
Formal Languages and Automata Theory (23CS602)

CSE,NRCM Page 1

Lecture Notes

UNIT-1

Introduction to Finite Automata: Structural Representations, Automata and

Complexity, the Central Concepts of Automata Theory – Alphabets, Strings,

Languages, Problems. Nondeterministic Finite Automata: Formal

Definition, an application, Text Search, Finite Automata with Epsilon-

Transitions.

Deterministic Finite Automata: Definition of DFA, How A DFA Process

Strings, The language of DFA, Conversion of NFA with €-transitions to

NFA without €-transitions. Conversion of NFA to DFA, Moore and Melay

machines

AUTOMATA THEORY:

 Automaton = an abstract computing device. A mathematical device which acts

as a computer for computation.

 Note: A “device” need not even be a physical hardware.

 The term "Automata" is derived from the Greek word "AUTOMATA" which

means "self- acting".

 Automaton is singular and Automata is plural.

Why study automata theory? or Applications of automata Theory

 The lexical analyzer and Syntax analyzers of a typical Compiler

 Software for designing and checking the behavior of digital circuits

 Software for scanning large bodies of text such as collections of Web pages to

find occurrences of words, phrases or other patterns.

 The software for Natural Language Processing take the help of an automata

theory (Chat boat Application).

INTRODUCTION TO FINITE AUTOMATA:

Symbol :A Symbol is an abstract entity. It cannot be formerly defined as points in

geometry.

 Ex: letters or digits or special symbols like !,@,#,$..

 Alphabet: A finite set of symbols denoted by ∑.

 Ex: ∑= {a,b,..z} is called english alphabet

Formal Languages and Automata Theory (23CS602)

CSE,NRCM Page 2

 ∑={0,1} is called Binary Alphabet

String/Word: Finite sequence of letters from the alphabet. It Is denoted by S or W Ex:

S= computer is a string defined over ∑ ={a,b,c,..z}

 Ex: W=010100 is a binary word defined over ∑={0,1}

Length of a string: It is the number of symbols present in a given string. It is

denoted by |S|. Ex: S= computer then |S|=8

Empty/Null string (ε) :If |S|= 0 then it is called an empty string. It is

 denoted by λ or ε.

Powers of an alphabet (∑
k
):if ∑ is an alphabet then ∑

k
 is the set of strings of

length k.

 Ex: ∑
0
 ={ε }, ∑

1
 ={0,1 }, ∑

2
 ={00,11,01,10 }

Kleene /Star Closure (∑*): The infinite set of all possible strings of all

 possible lengths over ∑ including

 ε.i.e., ∑* = ∑
0
 ∪ ∑

1
 ∪ ∑

2
 ∪ where ∑

k
 is the set of all possible strings

of length k.

 Ex: If ∑ = {a, b} then ∑* = {ε, a, b, aa, ab, ba, bb, }

Positive Closure (∑
+
):The infinite set of all possible strings of all possible

lengths over ∑ excluding

 ε.i.e., ∑
+
 = ∑

1
 ∪ ∑

2
 ∪ where ∑

k
 is the set of all possible strings of length k.

 Ex: If ∑ = {a, b} then ∑
+
 = { a, b, aa, ab, ba, bb,… }

Strings Concatenation:Let S1 and S2 be two strings. The Concatenation of S1

and S2 is adding the string S2 at the of string S1.

 Ex: S1= Computer, S2=Science then S1S2=ComputerScience and

S2S1=Science Computer

Language:A non Empty Subset of ∑* is called a language. It is denoted by L.

 Ex: Let ∑={0,1}

 ∑* ={ε ,0,1,00,11,01,10,111,000,101,011,..}

 L={0,00,10,110,…} is called even binary numbers language.

OPERATIONS ON LANGUAGES:

 If L1, L2 are two languages then

Union operation: It is denoted as L1UL2 or L1 + L2 , L1/L2 and is defined as

L1UL2={s|s is in L1 or s is in L2}.

Formal Languages and Automata Theory (23CS602)

CSE,NRCM Page 3

Intersection operation: It is denoted as L1∩L2 ,and is defined as L1∩L2={s|s is in L1

and s is in L2} .

Concatenation operation: It is denoted as L1L2 and is defined as L1L2 = { xy | L1 є x

and L2 є y} Difference operation: It is denoted as L1-L2 ,and is defined as L1-L2={s|s

is in L1 and s is not in L2}.

Keen Closure operation (L*): It is the language consisting of all words that are

Concatenations of 0 or more words in the original language (including null string).

Problems in Automata Theory: It is the question of deciding whether a given string is a

member of some particular language. Precisely, if ∑ is an alphabet and L is a language

over ∑ then the problem L is a given a string W in ∑* decide whether or not w is in L.

 BLOCK DIAGRAM OF FINITE AUTOMATA:

An automaton with a finite no of states is called finite automaton or Finite state machine.

It consists of three components 1) Input Tape 2) Read/Write Head 3) Finite Control

• Input Tape:

• i) the input tape is divided in to squares, each square contains a single symbol

from the input alphabet ∑.

• ii) The end squares of each tape contain end markers different from symbols of ∑.

• iii) Absence of end markers indicate the tape is of infinite length.

Formal Languages and Automata Theory (23CS602)

CSE,NRCM Page 4

• iv) The symbols between end markers is the input string to be processed.

Read/Write Head: The R/W head examines only one square at a time and can

move one square either to the left or the right.

• Finite control: Finite control can be considered as the control unit of an FA. An

automaton always resides in a state. The reading head scans the input from the

input tape and sends it to finite control. In this finite control, it is decided that ‘the

machine is in this state and it is getting this input, so it will go to this state’. The

state transition relations are written in this finite control.

DEF: FINITE AUTOMATA

A finite automaton is a collection of 5-tuple M=(Q, ∑, δ, q0, F), where:

• Q: finite set of states

• ∑: finite set of the input symbol

• q0: initial state

• F: Set of final states

• δ: QX ∑ Q is a Transition function

REPRESENTATION OF FA: Finite automata can be represented in two

ways: (i) Graphical representation and (ii) Tabular representation.

Graphical Representation of FA:

• It is called as transition graph or diagram

• It is a collection of states and transitions

• A state is represented by a circle

• A beginning/initial state is represented as q2

• A final state is represented as

• A directed edge indicates the transition from one state to another state and edges are

labeled with input symbols.

 EX: GRAPHICAL REPRESENTATION OF FA

Tabular Representation: Transition table

• It is a table of order mXn.

• First row indicates inputs and first column indicates states and the corresponding

entities are outputs of a transition function.

Formal Languages and Automata Theory (23CS602)

CSE,NRCM Page 5

• Start state is marked with arrow and final state is marked with * or circle.

δ 0 1

q1 q1 q2

q2 q3 q2

q3 -- q3

Ex: Consider an automata M=(Q, ∑, δ, q0, F) where Q={q0,q1,q2}, ∑={a,b}, F={q2} ,

δ(q0,a) =q1, δ(q0,b)=q2, δ(q1,a)=q2, δ(q1,b)=q0, δ(q2,a)=q2, δ(q2,b)=q2. Draw transition

diagram and transition table.

PROPERTIES OF TRANSITION FUNCTION (δ):

• δ(q,ε)=q i.e., If the input symbol is null for a given state q, it remains in the same state.

• For all strings w and input symbol a, δ(q, aw) = δ(δ(q,a),w)

 ACCEPTANCE OF A STRING BY FA: A string w is accepted by a finite automata M= (Q,∑,δ,q0,F)

if δ(q0,w) = q for some q є F.

δ 0 1

*q0 q2 q1

q1 q3 q0

q2 q0 q3

q3 q1 q2

Ex: Now let us consider the finite state machine whose transition function δ is given in the form of

transition table. Where Q= {q0,q1,q2,q3}, ∑={0,1} & F={q0}.Test whether the string

110101 is accepted or not

• Sol:

Formal Languages and Automata Theory (23CS602)

CSE,NRCM Page 6

δ(q0,110101)= δ(q1,10101)= δ(q0,0101)= δ(q2,101) = δ(q3,01)= δ(q1,1)= δ(q0, ε) = q0

Hence

 1 1 0 1 0 1

 q0->q1->q0->q2->q3->q1->q0

Here q0 is not a final state. Hence the string is rejected.

• TYPES OF FINITE AUTOMATA: There are two types of finit automata DFA-

Deterministic Finite Automata

 NFA -Nondeterministic Finite Automata

DFA: It refers to deterministic finite automata. Deterministic refers to the uniqueness of

the computation . In the DFA, the machine goes to one state only for a particular input

character. DFA does not accept the null move.

NFA:It is used to transmit any number of states for a particular input. It can accept the null move.

 Some important points about DFA and NFA:

 Every DFA is NFA, but the converse need not be true i.e., every NFA need not be DFA.

 There can be multiple final states in both NFA and DFA.

 DFA is used in Lexical Analysis in Compiler.

