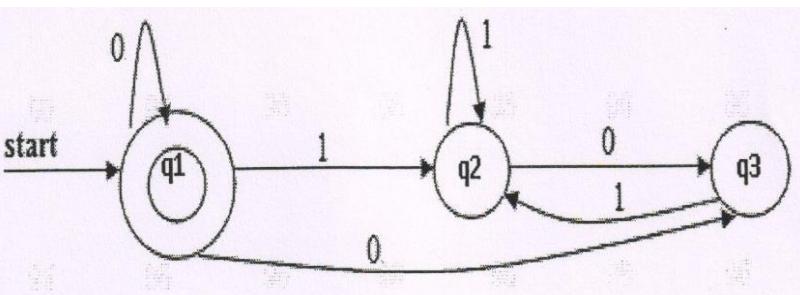
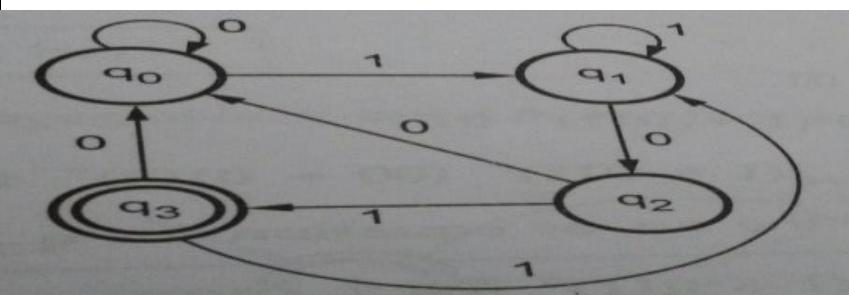
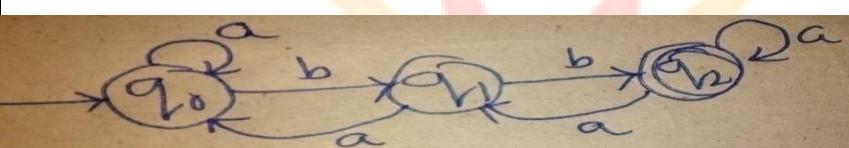


Department Of Computer Science and Engineering


Unit Wise Question Bank



UNIT-I

S.No	Questions	BT	CO
Part-A: Short Answer Questions			
1	Define DFA	L1	CO1
2	Mention the differences between DFA, NFA.	L4	CO1
3	Construct the DFA that accepts all strings of a's and b's , no a's are even or no. of b's are even .	L1	CO1
4	Construct the FA that accepts all strings of a's and b's, that every string starts with a and length of the string not divisible by 3	L1	CO1
5	Write down the decision properties of FA.	L1	CO1
6	List the differences between Moore and Melay machines.	L1	CO1
7	Obtain a DFA to accept strings of a's and b's starting with the string ab	L1	CO1
8	List limitations of Finite Automata.	L1	CO1
9	Define Moore machine.	L1	CO1
10	Obtain a DFA to accept strings of a's and b's having even number of a's and b's	L3	CO1
Part – B Long Answer Questions			
11	Convert the following NFA to DFA	L1	CO1
	<pre> graph LR start(()) --> a((a)) a -- "0" --> a a -- "1" --> b((b)) b -- "0" --> c((c)) b -- "1" --> e((e)) c -- "0" --> a c -- "1" --> d((d)) d -- "0" --> a d -- "1" --> e e -- "0" --> b e -- "1" --> d </pre>		

12	Convert the following NFA with ϵ to NFA without ϵ	L1	CO1
13	A) Define the following i). power of an String ii). Transition Table iii) Language iv) power set B) With the help of diagram explain the function of DFA, Why it is called as deterministic?	L1	CO1
14	A) Draw a DFA to accept string of 0's and 1's ending with the string 011 B) Obtain a DFA to accept strings of a's and b's having even number of a's and b's.	L1	CO1
15	A) Minimize following DFA. 	L3	CO1
	B) Check whether following two finite automata are equivalent or not.	L1	CO1

