in a few dimensions without loss of information, it can

be plotted and analyzed visually for structure and outliers.

1.4.1 Principal component analysis:

Principal component analysis (PCA) is a statistical procedure that uses an orthogonal
transformation to convert a set of observations of possibly correlated variables into a set of
values of linearly uncorrelated variables called principal components. The number of
principal components is less than or equal to the smaller of the number of original variables
or the number of observations. This transformation is defined in such a way that the first
principal component has the largest possible variance (that is, accounts for as much of the

variability in the data as possible), and each succeeding component in turn has the highest

variance possible under the constraint that it is orthogonal to the preceding components.

Page 17

Computation of the principal component vectors

(PCA algorithm)

The following is an outline of the procedure for performing a principal component analysis
on a given data. The procedure is heavily dependent on mathematical concepts. A knowledge
of these concepts is essential to carry out this procedure.

Step 1. Data

Features | Example | Example2 --- Example N
X X1 X2 Xin
Xao Xan

Xiz XiN

an XﬂZ Xﬂ:"f

Table 4.1: Data for PCA a]g::rrithm|

Step 2. Compute the means of the variables

We compute the mean _Xi of the variable Xi:

1
N

Step 3. Calculate the covariance matrix

X?L = (X:r'l + X + '“+X?;.-“f}-

Consider the variables Xi and Xj (i and j need not be different). The covariance of the
Ordered pair (Xi;X]j) is defined as

=
4

i i M s o=
CO\'(_XI-._XJ)=\—1Z(‘Xz‘k——\i)(—le;_—xj)- (4.1
Tt k=1

We calculate lh'r’ following 7 x n matrix S called the covariance matrix of the data. The
element in the i-th row j-th column is the covariance Cov (X;, X;):

COV(.\—l..\'—l) OV _-— 2 X , e
Cov (X2,X1) (K X e Cov(Xo. X
lCov (X, X1) Cov(Xn, Xs) 5 COV(.\’R..X—”)J

S=

Step 4. Calculate the eigen values and eigenvectors of the covariance matrix
Let S be the covariance matrix and let I be the identity matrix having the same dimension
as the dimension of S.
i) Set up the equation:
det(S-AI)=0. (4.2
This is a polynomial equation of degree n in A. It has n real roots (some of the

roots may be repeated) and these roots are the eigenvalues of S. We find the n roots
An of Eq. (4.2).

ii) If A=\’ is an eigenvalue, then the corresponding eigenvector is a vector

]

N Us
U=|2

such that
(S-ADU =0.

(This is a system of n homogeneous linear equations in uq, s, ..., U, and it al-

ways has a nontrivial solution.) We next find a set of n orthogonal eigenvectors
, . r ros . . 2

Uy Ui U,, such that U; is an eigenvector corresponding to \;.”

We now normalise the eigenvectors. Given any vector X we normalise it by dividing

X by its length. The length (or, the norm) of the vector

[2,]

;o

LI"J

is defined as

|X]| = \/ﬁ + 22+ + 2.

Given any eigenvector U, the corresponding normalised eigenvector is computed as

1
—U.
WUl

We compute the n normalised eigenvectors e, e, ..., e, by

Step 5. Derive new data set

Order the eigenvalues from highest to lowest. The unit eigenvector corresponding to the
largest eigenvalue is the first principal component. The unit eigenvector corresponding to
the next highest eigenvalue is the second principal component, and so on.

i) Let the eigenvalues in descending order be A\; > Ay > ... > A,, and let the corre-
sponding unit eigenvectors be e1,e2, ..., én.
ii) Choose a positive integer p such that 1 < p < n.

Choose the eigenvectors corresponding to the eigenvalues Ay, A, ..., A, and form
the following p x n matrix (we write the eigenvectors as row vectors):

where T in the superscript denotes the transpose.

iv) We form the following n x N matrix:
[Xu-X Xi-
Xoy—-Xo Xoo-—

®,

12
- 22
Xi=

L-\'nl - -'Yn -\ynZ . -Yn

v) Next compute the matrix:
Xnew = FX.

Note that this is a p x N matrix. This gives us a dataset of N samples having p
features.

Step 6. New dataset

The matrix X, is the new dataset. Each row of this matrix represents the values of a
feature. Since there are only p rows, the new dataset has only features.

Conclusion

This is how the principal component analysis helps us in dimensional reduction of the
dataset. Note that it is not possible to get back the original n-dimensional dataset from
the new dataset.

Advantages of Dimensionality Reduction
. It helps in data compression, and hence reduced storage space.
It reduces computation time.

It also helps remove redundant features, if any.

Improved Visualization: High dimensional data is difficult to visualize, and
dimensionality reduction techniques can help in visualizing the data in 2D or 3D, which
can help in better understanding and analysis.

Overfitting Prevention: High dimensional data may lead to overfitting in machine
learning models, which can lead to poor generalization performance. Dimensionality
reduction can help in reducing the complexity of the data, and hence prevent overfitting.

Feature Extraction: Dimensionality reduction can help in extracting important
features from high dimensional data, which can be useful in feature selection for
machine learning models.

Data Preprocessing: Dimensionality reduction can be used as a preprocessing step
before applying machine learning algorithms to reduce the dimensionality of the data
and hence improve the performance of the model.

Improved Performance: Dimensionality reduction can help in improving the
performance of machine learning models by reducing the complexity of the data, and

hence reducing the noise and irrelevant information in the data.

Disadvantages of Dimensionality Reduction

. It may lead to some amount of data loss.

PCA tends to find linear correlations between variables, which is sometimes
undesirable.

PCA fails in cases where mean and covariance are not enough to define datasets.

We may not know how many principal components to keep- in practice, some
thumb rules are applied.

Interpretability: The reduced dimensions may not be easily interpretable, and it may
be difficult to understand the relationship between the original features and the reduced
dimensions.

Overfitting: In some cases, dimensionality reduction may lead to overfitting,
especially when the number of components is chosen based on the training data.

Sensitivity to outliers: Some dimensionality reduction techniques are sensitive to
outliers, which can result in a biased representation of the data.

Computational complexity: Some dimensionality reduction techniques, such as
manifold learning, can be computationally intensive, especially when dealing with large

datasets.

1.4.2 Linear Discriminant Analysis (LDA):

Linear Discriminant Analysis (LDA) is one of the commonly used dimensionality reduction
techniques in machine learning to solve more than two-class classification problems. It is also

known as Normal Discriminant Analysis (NDA) or Discriminant Function Analysis (DFA).

Linear Discriminant analysis is one of the most popular dimensionality reduction techniques
used for supervised classification problems in machine learning. It is also considered a pre-

processing step for modeling differences in ML and applications of pattern classification

Whenever there is a requirement to separate two or more classes having multiple features
efficiently, the Linear Discriminant Analysis model is considered the most common
technique to solve such classification problems. For e.g., if we have two classes with multiple

features and need to separate them efficiently. When we classify them using a single feature,

then it may show overlapping.

Consider a situation where you have plotted the relationship between two variables where
each color represents a different class. One is shown with a red color and the other with

blue.

If you are willing to reduce the number of dimensions to 1, you can just project everything

to the x-axis as shown below:

This approach neglects any helpful information provided by the second feature. However,
you can use LDA to plot it. The advantage of LDA is that it uses information from both the
features to create a new axis which in turn minimizes the variance and maximizes the

class distance of the two variables.

Drawbacks of Linear Discriminant Analysis (LDA)

Although, LDA is specifically used to solve supervised classification problems for two or

more classes which are not possible using logistic regression in machine learning. But LDA

Page 23

also fails in some cases where the Mean of the distributions is shared. In this case, LDA fails
to create a new axis that makes both the classes linearly separable. Real-
world Applications of LDA

Some of the common real-world applications of Linear discriminant Analysis are given

below:

o [FaceRecognition
Face recognition is the popular application of computer vision, where each face is
represented as the combination of a number of pixel values. In this case, LDA is used
to minimize the number of features to a manageable number before going through the
classification process. It generates a new template in which each dimension consists
of a linear combination of pixel values. If a linear combination is generated using

Fisher's linear discriminant, then it is called Fisher's face.

Medical

In the medical field, LDA has a great application in classifying the patient disease on
the basis of various parameters of patient health and the medical treatment which is
going on. On such parameters, it classifies disease as mild, moderate, or severe. This
classification helps the doctors in either increasing or decreasing the pace of the
treatment.

Customer lIdentification

In customer identification, LDA is currently being applied. It means with the help of
LDA; we can easily identify and select the features that can specify the group of
customers who are likely to purchase a specific product in a shopping mall. This can
be helpful when we want to identify a group of customers who mostly purchase a
product in a shopping mall.

For Predictions

LDA can also be used for making predictions and so in decision making. For
example, "will you buy this product” will give a predicted result of either one or two
possible classes as a buying or not.

InLearning

Nowadays, robots are being trained for learning and talking to simulate human work,
and it can also be considered a classification problem. In this case, LDA builds similar

groups on the basis of different parameters, including pitches, frequencies, sound,

tunes, etc.

UNIT — 11

Supervised Learning — | (Regression/Classification) Regression models: Simple Linear
Regression, multiple linear Regression. Cost Function, Gradient Descent, Performance
Metrics: Mean Absolute Error(MAE),Mean Squared Error(MSE) R-Squared error, Adjusted
R Square. Classification models: Decision Trees-ID3,CART, Naive Bayes, K-Nearest-
Neighbours (KNN), Logistic Regression, Multinomial Logistic Regression Support Vector
Machines (SVM) - Nonlinearity and Kernel Methods

Linear regression:
Linear regression algorithm shows a linear relationship between a dependent (y) and one or
more independent (y) variables, hence called as linear regression.

The linear regression model provides a sloped straight line representing the relationship
between the variables. Consider the below image:

Y A

Line of
regression

dependent Variable

independent Variables

Mathematically, we can representa linear regression as:
y= aptaix+ ¢
Here,
Y= Dependent Variable (Target Variable)
X= Independent Variable (predictor Variable)
a0= intercept of the line (Gives an additional degree of freedom)

al = Linear regression coefficient (scale factor to each input value).

¢ = random error

The values for x and y variables are training datasets for Linear Regression model

representation.

Regression Models

Linear regression can be further divided into two types of the algorithm:

o Simple Linear Regression:

If a single independent variable is used to predict the value of a numerical dependent
variable, then such a Linear Regression algorithm is called Simple Linear Regression.
Multiple Linear regression:
If more than one independent variable is used to predict the value of a numerical
dependent variable, then such a Linear Regression algorithm is called Multiple Linear

Regression.

2.1 Linear regression

Linear regression in simple term is answering a question on “How can I use X to predict Y?”
where X is some information that you have, and Y is some information that you want.
Let’s say you wanted a sell a house and you wanted to know how much you can sell it for.
You have information about the house that is your X and the selling price that you wanted to
know will be your Y.
Linear regression creates an equation in which you input your given numbers (X) and it
outputs the target variable that you want to find out (Y).
Linear Regression model representation
Linear regression is such a useful and established algorithm, that it is both a statistical model
and a machine learning model. Linear regression tries a draw a best fit line that is close to the
data by finding the slope and intercept.
Linear regression equation is,
Y=a+bx
In this equation:
e Yy is the output variable. It is also called the target variable in machine learning or the
dependent variable.
e X isthe input variable. It is also referred to as the feature in machine learning or it is
called the independent variable.

e aisthe constant

e Db is the coefficient of independent variable

2.2 Multiple linear regression

Multiple Linear Regression assumes there is a linear relationship between two or more
independent variables and one dependent variable.
The Formula for multiple linear regression:
Y=B0+B0X1+B2X2+ +BnXn+e
e Y =the predicted value of the dependent variable
o BO = the y-intercept (value of y when all other parameters are set to 0)
o B1X1=the regression coefficient (B1) of the first independent variable (X1)
o BnXn =the regression coefficient of the last independent variable

e e =model error

2.3 Cost-function

The cost function is defined as the measurement of difference or error between actual values
and expected values at the current position and present in the form of a single real number.

2.4 Gradient Descent
It is known as one of the most commonly used optimization algorithms to train machine

learning models by means of minimizing errors between actual and expected results. Further,

gradient descent is also used to train Neural Networks.

2.4.1 Types of Gradient Descent

Based on the error in various training models, the Gradient Descent learning algorithm can be
divided into Batch gradient descent, stochastic gradient descent, and mini-batch
gradient descent. Let's understand these different types of gradient descent:

1. Batch Gradient Descent:

Batch gradient descent (BGD) is used to find the error for each point in the training set and
update the model after evaluating all training examples. This procedure is known as the
training epoch. In simple words, it is a greedy approach where we have to sum over all
examples for each update.
Advantages of Batch gradient descent:

o It produces less noise in comparison to other gradient descent.

o It produces stable gradient descent convergence.

o It is Computationally efficient as all resources are used for all training samples.

Page 27

2. Stochastic gradient descent

Stochastic gradient descent (SGD) is a type of gradient descent that runs one training
example per iteration.

3. MiniBatch Gradient Descent:

Mini Batch gradient descent is the combination of both batch gradient descent and stochastic

gradient descent.

N

1 A
MAE =2 |y~ 7|
i=1

Where,
y — predicted value of y
y — mean value of y

Mean Squared Error represents the average of the squared difference between the

original and predicted values in the data set. It measures the variance of the residuals.

l\r

1 asia

MSE = EZ(.V, 4 5
i=

Root Mean Squared Error isthe square root of Mean Squared error. It measures the

standard deviation of residuals.

L ¥

N

1
RMSE = VMSE = NZ(y, — 9)%

=1

The coefficient of determination or R-squared represents the proportion of the variance
in the dependent variable which is explained by the linear regression model. It is a scale-
free score i.e. irrespective of the values being small or large, the value of R square will be

less than one.

> —¥)*

8= L3
2O —¥)?

Adjusted R squared is a modified version of R square, and it is adjusted for the
number of independent variables in the model, and it will always be less than or equal to
R2.In the formula below n is the number of observations in the data and k is the number

of the independent variables in the data.

1-R*{n-1)
n—k-1

R, =1-

2.5 Evaluation Metrics

Mean Squared Error(MSE) and Root Mean Square Error penalizes the large prediction
errors vi-a-vis Mean Absolute Error (MAE). However, RMSE is widely used than MSE
to evaluate the performance of the regression model with other random models as it has
the same units as the dependent variable (Y-axis).

MSE is a differentiable function that makes it easy to perform mathematical operations
in comparison to a non-differentiable function like MAE. Therefore, in many models,
RMSE is used as a default metric for calculating Loss Function despite being harder to
interpret than MAE.

The lower value of MAE, MSE, and RMSE implies higher accuracy of a regression
model. However, a higher value of R square is considered desirable.

R Squared & Adjusted R Squared are used for explaining how well the independent
variables in the linear regression model explains the variability in the dependent variable.
R Squared value always increases with the addition of the independent variables which
might lead to the addition of the redundant variables in our model. However, the adjusted
R-squared solves this problem.

Adjusted R squared takes into account the number of predictor variables, and it is used
to determine the number of independent variables in our model. The value of Adjusted R
squared decreases if the increase in the R square by the additional variable isn’t

significant enough.

For comparing the accuracy among different linear regression models, RMSE is a
better choice than R Squared.