 Construction of NFA is easier than the construction of DFA

 To test string is Accepted or not easier in DFA than in NFA

DETERMINISTIC FINITE AUTOMATA (DFA):

A DFA can represented by a 5-tuple (Q, ∑, δ, q0, F) where

 Q is a finite set of states.

 ∑ is a finite set of symbols called the alphabet.

 δ is the transition function where δ: Q × ∑ → Q

 q0 is the initial state from where any input is processed (q0 ∈ Q).

 F is a set of Final states

Formal Languages and Automata Theory (23CS602)

CSE,NRCM Page 7

 Design a DFA which accepts strings ending with 0 defined over ∑ = {0, 1} Transition

Diagram: Transition Table:

δ 0 1

q0 q1 q0

q1 q1 q0

• Design a DFA to accept all strings starting with 0 defined over ∑ = {0, 1}

Transition Diagram: Transition Table:

 0 1

q0 q1 q2

q1 q1 q1

q2 -- --

Test whether the string 0101010 is accepted or not

• Design a FA which accepts strings starts with 1 and ends with 0 defined over ∑ = {0,

1}

Transition Diagram:

Formal Languages and Automata Theory (23CS602)

CSE,NRCM Page 8

Transition Table:

δ 0 1

q0

q1

*q2

Test whether the string 11010101 is accepted or not

• Design a FA which accepts the only input 101 defined over ∑ = {0, 1}

Transition Diagram:

Transition Table:

• Design FA which accepts even number of 0's and even number of 1's over ∑ = {0, 1}

Transition Diagram:

Formal Languages and Automata Theory (23CS602)

CSE,NRCM Page 9

Transition Table:

• Design FA which accepts odd number of 0's and odd number of 1's defined over ∑ =

{0, 1}

• Design FA accepts even number of 0's and odd number of 1's defined over ∑ = {0, 1}

Transition Diagram: Transition Table

• Design FA which accepts odd number of 0's and even number of 1's defined over ∑ =

{0, 1}

Transition Diagram: Transition Table

• Design FA which accepts the set of all strings with three consecutive 0's.

Transition Table:

• Design a DFA for L(M) = {w | w ε {0, 1}*} and W is a string that does not

contain three consecutive 1's}.

• When three consecutive 1's occur the DFA will be:

 0 1

q0 q1 q3

q1 q0 q2

q2 q3 q1

q3 q2 q0

Formal Languages and Automata Theory (23CS602)

CSE,NRCM Page 10

Here two consecutive 1's or single 1 is acceptable, hence

The stages q0, q1, q2 are the final states. The DFA will generate the strings that

do not contain consecutive 1's like 10, 110, 101,. etc.

Transition Table:

• Design a FA which accepts the strings with an even number of 0's followed by single

1 Transition Diagram: Transition Table:



Formal Languages and Automata Theory (23CS602)

CSE,NRCM Page 11

Practice Problems
 Design a FA with ∑ = {0, 1} accepts the strings with an even number of 0's

followed

by single 1

• Design a finite automata that recognizes i) even no of a’s ii) odd no of b’s defined

over ∑ = {a, b}

 Design a DFA that contains 001as a substring defined over ∑ = {0, 1}

 Design a FA to accept strings of a’s and b’s ending with abb defined over ∑ = {a,

b}



• Design a DFA which accepts the strings starting with 1 and ending with 0.

• Obtain the DFA that recognizes the language L(M)={W/W is in {a, b c}
*
 and W

contains the pattern abac}

 Design a DFA for the language L={0
m

1
n
: m>=0,n>=1}



• Design a DFA for the language L={0
m

1
n
: m>=1,n>=1}

 Note: Decimal to Binary

 { 0-0, 1-1, 2-10 , 3-11, 4-100, 5-

101,

6-110, 7-111, 8-1000, 9-1001, 10-1010, 11-

1011, 12-1100, 13-1101, 14-1110,…….}

 Design a FA which checks whether a given binary number is even

 Design a FA that accepts the set of all strings that interpreted as binary

representation of an unsigned decimal number i) which is divisible by 2 ii)

divisible by 3, iii) which is divisible by 5.

Divisible by 2:

Divisible by 3:

Formal Languages and Automata Theory (23CS602)

CSE,NRCM Page 12

Divisible by 4:

Divisible by 5:

Non-Deterministic Finite Automata (NFA):

NFA stands for Non-Deterministic Finite Automata. It is easy to construct an

NFA than DFA for a given regular language.
The finite automata are called NFA when there exist many paths for specific input

from the current state to the next state.
Every NFA is not DFA, but each NFA can be translated into DFA.
NFA is defined in the same way as DFA but with the following two exceptions,

it
contains multiple next states, and it contains ε transition.

Formal definition of NFA:

A NFA can be represented by a 5-tuple (Q, ∑, δ, q0, F) where

• Q is a finite set of states.

• ∑ is a finite set of symbols called the alphabet.

• δ: Q x ∑ →2
Q
 is a transition function

• q0: initial state

• F: Set of final states

Ex: Design an NFA with ∑ = {0, 1} accepts all string ending with 01

Transition Table:

 0 1

q0 {q0,q1} {q0}

q1 -- {q2}

*q2 -- --

Formal Languages and Automata Theory (23CS602)

CSE,NRCM Page 13

Ex: Design an NFA with ∑ = {0, 1} in which double '1' is followed by double '0'.

Transition Diagram:

Transition Table:

Ex: Design an NFA in which all the string contain a substring 1110

Transition Diagram:

Transition Table:

Ex: Design an NFA with ∑ = {0, 1} accepts all string in which the third symbol

from the right end is always 0.

CONVERSION OF NFA to DFA:

• Let, M = (Q, ∑, δ, q0, F) is an NFA which accepts the language L(M). There

should be equivalent DFA denoted by M' = (Q', ∑', q0', δ', F') such that L(M) =

L(M').

Steps for converting NFA to DFA:

• Step 1: Start from the initial state of NFA. Take the state with the ‘[]’.

• Step 2: place the next states for the initial state for the given inputs in the

next columns put them also in [].

Formal Languages and Automata Theory (23CS602)

CSE,NRCM Page 14

• Step 3: If any new combination of state appears in next state column then take the

combination in the present state column.

• Step 4: If no new combination of state appears then stop the process.

• Step 5: The initial state for the constructed DFA will be the initial state of NFA.

• Step 6: The Final state(s) for the constructed DFA will be the combinations of

states containing at least one final state of NFA.

EX: CONVERT THE GIVEN NFA TO DFA

S.
No

DFA

NFA

1

The transition from

a state is to a single

particular next state

for each input

symbol. Hence it is

called deterministic

The transition from

a state can be to

multiple next states

for each input

symbol. Hence it is

called non-

deterministic.

2 Empty string

transitions are not

seen in DFA.

NDFA permits

empty string

transitions.

3

Backtracking is

allowed in DFA

In NDFA,

backtracking is

not always

possible.

4 Requires more

space.
Requires less

space.

5

A string is accepted

by a DFA, if it

transits to a final

state.

A string is accepted

by a NDFA, if at

least one of all

possible transitions

ends in a final

state.

Formal Languages and Automata Theory (23CS602)

CSE,NRCM Page 15

Now we will obtain δ' transition for state q0.

δ'([q0], 0) = [q0] δ'([q0], 1) = [q1] (new state generated)

δ'([q1], 0) = [q1, q2] (new state generated)

δ'([q1], 1) = [q1]

Now we will obtain δ' transition on [q1, q2].

δ'([q1, q2], 0) = δ(q1, 0) ∪ δ(q2, 0) = {q1, q2} ∪ {q2} = [q1, q2]

δ'([q1, q2], 1) = δ(q1, 1) ∪ δ(q2, 1) = {q1} ∪ {q1, q2} = {q1, q2} = [q1, q2]

The state [q1, q2] is the final state because it contains a final state q2.

 0 1

→[q0] [q0] [q1]

[q1] [q1,q2] [q1]

*[q1,

q2]
[q1,q2] [q1,q2]

 0 1

→q0 {q0} {q1}

q1 {q1,q2} {q1}

*q2 {q2} {q1,q2}

Formal Languages and Automata Theory (23CS602)

CSE,NRCM Page 16

EX:NFA TO DFA CONVERSION

 0 1

q0 {q0,q1} {q1}

*q1 -- {q0,q1}

Now we will obtain δ' transition for state q0.

δ'([q0], 0) = {q0, q1} = [q0, q1] (new state generated)

δ'([q0], 1) = {q1} = [q1] (new state generated)

The δ' transition for state q1 is obtained as:

δ'([q1], 0) = ϕ , δ'([q1], 1) = [q0, q1]

Now we will obtain δ' transition on [q0, q1].