UNIT-II

S.No	Questions	BT	CO
Part-A: Short Answer Questions			
1	What is regular set and Regular Expression?	L4	CO2
2	Simplify the RE $(ab^* + (ab)^*)^* a^*$	L3	CO2
3	Construct the RE that generates all the strings of a's and b's i) including ϵ ii) excluding ϵ	L3	CO2
4	State Pumping lemma.	L1	CO2
5	Find a RE for the set of all strings containing no three consecutive 0's	L1	CO2
6	What is the difference between Regular and context free grammar?	L1	CO2
7	Construct a regular grammar for the regular expression $a^*b(a+b)^*$	L1	CO2
8	List out closure properties of regular languages.	L1	CO2
9	Prove for the RE a and b i.) $(ab+a)^*a = a(ba+a)^*$ ii) $(a^*b^*)^* = (a+b)^*$	L1	CO2
10	List out the decision properties of regular languages	L1	CO2
Part-B: Long Answer Questions			
11	<p>a) Show that $L = \{ a^n b^n \mid n \geq 1 \}$ is not a regular language using pumping lemma</p> <p>b) Derive the RE for the following finite automata</p>	L1	CO2
12	<p>a) Construct the RE, where the length of the string is at least 2 and exactly 2</p> <p>b) Convert the RE $(02+1)^*$ to an NFA-ϵ</p>	L1, L2	CO2

13	a)	State and prove pumping lemma for regular languages.	L1	CO2
	b)	Explain the procedure of converting FA to RE with example	L1	CO2
14		Explain Arden's theorem with example		
14	a)	consider the FA and construct RE that accept by the following diagram.	L1	CO2
	b)	Find the RE accepted by the following DFA	L1	CO2
15	a)	Prove That $L = \{a^p \mid p \text{ is a prime}\}$ is not regular?	L1	CO2
	b)	How to prove $L\{A^nB^n, n \geq 2\}$ is non Regular.	L1	CO2

UNIT-III

S.No	Questions	BT	CO
Part-A: Short Answer Questions			
1	Prove the grammar is ambiguous. $S \rightarrow a Sa bSS SSb SbS$	L1	CO3
2	Define Parse tree	L1	CO3
3	Construct the PDA for the following grammar $S \rightarrow AA a \quad A \rightarrow SA b$	L1	CO3
4	Define PDA?explain its ID?	L2	CO3
5	What are the difference between PDA and DPDA?	L1	CO3

6	Write the applications of CFG	L1	CO3
7	What is acceptance of final state and empty stack?	L1	CO3
8	Define the following terms i)Left most derivation ii)Right most derivation	L1	CO3
9	Define ambiguity in CFG with an Example.	L1	CO3
10	List out the properties of CFG?	L1	CO3

Part-B: Long Answer Questions

11	What are the steps required to convert from CFG to PDA ?	L2	CO3
12	Explain Right most derivation with an example	L1	CO3
13	How does the language is accepted by PDA? Explain with example.	L2	CO3
14	Design Push down Automata for the language $L = \{ a^n b^{2n} \mid n \geq 1 \}$.		
	Construct PDA for the Language $L = \{ a^n b^m c^n \mid n, m \geq 1 \}$		
15	Write a Context free grammar for the Language $L = \{ 0^n 1^n \mid n \geq 1 \}$	L3	CO3

UNIT-IV

S.No	Questions	BT	CO
Part-A: Short Answer Questions			
1	Explain Chomsky's normal form with example.	L1	CO4
2	Explain Greibach normal form with example.	L1	CO4
3	When a CFG is said to be GNF?	L2	CO4
4	Define Turing Machine?	L1	CO4
5	What is Type 1 grammar?	L1	CO4
6	Design TM for $L = \{ 0^n 1^n 0^n \mid n \geq 1 \}$	L1	CO4
7	Construct TM to add two given integer?	L3	CO4
8	Explain TM ?its importance and limitations of TM?	L2	CO4
8	Make a comparison between FM,PDA and TM?	L2	CO4
9	What are the closure properties of CFL's?	L1	CO4