2.6 Decision Trees

In simple words, a decision tree is a structure that contains nodes (rectangular boxes) and
edges(arrows) and is built from a dataset (table of columns representing features/attributes and
rows corresponds to records). Each node is either used to make a decision (known as decision
node) or represent an outcome (known as leaf node).

Decision tree Example

Is the person fit?

Age = 307

Eats junk food? Works out?

\‘/V \% \YI y \%O
Fit Fit

Unfit Unfit

The picture above depicts a decision tree that is wused to classify whether a person
is Fit or Unfit.

The decision nodes here are questions like * ‘Is the person less than 30 years of age?’, ‘Does
the person eat junk?’, etc. and the leaves are one of the two possible
outcomesviz. Fit and Unfit.

Looking at the Decision Tree we can say make the following decisions:
if a person is less than 30 years of age and doesn’t eat junk food then he is Fit, if a person is
less than 30 years of age and eats junk food then he is Unfit and so on.

The initial node is called the root node (colored in blue), the final nodes are called the leaf
nodes (colored in green) and the rest of the nodes are called intermediate or internal nodes.
The root and intermediate nodes represent the decisions while the leaf nodes represent the
outcomes.

2.6.11D3

ID3 stands for Iterative Dichotomiser 3 and is named such because the algorithm iteratively
(repeatedly) dichotomizes(divides) features into two or more groups at each step.

Invented by Ross Quinlan, ID3 uses a top-down greedy approach to build a decision tree. In

simple words, the top-down approach means that we start building the tree from the top and

the greedy approach means that at each iteration we select the best feature at the present
moment to create a node.

Most generally ID3 is only used for classification problems with nominal features only.

I1D3 Steps

Calculate the Information Gain of each feature.
Considering that all rows don’t belong to the same class, split the dataset S into subsets
using the feature for which the Information Gain is maximum.
Make a decision tree node using the feature with the maximum Information gain.
If all rows belong to the same class, make the current node as a leaf node with the classas
its label.
Repeat for the remaining features until we run out of all features, or the decision tree
has all leaf nodes.
2.6.2 CART Algorithm
The CART algorithm works via the following process:
. The best split point of each input is obtained.
. Based on the best split points of each input in Step 1, the new “best” split point is
identified.
Split the chosen input according to the “best” split point.
Continue splitting until a stopping rule is satisfied or no further desirable splitting is

available.

CART algorithm uses Gini Impurity to split the dataset into a decision tree .It does that by
searching for the best homogeneity for the sub nodes, with the help of the Gini index
criterion.

Gini index/Gini impurity

The Gini index is a metric for the classification tasks in CART. It stores the sum of squared
probabilities of each class. It computes the degree of probability of a specific variable that is
wrongly being classified when chosen randomly and a variation of the Gini coefficient. It
works on categorical variables, provides outcomes either “successful” or “failure” and hence
conducts binary splitting only.

The degree of the Gini index varies from 0 to 1,

https://en.wikipedia.org/wiki/Ross_Quinlan
https://corporatefinanceinstitute.com/resources/knowledge/other/nominal-data/

Where 0 depicts that all the elements are allied to a certain class, or only one class
exists there.
The Gini index of value 1 signifies that all the elements are randomly distributed
across various classes, and
. A value of 0.5 denotes the elements are uniformly distributed into some classes.
Classification tree
A classification tree is an algorithm where the target variable is categorical. The algorithm is
then used to identify the “Class” within which the target variable is most likely to fall.
Classification trees are used when the dataset needs to be split into classes that belong to the
response variable(like yes or no)

Regression tree

A Regression tree is an algorithm where the target variable is continuous and the tree is used

to predict its value. Regression trees are used when the response variable is continuous. For
example, if the response variable is the temperature of the day.
Pseudo-code of the CART algorithm
d =0, endtree =0
Note(0) =1, Node(1) =0, Node(2) =0
while endtree < 1
if Node(29-1) + Node(29) +..... + Node(29+1-2) =2 - 2d+
endtree = 1
else
doi=29-1,29,
if Node(i) > -1
Split tree
else
Node(2i+1) =-1
Node(2i+2) = -1
end if
end do
end if
d=d+1
end while

CART model representation

CART models are formed by picking input variables and evaluating split points on those

variables until an appropriate tree is produced.

Steps to create a Decision Tree using the CART algorithm:

Greedy algorithm: In this The input space is divided using the Greedy method which
is known as a recursive binary spitting. This is a numerical method within which all of
the values are aligned and several other split points are tried and assessed using a cost
function.

Stopping Criterion: As it works its way down the tree with the training data, the
recursive binary splitting method described above must know when to stop splitting. The
most frequent halting method is to utilize a minimum amount of training data allocated to
every leaf node. If the count is smaller than the specified threshold, the split is rejected
and also the node is considered the last leaf node.

Tree pruning: Decision tree’s complexity is defined as the number of splits in the
tree. Trees with fewer branches are recommended as they are simple to grasp and less
prone to cluster the data. Working through each leaf node in the tree and evaluating the
effect of deleting it using a hold-out test set is the quickest and simplest pruning
approach.

Data preparation for the CART: No special data preparation is required for the
CART algorithm.

2.7 Naive Bayes Classifier Algorithm

o Naive Bayes algorithm is a supervised learning algorithm, which is based on Bayes
theorem and used for solving classification problems.
It is mainly used in text classification that includes a high-dimensional training
dataset.
Naive Bayes Classifier is one of the simple and most effective Classification
algorithms which helps in building the fast machine learning models that can make
quick predictions.
It is a probabilistic classifier, which means it predicts on the basis of the
probability of an object.
Some popular examples of Naive Bayes Algorithm are spam filtration, Sentimental
analysis, and classifying articles.

Why is it called Naive Bayes?

The Naive Bayes algorithm is comprised of two words Naive and Bayes, Which can be
described as:

o Naive: It is called Naive because it assumes that the occurrence of a certain feature is
independent of the occurrence of other features. Such as if the fruit is identified on the
bases of color, shape, and taste, then red, spherical, and sweet fruit is recognized as an
apple. Hence each feature individually contributes to identify that it is an apple
without depending on each other.

o Bayes: It is called Bayes because it depends on the principle of Bayes' Theorem.

Bayes' Theorem:

o Bayes' theorem is also known as Bayes' Rule or Bayes' law, which is used to
determine the probability of a hypothesis with prior knowledge. It depends on the
conditional probability.

o The formula for Bayes' theorem is given as:

o py= PEIAPEA)
P(B)
Where,
P(A|B) is Posterior probability: Probability of hypothesis A on the observed event B.
P(BJA) is Likelihood probability: Probability of the evidence given that the probability of a
hypothesis is true.
P(A) is Prior Probability: Probability of hypothesis before observing the evidence.
P(B) is Marginal Probability: Probability of Evidence.

Working of Naive Bayes' Classifier:

Working of Naive Bayes' Classifier can be understood with the help of the below example:

Suppose we have a dataset of weather conditions and corresponding target variable "Play".
So using this dataset we need to decide that whether we should play or not on a particular day
according to the weather conditions. So to solve this problem, we need to follow the below
steps:

1. Convert the given dataset into frequency tables.

2. Generate Likelihood table by finding the probabilities of given features.

3. Now, use Bayes theorem to calculate the posterior probability.

https://www.javatpoint.com/bayes-theorem-in-artifical-intelligence

2.8 K-Nearest Neighbor(KNN) Algorithm

o K-Nearest Neighbour is one of the simplest Machine Learning algorithms based on

Supervised Learning technique.
K-NN algorithm assumes the similarity between the new case/data and available cases
and put the new case into the category that is most similar to the available categories.
K-NN algorithm stores all the available data and classifies a new data point based on
the similarity. This means when new data appears then it can be easily classified into
a well suite category by using K- NN algorithm.
K-NN algorithm can be used for Regression as well as for Classification but mostly it
is used for the Classification problems.
K-NN is a non-parametric algorithm, which means it does not make any
assumption on underlying data.
It is also called a lazy learner algorithm because it does not learn from the training
set immediately instead it stores the dataset and at the time of classification, it
performs an action on the dataset.
KNN algorithm at the training phase just stores the dataset and when it gets new data,
then it classifies that data into a category that is much similar to the new data.

Why do we need a K-NN Algorithm?

Suppose there are two categories, i.e., Category A and Category B, and we have a new data

point x1, so this data point will lie in which of these categories. To solve this type of
problem, we need a K-NN algorithm. With the help of K-NN, we can easily identify the

category or class of a particular dataset. Consider the below diagram:

qQ <& o €I

A

.‘r\ Category B y\ Category B

Mew data point New data point

assigned to
Category 1
Category A Category A)

(X

How does K-NN work?

The K-NN working can be explained on the basis of the below algorithm:

o

)

o

)

Step-1: Select the number K of the neighbors

Step-2: Calculate the Euclidean distance of K number of neighbors

Step-3: Take the K nearest neighbors as per the calculated Euclidean distance.
Step-4: Among these k neighbors, count the number of the data points in each
category.

Step-5: Assign the new data points to that category for which the number of the
neighbor is maximum.

Step-6: Our model is ready.

Suppose we have a new data point and we need to put it in the required category. Consider

the below image:

A

* o
** o
¢

* *
\ Category B

New Data
point

Category A

O

Firstly, we will choose the number of neighbors, so we will choose the k=5.

Next, we will calculate the Euclidean distance between the data points. The
Euclidean distance is the distance between two points, which we have already studied

in geometry. It can be calculated as:

X1 X2 >o

Euclidean Distance between Arand Bz = \/[)(2-)(1}2+{Y2-Y1)2

o By calculating the Euclidean distance we got the nearest neighbors, as three nearest
neighbors in category A and two nearest neighbors in category B. Consider the below

image:

'\

Category B
O ®

New Data
point

Category A

o As we can see the 3 nearest neighbors are from category A, hence this new data point
must belong to category A.
How to select the value of K in the K-NN Algorithm?
Below are some points to remember while selecting the value of K in the K-NN algorithm:
o There isno particular way to determine the best value for "K", so we need to try some
values to find the best out of them. The most preferred value for K is 5.

)

o

A very low value for K such as K=1 or K=2, can be noisy and lead to the effects of
outliers in the model.

Large values for K are good, but it may find some difficulties.

2.9 Logistic Regression

@)

Logistic regression is one of the most popular Machine Learning algorithms, which
comes under the Supervised Learning technique. It is used for predicting the
categorical dependent variable using a given set of independent variables.

Logistic regression predicts the output of a categorical dependent variable. Therefore
the outcome must be a categorical or discrete value. It can be either Yes or No, O or 1,
true or False, etc. but instead of giving the exact value as 0 and 1, it gives the
probabilistic values which lie between 0 and 1.

Logistic Regression is much similar to the Linear Regression except that how they are
used. Linear Regression is used for solving Regression problems, whereas Logistic
regression is used for solving the classification problems.

In Logistic regression, instead of fitting a regression line, we fit an "S" shaped logistic
function, which predicts two maximum values (0 or 1).

The curve from the logistic function indicates the likelihood of something such as
whether the cells are cancerous or not, a mouse is obese or not based on its weight,
etc.

Logistic Regression is a significant machine learning algorithm because it has the
ability to provide probabilities and classify new data using continuous and discrete
datasets.

Logistic Regression can be used to classify the observations using different types of
data and can easily determine the most effective variables used for the classification.
The below image is showing the logistic function:

y=0.8

Threshold Value

y=0.3

»x

o The sigmoid function is a mathematical function used to map the predicted values to

Logistic Function (Sigmoid Function):

probabilities.
It maps any real value into another value within a range of 0 and 1.
The value of the logistic regression must be between 0 and 1, which cannot go beyond
this limit, so it forms a curve like the "S™ form. The S-form curve is called the
Sigmoid function or the logistic function.
In logistic regression, we use the concept of the threshold value, which defines the
probability of either 0 or 1. Such as values above the threshold value tends to 1, and a
value below the threshold values tends to 0.
Assumptions for Logistic Regression:
o The dependent variable must be categorical in nature.
o The independent variable should not have multi-collinearity.
Logistic Regression Equation:
The Logistic regression equation can be obtained from the Linear Regression equation. The
mathematical steps to get Logistic Regression equations are given below:
o We know the equation of the straight line can be written as:

y=bg + byxqy + baxy + byxy + -+ byx,,

o In Logistic Regression y can be between 0 and 1 only, so for this let's divide the

above equation by (1-y):

IL ; 0 for y= 0, and infinity for y=1
=¥

o But we need range between -[infinity] to +[infinity], then take logarithm of the
equation it will become:

log 1:’;—}'] = by + byxy + byxy; + byxs + -+ byx,

The above equation is the final equation for Logistic Regression.
Type of Logistic Regression:
On the basis of the categories, Logistic Regression can be classified into three types:
o Binomial: In binomial Logistic regression, there can be only two possible types of the
dependent variables, such as 0 or 1, Pass or Fail, etc.
Multinomial: In multinomial Logistic regression, there can be 3 or more possible
unordered types of the dependent variable, such as "cat", "dogs", or "sheep"
Ordinal: In ordinal Logistic regression, there can be 3 or more possible ordered types

of dependent variables, such as "low", "Medium", or "High".

2.10 Multinomial Logistic Regression

Multinomial Logistic Regression is a classification technique that extends the logistic
regression algorithm to solve multiclass possible outcome problems, given one or more
independent variables.
Example for Multinomial Logistic Regression:
(@) Which Flavor of ice cream will a person choose?
Dependent Variable:

e Vanilla

e Chocolate

« Butterscotch

e Black Current
Independent Variables:

o Gender

e Age

e Occasion

e Happiness

o Etc.
Multinomial Logistic Regression is also known as multiclass logistic regression, softmax
regression, polytomous logistic regression, multinomial logit, maximum entropy (MaxEnt)

classifier and conditional maximum entropy model.

Dependent Variable:

The dependent Variable can have two or more possible outcomes/classes.

The dependent variables are nominal in nature means there is no any kind of ordering in
target dependent classes i.e. these classes cannot be meaningfully ordered.

The dependent variable to be predicted belongs to a limited set of items defined.

Basic Steps
The basic steps of the SVM are:

1. selecttwo hyperplanes (in 2D) which separates the data with no points between
them (red lines)
maximize their distance (the margin)
the average line (here the line half way between the two red lines) will be the decision
boundary
This is very nice and easy, but finding the best margin, the optimization problem is not trivial
(itis easy in 2D, when we have only two attributes, but what if we have N dimensions with N
a very big number).
Non-Linear SVM:
If data is linearly arranged, then we can separate it by using a straight line, but for non-linear
data, we cannot draw a single straight line. Consider the below image:

A

A

So to separate these data points, we need to add one more dimension. For linear data, we have
used two dimensions x and y, so for non-linear data, we will add a third dimension z. It can
be calculated as:

7=x2 +y?

By adding the third dimension, the sample space will become as below image:

So now, SVM will divide the datasets into classes in the following way. Consider the below
image:

Best Hyperplane

Since we are in 3-d Space, hence it is looking like a plane parallel to the x-axis. If we convert
it in 2d space with z=1, then it will become as:

A

Best Hyperplane
A A

A

0
X

Hence we get a circumference of radius 1 in case of non-linear data.