Formal Languages and Automata Theory (23CS602)

CSE,NRCM Page 17

δ'([q0, q1], 0) = δ(q0, 0) ∪ δ(q1, 0) = {q0, q1} ∪ ϕ = {q0, q1} = [q0,

q1]

Similarly,

δ'([q0, q1], 1) = δ(q0, 1) ∪ δ(q1, 1) = {q1} ∪ {q0, q1} = {q0, q1} = [q0, q1]

As in the given NFA, q1 is a final state, then in DFA wherever, q1 exists that state

becomes a final state. Hence in the DFA, final states are [q1] and [q0, q1].

Therefore set of final states F = {[q1], [q0, q1]}.

 0 1

→[q0] [q0,

q1]
[q1]

*[q1] ϕ [q0,

q1]

*[q0,

q1]

[q0,

q1]

[q0,

q1]

Even we can change the name of the states of DFA.

SupposeA = [q0] B = [q1] C = [q0, q1]

With these new names the DFA will be as follows:

Formal Languages and Automata Theory (23CS602)

CSE,NRCM Page 18

NFA WITH EPSILON TRANSITIONS

Def: If any finite automata contain ε (null) move or transition, then that finite

automaton is called NFA with ∈ moves

STA

TES

0

1

EPSI

LON

A {

B

,

C

}

{

A

}

{B}

B – {

B

}

{C}

C {

C

}

{

C

}

–

Formal Languages and Automata Theory (23CS602)

CSE,NRCM Page 19

0 1 ε

A {E} {B} ∅

• ∅ {C}

• ∅ {D}

* D ∅ ∅

• {F} ∅

• {D} ∅

{D}

∅

∅

Formal Languages and Automata Theory (23CS602)

CSE,NRCM Page 20

{B, C}

∅

EPSILON (∈) – CLOSURE:

• Epsilon closure for a given state X is a set of states which can be reached from the states

X with only (null) or ε moves including the state X itself. In other words, ε-closure for a

state can be obtained by union operation of the ε-closure of the states which can be

reached from X with a single ε move in recursive manner.

• For the above example ∈ closure are as follows :

• ∈ closure(A) : {A, B, C} , ∈ closure(B) : {B, C}, ∈ closure(C) :

{C}

Construction of ∈ -NFA:

Ex: Construct ∈ -NFA with e-transitions and it accepts strings of the

form{Onlm2o/n,m,o>=0},thatis,anynumberof0'sfollowedbyanynumberofl'sfollowed by

any number of 2's.

Transition Diagram:

Transition Table:

 0 1 2 ∈

q

0

{q0

}

-- -- {q1

}

q1 -- {q1

}
-- {q2

}

*q2 -- -- {q2

}
--

Ex: Design NFA for language L ={0KIk is multiple of 2 or 3}.

Formal Languages and Automata Theory (23CS602)

CSE,NRCM Page 21

NFA for multiple of 3
NFA for multiple of 2

Conversion of∈ -NFA TO NFA or elimination of ∈ transitions

• Find ε-closure {qi} for all qi ∈ Q.

• Find δ^ (q,a)= ε-closure (δ (δ^ (q, ε),a)) =ε-closure (δ (ε-closure(q),a))

• Repeat Step-2 for each input symbol and each state of given NFA.

• Using the resultant states, the transition table for equivalent NFA without ε can be built.

• If the ε-closure of a state contains a final state then make the state as final.

Ex: Convert the following ∈ -NFA TO NFA

Formal Languages and Automata Theory (23CS602)

CSE,NRCM Page 22

Solutions: We will first obtain

ε-closures of q0, q1 and q2 as follows:

ε-closure(q0) = {q0} , ε-closure(q1) = {q1, q2}

ε-closure(q2) = {q2}

Now the δ

^
transition on each input symbol is obtained as:

δ

^
 (q0, a) = ε-closure(δ(δ

^
(q0, ε),a)) = ε-closure(δ(ε-closure(q0),a)) = ε-

closure(δ(q0, a))= ε- closure(q1)

= {q1, q2}

δ

^
 (q0, b) = ε-closure(δ(δ

^
(q0, ε),b)) = ε-closure(δ(ε-closure(q0),b)) = ε-closure(δ(q0, b))

= Ф

δ

^
(q2, a) = ε-closure(δ(δ^(q2, ε),a)) = ε-closure(δ(ε-closure(q2),a)) = ε-closure(δ(q2, a))

= ε-closure(Ф) = Ф

δ

^
(q2, b) = ε-closure(δ(δ^(q2, ε),b)) = ε-closure(δ(ε-closure(q2),b))

= ε-closure(δ(q2, b)) = ε-closure(q2) = {q2}

Now we will summarize all the computed δ' transitions:

δ

^
(q0, a) = {q0, q1} δ

^
(q0, b) = Ф δ

^
(q1, a) = Ф , δ

^
(q1, b) = {q2} δ

^
(q2, a) = Ф , δ

^
(q2,

b) = {q2} . State q1 and q2 become the final state as ε-closure of q1 and q2 contain the

final state q2.

 a b

→q0 {q1,

q2}
Ф

*q1 Ф {q2}

*q2 Ф {q2}

Formal Languages and Automata Theory (23CS602)

CSE,NRCM Page 23

Ex: Convert the following ∈ -NFA TO NFA

The transition table is

CONVERSION FROM ε-NFA TO DFA

Step 1: If ε-closure(q0)= {P1,P2,..Pn} then [P1P2..Pn] becomes the starting state of DFA.

Step 2: Find δD ([P1P2..Pn] ,a)= ε-closure(δ(P1,P2,..Pn),a))

Step 3: If we found a new state, take it as current state and repeat step 2.

Step 4: Repeat Step 2 and Step 3 until there is no new state present in the transition table

of DFA.

Step 5: Mark the states of DFA as a final state which contains the final state of NFA.

EX: CONVERT THE NFA WITH ε INTO ITS EQUIVALENT DFA.

Formal Languages and Automata Theory (23CS602)

CSE,NRCM Page 24

Let us obtain ε-closure of each state.

ε-closure {q0} = {q0, q1, q2}

ε-closure {q1} = {q1} ε-closure {q2} = {q2} ε-closure {q3} = {q3}

ε-closure {q4} = {q4}

Now, let ε-closure {q0} = {q0, q1, q2} be state A.

Hence

δ'(A, 0) = ε-closure {δ((q0, q1, q2), 0) } = ε-closure {δ(q0, 0) ∪δ(q1, 0) ∪δ(q2, 0) }

= ε-closure {q3} = {q3} call it as state B.

δ'(A, 1) = ε-closure {δ((q0, q1, q2), 1) } = ε-closure {δ((q0, 1) ∪δ(q1, 1) ∪δ(q2, 1)}

= ε-closure {q3} = {q3} = B.

Now,

δ'(B, 0) = ε-closure {δ(q3, 0) } = ϕ

δ'(B, 1) = ε-closure {δ(q3, 1) }= ε-closure {q4} = {q4} i.e. state C

For state C: δ'(C, 0) = ε-closure {δ(q4, 0) } = ϕ δ'(C, 1) = ε-closure {δ(q4, 1) } = ϕ

The DFA will be

Formal Languages and Automata Theory (23CS602)

CSE,NRCM Page 25

Ex: Convert the given NFA with epsilon into its equivalent DFA

L= any no of a’s followed by any no of b’s followed by any no of c’s

Solution: Let us obtain the ε-closure of each state.

ε-closure(q0) = {q0, q1, q2}

ε-closure(q1) = {q1, q2}

ε-closure(q2) = {q2}

Now we will obtain δ' transition.

Let ε-closure(q0) = {q0, q1, q2} call it as state A.

δ'(A, 0) = ε-closure{δ((q0, q1, q2), 0)} = ε-closure{δ(q0, 0) ∪δ(q1, 0) ∪δ(q2, 0)}

= ε-closure{q0}= {q0, q1, q2}

δ'(A, 1) = ε-closure{δ((q0, q1, q2), 1)} = ε-closure{δ(q0, 1) ∪δ(q1, 1) ∪δ(q2, 1)}

= ε-closure{q1} = {q1, q2} call it as state B

δ'(A, 2) = ε-closure{δ((q0, q1, q2), 2)} = ε-closure{δ(q0, 2) ∪δ(q1, 2) ∪δ(q2, 2)}

= ε-closure{q2} = {q2} call it state C

Thus we have obtained

δ'(A, 0) = A δ'(A, 1) = B δ'(A, 2) = C

Now we will find the transitions on states B and C for each input.