10	What is the statement of Pumping lemma in CFL?	L1	CO4
Part-B Long Answer Questions			
11	What are the applications of Pumping lemma in CFL?	L1	CO4
	Using Pumping lemma, prove that $L = \{ a^i b^i c^i \mid i \geq 1 \}$ is not a CFL.	L3	CO4
12	Eliminate Unit productions for the following grammar $S \rightarrow Aa / B$ $B \rightarrow A / bb$ $A \rightarrow a / bc / B$	L3	CO4
13	Eliminate ϵ -productions for the following grammar $S \rightarrow AB$ $A \rightarrow aAA / \epsilon$ $B \rightarrow bBB / \epsilon$	L3	CO4
15 a)	Given $\Sigma = \{ 0,1 \}$, design a TM that accepts the language denoted by regular expression 00^*	L3	CO4
15 b)	Design A TM that accepts $L = \{ anbn \mid n \geq 0 \}$	L1	CO4
13 a)	Explain the following a) Closure properties of Context free languages b) Decision properties of Context free languages	L2	CO4
13 b)	Convert the following grammar to Greibach normal form $S \rightarrow ABA AB BA AA B$, $A \rightarrow aA a$, $B \rightarrow bB b$	L3	CO4
14 a)	Explain with diagram for the the working of a TM model?	L1	CO4
14 b)	Design a TM that accept $L = \{ 02n1n \mid n \geq 0 \}$	L1	CO4
15 a)	Consider the grammar $S \rightarrow ABC BaB$, $A \rightarrow aA BaC aaa$, $B \rightarrow bbb a D$, $C \rightarrow CA AC$, $D \rightarrow \epsilon$: a) Eliminate NULL productions b) Eliminate Unit Productions in the resulting grammar c) Eliminate Useless Symbols in the resulting grammar.	L1	CO4
15 b)	Construct a TM for $\Sigma = \{ a, b \}$ which will covert lower case to upper case letters.	L3	CO4
16 a)	What is Chomsky's normal form explain.?	L3	CO4
16 b)	Define CNF . convert the following CFG to CNF $S \rightarrow ASB \epsilon$, $A \rightarrow aAS a$, $B \rightarrow SbS A bb$	L3	CO4

UNIT-V

S.No	Questions	BT	CO
1	What is PCB?	L2	CO5
2	State and explain rice theorem?	L2	CO5
3	Explain counter machine in details?	L5	CO5
4	Construct aTM for checking a given number is prime or not?	L2	CO5
5	What are the types of TM?	L5	CO5
6	What is halting problem is it solvable?	L2	CO5
7	Explain halting problem of TM?	L3	CO5
8	What is Decidability? Explain with example?	L2	CO5
9	Explain Universal TM?	L4	CO5

Part-B Long Answer Questions

10	What are the properties of Recursive and recursively Enumerable language?	L5	CO5
11	Explain types of TM in detail.		
12	a) Explain Post corresponding problem with an example.	L1	CO5
	b) Explain i) Homomorphism ii) Recursive language	L2	CO5
13	a) What is Turing Machine and Multi tape Turing Machine? Show that the languages accepted by these machines are same.	L2	CO5
	b) What is decidability of a problem explain in details?	L1	CO5
14	a) Design Turing Machine for the language to accept the set of strings with equal number of 0's and 1's and also give the instantaneous description for the input '110100'.	L1	CO5
	b) What is halting problem and Turing reducibility?	L3	CO5
15	a) Define LR (0) grammars.	L2	CO5
	b) Give examples for Undecidable Problems	L1	CO5