Kernel Methods

Kernels or kernel methods (also called Kernel functions) are sets of different types of
algorithms that are being used for pattern analysis. They are used to solve a non-linear
problem by using a linear classifier. Kernels Methods are employed in SVM (Support Vector
Machines) which are used in classification and regression problems. The SVM uses what is
called a “Kernel Trick” where the data is transformed and an optimal boundary is found for
the possible outputs.

The Need for Kernel Method and its Working

Before we get into the working of the Kernel Methods, it is more important to understand

support vector machines or the SVMs because kernels are implemented in SVM models. So,

Support Vector Machines are supervised machine learning algorithms that are used in
classification and regression problems such as classifying an apple to class fruit while
classifying a Lion to the class animal.

we have 2 dimension which represents the ambient space but the lone which divides or
classifies the space is one dimension less than the ambient space and is called hyperplane.
But what if we have input like this:

It is very difficult to solve this classification using a linear classifier as there is no good linear

line that should be able to classify the red and the green dots as the points are randomly

Page 43

https://www.educba.com/machine-learning-algorithms/

UNIT — 1

Supervised Learning — Il (Neural Networks)

Neural Network Representation — Problems — Perceptrons , Activation
Functions, ArtificialNeural Networks (ANN) , Back Propagation Algorithm.
Convolutional Neural Networks - Convolution and Pooling layers, ,
Recurrent NeuralNetworks (RNN).

3.1 Neural Network Representation

The term " Neural Network™ is derived from Biological neural networks that develop the
structure of a human brain. Similar to the human brain that has neurons interconnected to one
another,
artificial
neural networks
also have

neurons) that are

interconnected to one another in various layers of the networks. These neurons are known as
nodes.

The given figure illustrates the typical diagram of Biological Neural Network.
The typical Artificial Neural Network looks something like the given figure

Dendrites from Biological Neural Network represent inputs in Artificial Neural Networks,
cell nucleus represents Nodes, synapse represents Weights, and Axon represents Output.

Relationship between Biological neural network and artificial neural network:

Biological Neural Network Artificial Neural Network

Dendrites Inputs
Cell nucleus Nodes
Synapse Weights

Axon Output

An Artificial Neural Network in the field of Artificial intelligence where it attempts to
mimic the network of neurons makes up a human brain so that computers will have an option
to understand things and make decisions in a human-like manner. The artificial neural
network is designed by programming computers to behave simply like interconnected brain

cells.

There are around 1000 billion neurons in the human brain. Each neuron has an association

point somewhere in the range of 1,000 and 100,000. In the human brain, data is stored in such

a manner as to be distributed, and we can extract more than one piece of this data when
necessary from our memory parallelly. We can say that the human brain is made up of

incredibly amazing parallel processors.

We can understand the artificial neural network with an example, consider an example of a
digital logic gate that takes an input and gives an output. "OR" gate, which takes two inputs.
If one or both the inputs are "On," then we get "On" in output. If both the inputs are "Off,"
then we get

J Input1 X T
"Off" in

output. Here
the output Input2 Xz —%= -

wil

depends

upon input. Input 3 XN

Our brain does not perform the same task. The outputs to inputs relationship keep changing

because of the neurons in our brain, which are "learning."

Input Layer

Hidden Layer 1

Hidden Layer 2

Output Layer

The architecture of an artificial neural network:

To understand the concept of the architecture of an artificial neural network, we have to
understand what a neural network consists of. In order to define a neural network that
consists of a large number of artificial neurons, which are termed units arranged in a
sequence of layers. Lets us look at various types of layers available in an artificial neural

network.
Artificial Neural Network primarily consists of three layers:
Input Layer:

As the name suggests, it accepts inputs in several different formats provided by the

programmer.
Hidden Layer:

The hidden layer presents in-between input and output layers. It performs all the calculations

to find hidden features and patterns.

Output Layer:

The input goes through a series of transformations using the hidden layer, which finally

results in output that is conveyed using this layer.

The artificial neural network takes input and computes the weighted sum of the inputs and

includes a bias. This computation is represented in the form of a transfer function.

n
ZWi*Xi—b
i=1

It determines weighted total is passed as an input to an activation function to produce the
output. Activation functions choose whether a node should fire or not. Only those who are
fired make it to the output layer. There are distinctive activation functions available that can

be applied upon the sort of task we are performing.

Perceptrons

Perceptron is a building block of an Artificial Neural Network. Initially, in the mid of 19"

century, Mr. Frank Rosenblatt invented the Perceptron for performing certain calculations
to detect input data capabilities or business intelligence. Perceptron is a linear Machine
Learning algorithm used for supervised learning for various binary classifiers. This algorithm
enables neurons to learn elements and processes them one by one during preparation. In this
tutorial, "Perceptron in Machine Learning,” we will discuss in-depth knowledge of
Perceptron and its basic functions in brief. Let's start with the basic introduction of

Perceptron..

Perceptron is Machine Learning algorithm for supervised learning of various binary
classification tasks. Further, Perceptron is also understood as an Artificial Neuron or
neural network unit that helps to detect certain input data computations in business

intelligence.

Perceptron model is also treated as one of the best and simplest types of Artificial Neural
networks. However, it is a supervised learning algorithm of binary classifiers. Hence, we can
consider it as a single-layer neural network with four main parameters, i.e., input values,

weights and Bias, net sum, and an activation function.

Basic Components of Perceptron

Mr. Frank Rosenblatt invented the perceptron model as a binary classifier which contains

three main components. These are as follows:

Inputs Weights Net input Activation
function function

N

Ny

3 output

e Input Nodes or Input Layer:

This is the primary component of Perceptron which accepts the initial data into the system for

further processing. Each input node contains a real numerical value.
e Wight and Bias:

Weight parameter represents the strength of the connection between units. This is another
most important parameter of Perceptron components. Weight is directly proportional to the
strength of the associated input neuron in deciding the output. Further, Bias can be considered

as the line of intercept in a linear equation.
e Activation Function:

These are the final and important components that help to determine whether the neuron will

fire or not. Activation Function can be considered primarily as a step function.
Types of Activation functions:

e Sign function

e Step function, and

e Sigmoid function

i

-1

Step Function Sign Function Sigmoid Function

The data scientist uses the activation function to take a subjective decision based on various
problem statements and forms the desired outputs. Activation function may differ (e.g., Sign,
Step, and Sigmoid) in perceptron models by checking whether the learning process is slow or

has vanishing or exploding gradients.

How does Perceptron work?

In Machine Learning, Perceptron is considered as a single-layer neural network that consists
of four main parameters named input values (Input nodes), weights and Bias, net sum, and an
activation function. The perceptron model begins with the multiplication of all input values

and their weights, then adds these values together to create the weighted sum. Then this

weighted sum is applied to the activation function 'f' to obtain the desired output. This

activation function is also known as the step function and is represented by 'f".

ef_} output

Net input Activation
function function

Percepiron rule

This step function or Activation function plays a vital role in ensuring that output is mapped
between required values (0,1) or (-1,1). It is important to note that the weight of input is
indicative of the strength of a node. Similarly, an input's bias value gives the ability to shift

the activation function curve up or down.
Perceptron model works in two important steps as follows:
Step-1

In the first step first, multiply all input values with corresponding weight values and then add
them to determine the weighted sum. Mathematically, we can calculate the weighted sum as

follows:

> wi*xi = X1*wl + X2*wW2 +...wn*xn

Add a special term called bias 'b" to this weighted sum to improve the model's performance.
dwi*xi+b

Step-2

In the second step, an activation function is applied with the above-mentioned weighted sum,

which gives us output either in binary form or a continuous value as follows:

Y = (3 wi*xi + b)

Types of Perceptron Models

Based on the layers, Perceptron models are divided into two types. These are as follows:

1. Single-layer Perceptron Model

2. Multi-layer Perceptron model

Single Layer Perceptron Model:

This is one of the easiest Artificial neural networks (ANN) types. A single-layered perceptron
model consists feed-forward network and also includes a threshold transfer function inside
the model. The main objective of the single-layer perceptron model is to analyze the linearly
separable objects with binary outcomes.

In a single layer perceptron model, its algorithms do not contain recorded data, so it begins

with inconstantly allocated input for weight parameters. Further, it sums up all inputs

(weight). After adding all inputs, if the total sum of all inputs is more than a pre-determined

value, the model gets activated and shows the output value as +1.

If the outcome is same as pre-determined or threshold value, then the performance of this
model is stated as satisfied, and weight demand does not change. However, this model
consists of a few discrepancies triggered when multiple weight inputs values are fed into the
model. Hence, to find desired output and minimize errors, some changes should be necessary

for the weights input.
"Single-layer perceptron can learn only linearly separable patterns.”.
Multi-Layered Perceptron Model:

Like a single-layer perceptron model, a multi-layer perceptron model also has the same

model structure but has a greater number of hidden layers.

The multi-layer perceptron model is also known as the Backpropagation algorithm, which

executes in two stages as follows:

o Forward Stage: Activation functions start from the input layer in the forward stage
and terminate on the output layer.
Backward Stage: In the backward stage, weight and bias values are modified as per
the model's requirement. In this stage, the error between actual output and demanded

originated backward on the output layer and ended on the input layer.

Hence, a multi-layered perceptron model has considered as multiple artificial neural networks
having various layers in which activation function does not remain linear, similar to a single
layer perceptron model. Instead of linear, activation function can be executed as sigmoid,

TanH, ReLU, etc., for deployment.

A multi-layer perceptron model has greater processing power and can process linear and non-
linear patterns. Further, it can also implement logic gates such as AND, OR, XOR, NAND,
NOT, XNOR, NOR.

Advantages of Multi-Layer Perceptron:

A multi-layered perceptron model can be used to solve complex non-linear problems.
It works well with both small and large input data.
It helps us to obtain quick predictions after the training.

It helps to obtain the same accuracy ratio with large as well as small data.
Disadvantages of Multi-Layer Perceptron:

In Multi-layer perceptron, computations are difficult and time-consuming.
In multi-layer Perceptron, it is difficult to predict how much the dependent variable
affects each independent variable.

The model functioning depends on the quality of the training.

Perceptron Function

Perceptron function "f(x)" can be achieved as output by multiplying the input 'x' with the

learned weight coefficient 'w'.

Mathematically, we can express it as follows:
f(x)=1; if w.x+b>0
otherwise, f(x)=0

e W' represents real-valued weights vector
o 'b' represents the bias

e 'X'represents a vector of input x values.
Characteristics of Perceptron
The perceptron model has the following characteristics.

Perceptronis a machine learning algorithm for supervised learning of binary
classifiers.

In Perceptron, the weight coefficient is automatically learned.

Initially, weights are multiplied with input features, and the decision is made whether

the neuron is fired or not.

The activation function applies a step rule to check whether the weight function is

greater than zero.

The linear decision boundary is drawn, enabling the distinction between the two
linearly separable classes +1 and -1.

If the added sum of all input values is more than the threshold value, it must have an

output signal; otherwise, no output will be shown.

Limitations of Perceptron Model

A perceptron model has limitations as follows:

The output of a perceptron can only be a binary number (0 or 1) due to the hard limit
transfer function.
Perceptron can only be used to classify the linearly separable sets of input vectors. If

input vectors are non-linear, it is not easy to classify them properly.

Activation Functions

Activation function also helps to normalize the output of any input in the range between 1 to
-1. Activation function must be efficient and it should reduce the computation time because

the neural network sometimes trained on millions of data points.

Without an activation function, a neural network will become a linear regression model. But
introducing the activation function the neural network will perform a non-linear
transformation to the input and will be suitable to solve problems like image classification,

sentence prediction, or langue translation.

The neuron is basically is a weighted average of input, then this sum is passed through an

activation function to get an output.
Y =Y (weights*input + bias)

Here Y can be anything for a neuron between range -infinity to +infinity. So, we have to

bound our output to get the desired prediction or generalized results.

Y = Activation function(d. (weights*input + bias))

So, we pass that neuron to activation function to bound output values.

Why do we need Activation Functions

Without activation function, weight and bias would only have a linear transformation, or

neural network is just a linear regression model, a linear equation is polynomial of one degree

only which is simple to solve but limited in terms of ability to solve complex problems or

higher degree polynomials.

But opposite to that, the addition of activation function to neural network executes the non-
linear transformation to input and make it capable to solve complex problems such as

language translations and image classifications.

In addition to that, Activation functions are differentiable due to which they can easily
implement back propagations, optimized strategy while performing backpropagations to

measure gradient loss functions in the neural networks.

Types of Activation Functions

The two main categories of activation functions are:

e Linear Activation Function

e Non-linear Activation Functions

Linear Neural Network Activation Function

Linear Activation Function

Equation: A linear function's equation, which is y = x, is similar to the eqn of a single

direction.

The ultimate activation function of the last layer is nothing more than a linear function of
input from the first layer, regardless of how many levels we have if they are all linear in

nature. -inf to +inf is the range.
Uses: The output layer is the only location where the activation function's function is applied.

If we separate a linear function to add non-linearity, the outcome will no longer depend on

the input "x," the function will become fixed, and our algorithm won't exhibit any novel

behaviour.

A good example of a regression problem is determining the cost of a house. We can use
linear activation at the output layer since the price of a house may have any huge or little
value. The neural network's hidden layers must perform some sort of non-linear function

even in this circumstance.

Linear Function

linear(x)

Fig: Linear Activation Function
Equation : f(x) = x
Range : (-infinity to infinity)

It doesn’t help with the complexity or various parameters of usual data that is fed to the
neural networks.

Non Linear Neural Network Activation Function

1. Sigmoid or Logistic Activation Function

Fig: Sigmoid Function

It is a functional that is graphed in a "S" shape.
A'is equal to 1/(1 + e-x).

Non-linear in nature. Observe that while Y values are fairly steep, X values range from -2 to

2. To put it another way, small changes in x also would cause significant shifts in the value of

Y. spans from 0 to 1.

Uses: Sigmoid function is typically employed in the output nodes of a classi?cation, where
the result may only be either 0 or 1. Since the value for the sigmoid function only ranges
from 0 to 1, the result can be easily anticipated to be 1 if the value is more than 0.5 and O if it

is not.

It is a function which is plotted as S’ shaped graph.

Equation : A=1/(1 +¢¥)

Nature : Non-linear. Notice that X values lies between -2 to 2, Y values are very
steep. This means, small changes in x would also bring about large changes in the
value of V.

Value Range : 0to 1

Uses : Usually used in output layer of a binary classification, where result is either 0

or 1, as value for sigmoid function lies between 0 and 1 only so, result can be

predicted easily to be 1 if value is greater than 0.5 and 0 otherwise.

Tanh Function

The activation that consistently outperforms sigmoid function is known as tangent hyperbolic
function. It's actually a sigmoid function that has been mathematically adjusted. Both are

comparable to and derivable from one another.

-1

Range of values: -1 to +1. non-linear nature

Uses: - Since its values typically range from -1 to 1, the mean again for hidden layer of a

neural network will be 0 or very near to it. This helps to centre the data by getting the mean
close to 0. This greatly facilitates learning for the following layer.

y

f(x) = 2/ (1+e~(-2x)) -1 ,

The activation that works almost always better than sigmoid function is Tanh function
also known as Tangent Hyperbolic function. It’s actually mathematically shifted

version of the sigmoid function. Both are similar and can be derived from each other.
Equation :-

f(x) = tanh(x) = —=2— —1

l4+e2x

Value Range :- -1to +1

Nature :- non-linear

Uses :- Usually used in hidden layers of a neural network as it’s values lies between -
1 to 1 hence the mean for the hidden layer comes out be 0 or very close to it, hence

helps in centering the data by bringing mean close to 0. This makes learning for the
next layer much easier.