Formal Languages and Automata Theory (23CS602)

CSE,NRCM Page 26

Hence

δ'(B, 0) = ε-closure{δ((q1, q2), 0)} =ε-closure{δ(q1, 0) ∪δ(q2, 0)} = ε-closure{ϕ} =

ϕ

δ'(B, 1) = ε-closure{δ((q1, q2), 1)}= ε-closure{δ(q1, 1) ∪δ(q2, 1)} = ε-closure{q1}= {q1,

q2} i.e. state B itself

δ'(B, 2) = ε-closure{δ((q1, q2), 2)} = ε-closure{δ(q1, 2) ∪δ(q2, 2)} = ε-closure{q2} =

{q2} i.e. state C itself

Thus we have obtained

δ'(B, 0) = ϕ δ'(B, 1) = B δ'(B, 2) = C

Now we will obtain transitions for C:

δ'(C, 0) = ε-closure{δ(q2, 0)} = ε-closure{ϕ} = ϕ

δ'(C, 1) = ε-closure{δ(q2, 1)}= ε-closure{ϕ}= ϕ

δ'(C, 2) = ε-closure{δ(q2, 2)}= {q2}

As A = {q0, q1, q2} in which final state q2 lies hence A is final state. B = {q1, q2} in

which the state q2 lies hence B is also final state. C = {q2}, the state q2 lies hence C is

also a final state.

MINIMIZATION OF DFA: REDUCTION OF NO OF STATES IN FA:

Any DFA defines a unique language but the converse is not true i.e., for any language

there is a unique DFA is not always true.

INDISTINGUISHABLE AND DISTINGUISHABLE STATES:

Formal Languages and Automata Theory (23CS602)

CSE,NRCM Page 27

Two states p and q of a DFA are indistinguishable if δ(p,w) is in F => δ(q,w) is in F and

δ(p,w) is not in F => δ(q,w) is not in F

Two states p and q of a DFA are distinguishable if δ(p,w) is in F and δ(q,w) is not in F

or vice versa.

DFA MINIMIZATION: MYHILLNERODE THEOREM

Algorithm:

Input − DFA, Output − Minimized DFA

Step 1 :For each pair [p,q] where p is in F and q is in Q-F, mark[p,q]=X

Step 2 :For each pair of distinct state [p,q] in FXF or (Q-F)X(Q-F) do

• if for some input symbol a, δ([p,q],a)=[r,s], if [r,s]=X then

• mark[p,q]=X

• Recursively mark all unmarked pairs which lead to [p,q] on input for all a is in ∑

• else

• For all input symbols a do

put [p.q] on the list for δ([p,q],a) unless δ([p,q],a)=[r,r]

Step 3: For each pair [p,q] which is unmarked are the states which are equivalent

Ex: Find minimum-state automaton equivalent to the transition diagram

Transition Table:

 0 1

a b a

b a c

c d b

d d a

Formal Languages and Automata Theory (23CS602)

CSE,NRCM Page 28

e d f

f g e

g f g

h g D

Q={a,b,c,d,e,f,g,h}F={d}NF={a,b,c,e,f,g,h}

Step1: FXNF={(d,a), (d,b), (d,c),(d,e),(d,f),(d,g),(d,h)}

Mark the above states as one is final and other is non final.

b

c

d X X X

e X

f X

g X

h X

 a b c d e f g

NFX

NF={(a,b),(a,c),(a,e),(a,f),(a,g),(a,h),(b,c),(b,e),(b,f),(b,g),(b,h),(e,f),(e,g),(e,h),(f,g),(f,h),(g,

h)}

Step 2:

• Find the states that are distinguishable with a

δ([a, b], 0) = [b, a] δ([a, b], 1) = [a, c]

δ([a, c], 0) = [b, d] δ([a, c], 1) = [a, b] since [b,d]=X mark [a,c]=X since [a,c]=X

mark [a,b]=X

Formal Languages and Automata Theory (23CS602)

CSE,NRCM Page 29

δ([a, e], 0) = [b, d] δ([a, e], 1) = [a, f] since[b,d]=X mark[a,e]=X

δ([a, f], 0) = [b, g] δ([a, f], D) = [a, e] since [a,e]=X mark [a,f]=X

δ([a, g], 0) = [b, f] δ([a, g], D) = [a, g]

δ([a, h], 0) = [b, g] δ([a, h], D) = [a, d] since[a, d]=X mark[a,h]=X

• Find the states that are distinguishable with b

δ([b, c], 0) = [a,d] δ([b, c], 1) = [c, b] since [a,d]=X mark [b,c]=X

δ([b, e], 0) = [a, d] δ([b, e], 1) = [c, f] since[a,d]=X mark[b,e]=X

δ([b, f], 0) = [a, g] δ([b, f], 1) = [c, e]

δ([b, g], 0) = [a, f] δ([b, g], 1) = [c, g] since [a,f]=X mark[b,g]=X

δ([b, h], 0) = [a, g] δ([b, h], 1) = [c, d] since[c, d]=X mark[b,h]=X (c)Find the states

that are distinguishable with c

δ([c, e], 0) = [d, d] δ([c, e], 1) = [b, f]

δ([c, f], 0) = [d, g] δ([c, f], 1) = [b, e] since [d,g]=X mark[c,f]=X

δ([c, g], 0) = [d, f] δ([c, g], 1) = [b, g] since [d,f]=X mark[c,g]=X

δ([c, h], 0) = [d, g] δ([c, h], 1) = [b, d] since[d,g]=X mark[c,h]=X

• Find the states that are distinguishable with e

δ([e, f], 0) = [d, g] δ([e, f], 1) = [f, e] since [d,g]=X mark[e,f]=X

δ([e, g], 0) = [d, f] δ([e, g], 1) = [f, g] since [d,f]=X mark[e,g]=X

δ([e, h], 0) = [d, g] δ([e, h], 1) = [f, d] since[d,g]=X mark[e,h]=X

• Find the states that are distinguishable with f

δ([f, g], 0) = [g, f] δ([f, g], 1) = [e, g] since [e,g]=X mark[f,g]=X

δ([f, h], 0) = [g, g] δ([f, h], 1) = [e, d] since[e,d]=X mark[f,h]=X

• Find the states that are distinguishable with g

δ([g, h], 0) = [f, g] δ([g, h], 1) = [g, d] since[g,d]=X mark[g,h]=X

b X

c X X

Formal Languages and Automata Theory (23CS602)

CSE,NRCM Page 30

d X X X

e X X X

f X X X X

g X X X X X

h X X X X X X X

 a b c d e f g

 0 1

a b a

b a c

c d b

d d a

e d f

f g e

g f g

h g d

 0 1

a b a

b a c

c d b

Formal Languages and Automata Theory (23CS602)

CSE,NRCM Page 31

d d a

e=c d f=b

f=b g=a e=c

g=

a
f=b g=a

h g=a d

 0 1

a b a

b a c

c d b

d d a

c d b

b a C

a b a

h a d

In the above table, [a,g], [b,f] and [c,e] are equivalent states. Hence a==g, b==f, and c==e

Simplified DFA

 0 1

a b a

Formal Languages and Automata Theory (23CS602)

CSE,NRCM Page 32

b a c

c d b

d d a

h a d

 Ex: Minimize the following DFA

FINITE AUTOMATA WITH OUTPUTS: MOORE& MEALY M/C

• Finite automata may have outputs corresponding to state or transition. There are two types

of finite state machines that generate output: (i) Moore Machine (ii) Mealy Machine

• If the output associated with state then such a machine is called Moore machine, and if

the output is associated with transition then it is called mealy machine.

Moore Machine Mealy Machine

MOORE MACHINE:

• Moore machine is a finite state machine in which the next state is decided by the current

state and current input symbol. The output symbol at a given time depends only on the

present state of the machine.

• Def: Moore machine can be described by 6-tuple M=(Q, ∑ , Δ, δ,q0, λ) where

• Q: finite set of states

• ∑: finite set of input symbols

• Δ: output alphabet

• q0: initial state of machine

Formal Languages and Automata Theory (23CS602)

CSE,NRCM Page 33

• δ: Q × ∑ → Q is a transition function

• λ: Q → Δ output function

Ex: Design a Moore machine to generate 1's complement of a given binary number.

Solution: To generate 1's complement of a given binary number the simple logic is that if

the input is 0 then the output will be 1 and if the input is 1 then the output will be 0. That

means there are three states. One state is start state. The second state is for taking 0's as

input and produces output as 1. The third state is for taking 1's as input and producing

output as 0.

Hence the Moore machine will be,

For instance, take one binary number 1011 then

I

n

p

u

t

1 0 1 1

Formal Languages and Automata Theory (23CS602)

CSE,NRCM Page 34

S

t

a

t

e

q

0
q

2
q

1
q

2
q

2

O

u

t

p

u

t

0 0 1 0 0

Thus we get 00100 as 1's complement of 1011, we can neglect the initial 0 and the output

which we get is 0100 which is 1's complement of 1011.

Note: The output length for a Moore machine is greater than input by 1.

Ex: Design a Moore machine for a binary input sequence such that if it has a

substring 101, the machine output A, if the input has substring 110, it outputs B

otherwise it outputs C.

Solution: For designing such a machine, we will check two conditions, and those are 101

and 110. If we get 101, the output will be A, and if we recognize 110, the output will be

B. For other strings, the output will be C.

The partial diagram will be:

Now we will insert the possibilities of 0's and 1's for each state. Thus the Moore machine

becomes:

Formal Languages and Automata Theory (23CS602)

CSE,NRCM Page 35

Ex: Construct a Moore machine that determines whether an input string contains an even

or odd number of 1's. The machine should give 1 as output if an even number of 1's

are in the string and 0 otherwise.

Sol: The Moore machine will be:

This is the required Moore machine. In this machine, state q1 accepts an odd number of

1's and state q0 accepts even number of 1's. There is no restriction on a number of zeros.

Hence for 0 input, self- loop can be applied on both the states.

Ex: Design a Moore machine with the input alphabet {0, 1} and output alphabet {Y,

N} which produces Y as output if input sequence contains 1010 as a substring

otherwise, it produces N as output.

Formal Languages and Automata Theory (23CS602)

CSE,NRCM Page 36

MEALY MACHINE

• A Mealy machine is a machine in which output symbol depends upon the present input

symbol and present state of the machine. In the Mealy machine, the output is represented

with each input symbol for each state separated by /.

Def: The Mealy machine can be described by 6- tuple M= (Q, ∑, Δ, q0, δ, λ') where

• Q: finite set of states

• q0: initial state of machine

• ∑: finite set of input alphabet

• Δ: output alphabet

• δ: Q × ∑ → Q transition function

• λ: Q × ∑ →Δ output function

Ex: Design a Mealy machine for a binary input sequence such that if it has a substring 101,

the machine output A, if the input has substring 110, it outputs B otherwise it

outputs C.

Solution: For designing such a machine, we will check two conditions, and those are 101

and 110. If we get 101, the output will be A. If we recognize 110, the output will be B. For

other strings the output will be C.

The partial diagram will be:

Formal Languages and Automata Theory (23CS602)

CSE,NRCM Page 37

Now we will insert the possibilities of 0's and 1's for each state. Thus the Mealy machine

becomes:

Ex: Design a mealy machine that scans sequence of input of 0 and 1 and generates

output 'A' if the input string terminates in 00, output 'B' if the string terminates in

11, and output 'C' otherwise.

Formal Languages and Automata Theory (23CS602)

CSE,NRCM Page 38

CONVERSION FROM MEALY MACHINE TO MOORE MACHINE:

In Moore machine, the output is associated with every state, and in Mealy machine, the

output is given along the edge with input symbol. To convert Moore machine to Mealy

machine, state output symbols are distributed to input symbol paths. But while converting

the Mealy machine to Moore machine, we will create a separate state for every new

output symbol and according to incoming and outgoing edges are distributed.

Mealy to Moore machine Conversion:

Step 1: For each state (Qi), calculate the number of different outputs that are

available in the transition table of the Mealy machine.

Step 2: Copy state Qi, if all the outputs of Qi are the same. Break qi into n states as

Qin, if it has n distinct outputs where n = 0, 1, 2....

Step 3: If the output of initial state is 0, insert a new initial state at the starting which

gives ε output.

Ex: Convert the following Mealy machine into equivalent Moore machine.

Formal Languages and Automata Theory (23CS602)

CSE,NRCM Page 39

• For state q1, there is only one incident edge with output 0. So, we don't need to split this

state in Moore machine.

• For state q2, there is 2 incident edges with output 0 and 1. So, we will split this state into

two states q20(state with output 0) and q21(with output 1).

• For state q3, there is 2 incident edges with output 0 and 1. So, we will split this state into

two states q30(state with output 0) and q31(state with output 1).

• For state q4, there is only one incident edge with output 0. So, we don't need to split this

state in Moore machine.

Input 0 1

q1 q1 1 q21 1

Formal Languages and Automata Theory (23CS602)

CSE,NRCM Page 40

q20 q4 1 q4 1

q21 q4 1 q4 1

q30

q21

1

q31

1

q31

q21

1

q31

1

q4 q30 0 q1 1

Input

0

1

Output

q1

q1

q21

1

q20

q4

q4

0

q21

q4

q4

1

q30

q21

q31

0

q31

q21

q31

1

q4

q30

q1

1

Transition table for Moore machine

0 1 Output

q1 q1 q21 1

q20 q4 q4 0

Formal Languages and Automata Theory (23CS602)

CSE,NRCM Page 41

q21 q4 q4 1

q30 q21 q31 0

q31 q21 q31 1

q4 q30 q1 1

0 1 Output

q0 q1 q21 1

q1 q1 q21 1

q20 q4 q4 0

q21 q4 q4 1

q30 q21 q31 0

q31 q21 q31 1

q4 q30 q1 1

Transition diagram for Moore machine :

Formal Languages and Automata Theory (23CS602)

CSE,NRCM Page 42

Ex: Convert the following Mealy machine into equivalent Moore machine.

Transition Diagram:

Formal Languages and Automata Theory (23CS602)

CSE,NRCM Page 43

The state q1 has only one output. The state q2 and q3 have both output 0 and 1. So we will

create two states for these states. For q2, two states will be q20(with output 0) and

q21(with output 1). Similarly, for q3 two states will be q30(with output 0) and q31(with

output 1).

Transition table for Moore machine will be:

Transition diagram for Moore machine will be:

Formal Languages and Automata Theory (23CS602)

CSE,NRCM Page 44

CONVERSION FROM MOORE MACHINE TO MEALY MACHINE

• In the Moore machine, the output is associated with every state, and in the mealy

machine, the output is given along the edge with input symbol. The equivalence of the

Moore machine and Mealy machine means both the machines generate the same output

string for same input string.

• We cannot directly convert Moore machine to its equivalent Mealy machine because the

length of the Moore machine is one longer than the Mealy machine for the given input.

To convert Moore machine to Mealy machine, state output symbols are distributed into

input

symbol paths. We are going to use the following method to convert the Moore machine to

Mealy machine.

Method for conversion of Moore machine to Mealy machine

Let M = (Q, ∑, δ, λ, q0) be a Moore machine. The equivalent Mealy machine can be

represented by M'

= (Q, ∑, δ, λ', q0).

The output function λ' can be obtained as: λ' (q, a) = λ(δ(q, a)) Ex:Convert the

following Moore machine into its equivalent Mealy machine.

Solution:

The transition table of given Moore machine is as follow.

Q a b O

ut

pu

t(

λ)

Formal Languages and Automata Theory (23CS602)

CSE,NRCM Page 45

q

0
q

0
q

1
0

q

1
q

0
q

1
1

The equivalent Mealy machine can be obtained as follows:

λ' (q0, a) = λ(δ(q0, a)) = λ(q0) = 0

λ' (q0, b) = λ(δ(q0, b)) = λ(q1) = 1 The λ for state q1 is as follows:

λ' (q1, a) = λ(δ(q1, a)) = λ(q0) = 0

λ' (q1, b) = λ(δ(q1, b)) = λ(q1) = 1

Hence the transition table for the Mealy machine can be drawn as follows:

The equivalent Mealy machine will be

Note: The length of output sequence is 'n+1' in Moore machine and is 'n' in the Mealy

machine

Ex: Convert the following Moore machine into its equivalent Mealy machine.

Formal Languages and Automata Theory (23CS602)

CSE,NRCM Page 46

Q a b Output(λ)

q0 q1 q0 0

q1 q1 q2 0

q2 q1 q0 1

The equivalent Mealy machine can be obtained as follows:

λ' (q0, a) = λ(δ(q0, a)) = λ(q1) = 0

λ' (q0, b) = λ(δ(q0, b)) = λ(q0) = 0 The λ for state q1 is as follows:

λ' (q1, a) = λ(δ(q1, a)) = λ(q1) = 0

λ' (q1, b) = λ(δ(q1, b)) = λ(q2) = 1 The λ for state q2 is as follows:

λ' (q2, a) = λ(δ(q2, a)) = λ(q1) = 0

λ' (q2, b) = λ(δ(q2, b)) = λ(q0) = 0

Hence the transition table for the Mealy machine can be drawn as follows:

Formal Languages and Automata Theory (23CS602)

CSE,NRCM Page 47

Ex:Convert the given Moore machine into its equivalent Mealy machine.

Q a b Output(λ)

q0 q0 q1 0

q1 q2 q0 1

q2 q1 q2 2

Important Questions PART-A

• Define Star closure / Kleen Closure
• Define Positive Closure

• Define Language

• Define DFA, NFA and epsilon NFA

• Define epsilon closure

• Define Moore and Mealy machines.

Formal Languages and Automata Theory (23CS602)

CSE,NRCM Page 48

PART-B

• Draw the block diagram of Finite Automata and explain each component

• Design FA which accepts i) even number of 0's and even number of 1's ii) even

number of 0’s and odd number of 1’s iii) odd number of 0’s and even number of

1’s and iv) odd number of 0’s and odd number of 1’s over ∑ = {0, 1}

• Design a DFA for L(M) = {w | w ε {0, 1}*} and W is a string that does not

contain
consecutive 1's}.