ReLU (Rectified Linear Unit) Activation Function

Currently, the ReLU is the activation function that is employed the most globally. Since

practically all convolutional neural networks and deep learning systems employ it.
The derivative and the function are both monotonic.

However, the problem is that all negative values instantly become zero, which reduces the
model's capacity to effectively fit or learn from the data. This means that any negative input
to a ReLU activation function immediately becomes zero in the graph, which has an impact

on the final graph by improperly mapping the negative values.

/

It Stands for Rectified linear unit. It is the most widely used activation function.
Chiefly implemented in hidden layers of Neural network.

Equation :- A(x) =max(0,x). It gives an output X if x is positive and 0 otherwise.
Value Range :- [0, inf)

Nature :- non-linear, which means we can easily backpropagate the errors and have
multiple layers of neurons being activated by the ReL.U function.

Uses :- ReLu is less computationally expensive than tanh and sigmoid because it
involves simpler mathematical operations. At a time only a few neurons are activated

making the network sparse making it efficient and easy for computation.
In simple words, RELU learns much faster than sigmoid and Tanh function.

Softmax Function

Although it is a subclass of the sigmoid function, the softmax function comes in handy when

dealing with multiclass classification issues.

Used frequently when managing several classes. In the output nodes of image classification
issues, the softmax was typically present. The softmax function would split by the sum of the

outputs and squeeze all outputs for each category between 0 and 1.

The output unit of the classifier, where we are actually attempting to obtain the probabilities

to determine the class of each input, is where the softmax function is best applied.

The usual rule of thumb is to utilise RELU, which is a usual perceptron in hidden layers and

is employed in the majority of cases these days, if we really are unsure of what encoder to

apply.

A very logical choice for the output layer is the sigmoid function if your input is for binary
classification. If our output involves multiple classes, Softmax can be quite helpful in
predicting the odds for each class.

Softmax Scores

The softmax function is also a type of sigmoid function but is handy when we are trying to
handle multi- class classification problems.

e Nature :- non-linear

e Uses :- Usually used when trying to handle multiple classes. the softmax function was

commonly found in the output layer of image classification problems.The softmax

Page 61

function would squeeze the outputs for each class between 0 and 1 and would also
divide by the sum of the outputs.

Output:- The softmax function is ideally used in the output layer of the classifier
where we are actually trying to attain the probabilities to define the class of each
input.

The basic rule of thumb is if you really don’t know what activation function to use,
then simply use RELU as it is a general activation function in hidden layers and is
used in most cases these days.

If your output is for binary classification then, sigmoid function is very natural choice
for output layer.

If your output is for multi-class classification then, Softmax is very useful to predict

the probabilities of each classes.

3.2 Artificial Neural Networks (ANN)

Artificial Neural Networks (ANN) are algorithms based on brain function and are used to
model complicated patterns and forecast issues. The Artificial Neural Network (ANN) is a
deep learning method that arose from the concept of the human brain Biological Neural
Networks. The development of ANN was the result of an attempt to replicate the workings of
the human brain. The workings of ANN are extremely similar to those of biological neural
networks, although they are not identical. ANN algorithm accepts only numeric and

structured data.
Artificial Neural Networks Architecture

1. There are three layers in the network architecture: the input layer, the hidden layer (more
than one), and the output layer. Because of the numerous layers are sometimes referred to as

the MLP (Multi-Layer Perceptron).

Feed-forward

ﬁ

7N

2
A PN

™

—

b ~
Network Inputs - > q Network Output
N S
- /f /
— \\\\ S
~ —~—
- Al

Input Layer\\ - / Output Layer

Hidden Layer

—

Back-propagation

2. It is possible to think of the hidden layer as a “distillation layer,” which extracts some of
the most relevant patterns from the inputs and sends them on to the next layer for further
analysis. It accelerates and improves the efficiency of the network by recognizing just the

most important information from the inputs and discarding the redundant information.
3. The activation function is important for two reasons:

e This model captures the presence of non-linear relationships between the inputs.

o It contributes to the conversion of the input into a more usable output.

Activation Functions
Sigmoid |

o(z) =

14e—=

Leaky RelLU
max(0.1z, z)

tanh

Maxout
tanh(z)

max(w? z + by, wd z + by)

ReLU “ ELU

T x>0
ae®*—1) <0

max (0, x)

4. Finding the “optimal values of W — weights” that minimize prediction error is critical to
building a successful model. The “backpropagation algorithm” does this by converting ANN
into a learning algorithm by learning from mistakes.

5. The optimization approach uses a “gradient descent” technique to quantify prediction
errors. To find the optimum value for W, small adjustmentsin W are tried, and the impact on
prediction errors is examined. Finally, those W values are chosen as ideal since further W

changes do not reduce mistakes.

How artificial neural networks functions

The core component of ANNSs is artificial neurons. Each neuron receives inputs from several
other neurons, multiplies them by assigned weights, adds them and passes the sum to one or

more neurons. Some artificial neurons might apply an activation function to the output before
passing it to the next variable.

weights
inputs

D

activation
functon

¢ O;

activation

net input
nei;

function I
o,
threshold

At its core, this might sound like a very trivial math operation. But when you place hundreds,
thousands and millions of neurons in multiple layers and stack them up on top of each other,
you’ll obtain an artificial neural network that can perform very complicated tasks, such as

classifying images or recognizing speech.

Artificial neural networks are composed of an input layer, which receives data from outside
sources (data files, images, hardware sensors, microphone...), one or more hidden layers that
process the data, and an output layer that provides one or more data points based on the
function of the network. For instance, a neural network that detects persons, cars and animals
will have an output layer with three nodes. A network that classifies bank transactions
between safe and fraudulent will have a single output.

Training artificial neural networks

Artificial neural networks start by assigning random values to the weights of the connections
between neurons. The key for the ANN to perform its task correctly and accurately is to
adjust these weights to the right numbers. But finding the right weights is not very easy,

especially when you’re dealing with multiple layers and thousands of neurons.

This calibration is done by “training” the network with annotated examples. For instance, if
you want to train the image classifier mentioned above, you provide it with multiple photos,
each labeled with its corresponding class (person, car or animal). As you provide it with more
and more training examples, the neural network gradually adjusts its weights to map each
input to the correct outputs.

Basically, what happens during training is the network adjust itself to glean specific patterns

from the data. Again, in the case of an image classifier network, when you train the Al model

with quality examples, each layer detects a specific class of features. For instance, the first
layer might detect horizontal and vertical edges, the next layers might detect corners and
round shapes. Further down the network, deeper layers will start to pick out more advanced

features such as faces and objects.

When you run a new image through a well-trained neural network, the adjusted weights of
the neurons will be able to extract the right features and determine with accuracy to which

output class the image belongs.

One of the challenges of training neural networks is to find the right amount and quality of

training examples. Also, training large Al models requires vast amounts of computing

resources. To overcome this challenge, many engineers use “transfer learning,” a training
technique where you take a pre-trained model and fine-tune it with new, domain-specific
examples. Transfer learning is especially efficient when there’s already an Al model that is
close to your use case.

3.3 Backpropagation Algorithm

Backpropagation is an algorithm that backpropagates the errors from the output nodes to the
input nodes. Therefore, it is simply referred to as the backward propagation of errors. It uses
in the vast applications of neural networks in data mining like Character recognition,

Signature verification, etc.

Backpropagation is the essence of neural network training. It is the method of fine-tuning
the weights of a neural network based on the error rate obtained in the previous epoch (i.e.,
iteration). Proper tuning of the weights allows you to reduce error rates and make the model

reliable by increasing its generalization.
How Backpropagation Algorithm Works

The Back propagation algorithm in neural network computes the gradient of the loss function
for a single weight by the chain rule. It efficiently computes one layer at a time, unlike a
native direct computation. It computes the gradient, but it does not define how the gradient is

used. It generalizes the computation in the delta rule.
Consider the following Back propagation neural network example diagram to understand:

Hidden layer(s)

Output layer

Ya,,

Backprop outpﬁt layer

How Backpropagation Algorithm Works

Backpropagation Algorithm:
Step 1: Inputs X, arrive through the preconnected path.

Step 2: The input is modeled using true weights W. Weights are usually chosen randomly.

Step 3: Calculate the output of each neuron from the input layer to the hidden layer to the
output layer.

Step 4: Calculate the error in the outputs

Backpropagation Error= Actual Output — Desired Output

Step 5: From the output layer, go back to the hidden layer to adjust the weights to reduce the
error.

Step 6: Repeat the process until the desired output is achieved.

Input Hidden Output
layer layer layer

Parameters :

x = inputs training vector x=(x1,X2

t = target vector t=(t1,to _____ tn).

O, = error at output unit.
0; = error at hidden layer.
a = learning rate.

Vo; = bias of hidden unit j.

Training Algorithm :

Step 1: Initialize weight to small random values.

Step 2: While the stepsstopping condition is to be false do step 3 to 10.

Step 3: For each training pair do step 4 to 9 (Feed-Forward).

Step 4: Each input unit receives the signal unit and transmitsthe signal x;signal to all the

units.

Step 5 : Each hidden unit Zj (z=1 to a) sums its weighted input signal to calculate its net

input
Zinj = Voj + 2XVjj (i=1ton)

Applying activation function z; = f(zinj) and sends this signals to all units in the layer

about i.e output units
For each output I=unit yx = (k=1 to m) sums its weighted input signals.
Yink = Wok + X Zwjk (J=1to0 a)
and appliesits activation function to calculate the output signals.
Y= f(yink)
Backpropagation Error :

Step 6: Each output unit yx (k=1 to n) receives a target pattern corresponding to an input

pattern then error is calculated as:

Ok = (tk — Yk) + Yink

Step 7: Each hidden unit Z; (j=1 to a) sums its input from all unitsin the layer above

dinj = X 0j Wik

The error information term is calculated as :

Oj = Oinj * Zinj

Updation of weight and bias :

Step 8: Each output unit yx (k=1 to m) updates its bias and weight (j=1 to a). The weight

correction term is given by :
A Wik = o 0k Zj
and the bias correction term is given by Awx = a k.
therefore Wiknew) = Wik(old) + A Wik
Wok(new) = Wok(old) + A Wok

for each hidden unit z; (j=1 to a) update its bias and weights (i=0 to n) the weight

connection term
A Vij= a §j Xi
and the bias connection on term
A voj=a §;
Therefore Vij(new) = Vijold) T Avij
Voj(new) = Voj(old) + AVoj

Step 9: Test the stopping condition. The stopping condition can be the minimization of error,

number of epochs.

Need for Backpropagation:

Backpropagation is “backpropagation of errors” and is very useful for training neural

networks. It’s fast, easy to implement, and simple. Backpropagation does not require any
parameters to be set, except the number of inputs. Backpropagation is a flexible method

because no prior knowledge of the network is required.

Types of Backpropagation

There are two types of backpropagation networks.

o Static backpropagation: Static backpropagation is a network designed to map static
inputs for static outputs. These types of networks are capable of solving static
classification problems such as OCR (Optical Character Recognition).

Recurrent backpropagation: Recursive backpropagation is another network used for
fixed-point learning. Activation in recurrent backpropagation is feed-forward until a
fixed value is reached. Static backpropagation provides an instant mapping, while

recurrent backpropagation does not provide an instant mapping.

Advantages:

It is simple, fast, and easy to program.
Only numbers of the input are tuned, not any other parameter.
It is Flexible and efficient.

No need for users to learn any special functions.

Disadvantages:

It is sensitive to noisy data and irregularities. Noisy data can lead to inaccurate results.
Performance is highly dependent on input data.
Spending too much time training.

The matrix-based approach is preferred over a mini-batch.

3.4 Convolutional Neural Network

A convolutional neural network is a feed-forward neural network that is generally used to

analyze visual images by processing data with grid-like topology. It’s also known as

a ConvNet. A convolutional neural network is used to detect and classify objects in an image.

The Convolutional Neural Networks, which are also called as covnets, are nothing but neural
networks, sharing their parameters. Suppose that there is an image, which is embodied as a
cuboid, such that it encompasses length, width, and height. Here the dimensions of the image
are represented by the Red, Green, and Blue channels, as shown in the image given below.

\"
_\E',\Q}“

Width

Now assume that we have taken a small patch of the same image, followed by running a
small neural network on it, having k number of outputs, which is represented in a vertical
manner. Now when we slide our small neural network all over the image, it will result in
another image constituting different width, height as well as depth. We will notice that rather
than having R, G, B channels, we have come across some more channels that, too, with less
width and height, which is actually the concept of Convolution. In case, if we accomplished

in having similar patch size as that of the image, then it would have been a regular neural

network. We have some wights due to this small patch.

Width

Mathematically it could be understood as follows;

The Convolutional layers encompass a set of learnable filters, such that each filter
embraces small width, height as well as depth as that of the provided input volume (if
the image is the input layer then probably it would be 3).

Suppose that we want to run the convolution over the image that comprises of
34x34x3 dimension, such that the size of a filter can be axax3. Here a can be any of
the above 3, 5, 7, etc. It must be small in comparison to the dimension of the image.
Each filter gets slide all over the input volume during the forward pass. It slides step
by step, calling each individual step as a stride that encompasses a value of 2 or 3 or 4
for higher-dimensional images, followed by calculating a dot product in between
filter's weights and patch from input volume.

It will result in 2-Dimensional output for each filter as and when we slide our filters
followed by stacking them together so as to achieve an output volume to have a
similar depth value as that of the number of filters. And then, the network will learn

all the filters.
Working of CNN
Generally, a Convolutional Neural Network has three layers, which are as follows;

Input: If the image consists of 32 widths, 32 height encompassing three R, G, B
channels, then it will hold the raw pixel([32x32x3]) values of an image.
Convolution: It computes the output of those neurons, which are associated with
input's local regions, such that each neuron will calculate a dot product in between
weights and a small region to which they are actually linked to in the input volume.
For example, if we choose to incorporate 12 filters, then it will result in a volume of
[32x32x12].

ReLU Layer: It is specially used to apply an activation function elementwise, like as
max (0, x) thresholding at zero. It results in ([32x32x12]), which relates to an
unchanged size of the volume.

Pooling: This layer is used to perform a downsampling operation along the spatial

dimensions (width, height) that results in [16x16x12] volume.

Single depth slice

1 1 2 4

max pool with 2*2 filters

& 7 and stride 2
>

8
0
4

v

Locally Connected: It can be defined as a regular neural network layer that receives an input
from the preceding layer followed by computing the class scores and results in a 1-

Dimensional array that has the equal size to that of the number of classes.

CONV v

cat

: mmkey
horse
elephant

We will start with an input image to which we will be applying multiple feature detectors,

[+]
o
2 .
R

CONV
!
: .
>

Yyyvvvrrvypl

which are also called as filters to create the feature maps that comprises of a Convolution
layer. Then on the top of that layer, we will be applying the ReLU or Rectified Linear Unit to

remove any linearity or increase non-linearity in our images.