• Obtain the DFA that recognizes the language L(M)={W/W is in {a, b c}
*
 and W

contains the pattern abac}

• Design a FA that accepts the set of all strings that interpreted as binary

representation of an unsigned decimal number i) which is divisible by 2 ii)

divisible by 4 iii) which is divisible by 5.
• Design an NFA with ∑ = {0, 1} in which double '1' is followed by double '0'.

• Design an NFA with ∑ = {0, 1} accepts all string in which the third symbol from

the
right end is always 0.

• What are the differences between DFA, NFA

• Write the algorithm to convert i) NFA to DFA ii) epsilon NFA to NFA and iii)

epsilon NFA to DFA. Explain by taking an example for each conversion.

• Find minimum-state automaton equivalent to the transition diagram

• Design a Moore machine for a binary input sequence such that if it has a substring

101, the machine output A, if the input has substring 110, it outputs B otherwise it

outputs C
• Construct a Moore machine that determines whether an input string contains an

even or odd number of 1's. The machine should give 1 as output if an even number

of 1's are in the string and 0 otherwise.

• Design a Mealy machine for a binary input sequence such that if it has a substring

101, the machine output A, if the input has substring 110, it outputs B otherwise it

outputs C.
• Design a mealy machine that scans sequence of input of 0 and 1 and generates

output 'A' if the input string terminates in 00, output 'B' if the string terminates in

11, and output 'C' otherwise.
• Convert the following Mealy machine into equivalent Moore machine

Formal Languages and Automata Theory (23CS602)

CSE,NRCM Page 49

• Convert the following Moore machine into its equivalent Mealy machine

Assignment Questions

• Design a FA that accepts the set of all strings that interpreted as binary

representation of an unsigned decimal number i) which is divisible by 2 ii)

divisible by 4 iii) which is divisible by 5.

• Minimize the following DFA.

• Enumerate the differences between NFA and DFA.

• Obtain a DFA to accept strings of 0’s, 1’s and 2’s, beginning with a 1, followed by

odd number of 0’s and ending with a 2?
• Obtain a DFA to accept strings starting with two 0’s and ending with at least

two 1’s?

• Obtain a DFA to accept the integer numbers represented in binary and is a

multiple of 5.

Formal Languages and Automata Theory (23CS602)

CSE,NRCM Page 50

UNIT-II

Regular Expressions: Finite Automata and Regular Expressions, Applications of

Regular Expressions, Algebraic Laws for Regular Expressions, Conversion of Finite

Automata to Regular Expressions.

Pumping Lemma for Regular Languages, Statement of the pumping lemma,

Applications of the Pumping Lemma.

Closure Properties of Regular Languages: Closure properties of Regular languages,

Decision Properties of Regular Languages, Equivalence and Minimization of

Automata.

REGULAR EXPRESSION

• The language accepted by finite automata can be easily described by simple expressions

called Regular Expressions. It is the most effective way to represent any language.

• The languages accepted by some regular expression are referred to as Regular languages.

• A regular expression can also be described as a sequence of pattern that defines a string.

• Regular expressions are used to match character combinations in strings. String searching

algorithm used this pattern to find the operations on a string.

• Regular Set: sets which are accepted by FA

• Ex: L={a,aa,aaa,…}

Regular Expression: Let be an I/P alphabet . The RE over can be defined as

follows:

• is a regular expression.

• is a regular expression.

• For any a in , a is a regular expression.

• If r1 and r2 are regular expressions, then

• (r1 + r2) is a regular expression.

• (r1 .r2) is a regular expression.

• (r1*) is a regular expression.

• (r1
+
) is a regular expression.

WRITE RES FOR THE FOLLOWING LANGUAGES:

• Accepting all combinations of a’s over the set ={a} Ans: a
*

Formal Languages and Automata Theory (23CS602)

CSE,NRCM Page 51

• Accepting all combinations of a’s over the set ={a} except null string Ans: a
+

• Accepting any no of a’s and b’s

Ans: (a+b)* or (a/b)*

• Strings ending with 00 over the set {0,1} Ans: (0+1)*00

• Strings starts with 1 and ends with 0 over the set {0,1} Ans: 1(0/1)*1

• Any no of a’s followed by any no of b’s then followed by any no of c’s

Ans: a*b*c*

• starting and ending with a and having any combination of b's in between.

Ans: a b* b

• Starting with a but not having consecutive b's.

Ans: L = {a, aba, aab, aba, aaa, abab, . } R = {a + ab}*

• The language accepting all the string in which any number of a's is followed by

any number of b's is followed by any number of c's.

Ans: R = a* b* c*

• The language over ∑ = {0} having even length of the string.

Ans: R = (00)*

• For the language L over ∑ = {0, 1} such that all the string do not contain the substring 01.

Ans: The Language is as follows: L = {ε, 0, 1, 00, 11, 10, 100, .. } R = (1* 0*)

• For the language containing the string over {0, 1} in which there are at least two

occurrences of 1's between any two occurrences of 1's between any two occurrences of

0’s.

Ans: (0111*0)*.

Similarly, if there is no occurrence of 0's, then any number of 1's are also allowed. Hence

the r.e. for required language is:

R = (1 + (0111*0))*

• The regular expression for the language containing the string in which every 0 is

immediately followed by 11.

Ans:R = (011 + 1)*

• String which should have at least one 0 and at least one 1.

Ans: R = [(0 + 1)* 0 (0 + 1)* 1 (0 + 1)*] + [(0 + 1)* 1 (0 + 1)* 0 (0 + 1)*]

• Describe the language denoted by following regular expression (b* (aaa)* b*)*

Formal Languages and Automata Theory (23CS602)

CSE,NRCM Page 52

Ans: The language consists of the string in which a's appear triples, there is no restriction

on the

number of b’s.

Algebraic laws for Regular Expressions

• Given R, P, L, Q as regular expressions, the following identities hold:

• ∅ * = ε, ε* = ε

• RR* = R*R=R
+

• (R*)* = R*

• (PQ)*P =P(QP)*

• (P+Q)* = (P*Q*)* = (P*+Q*)*

• R + ∅ = ∅ + R = R (The identity for union)

• R ε = ε R = R (The identity for concatenation)

• ∅ R = R ∅ = ∅ (The annihilator for concatenation)

• R + R = R (Idempotent law)

• P(Q+R) = PQ+PR (Left distributive law)

• (Q+R) P = QP+RP (Right distributive law)

• ε + RR* = ε + R*R = R*

ARDEN'S THEOREM

Statement: Let B and C are two regular expressions. If C does not contain null string, then

A=B+AC has a unique solution A= BC*

Proof: Given that B and C are two regular expressions and C does not contain null string Case(i):

Let us verify whether A=BC* is a solution of A=B+AC

Substitute A =BC* in the above equation A=B+AC

A=B+BC*C=B(ε +C*C)=BC* since ε+RR*=R* BC*=BC*

LHS=RHS==>

Therefore A=BC* is a solution of A=B+AC

Case (ii): Let us PT A=BC* is a unique solution of A=B+AC A=B+AC

=B+(B+AC)C=B+BC+AC
2

=B+BC+(B+AC)C= B+BC+BC
2
 +AC

3

= B+BC+BC
2
 +BC

3
 +AC

4

Formal Languages and Automata Theory (23CS602)

CSE,NRCM Page 53

=B(ε+C+C
2
 +C

3
 +……)

= BC*

Therefore A=BC* is a unique solution

Note: Assumptions for Applying Arden’s Theorem

• The transition diagram must not have NULL transitions

• It must have only one initial state.

Using Arden‘s theorem to construct RE from FA

• If there are n number of states in the FA then we will get n number of equations.

• The equations are constructed in the following way:

• State name= state name from which inputs are coming. Input symbol .i.e., αji represents

the transition from qj to qi then qi = αji . qj

• If qj is a start state then we have:

• qi = αji * qj + ε

• Solve the above equations to obtain final state which contains input symbols only.

Ex: Construct the regular expression for the given DFA

Solution:

Let us write down the equations q1 = q1 0 + ε

Since q1 is the start state, so ε will be added, and the input 0 is coming to q1 from q1

hence we
write State = source state of input × input coming to it Similarly, q2 = q1

1 + q2 1 q3 = q2 0 + q3 (0+1)

Since the final states are q1 and q2, we are interested in solving q1 and q2 only. Let us see

q1
first q1 = q1 0 + ε

We can re-write it as q1 = ε + q1 0

Which is similar to R = Q + RP, and gets reduced to R = OP*.

Assuming R = q1, Q = ε, P = 0 We get q1 = ε.(0)* q1 = 0* (ε.R*= R*)

Formal Languages and Automata Theory (23CS602)

CSE,NRCM Page 54

Substituting the value into q2, we will get

q2 = 0* 1 + q2 1 q2 = 0* 1 (1)* (R = Q + RP → Q P*)

The regular expression is given by

r = q1 + q2 = 0
*
 + 0

*
 1.1

*
 r = 0

*
 + 0

*
 1

+
 (1.1

*
 = 1

+
)

Construction of FA from RE: There are two methods to construct FA from RE. They

are i) Top down approach and ii) Bottom up approach.