Next, we will apply a Pooling layer to our Convolutional layer, so that from every feature
map we create a Pooled feature map as the main purpose of the pooling layer is to make sure
that we have spatial invariance in our images. It also helps to reduce the size of our images as
well as avoid any kind of overfitting of our data. After that, we will flatten all of our pooled

images into one long vector or column of all of these values, followed by inputting these

Page 74

values into our artificial neural network. Lastly, we will feed it into the locally connected

layer to achieve the final output.

Convolution 1.
=

U J'(—_‘x
"1 Pooling *‘le['] Flattening
| L ¥ >

Jolalol<le]e]e

~
go.aoooo

S lelel<lele]<]le
<«

Convolutional Layer Pooling Layer

Pooling Layers

The pooling operation involves sliding a two-dimensional filter over each channel of feature
map and summarising the features lying within the region covered by the filter.

For a feature map having dimensions n X nw X N, the dimensions of output obtained after a

pooling layer is
(nh-f+1)/sx(nw-f+1)/sxnc
where,

-> np- height of feature map

-> ny . width of feature map

-> n¢- number of channels in the feature map
->f - size of filter

->s - stride length

A common CNN model architecture is to have a number of convolution and pooling layers

stacked one after the other.
Why to use Pooling Layers?

e Pooling layers are used to reduce the dimensions of the feature maps. Thus, it reduces
the number of parameters to learn and the amount of computation performed in the

network.

e The pooling layer summarises the features present in a region of the feature map
generated by a convolution layer. So, further operations are performed on summarised
features instead of precisely positioned features generated by the convolution layer.
This makes the model more robust to variations in the position of the features in the

input image.

Types of Pooling Layers:

Max Pooling

1. Max pooling is a pooling operation that selects the maximum element from the region
of the feature map covered by the filter. Thus, the output after max-pooling layer
would be a feature map containing the most prominent features of the previous feature

map.

Max Pool . 7

Filter - (2 x 2)
Stride - (2, 2)

This can be achieved using MaxPooling2D layer in keras as follows

Average Pooling

Average pooling computes the average of the elements present in the region of feature map
covered by the filter. Thus, while max pooling gives the most prominent feature in a
particular patch of the feature map, average pooling gives the average of features present in a

patch.

Filter - (2 x 2)
Stride - (2. 2) a4.2s

Global Pooling

1. Global pooling reduces each channel in the feature map to a single value. Thus, an np
X NwX N feature map is reduced to 1 x 1 x n. feature map. This is equivalent to using
a filter of dimensions n, X ny i.e. the dimensions of the feature map.

Further, it can be either global max pooling or global average pooling.

In convolutional neural networks (CNNs), the pooling layer is a common type of layer that is
typically added after convolutional layers. The pooling layer is used to reduce the spatial
dimensions (i.e., the width and height) of the feature maps, while preserving the depth (i.e.,

the number of channels).

1. The pooling layer works by dividing the input feature map into a set of non-
overlapping regions, called pooling regions. Each pooling region is then transformed
into a single output value, which represents the presence of a particular feature in that
region. The most common types of pooling operations are max pooling and average
pooling.

In max pooling, the output value for each pooling region is simply the maximum
value of the input values within that region. This has the effect of preserving the most
salient features in each pooling region, while discarding less relevant information.
Max pooling is often used in CNNs for object recognition tasks, as it helps to identify
the most distinctive features of an object, such as its edges and corners.

In average pooling, the output value for each pooling region is the average of the
input values within that region. This has the effect of preserving more information
than max pooling, but may also dilute the most salient features. Average pooling is
often used in CNNs for tasks such as image segmentation and object detection, where

a more fine-grained representation of the input is required.

Pooling layers are typically used in conjunction with convolutional layers in a CNN, with

each pooling layer reducing the spatial dimensions of the feature maps, while the

convolutional layers extract increasingly complex features from the input. The resulting

feature maps are then passed to a fully connected layer, which performs the final

classification or regression task.

Advantages of Pooling Layer:

1.

Dimensionality reduction: The main advantage of pooling layers is that they help in
reducing the spatial dimensions of the feature maps. This reduces the computational
cost and also helps in avoiding overfitting by reducing the number of parameters in
the model.

Translation invariance: Pooling layers are also useful in achieving translation
invariance in the feature maps. This means that the position of an object in the image
does not affect the classification result, as the same features are detected regardless of
the position of the object.

Feature selection: Pooling layers can also help in selecting the most important features
from the input, as max pooling selects the most salient features and average pooling

preserves more information.

Disadvantages of Pooling Layer:

1.

Information loss: One of the main disadvantages of pooling layers is that they discard
some information from the input feature maps, which can be important for the final
classification or regression task.

Over-smoothing: Pooling layers can also cause over-smoothing of the feature maps,
which can result in the loss of some fine-grained details that are important for the
final classification or regression task.

Hyperparameter tuning: Pooling layers also introduce hyperparameters such as the
size of the pooling regions and the stride, which need to be tuned in order to achieve
optimal performance. This can be time-consuming and requires some expertise in

model building.

3.5 Recurrent Neural Network(RNN)

Recurrent Neural Network(RNN) is a type of Neural Network where the output from the
previous step is fed as input to the current step. In traditional neural networks, all the inputs
and outputs are independent of each other, but in cases when it is required to predict the next
word of a sentence, the previous words are required and hence there is a need to remember
the previous words. Thus RNN came into existence, which solved this issue with the help of a
Hidden Layer. The main and most important feature of RNN is its Hidden state, which
remembers some information about a sequence. The state is also referred to as Memory State
since it remembers the previous input to the network. It uses the same parameters for each
input as it performs the same task on all the inputs or hidden layers to produce the output.

This reduces the complexity of parameters, unlike other neural networks.

Architecture Of Recurrent Neural Network

RNNs have the same input and output architecture as any other deep neural architecture.
However, differences arise in the way information flows from input to output. Unlike Deep
neural networks where we have different weight matrices for each Dense network in RNN,
the weight across the network remains the same. It calculates state hidden state H; for every

input X; By using the following formulas:

h=6(UX + Wh.; + B)

Y = O(Vh + C) Hence

Y=f(X,h,W,U,V,B, C)

Here S is the State matrix which has element si as the state of the network at timestep i

The parameters in the network are W, U, V, ¢, b which are shared across timestep

RECURRENT NEURAL NETWORKS

I

X Xis

What is Recurrent Neural Network

The Recurrent Neural Network consists of multiple fixed activation function units, one for
each time step. Each unit has an internal state which is called the hidden state of the unit. This
hidden state signifies the past knowledge that the network currently holds at a given time
step. This hidden state is updated at every time step to signify the change in the knowledge of
the network about the past. The hidden state is updated using the following recurrence

relation:-

The formula for calculating the current state:

ht = f(ht, Xt)

where:

h: -> current state
h.1 -> previous state

Xt -> input state

Formula for applying Activation function(tanh):

ht = tanh (Whhht_1+ th}(t)

where:

Whh -> Weight at recurrent neuron

Wxh -> Weight at input neuron

The formula for calculating output:

Vi = Whyht

Yt -> output
Wiy -> weight at output layer

These parameters are updated using Backpropagation. However, since RNN works on
sequential data here we use an updated backpropagation which is known as Backpropagation

through time.

Training through RNN

1. Asingle-time step of the input is provided to the network.
. Then calculate its current state using a set of current input and the previous state.

2
3. The current ht becomes ht-1 for the next time step.
4

One can go as many time steps according to the problem and join the information
from all the previous states.
Once all the time steps are completed the final current state is used to calculate the
output.

. The output is then compared to the actual output i.e the target output and the error is
generated.

. The error is then back-propagated to the network to update the weights and hence the

network (RNN) is trained using back propagation through time

3.6 Confusion Matrix in Machine Learning

The confusion matrix is a matrix used to determine the performance of the classification
models for a given set of test data. It can only be determined if the true values for test data are
known. The matrix itself can be easily understood, but the related terminologies may be
confusing. Since it shows the errors in the model performance in the form of a matrix, hence

also known as an error matrix. Some features of Confusion matrix are given below:

For the 2 prediction classes of classifiers, the matrix is of 2*2 table, for 3 classes, it is

3*3 table, and so on.

The matrix is divided into two dimensions, that are predicted values and actual

values along with the total number of predictions.

Predicted values are those values, which are predicted by the model, and actual values
are the true values for the given observations.

It looks like the below table:

n = total predictions Actual: No Actual: Yes

Predicted: No True Negative False Positive

Predicted: Yes False Negative True Positive

The above table has the following cases:

True Negative: Model has given prediction No, and the real or actual value was also
No.

True Positive: The model has predicted yes, and the actual value was also true.

False Negative: The model has predicted no, but the actual value was Yes, it is also
called as Type-I1 error.

False Positive: The model has predicted Yes, but the actual value was No. It is also
called a Type-I error.

UNIT-1V

Model Validation in Classification : Cross Validation - Holdout Method, K-Fold,
Stratified K-Fold, Leave-One-Out Cross Validation. Bias-Variance tradeoff,
Regularization , Overfitting, Underfitting. Ensemble Methods: Boosting, Bagging,

Random Forest.

4.1 CROSS VALIDATION

To test the performance of a classifier, we need to have a number of training/validation set
pairs from a dataset X. To get them, if the sample X is large enough, we can randomly divide
it then divide each part randomly into two and use one half for training and the other half for
validation. Unfortunately, datasets are never large enough to do this. So, we use the same
data split differently; this is called cross-validation.

Cross-validation is a technique to evaluate predictive models by partitioning the original
sample into a training set to train the model, and a test set to evaluate it.

During the evaluation of machine learning (ML) models, the following question might arise:

Is this model the best one available from the hypothesis space of the algorithm in terms

of generalization error on an unknown/future data set?
What training and testing techniques are used for the model?

What model should be selected from the available ones?

4.2 Methods used for Cross-Validation:
4.2.1 Holdout Method

Consider training a model using an algorithm on a given dataset. Using the same training

data, you determine that the trained model has an accuracy of 95% or even 100%. What
does this mean? Can this model be used for prediction?
No. This is because your model has been trained on the given data, i.e. it knows the data

and has generalized over it very well. In contrast, when you try to predict over a new set

Page 84

of data, it will most likely give you very bad accuracy because it has never seen the data
before and thus cannot generalize well over it. To deal with such problems, hold-out

methods can be employed.

The hold-out method involves splitting the data into multiple parts and using one part
for training the model and the rest for validating and testing it. It can be used for both
model evaluation and selection.

In cases where every piece of data is used for training the model, there remains the
problem of selecting the best model from a list of possible models. Primarily, we want
to identify which model has the lowest generalization error or which model makes a
better prediction on future or unseen datasets than all of the others. There is a need to
have a mechanism that allows the model to be trained on one set of data and tested on

another set of data. This is where hold-out comes into play.

Hold-Out Method for Model Evaluation

Model evaluation using the hold-out method entails splitting the dataset into training and test

datasets, evaluating model performance, and determining the most optimal model. This

diagram illustrates the hold-out method for model evaluation.

DATASET

Training Dataset Testing Dataset

N

TRAIN

Train Model Evaluate Model

There are two parts to the dataset in the diagram above. One split is held aside as a training set.

Another set is held back for testing or evaluation of the model. The percentage of the split is

Page 85

determined based on the amount of training data available. A typical split of 70-30% is used

in which 70% of the dataset is used for training and 30% is used for testing the model.

The objective of this technique is to select the best model based on its accuracy on the testing

dataset and compare it with other models. There is, however, the possibility that the model can
be well fitted to the test data using this technique. In other words, models are trained to
improve model accuracy on test datasets based on the assumption that the test dataset
represents the population. As a result, the test error becomes an optimistic estimation of the
generalization error. Obviously, this is not what we want. Since the final model is trained to fit

well (or overfit) the test data, it won’t generalize well to unknowns or future datasets.

Follow the steps below for using the hold-out method for model evaluation:

Split the dataset in two (preferably 70-30%; however, the split percentage can vary

and should be random).

Training Data

Training Labels

Test Data

Test Labels

2. Now, we train the model on the training dataset by selecting some fixed set of

hyperparameters while training the model.

Hyperparameter

Training Data Values

RN
=

Training Labels Loaming
Algorithm

3. Use the hold-out test dataset to evaluate the model.

]—-— Performance

4. Use the entire dataset to train the final model so that it can generalize better on future

datasets.

Hyperparameter
Values

mEN
N\

Learning
Algorithm

In this process, the dataset is split into training and test sets, and a fixed set of hyperparameters
Is used to evaluate the model. There is another process in which data can also be split into

three sets, and these sets can be used to select a model or to tune hyperparameters. We will

discuss that technique next.

Hold-Out Method for Model Selection

Sometimes the model selection process is referred to as hyperparameter tuning. During the
hold-out method of selecting a model, the dataset is separated into three sets — training,

validation, and test.

DATASET

Training Dataset Validation Dataset Testing Dataset

/\/\//\

VALIDATION

! !

Train Multiple Models Validate Models Evaluate Models

Follow the steps below for using the hold-out method for model selection:

1. Divide the dataset into three parts: training dataset, validation dataset, and test dataset.

2. Now, different machine learning algorithms can be used to train different models. You
can train your classification model, for example, using logistic regression, random forest,
and XGBoost.
Tune the hyperparameters for models trained with different algorithms. Change the
hyperparameter settings for each algorithm mentioned in step 2 and come up with
multiple models.
On the validation dataset, test the performance of each of these models (associating with
each of the algorithms).
Choose the most optimal model from those tested on the validation dataset. The most
optimal model will be set up with the most optimal hyperparameters. Using the example
above, let’s suppose the model trained with XGBoost with the most optimal
hyperparameters is selected.

Finally, on the test dataset, test the performance of the most optimal model.

4.2.2 K-Fold Cross-Validation

K-fold cross-validation approach divides the input dataset into K groups of samples of equal

sizes. These samples are called folds. For each learning set, the prediction function uses k-1

Page 88

folds, and the rest of the folds are used for the test set. This approach is a very popular CV

approach because it is easy to understand, and the output is less biased than other methods.
The steps for k-fold cross-validation are:

o Split the input dataset into K groups

o For each group:
o Take one group as the reserve or test data set.
o Use remaining groups as the training dataset

o Fit the model on the training set and evaluate the performance of the model
using the test set.

Let's take an example of 5-folds cross-validation. So, the dataset is grouped into 5 folds. On
1%t iteration, the first fold is reserved for test the model , and rest are used to train the model.
On 2" jteration, the second fold is used to test the model, and rest are used to train the model.

This process will continue until each fold is not used for the test fold.

L% Fold5

Training set

- Tasting sat

4.2.3 Stratified k-fold cross-validation:

This technique is similar to k-fold cross-validation with some little changes. This approach

works on stratification concept, it is a process of rearranging the data to ensure that each fold
or group is a good representative of the complete dataset. To deal with the bias and variance,

it is one of the best approaches.

It can be understood with an example of housing prices, such that the price of some houses
can be much high than other houses. To tackle such situations, a stratified k-fold cross-

validation technique is useful.

4.2.4 Leave one out cross-validation

This method is similar to the leave-p-out cross-validation, but instead of p, we need to take 1
dataset out of training. It means, in this approach, for each learning set, only one data point is
reserved, and the remaining dataset is used to train the model. This process repeats for each
data point. Hence for n samples, we get n different training set and n test set. It has the

following features:

In this approach, the bias is minimum as all the data points are used.
The process is executed for n times; hence execution time is high.

This approach leads to high variation in testing the effectiveness of the model as we

iteratively check against one data point.

4.3 Bias-Variance Trade off

It is important to understand prediction errors (bias and variance) when it comes to

accuracy in any machine learning algorithm. There is a tradeoff between a model’s ability

to minimize bias and variance which is referred to as the best solution for selecting a value
of Regularization constant. Proper understanding of these errors would help to avoid the

overfitting and underfitting of a data set while training the algorithm

Bias

The bias is known as the difference between the prediction of the values by the ML model
and the correct value. Being high in biasing gives a large error in training as well as testing
data. Its recommended that an algorithm should always be low biased to avoid the problem
of underfitting.By high bias, the data predicted is in a straight line format, thus not fitting

accurately in the data in the data set. Such fitting is known as Underfitting of Data. This

Page 90

happens when the hypothesis is too simple or linear in nature. Refer to the graph given

below for an example of such a situation.

In such a problem, a hypothesis looks like follows.

hge(x) = .(](()() + 6121 + Oox9)

Variance

The variability of model prediction for a given data point which tells us spread of our data
is called the variance of the model. The model with high variance has a very complex fit to
the training data and thus is not able to fit accurately on the data which it hasn’t seen
before. As a result, such models perform very well on training data but has high error rates
on test data.When a model is high on variance, it is then said to as Overfitting of Data.
Overfitting is fitting the training set accurately via complex curve and high order
hypothesis but is not the solution as the error with unseen data is high.
While training a data model variance should be kept low.

The high variance data looks like follows.

4

In such a problem, a hypothesis looks like follows.

2

he(x) = 6O0g + @1 + O~
+ O3> 4 O x?

Bias Variance Tradeoff

If the algorithm is too simple (hypothesis with linear eq.) then it may be on high bias and
low variance condition and thus is error-prone. If algorithms fit too complex (hypothesis
with high degree eq.) then it may be on high variance and low bias. In the latter condition,
the new entries will not perform well. Well, there is something between both of these

conditions, known as Trade-off or Bias Variance Trade-off.

This tradeoff in complexity is why there is a tradeoff between bias and variance. An
algorithm can’t be more complex and less complex at the same time. For the graph, the

perfect tradeoff will be like.

The best fit will be given by hypothesis on the tradeoff point.
The error to complexity graph to show trade-off is given as —

undertitting overfitting
zone zone

! generalization (test) #

tralning error

model complexity

This is referred to as the best point chosen for the training of the algorithm which gives low

error in training as well as testing data.

4.4 Regularization :

Regularization is one of the most important concepts of machine learning. It is a technique to
prevent the model from overfitting by adding extra information to it. Sometimes the machine
learning model performs well with the training data but does not perform well with the test
data. It means the model is not able to predict the output when deals with unseen data by
introducing noise in the output, and hence the model is called overfitted. This problem can be

deal with the help of a regularization technique.

This technique can be used in such a way that it will allow to maintain all variables or
features in the model by reducing the magnitude of the variables. Hence, it maintains

accuracy as well as a generalization of the model.

it mainly regularizes or reduces the coefficient of features toward zero. In simple words, "In
regularization technique, we reduce the magnitude of the features by keeping the same

number of features."

https://www.javatpoint.com/machine-learning
https://www.javatpoint.com/machine-learning

Regularization works by adding a penalty or complexity term to the complex model. Let's
consider the simple linear regression equation:

y= BO+p1x1+p2x2+p3x3+:--+Pnxn +b

In the above equation, Y represents the value to be predicted

X1, X2, ...Xn are the features for Y.

B0,B1,.....pn are the weights or magnitude attached to the features, respectively. Here

represents the bias of the model, and b represents the intercept.

Linear regression models try to optimize the B0 and b to minimize the cost function. The

equation for the cost function for the linear model is given below:

fil(y:' _J’Fi)z :Z£1(yi - ?:u B; *Xij)z

Now, we will add a loss function and optimize parameter to make the model that can predict
the accurate value of Y. The loss function for the linear regression is called as RSS or

Residual sum of squares.
Techniques of Regularization
There are mainly two types of regularization techniques, which are given below:

o Ridge Regression

o Lasso Regression

Ridge Regression

o Ridge regression is one of the types of linear regression in which a small amount of
bias is introduced so that we can get better long-term predictions.
Ridge regression s a regularization technique, which is used to reduce the complexity
of the model. It is also called as L2 regularization.
In this technique, the cost function is altered by adding the penalty term to it. The
amount of bias added to the model is called Ridge Regression penalty. We can

calculate it by multiplying with the lambda to the squared weight of each individual
feature.

The equation for the cost function in ridge regression will be:

M

M n 2 ki

y 22
Z(J’:_J"i) = Z J";'_Zﬁj*xi; + AZJG;'Z
i=1 =0 =0

i=1

In the above equation, the penalty term regularizes the coefficients of the model, and
hence ridge regression reduces the amplitudes of the coefficients that decreases the
complexity of the model.

As we can see from the above equation, if the values of A tend to zero, the equation
becomes the cost function of the linear regression model. Hence, for the minimum

value of &, the model will resemble the linear regression model.

A general linear or polynomial regression will fail if there is high collinearity between
the independent variables, so to solve such problems, Ridge regression can be used.

It helps to solve the problems if we have more parameters than samples.

Lasso Regression:

o

Lasso regression is another regularization technique to reduce the complexity of the

model. It stands for Least Absolute and Selection Operator.

It is similar to the Ridge Regression except that the penalty term contains only the

absolute weights instead of a square of weights.

Since it takes absolute values, hence, it can shrink the slope to 0, whereas Ridge
Regression can only shrink it near to 0.

It is also called as L1 regularization. The equation for the cost function of Lasso

regression will be:

M M n 2 n
)2
D=y =D (n=) Brxy) + 2D B
j=0 j=0

i=1 i=1

Some of the features in this technique are completely neglected for model
evaluation.

Hence, the Lasso regression can help us to reduce the overfitting in the model
as well as the feature selection.

4.5 Overfitting and Under fitting:

To train our machine learning model, we give it some data to learn from. The process of
plotting a series of data points and drawing the best fit line to understand the relationship
between the variables is called Data Fitting. Our model is the best fit when it can find all
necessary patterns in our data and avoid the random data points and unnecessary patterns

called Noise.
4.5.1 Overfitting

When a model performs very well for training data but has poor performance with test data
(new data), it is known as overfitting. In this case, the machine learning model learns the
details and noise in the training data such that it negatively affects the performance of the
model on test data. Overfitting can happen due to low bias and high variance.

Efficiency of a car

-

Y

_ Overfitted
Curve

> Distance travelled
x (in 1000 kms)

https://www.simplilearn.com/what-is-data-article

Reasons for Overfitting

Data used for training is not cleaned and contains noise (garbage values) in it
The model has a high variance
The size of the training dataset used is not enough

The model is too complex
Ways to Tackle Overfitting

Using K-fold cross-validation
Using Regularization techniques such as Lasso and Ridge

Training model with sufficient data

Adopting ensembling techniques

4.5.2 Underfitting:

When a model has not learned the patterns in the training data well and is unable to generalize
well on the new data, it is known as underfitting. An underfit model has poor performance on
the training data and will result in unreliable predictions. Underfitting occurs due to high bias

and low variance.

Efficiency of a car
ES

Y

Underfitted
Line

» Distance travelled
X (in1000 kms)

Reasons for Underfitting
. Data used for training is not cleaned and contains noise (garbage values) in it
. The model has a high bias

. The size of the training dataset used is not enough

The model is too simple

Ways to Tackle Underfitting
Increase the number of features in the dataset
Increase model complexity

Reduce noise in the data

Increase the duration of training the data

4.6 Ensemble Methods:

When you want to purchase a new car, will you walk up to the first car shop and purchase

one based on the advice of the dealer? It’s highly unlikely.

You would likely browser a few web portals where people have posted their reviews and
compare different car models, checking for their features and prices. You will also probably
ask your friends and colleagues for their opinion. In short, you wouldn’t directly reach a

conclusion, but will instead make a decision considering the opinions of other people as well.

Ensemble models in machine learning operate on a similar idea. They combine the decisions

from multiple models to improve the overall performance.

Advantage : Improvement in predictive accuracy.

Disadvantage : It is difficult to understand an ensemble of classifiers.

Create 4

piEIRre
Datesat

Create
PAultiple
Classifiers

Combine
Classifiers

Ensembles overcome three problems —

e Statistical Problem —

The Statistical Problem arises when the hypothesis space is too large for the
amount of available data. Hence, there are many hypotheses with the same

accuracy on the data and the learning algorithm chooses only one of them! There
is a risk that the accuracy of the chosen hypothesis is low on unseen data!
Computational Problem —

The Computational Problem arises when the learning algorithm cannot guarantees
finding the best hypothesis.

Representational Problem —

The Representational Problem arises when the hypothesis space does not contain

any good approximation of the target class(es).

Types of Ensemble Classifier —
1)Bagging
2)Boosting

3)Random Forest

4.6.1 Bagging:

BAGGing, or Bootstrap AGGregating. BAGGing gets its name because it

combines Bootstrapping and Aggregation to form one ensemble model. Given a
sample of data, multiple bootstrapped subsamples are pulled. A Decision Tree is
formed on each of the bootstrapped subsamples. After each subsample Decision Tree

has been formed, an algorithm is used to aggregate over the Decision Trees to form the

most efficient predictor. The image below will help explain:

Random subset n

TREEm

3 -

Results Aggregation

Final Prediction }

Given a Dataset, bootstrapped subsamples are pulled. A Decision Tree

s formed on each bootstrapped
st,

1
sample. The results of each tree are aggregated to yield the strongest, most accurate predictor.

4.6.2 Boosting :

Unlike bagging, which aggregates prediction results at the end, boosting aggregates the
results at each step. They are aggregated using weighted averaging.

Weighted averaging involves giving all models different weights depending on their
predictive power. In other words, it gives more weight to the model with the highest
predictive power. This is because the learner with the highest predictive power is
considered the most important.

The Process of Boosting

testing

Overall
Prediction

Boosting works with the following steps:

1. We sample m-number of subsets from an initial training dataset.

2. Using the first subset, we train the first weak learner.

Page 100

. We test the trained weak learner using the training data. As a result of the testing,
some data points will be incorrectly predicted.
Each data point with the wrong prediction is sent into the second subset of data, and
this subset is updated.
Using this updated subset, we train and test the second weak learner.

. We continue with the following subset until the total number of subsets is reached.

. We now have the total prediction. The overall prediction has already been aggregated
at each step, so there is no need to calculate it.

4.6.3 Random Forest Models.

Random Forest Models can be thought of as BAGGing, with a slight tweak. When deciding
where to split and how to make decisions, BAGGed Decision Trees have the full disposal of
features to choose from. Therefore, although the bootstrapped samples may be slightly
different, the data is largely going to break off at the same features throughout each model. In
contrary, Random Forest models decide where to split based on a random selection of features.

Rather than splitting at similar features at each node throughout, Random Forest models

implement a level of differentiation because each tree will split based on different features.

This level of differentiation provides a greater ensemble to aggregate over, ergo producing a

more accurate predictor. Refer to the image for a better understanding.

Page 101

UNIT-V

Unsupervised Learning : Clustering-K-means, K-Modes, K-Prototypes,

Gaussian MixtureModels, Expectation-Maximization.

Reinforcement Learning: Exploration and exploitation trade-offs, non-
associative learning,Markov decision processes, Q-learning.

5.1 Unsupervised Learning:

Unsupervised learning is a machine learning technique in which models are not supervised
using training dataset. Instead, models itself find the hidden patterns and insights from the
given data. It can be compared to learning which takes place in the human brain while

learning new things. It can be defined as:

Unsupervised learning is a type of machine learning in which models are trained using

unlabeled dataset and are allowed to act on that data without any supervision.

Unsupervised learning cannot be directly applied to a regression or classification problem
because unlike supervised learning, we have the input data but no corresponding output data.
The goal of unsupervised learning is to find the underlying structure of dataset, group

that data according to similarities, and represent that dataset in a compressed format.

Example: Suppose the unsupervised learning algorithm is given an input dataset containing
images of different types of cats and dogs. The algorithm is never trained upon the given
dataset, which means it does not have any idea about the features of the dataset. The task of
the unsupervised learning algorithm is to identify the image features on their own.
Unsupervised learning algorithm will perform this task by clustering the image dataset into

the groups according to similarities between images.

Page 102

Below are some main reasons which describe the importance of Unsupervised Learning:

Unsupervised learning is helpful for finding useful insights from the data.

Unsupervised learning is much similar as a human learns to think by their own
experiences, which makes it closer to the real Al.

Unsupervised learning works on unlabeled and uncategorized data which make
unsupervised learning more important.

In real-world, we do not always have input data with the corresponding output so to
solve such cases, we need unsupervised learning.

Working of unsupervised learning can be understood by the below diagram:

INPUT RAW DATA

—> Y0 —

Unlabeled data

Page 103

Here, we have taken an unlabeled input data, which means it is not categorized and
corresponding outputs are also not given. Now, this unlabeled input data is fed to the machine
learning model in order to train it. Firstly, it will interpret the raw data to find the hidden
patterns from the data and then will apply suitable algorithms such as k-means clustering,

Decision tree, etc.

Once it applies the suitable algorithm, the algorithm divides the data objects into groups

according to the similarities and difference between the objects.

The unsupervised learning algorithm can be further categorized into two types of problems:

Unsupervised Learning

Association

o Clustering: Clustering is a method of grouping the objects into clusters such that
objects with most similarities remains into a group and has less or no similarities with
the objects of another group. Cluster analysis finds the commonalities between the
data objects and categorizes them as per the presence and absence of those
commonalities.

Association: An association rule is an unsupervised learning method which is used
for finding the relationships between variables in the large database. It determines the
set of items that occurs together in the dataset. Association rule makes marketing
strategy more effective. Such as people who buy X item (suppose a bread) are also
tend to purchase Y (Butter/Jam) item. A typical example of Association rule is Market

Basket Analysis
5.1 K-Means Clustering

K-Means clustering is an unsupervised iterative clustering technique.

It partitions the given data set into k predefined distinct clusters.

Page 104

A cluster is defined as a collection of data points exhibiting certain similarities.

Before K-Means After K-Means

It partitions the data set such that-

Each data point belongs to a cluster with the nearest mean.
Data points belonging to one cluster have high degree of similarity.

Data points belonging to different clusters have high degree of dissimilarity.

K-Means Clustering Algorithm-

e K-Means Clustering Algorithm involves the following steps-

Step-01.:

1. Choose the number of clusters K.

Step-02:
1. Randomly select any K data points as cluster centers.

2. Select cluster centersin such a way that they are as farther as possible from each
other.

Step-03:
1. Calculate the distance between each data point and each cluster center.

2. The distance may be calculated either by using given distance function or by using
euclidean distance formula.

Step-04:
1. Assign each data point to some cluster.