Top down Approach:

This is divided into several steps as given in the following.

Step-1: Take two states, one is the beginning state and another is the final state. Make a

transition from the beginning state to the final state and place the RE in between the

beginning and final states

Step-2:If in the RE there is a + (union) sign, then there are parallel paths between the two

states

Step-3: If in the RE there is a .(dot) sign, then one extra state is added between the two

states.

Step-4: If in the RE there is a ‘*’ (closure) sign, then a new state is added in between. A

loop is added on the new state and the label Λ is put between the first to new and new to

last.

Formal Languages and Automata Theory (23CS602)

CSE,NRCM Page 55

Ex: Construct Finite Automata equivalent to the Regular Expression L = ab(aa + bb)(a +

b)* b.

Step I: Take a beginning state q0 and a final state qf. Between the beginning and final

state place the regular expression.

Step II: There are three dots (.) between ab, (aa + bb), (a + b)*, and b. Three extra states

are added between q0 and qf.

Step III: Between ‘a’ and ‘b’ there is a dot (.), so extra state is added

Step IV: In aa + bb there is a +, therefore there is parallel edges between q1 and q2.

Between q2 and q3 there is (a + b)*. So, extra state q5 is added between q2 and q3. Loop

with label a, b is placed on q5 and Λ transition is made between q2, q5 and q5, q3.

Step V: In aa and bb there are dots (.). Thus two extra states are added between q1 and q2

(one for aa and another bb). The final finite automata for the given regular expression is

given below.

Ex: Construct an FA equivalent to the RE: L = (a + b)*(aa + bb)(a + b)*.

Ex: Construct an FA equivalent to the RE: L = ab + (aa + bb)(a + b)* b.

BOTTOM-UP APPROACH (THOMSON CONSTRUCTION):

Formal Languages and Automata Theory (23CS602)

CSE,NRCM Page 56

Step-1: For input a ∈ ∑, the transition diagram is

Step-2: If r1 and r2 are two RES then the transition diagram for the RE r1 + r 2 is

Step-3: If r1 and r2 are two RES then the transition diagram for the RE r1 . r 2 is

Step-4: If r is a RE then the transition diagram for r* is

Ex: Construct Finite Automata equivalent to the Regular Expression L = ab(aa + bb)(a +

b)*a.
Solution:

Formal Languages and Automata Theory (23CS602)

CSE,NRCM Page 57

Step I: The terminal symbols in L are ‘a’ and ‘b’. The transition diagrams for ‘a’ and ‘b’

are given below:

Step II: The transition diagrams for ‘aa’, ‘ab’, ‘bb’ are given below

Step III: The transition diagram for (a+b) is given below

Step IV: The transition diagram for (a+b)* is given below

Step V: For (aa+bb) the transitional diagram is given below

Step VI: The constructed transitional diagram for ab(aa+bb) is given below

Formal Languages and Automata Theory (23CS602)

CSE,NRCM Page 58

Step VII: The constructed transitional diagram for ab(aa + bb)(a + b)*a is given below

This can be simplified by removing ε transitions

EQUIVALENCE OF TWO RES

For every RE there is a finite automata. If the FA constructed both of the REs are same

then we can say that two REs are equivalent

Ex: Prove that the following REs are equivalent. L1 = (a + b)* L2 = a*(b*a)* Solution:

Construct FA for L1:

Construct FA for L2:

Formal Languages and Automata Theory (23CS602)

CSE,NRCM Page 59

The two FAs are same. Hence the Res are also same.

Ex: Prove that the following REs are equivalent. L1 = 1*(011)*(1*(011)*)* L2 = (1 +

011)

Grammars:

The grammar is basically defined as a set of 4-tuple (V, T, P, S) where

V is a set of non-terminals (variables), T is a set of terminals (primitive symbols), P is a

set of productions (rules) that relate the non-terminals and terminals and S is the start

symbol with which strings in grammar are derived. These productions define the strings

belonging to the corresponding language.

Formal Languages and Automata Theory (23CS602)

CSE,NRCM Page 60

Production Rule: The production rules of grammar consist of two parts. I) LHS and ii)

RHS. The LHS may contain terminal or non-terminal or both but at least one non-

terminal. The RHS may contain any combination of terminal or non-terminal or both or

epsilon.

Language Acceptance: Start with the start symbol, at every step, and replace the non-

terminal by the right-hand side (RHS) of the rule. Continue this until a string of terminals

is derived. The string of terminals gives the language accepted by grammar.

Types of Grammars–Chomsky Hierarchy:

Linguist Noam Chomsky defined a hierarchy of languages, in terms of complexity. This

four-level hierarchy, called the Chomsky hierarchy, corresponds to four classes of

machines. Each higher level in the hierarchy incorporates the lower levels, that is,

anything that can be computed by a machine at the lowest level can also be computed by a

machine at the next highest level.

The Chomsky hierarchy classifies grammar according to the form of their productions

into the following levels:

• Type 0 grammars–unrestricted grammars: These grammars include all formal

grammars. In unrestricted grammars (URGs), all the productions are of the form α → β

where α and β may have any number of terminals and non-terminals, that is, no

restrictions on either side of productions. Every grammar is included in it if it has at least

one non-terminal on the left-hand side (LHS). They generate exactly all languages that

can be recognized by a Turing machine. The language that is recognized by a Turing

machine is defined as a set of all the strings on which it halts. These languages are also

known as recursively enumerable languages.

Ex:

aA → abCB aA → bAA bA → a

S → aAb | ε

• Type 1 grammars–context-sensitive grammars: These grammars define the context-

sensitive languages. In context-sensitive grammar (CSG), all the productions of the form

α → β where the length of α is less than or equal to the length of β i.e. |α| ≤ |β|, α and β

may have any number of terminals and non-terminals.

Formal Languages and Automata Theory (23CS602)

CSE,NRCM Page 61

These grammars can have rules of the form αAβ → αγβ with A as non-terminal and α, β,

and γ are strings of terminals and non-terminals. We can replace A by γ where A lies

between α and β. Hence the name CSG. The strings α and β may be empty, but γ must be

non-empty. It cannot include the rule S→ ε. These languages are exactly all languages

that can be recognized by linear bound automata.

Ex: aAbcD → abcDbcD

• Type 2 grammars – context-free grammars: These grammars define context-free

languages. These are defined by rules of the form α → β with |α| ≤ | β where |α| = 1 and is

a non-terminal and β is a string of terminals and non-terminals. We can replace α by β

regardless of where it appears. Hence the name context-free grammar (CFG). These

languages are exactly those languages that can be recognized by a pushdown automaton.

Context-free languages define the syntax of all programming languages.

Ex:

• S → aS |S a| a

• S→ aAA |bBB| ε

• Type 3 grammars – regular grammars: These grammars generate regular languages.

Such a grammar restricts its rules to a single non-terminal on the LHS. The RHS consists

of either a single terminal or a string of terminals with a single nonterminal on the left or

right end. Here rules can be of the form A→ a B | a or A →Ba | a.

The rule S → ε is also allowed here. These languages are exactly those languages that can

be recognized by a finite state automaton. This family of formal languages can be

obtained by regular expressions also. Regular languages are used to define search patterns

and the lexical structure of programming languages.

Right linear grammar: A → a A | a Left linear grammar: A → A a | a

Formal Languages and Automata Theory (23CS602)

CSE,NRCM Page 62

Table 1.1 Chomsky’s hierarchy

Gramm

ar
Languages Automato

n
Productio

n rules
Type 0 Recursivel

y

enumerabl

e

Turing

machine

α → β

No

restrictio

ns on b, a

should

have At

least one

non-

terminal

Type 1 Context-

sensitive
Linear

bounded

automata

α → β,

|α| ≤ |β|

Type 2 Context-

free
Pushdow

n

automato

n

α → β, |α|

≤ |β|, |α|

=1

Type 3 Regular Finite

state

automato

n

α → β, α

= {V}

and β =

V{T}* or

{T}*V or

T*

The hierarchy of languages and the machine that can recognize the same is shown below.

Every RG is context-free, every CFG is context-sensitive and every CSG is unrestricted.

So the family of regular languages can be recognized by any machine. CFLs are

recognized by pushdown automata, linear bound automata, and Turing machines. CSLs

are recognized by linear bound automata and Turing machines. Unrestricted languages

are recognized by only Turing machines.

Formal Languages and Automata Theory (23CS602)

CSE,NRCM Page 63

REGULAR GRAMMAR

• A regular grammar is a mathematical object, G, with four components, G = (N, T, P, S),

where

• N is a nonempty, finite set of nonterminal symbols,

• T is a finite set of terminal symbols , or alphabet, symbols,

• P is a set of grammar rules, each of one having one of the forms A → aB A → a A → ε,

for A, B
∈ N, a ∈ Σ, and ε the empty string, and

• S ∈ N is the start symbol.