2. A data point is assigned to that cluster whose center is nearest to that data point.
Step-05:

1. Re-compute the center of newly formed clusters.

Page 105

2. The center of a cluster is computed by taking mean of all the data points contained in
that cluster.

Step-06:
Keep repeating the procedure from Step-03 to Step-05 until any of the following stopping

criteria is met-

1. Center of newly formed clusters do not change
2. Data points remain present in the same cluster
3. Maximum number of iterations are reached

Problem:
Cluster the following eight points (with (x, y) representing locations) into three clusters:

A1(2, 10), A2(2, 5), A3(8, 4), A4(5, 8), A5(7, 5), A6(6, 4), A7(1, 2), A8(4, 9)

Initial cluster centers are: A1(2, 10), A4(5, 8) and A7(1, 2).
The distance function between two points a = (x1, y1) and b = (x2, y2) is defined as-

P(a, b) = |x2 - x1| + |y2 - y1|

Use K-Means Algorithm to find the three cluster centers after the second iteration.

Solution-
We follow the above discussed K-Means Clustering Algorithm-

Iteration-01:

We calculate the distance of each point from each of the center of the three clusters.
The distance is calculated by using the given distance function.

The following illustration shows the calculation of distance between point A1(2, 10) and each
of the center of the three clusters-

Calculating Distance Between A1(2. 10) and C1(2, 10)-
P(Al, C1)

=|x2 —x1| +|y2 - y1|

=|2 — 2| + |10 - 10|

=0

Calculating Distance Between A1(2, 10) and C2(5, 8)-

Page 106

P(Al, C2)

=|x2 - x1| + |y2 - y1|

=|5-2|+|8 - 10|

=3+2

=5

Calculating Distance Between A1(2, 10) and C3(1, 2)-
P(Al, C3)

=|x2 —x1| +|y2 —yl|
=|1-2|+|2- 10|

In the similar manner, we calculate the distance of other points from each of the center of the

three clusters.
Next,

We draw a table showing all the results.

Using the table, we decide which point belongs to which cluster.

The given point belongs to that cluster whose center is nearest to it.

Page 107

Distance from
Given Points center (2, 10) of
Cluster-01

A1(2, 10)
A2(2, 5)
A3(8, 4)
AA4(5, 8)
A5(7, 5)
AB(6, 4)
A7(1, 2)

A8(4, 9)

From here, New clusters are-

Cluster-01:
First cluster contains points-

A1(2, 10)

Cluster-02:
Second cluster contains points-

A3(8, 4)
AA(5, 8)
A5(7, 5)
A6(6, 4)
A8(4, 9)

Cluster-03:

Third cluster contains points-

A2(2, 5)
A7(1, 2)

Distance from
center (5, 8) of
Cluster-02

Distance from
center (1, 2) of
Cluster-03

Point belongs

to Cluster

Page 108

We re-compute the new cluster clusters.

The new cluster center is computed by taking mean of all the points contained in that
cluster.

For Cluster-01:
e We have only one point A1(2, 10) in Cluster-01.

e So, cluster center remains the same.

For Cluster-02:
Center of Cluster-02

=((8+5+7+6+4)/5, (4+8+5+4+9)/5)
=(6,6)

For Cluster-03:

Center of Cluster-03

=((2+1)/2,(5+2)/2)
= (15, 3.5)

This is completion of Iteration-01.

Iteration-02:

We calculate the distance of each point from each of the center of the three clusters.
The distance is calculated by using the given distance function.

The following illustration shows the calculation of distance between point A1(2, 10) and each
of the center of the three clusters-

Calculating Distance Between Al(2. 10) and C1(2. 10)-

P(Al, Cl)
= |x2 —x1| +|y2 — y1|
=12 - 2| +|10 - 10|

Page 109

Calculating Distance Between Al(2. 10) and C2(6. 6)-

P(Al, C2)

=|x2 — x1| + |y2 - y1]

=16 2| +16 — 10|

=4 +4

=8

Calculating Distance Between A1(2, 10) and C3(1.5, 3.5)-

P(A1, C3)

=|x2 —x1| + |y2 - y1|
=]1.5-2|+|3.5- 10|
=05+6.5

=7

In the similar manner, we calculate the distance of other points from each of the center of the
three clusters.

Next,

We draw a table showing all the results.
Using the table, we decide which point belongs to which cluster.
The given point belongs to that cluster whose center is nearest to it.

Page 110

Distance from Distance from
Given Points center (2, 10) of center (6, 6) of
Cluster-01 Cluster-02

A1(2, 10)
A2(2, 5)
A3(8, 4)
A4(5, 8)
A5(7, 5)
A6(6, 4)
A7(1, 2)

A8(4, 9)

From here, New clusters are-

Cluster-01:
First cluster contains points-

A1(2, 10)
A8(4, 9)

Cluster-02:
Second cluster contains points-
A3(8, 4)
A4(5, 8)
A5(7, 5)
A6(6, 4)

Cluster-03:

Third cluster contains points-

A2(2, 5)
AT(L, 2)

Distance from
center (1.5, 3.5) of
Cluster-03

Point belongs

to Cluster

Page 111

We re-compute the new cluster clusters.

The new cluster center is computed by taking mean of all the points contained in that
cluster.

For Cluster-01:
Center of Cluster-01

= ((2 + 4)/2, (10 + 9)/2)
= (3, 9.5)

For Cluster-02:

Center of Cluster-02
=((8+5+7+6)/4,(4+8+5+4)/4)
= (6.5, 5.25)

For Cluster-03:
Center of Cluster-03

=((2+1)2, (5+2)/2)
= (1.5, 3.5)

This is completion of Iteration-02.

After second iteration, the center of the three clusters are-

C1(3, 9.5)
C2(6.5, 5.25)
C3(1.5, 3.5)

5.2 KMODES

KModes is a clustering algorithm used to group similar data points into clusters based on

their categorical attributes. Unlike traditional clustering algorithms that use distance metrics,

KModes works by identifying the modes or most frequent values within each cluster to

Page 112

determine its centroid. KModes is ideal for clustering categorical data such as customer
demographics, market segments, or survey responses

In K-means clustering when we used categorical data after converting it into a numerical
form. it doesn’t give a good result for high-dimensional data.

So, Some changes are made for categorical data t.

Replace Euclidean distance with Dissimilarity metric

Replace Mean by Mode for cluster centers.
. Apply a frequency-based method in each iteration to update the mode.
And then this is called K-MODE Clustering because of MODE.

Similarity and dissimilarity measurements are used to determine the distance between the
data objects in the dataset. In the case of K-modes, these distances are calculated using a
dissimilarity measure called the Hamming distance. The Hamming distance between two

data objects is the number of categorical attributes that differ between the two objects.

Let x and y be two categorical data objects defined by m features or attributes.

d(z,y) = >0, 6(zj,9;)

Where,

0 ifxj=uy;
1 if &Tj # Y

o(xj,y;) = {

For example, consider the following dataset with three categorical attributes:

Page 113

S.No Attribute 1 Attribute 2 Attribute 3

A

To calculate the Hamming distance between data objects 1 and 2, we compare their values
for each attribute and count the number of differences. In this case, there is one difference
(Attribute 3 is C for object 1 and D for object 2), so the Hamming distance between objects
land 2 is 1.

To calculate the Hamming distance between objects 1 and 3, we again compare their values
for each attribute and count the number of differences. In this case, there are two
differences (Attribute 2 is B for object 1 and C for object 3, and Attribute 3 is C for object 1

and E for object 3), so the Hamming distance between objects 1 and 3 is 2.

To calculate the Hamming distance between objects 1 and 4, we again compare their values
for each attribute and count the number of differences. In this case, there are three
differences (Attribute 1 is A for objects 1 and B for object 4, Attribute 2 is B for object 1

and C for object 4, and Attribute 3 is C for objects 1 and E for object 4), so the Hamming

distance between objects 1 and 4 is 3.

Data objects with a smaller Hamming distance are considered more similar, while objects

with a larger Hamming distance is considered more dissimilar.

Page 114

Tnly, -+ Tnm

Let X be a set of categorical data objects of [:1‘11- .7.‘1.,,] that can be
X = .

denoted as x =[x}, X,, ..., X,]- And the mode of Zis a vector @ = [¢1, ¢, ..., g

then, minimize

D(X,Q) = 3i-, d(Xi, Q)

Apply dissimilarity metric equation for data objects

D(X,Q) =Y Zl,nl‘) ij, Q)

Suppose we want to K cluster, Then we have Q = [q_{k1},g_{k1},.....q_{km}]
\epsilon Q

Zm (LIJ (H_l)

The main task for K-Modes algorithm is to minimize this C(Q) cost function.
It consists of the following steps.

Select K data objects for each cluster.

Calculate dissimilarities D(X,Q) and allocate each data object to nearest cluster.

1
2
3. Calculate the new modes for all clusters.
4

Repeat step 2 and 3 until the cluster will become stable.

Some variations of the K-modes algorithm may use different methods for updating the
centroids (modes) of the clusters, such as taking the weighted mode or the median of the

objects within each cluster.

Overall, the goal of K-modes clustering is to minimize the dissimilarities between the data
objects and the centroids (modes) of the clusters, using a measure of categorical similarity

such as the Hamming distance.

Page 115

5.3 KPROTOTYPE:

One of the conventional clustering methods commonly used in clustering techniques and
efficiently used for large data is the K-Means algorithm. However, its method is not good and
suitable for data that contains categorical variables. This problem happens when the cost
function in K-Means is calculated using the Euclidian distance that is only suitable for

numerical data. While K-Mode is only suitable for categorical data only, not mixed data types.

Facing these problems, Huang proposed an algorithm called K-Prototype which is created in
order to handle clustering algorithms with the mixed data types (numerical and categorical
variables). K-Prototype is a clustering method based on partitioning. Its algorithm is an

improvement of the K-Means and K-Maode clustering algorithm to handle clustering with the

mixed data types.

K-Prototype has an advantage because it’s not too complex and is able to handle large data

and is better than hierarchical based algorithms

Mathematics Formula
Suppose that X = {X,, X5, ..., Xn} is a set of n object and X; = {X;1, Xi2, -.-, Xim}' where m
denotes the variables and i denotes i-th cluster.

The Measure of Similarity
General formula for the measure of similarity is denoted as follows.

m
d(Xs, Zy) =Z‘S(xijlzlj) (n
=

Where Z; = {21, Zi2, .--, Zim}' is a prototype for cluster [. A measure of similarity for numerical
variables is well-known as euclidian distance that is denoted as follows.

m,
d(X, Zy) = ’ iy — z;)?
j=1

Where x,—rj is a value of numerical variables j, z{j is the average of prototype for numerical
variables j cluster m, and number of numerical variables.
While a measure of similarity for categorical variables is denoted as follows.

me

AXuZ) =vi D 8CxG.z) @

j=1+1
Where simple matching similarity measure for categorical variables is denoted as follows.
€< .ami c
Xi; = Zi5

0,
5(x5,z5) = {1' xf, zf; (C))

Where y; denotes the weight for categorical variables for cluster { that is standard deviation of
numerical variables in each clusters. The xj; denotes the categorical variables, zf; is the mode
for variables j cluster I, and m_. denotes the number of categorical variables.

The modification of simple matching similarity measure as follows.

Page 116

The modification of simple matching similarity measure as follows.

{1 —w(xj, D), x§; = zj;

5
5 x{; # zj; ®)

5(xfy 26) =

The above formula increases the object similarity within cluster with categorical variables so

that the result will be better where w(x”, 1) denotes the weight for xfj where

JICTD)
leil - F (x5, 1D)

w(xf,1) = (6)

Where f(x{;|c,) is the frequency of x{; in cluster [and |¢;| is the number of object in cluster [,
and f(xf,lcl) is the frequency of x,-‘j in the whole of data.

According to the equation (1) to (5), it obtains the measure of similarity prior to the data with
numerical and categorical variables as follows.

me

d(X0 Z) = Z(x,, —ZP2 v D 80z

Jj= Jj=1+1

Huang Cost Function
Huang declared that cost function equation for mixed data type (numerical and categorical) is
as follows.

K

Cost,=z l,_Z(xu—zu) +Y‘Z .zZ(?(xu,ZU)

i=1
Cost, = Cost] + Cost,

Where Cost; denotes the total cost of all the numerical variables for the entire objects within
cluster I. Cost] is minimized while z;; being calculated with following equation.

n
at
Zyy = — E uy - xi; forj =
ny £
i=

Where n; = XL, uy - X;; is the number of objects within cluster 1.

Further, the categorical variables e.g. C; is a set of unique value in each categorical variables j
and p(q{; € C;|l) is the probability for ¢; within cluster I. So, Cost{ can be rewritten as follows.

Costf =y, E n, (1 — p(qf; € G|D) (10)
where n; denotes the objects within cluster . The solution in order to minimize the Costy is
explained clearly in lemma 1.

Lemma 1

For special cluster I, Costf is minimized if and only if p(z{; € G;|1) = p(¢; € G;|1) for zf; =+
¢; to all categorical variables. So that cost function can be rewritten as follows.

Cost = Z(Cos‘t, + Costyf)

Cost = Z Cost] z Costf

=1
Cost = Cost’ + Cost®

Because Cost™ and Cost® are non-negative, Cost minimalization can be done by minimizing
the Cost™ and Cost®.

Page 117

5.4 Normal or Gaussian Distribution

In real life, many datasets can be modeled by Gaussian Distribution (Univariate or
Multivariate). So it is quite natural and intuitive to assume that the clusters come from
different Gaussian Distributions. Or in other words, it tried to model the dataset as a
mixture of several Gaussian Distributions. This is the core idea of this model.

In one dimension the probability density function of a Gaussian Distribution is given by

G(}(Lu, O’) = {I\/]‘ﬁe—(u.'—,u,)"/'ztrQ

2
where # and 7 are respectively the mean and variance of the distribution. For
Multivariate (let us say d-variate) Gaussian Distribution, the probability density function is

given by

G(X|uw,Z) = mexp (—%(X —w)Is X - 1))

Here , is a d dimensional vector denoting the mean of the distribution and ¥ is

the d X d covariance matrix.

Gaussian Mixture Model

Suppose there are K clusters (For the sake of simplicity here it is assumed that the number
of clusters is known and it is K). So and are also estimated for each k. Had it been only one
distribution, they would have been estimated by the maximum-likelihood method. But

since there are K such clustersand the probability density is defined as a linear function of

densities of all these K distributions, i.e.
p(X) - Z.{f:l T‘—kG(‘X Hi, EL‘.)

where r, is the mixing coefficient for kth distribution. For estimat

parameters by the maximum log-likelihood method, compute p|

N
Inp(X|p, X, w) = E p(X;)
=1

N K
== E]uE G (X | pers 1)
i=1 k=1

Now define a random variable ,, (x)such that , (x)=p(k|X).

Y

Page 118

From Bayes theorem,

p(X|k)p(k)
Zh L p(k)p(X (k)
_ _ p(X|k)mg
iy mep(X k)

W(X) =

Now for the log-Llikelihood function to be maximum, its derivative of (x|, », x)
with respect to 4, £, and = should be zero. So equating the derivative of

p(X|u, ¥, 7)With respect to ,to zero and rearranging the terms,

_z,’)kl)l
K =1 Vk(Zn)

Similarly taking the derivative with respect to © and pi respectively, one can

obtain the following expressions.

Z — 2:}:1 Vi (Zn)(Al‘n _Ilk)(«l‘n _Ilk)T
k S =T ()

N
Mg % Zn:l f\f""'(;l:"‘)

Note: 2L)denotes the total number of sample points in the k"

cluster. /—/ere /t is assumed that there is a total N number of samples

and each sample containing d features is denoted by .

So it can be clearly seen that the parameters cannot be estimated in closed form. This is

where the Expectation-Maximization algorithm is beneficial.

5.5 Expectation-Maximization (EM) Algorithm

The Expectation-Maximization (EM) algorithm is an iterative way to find maximum-
likelihood estimates for model parameters when the data is incomplete or has some missing

data points or has some hidden variables. EM chooses some random values for the missing

Page 119

data points and estimates a new set of data. These new values are then recursively used to
estimate a better first date, by filling up missing points, until the values get fixed.

These are the two basic steps of the EM algorithm, namely the E Step, or Expectation Step

or Estimation Step, and M Step, or Maximization Step.

Estimation step

Initialize #+ =x@Nd m, by some random values, or by K means clustering results or by

hierarchical clustering results. Then for those given parameter values, estimate the value of

the latent variables

(i.e 4,)

Maximization Step
Update the value of the parameters(i.e. ;,, x;,andr;) calculated using the ML

method.

5.6 Reinforcement Learning

Unlike supervised and unsupervised learning, reinforcement learning is a feedback-based
approach in which agent learns by performing some actions as well as their outcomes. Based
on action status (good or bad), the agent gets positive or negative feedback. Further, for each
positive feedback, they get rewarded, whereas, for each negative feedback, they also get
penalized.

Def: “Reinforcement learning is a type of machine learning technique, where an
intelligent agent (computer program) interacts with the environment, explore it by itself,

and makes actions within that."

o Reinforcement learning does not require any labeled data for the learning process. It
learns through the feedback of action performed by the agent. Moreover, in

reinforcement learning, agents also learn from past experiences.

Page 120

o Reinforcement learning methods are used to solve tasks where decision-making is
sequential and the goal is long-term, e.g., robotics, online chess, etc.

Reinforcement learning aims to get maximum positive feedback so that they can
improve their performance.

Reinforcement learning involves various actions, which include taking action,
changing/unchanged state, and getting feedback. And based on these actions, agents

learn and explore the environment.

5.6.1 Exploration and Exploitation in Reinforcement Learning:

Before going to a brief description of exploration and exploitation in machine learning, let's
first understand these terms in simple words. In reinforcement learning, whenever agents get
a situation in which they have to make a difficult choice between whether to continue the
same work or explore something new at a specific time, then, this situation results in
Exploration-Exploitation Dilemma because the knowledge of an agent about the state,

actions, rewards and resulting states is always partial.
Now we will discuss exploitation and exploration in technical terms.
Exploitation in Reinforcement Learning

Exploitation is defined as a greedy approach in which agents try to get more rewards by using
estimated value but not the actual value. So, in this technique, agents make the best decision

based on current information.
Exploration in Reinforcement Learning

Unlike exploitation, in exploration techniques, agents primarily focus on improving their
knowledge about each action instead of getting more rewards so that they can get long-term
benefits. So, in this technique, agents work on gathering more information to make the best

overall decision.

Examples of Exploitation and Exploration in Machine Learning

Let's understand exploitation and exploration with some interesting real-world examples.

Page 121

Coal mining:

Let's suppose people A and B are digging in a coal mine in the hope of getting a diamond
inside it. Person B got success in finding the diamond before person A and walks off happily.
After seeing him, person A gets a bit greedy and thinks he too might get success in finding
diamond at the same place where person B was digging coal. This action performed by
person A is called greedy action, and this policy is known as a greedy policy. But person A
was unknown because a bigger diamond was buried in that place where he was initially

digging the coal, and this greedy policy would fail in this situation.

In this example, person A only got knowledge of the place where person B was digging but
had no knowledge of what lies beyond that depth. But in the actual scenario, the diamond can
also be buried in the same place where he was digging initially or some completely another
place. Hence, with this partial knowledge about getting more rewards, our reinforcement
learning agent will be in a dilemma on whether to exploit the partial knowledge to receive

some rewards or it should explore unknown actions which could result in many rewards.

However, both these techniques are not feasible simultaneously, but this issue can be

resolved by using Epsilon Greedy Policy (Explained below).

here are a few other examples of Exploitation and Exploration in Machine Learning as

follows:

Example 1: Let's say we have a scenario of online restaurant selection for food orders, where
you have two options to select the restaurant. In the first option, you can choose your favorite
restaurant from where you ordered food in the past; this is called exploitation because here,
you only know information about a specific restaurant. And for other options, you can try a
new restaurant to explore new varieties and tastes of food, and it is called exploration.
However, food quality might be better in the first option, but it is also possible that it is more

delicious in another restaurant.

Example 2: Suppose there is a game-playing platform where you can play chess with robots.

To win this game, you have two choices either play the move that you believe is best, and for

the other choice, you can play an experimental move. However, you are playing the best

possible move, but who knows new move might be more strategic to win this game. Here, the

Page 122

first choice is called exploitation, where you know about your game strategy, and the second
choice is called exploration, where you are exploring your knowledge and playing a new

move to win the game.

5.6.2 Non-Associative Learning

In reinforcement learning, non-associative learning refers to a type of learning that does
not involve forming associations or relationships between different stimuli or actions. It is
a simpler form of learning compared to associative learning, which involves linking

different stimuli or actions together.

Non-associative learning is typically observed in situations where an agent's behavior
changes in response to a single stimulus or repeated exposure to the same stimulus. There

are two common types of non-associative learning: habituation and sensitization.

1. Habituation: Habituation occurs when an agent's response to a particular stimulus
decreases over time with repeated exposure. It is a form of adaptive behavior where the
agent learns to ignore irrelevant or harmless stimuli. For example, if a robot is repeatedly
exposed to a loud noise that is not associated with any reward or punishment, it may

gradually stop reacting to the noise and become habituated to it.

2. Sensitization: Sensitization is the opposite of habituation and occurs when an agent's
response to a stimulus increases over time with repeated exposure. It involves an
increased sensitivity or responsiveness to a stimulus. For example, if a robot is repeatedly
exposed to a painful stimulus, it may become more sensitive to that stimulus and show an

increased response.

Non-associative learning is not directly related to reinforcement learning, as
reinforcement learning primarily focuses on associative learning, where agents learn to
associate their actions with rewards or punishments. However, non-associative learning
mechanisms can play a role in shaping an agent's behavior and influencing its responses
to stimuli, which can indirectly impact the learning process in reinforcement learning

scenarios.

Examples

Page 123

Living near an airport for a year and getting used to the sound of airplanes passing
overhead — Habituation
Hearing loud thunder when at home alone at night and then becoming easily startled

by bright flashes of light — Sensitization

5.6.3 Markov-Decision Process

Reinforcement Learning is a type of Machine Learning. It allows machines and software

agents to automatically determine the ideal behavior within a specific context, in order to

maximize its performance. Simple reward feedback is required for the agent to learn its

behavior; this is known as the reinforcement signal.

There are many different algorithms that tackle this issue. As a matter of fact,
Reinforcement Learning is defined by a specific type of problem, and all its solutions are
classed as Reinforcement Learning algorithms. In the problem, an agent is supposed to
decide the best action to select based on his current state. When this step is repeated, the
problem is known as a Markov Decision Process.

A Markov Decision Process (MDP) model contains:

A set of possible world states S.
A set of Models.
A set of possible actions A.
A real-valued reward function R(s,a).

A policy the solution of Markov Decision Process.

States: S

Model: T(S,a, S)~P(S’ | S, a)
Actions: A(S), A

Reward: R(S), R(S,; a), R(S,a, S?)

Policy: M) —a
I-I *

MarRov Decision Process

Page 124

State:

A State is a set of tokens that represent every state that the agent can be in.

Model:

A Model (sometimes called Transition Model) gives an action’s effect in a state. In
particular, T(S, a, S”) defines a transition T where being in state S and taking an action
‘a’ takes us to state S’ (S and S’ may be the same). For stochastic actions (noisy, non-
deterministic) we also define a probability P(S’|S,a) which represents the probability of
reaching a state S’ if action ‘a’ is taken in state S. Note Markov property states that the
effects of an action taken in a state depend only on that state and not on the prior
history.

Actions
An Action A is a set of all possible actions. A(s) defines the set of actions that can be taken

being in state S.

Reward

A Reward is a real-valued reward function. R(s) indicates the reward for simply being in

the state S. R(S,a) indicates the reward for being in a state S and taking an action ‘a’.

R(S,a,S’) indicates the reward for being in a state S, taking an action ‘a’ and ending up in a
state S’.

Policy

A Policy is a solution to the Markov Decision Process. A policy is a mapping from S to a.
It indicates the action ‘a’ to be taken while in state S.

Let us take the example of a grid world:

Page 125

Z]

2
N

1

3

Start

2

1

An agent lives in the grid. The above example is a 3*4 grid. The grid has a START
state(grid no 1,1). The purpose of the agent is to wander around the grid to finally reach the
Blue Diamond (grid no 4,3). Under all circumstances, the agent should avoid the Fire grid
(orange color, grid no 4,2). Also the grid no 2,2 is a blocked grid, it acts as a wall hence the

agent cannot enter it.

The agent can take any one of these actions: UP, DOWN, LEFT, RIGHT

Walls block the agent path, i.e., if there is a wall in the direction the agent would have
taken, the agent stays in the same place. So for example, if the agent says LEFT in the
START grid he would stay put in the START grid.

First Aim: To find the shortest sequence getting from START to the Diamond. Two such
sequences can be found:

. RIGHT RIGHT UP UPRIGHT

. UP UP RIGHT RIGHT RIGHT

Let us take the second one (UP UP RIGHT RIGHT RIGHT) for the subsequent discussion.
The move is now noisy. 80% of the time the intended action works correctly. 20% of the
time the action agent takes causes it to move at right angles. For example, if the agent says
UP the probability of going UP is 0.8 whereas the probability of going LEFT is 0.1, and the
probability of going RIGHT is 0.1 (since LEFT and RIGHT are right angles to UP).

The agent receives rewards each time step:-

Small reward each step (can be negative when can also be term as punishment, in
the above example entering the Fire can have a reward of -1).
Big rewards come at the end (good or bad).

The goal is to Maximize the sum of rewards.

Page 126

5.6.4 Q-learning

Q-learning is a model-free, value-based, off-policy algorithm that will find the best series of
actions based on the agent's current state. The “Q” stands for quality. Quality represents how

valuable the action is in maximizing future rewards.

The model-based algorithms use transition and reward functions to estimate the optimal

policy and create the model. In contrast, model-free algorithms learn the consequences of
their actions through the experience without transition and reward function.

The value-based method trains the value function to learn which state is more valuable and
take action. On the other hand, policy-based methods train the policy directly to learn which

action to take in a given state.

In the off-policy, the algorithm evaluates and updates a policy that differs from the policy
used to take an action. Conversely, the on-policy algorithm evaluates and improves the same

policy used to take an action

Before we jump into how Q-learning works, we need to learn a few useful terminologies to

understand Q-learning's fundamentals.

States(s): the current position of the agent in the environment.
Action(a): a step taken by the agent in a particular state.
Rewards: for every action, the agent receives a reward and penalty.

Episodes: the end of the stage, where agents can’t take new action. It happens when
the agent has achieved the goal or failed.

Q(Sw1, a): expected optimal Q-value of doing the action in a particular state.
Q(St, Ay): it is the current estimation of Q(St1,).
Q-Table: the agent maintains the Q-table of sets of states and actions.

Temporal Differences(TD): used to estimate the expected value of Q(St+1, @) by using

the current state and action and previous state and action.

Page 127

We will learn in detail how Q-learning works by using the example of a frozen lake. In this
environment, the agent must cross the frozen lake from the start to the goal, without falling
into the holes. The best strategy is to reach goals by taking the shortest path

P i

Q-Table

The agent will use a Q-table to take the best possible action based on the expected reward for
each state in the environment. In simple words, a Q-table is a data structure of sets of actions

and states, and we use the Q-learning algorithm to update the values in the table.

Q-Function

The Q-function uses the Bellman equation and takes state(s) and action(a) as input. The
equation simplifies the state values and state-action value calculation.

| (Qr(s,_(l,)lzlﬁ[]?,,-,, + YRevr2 + Y2 Rit3 + ...“S/-”:I]

v v

Q-Values for the state Expected discounted Given the state and action
given a particular state cumulative reward

Page 128

Q-learning algorithm

Choose an Action

on

terati

.
\

[Aesceiend]

Pter mult

3
L)
C
v
v
Q)-.D
— ¢
43
<]
3
0
o
$

Initialize Q-Table

We will first initialize the Q-table. We will build the table with columns based on the number

of actions and rows based on the number of states.

In our example, the character can move up, down, left, and right. We have four possible
actions and four states(start, Idle, wrong path, and end). You can also consider the wrong

path for falling into the hole. We will initialize the Q-Table with values at 0.
O o

o

Page 129

Choose an Action

The second step is quite simple. At the start, the agent will choose to take the random
action(down or right), and on the second run, it will use an updated Q-Table to select the

action.
Perform an Action

Choosing an action and performing the action will repeat multiple times until the training
loop stops. The first action and state are selected using the Q-Table. In our case, all values of

the Q-Table are zero.

Then, the agent will move down and update the Q-Table using the Bellman equation. With
every move, we will be updating values in the Q-Table and also using it for determining the

best course of action.

Initially, the agent is in exploration mode and chooses a random action to explore the
environment. The Epsilon Greedy Strategy is a simple method to balance exploration and
exploitation. The epsilon stands for the probability of choosing to explore and exploits when

there are smaller chances of exploring.

At the start, the epsilon rate is higher, meaning the agent is in exploration mode. While
exploring the environment, the epsilon decreases, and agents start to exploit the environment.
During exploration, with every iteration, the agent becomes more confident in estimating Q-

values

» & 4+ 3

o o o 1

o o o) o

Page 130

In the frozen lake example, the agent is unaware of the environment, so it takes random
action (move down) to start. As we can see in the above image, the Q-Table is updated using
the Bellman equation.

Measuring the Rewards

After taking the action, we will measure the outcome and the reward.

The reward for reaching the goal is +1
The reward for taking the wrong path (falling into the hole) is 0
The reward for Idle or moving on the frozen lake is also 0.

Update Q-Table

We will update the function Q(S:;, A:) using the equation. It uses the previous episode’s
estimated Q-values, learning rate, and Temporal Differences error. Temporal Differences
error is calculated using Immediate reward, the discounted maximum expected future reward,

and the former estimation Q-value.
The process is repeated multiple times until the Q-Table is updated and the Q-value function

IS maximized.

Q(S[,Af) — Q(Sf,Af) + a[R,.l + ’)”ITLG,;I‘-(,Q(Sf. |,a) — Q(Sf,Af)]

iscounted Estimate

xt state

Page 131

At the start, the agent is exploring the environment to update the Q-table. And when the Q-

Table is ready, the agent will start exploiting and start taking better decisions.

» &« 2 3

Start

Idle

Hole

End

In the case of a frozen lake, the agent will learn to take the shortest path to reach the goal and

avoid jumping into the holes.

Page 132