RE TO RG CONVERSION

• Step 1: Construct an equivalent FA for the given RE

• Step 2: The no of non-Terminals of the grammar will be equal to the no of states of FA

• Step 3: For all transition functions (a) if δ(qi, a)=qj is not in F then the production is of the

form A aB (b) if δ(qi,a)=qj is in F then the productions are of the form A aB and A a,

where A &B are corresponding to states qi and qj respectively.

• Step 4: The start symbol of the grammar corresponding to the initial state of finite

automata

Ex: Construct Regular grammar for the RE a*(a+b)b*

RG for the above RE is A aA/aB/bB/a/b B bB/b

Ex: Construct RG for the RE ab(a+b)*

RG is A aB B bC/b

C aC/bC/a/b

PUMPING LEMMA FOR RLS

• The pumping lemma is generally used to prove certain languages are not regular

• Language is said to be regular: If a DFA,NFA or epsilon NFA can be constructed to

exactly accept a language

• If a RE can be constructed to exactly generate the strings in a language.

Formal Definition of Pumping Lemma:

• if L is a regular language represented with automaton with maximum of n states , then

there is a word in L such that the length |Z|>=n, we may write Z=UVW in such a way that

|UV|<+n,

Formal Languages and Automata Theory (23CS602)

CSE,NRCM Page 64

|V|>=1, and for all i>=0, UV
i
 W is in L.

• Ex: Prove that L = {a
i
b

i
 | i ≥ 0} is not regular.

At first, we assume that L is regular and n is the number of states. Let z= aabb=uvw

Where u=a, v= ab, w=b Whein i=0, uv
i
w=uw=ab is in L

When i=1, uv
i
w=uvw=aabb is in l

When i=2, uv
i
w=uv

2
w=aababbis not in L Hence L is not Regular

Ex: State whether L = {a2n| n > 0} is regular.

Ex: State whether L = {0
n
 | n is a prime} is regular Ex: State whether L = {a

n
| n ≥ 0}

is regular

Ex: State whether L = {a
n
 b

m
 | n, m ≥ 0} is regular

CLOSURE PROPERTIES OF RLS

• Context-free languages are closed under

Union: Let L1 and L2 be two context-free languages. Then L1 ∪ L2 is also context free.

Example

• Let L1 = { a
n
b

n
 , n > 0}. Corresponding grammar G1 will have P: S1 → aAb|ab

• Let L2 = { c
m
d

m
 , m ≥ 0}. Corresponding grammar G2 will have P: S2 → cBb| ε

• Union of L1 and L2, L = L1 ∪ L2 = { a
n
b

n
 } ∪ { c

m
d

m
 }

• The corresponding grammar G will have the additional production S → S1 | S2

Concatenation: If L1 and L2 are context free languages, then L1L2 is also context free.

Example: Union of the languages L1 and L2, L = L1L2 = { a
n
b

n
c

m
d

m
 }

The corresponding grammar G will have the additional production S → S1 S2

Kleene Star: If L is a context free language, then L* is also context free.

Example

• Let L = { a
n
b

n
 , n ≥ 0}. Corresponding grammar G will have P: S → aAb| ε

• Kleene Star L1 = { a
n
b

n
 }*

• The corresponding grammar G1 will have additional productions S1 → SS1 | ε

Context-free languages are not closed under Intersection: If L1 and L2 are context

free languages, then
L1 ∩ L2 is not necessarily context free.

Intersection with Regular Language − If L1 is a regular language and L2 is a context

free language, then L1 ∩ L2 is a context free language.

Formal Languages and Automata Theory (23CS602)

CSE,NRCM Page 65

Complement − If L1 is a context free language, then L1’ may not be context free

• Define Regular Expression

Part-A

• Write a regular expression for the language accepting all the strings in which any

number of a's is followed by any number of b's is followed by any number of c's.

• State ARDEN'S THEOREM

• State and prove ARDEN'S theorem

• Define Regular Grammar

• State pumping lemma for CFL

PART-B

• Construct the regular expression for the given DFA

• Construct an FA equivalent to the RE: L = (a + b)*(aa + bb)(a + b)*.

• : Construct Finite Automata equivalent to the Regular Expression L = ab(aa + bb)(a +

b)*a using bottom-up approach.

• Construct Regular grammar for the RE a*(a+b)b*

• Applications of pumping lemma

• Closure Properties of CFLs

Assignments

• Prove that e + 0*(1)*(0*(1)*)* = (0 + 1)*

• List out a few applications of regular expressions and finite automata.

• Construct a NFA that accepts the following languages:

Formal Languages and Automata Theory (23CS602)

CSE,NRCM Page 66

• L(aa* + aba*b*)

• L(ab(a + ab)*(a + aa))

• L(ab*aa + bba*ab)

• L(0* + 1*2*)

• L(10 + (0 + 11)0*1)

• L((a + ba)*bb(b + a)*)

•

•

Formal Languages and Automata Theory (23CS602)

CSE,NRCM Page 67

UNIT-III:

Context-Free Grammars: Definition of Context-Free Grammars,

Derivations Using a Grammar, Leftmost and Rightmost Derivations, the

Language of a Grammar, Sentential Forms, Parse Trees, Applications of

Context-Free Grammars, Ambiguity in Grammars and Languages.

Push Down Automata: Definition of the Pushdown Automaton, the

Languages of a PDA, Equivalence of PDA's and CFG's, Acceptance by final

state, Acceptance by empty stack, Deterministic Pushdown Automata. From

CFG to PDA, From PDA to CFG.

Def:

A grammar G=(V,T,P,S) is said to be CFG if all productions in Pare of the form α

β Where α is in V , i.e., set of non-terminals and | α | = 1, i.e., there will be only

one non-terminal at the left hand side (LHS) and β is in V U Σ, i.e., β is a

combination of non-terminals and terminals.

Ex: Construct a CFG for the language L = {WCWR | W ∈ (a, b)*}

Ans: S aSa/bSb/C

Ex: Construct a CFG for the regular expression (0 + 1)* 0 1*.

Ans:

S →ASB/0 A →0A/1A/ε B →1B/ε

Ex:Construct a CFG for the regular expression (011 + 1)* (01)*.

Ans:

S → BC B →AB/ε A →011/1 C→DC/ ε D →01

Ex: Construct CFG for defining palindrome over {a , b}.

Ans: S → aSa/bSb/a/b/ε

Ex: Construct CFG for the set of strings with equal number of a’s and b’s.

Ans: S → SaSbS /SbSaS/ε

Ex: Write the language generated by the grammar S → SaSbS /SbSaS/ε

Formal Languages and Automata Theory (23CS602)

CSE,NRCM Page 68

Ex: Write the language generated by the grammar S → aSa/bSb/a/b/ε

Ex: Write the language generated by the grammar S→aSa/bSb/C

DERIVATION AND PARSE TREE:

• Derivation: The process of generating a language from the given production rules

of a grammar. The non-terminals are replaced by the corresponding strings of the

right hand side (RHS) of the production. But if there are more than one non-

terminal, then which of the ones will be replaced must be determined. Depending

on this selection, the derivation is divided into two parts:

• Leftmost derivation: A derivation is called a leftmost derivation if we replace

only the leftmost non-terminal by some production rule at each step of the

generating process of the language from the grammar.

• Rightmost derivation: A derivation is called a rightmost derivation if we replace

only the right- most non-terminal by some production rule at each step of the

generating process of the language from the grammar.

Ex: Derive a4 from by grammar S → aS/ ε

S ⇒aS⇒aaS⇒aaaS⇒aaaaS⇒aaaaε = aaaa

The language has the strings {ε, a, aa, aaa, …….}. Ex: Derive a2 from by

grammarS → SS/ a/ ε Ans: S ⇒ SS⇒Sa⇒aa (or)

S ⇒ SS⇒ SSS⇒SSa⇒SSSa⇒SaSa⇒εaSa⇒εa εa = aa

Ex: Find L(G) and derive the string abbab for the following grammar?

S → aS/bS/a/b Solution:

S ⇒aS⇒abS⇒abbS⇒abbaS⇒abbab

Context free language generated by the grammar is (a + b)+.

Ex: Find the language and derive abbaaba from the following grammar: S →

XaaX X → aX | bX |ε

Solution:

CFL is (a + b)*aa(a + b)*.

Formal Languages and Automata Theory (23CS602)

CSE,NRCM Page 69

We can derive abbaaba as follows:

S ⇒XaaX⇒aXaaX⇒abXaaX⇒abbXaaX⇒abbεaaX =

abbaaX⇒abbaabX⇒abbaabaX

⇒abbaabae⇒abbaaba

Ex: Give the language defined by grammarG = {{S}, {a}, {S → SS}, S}

Ans: L(G) = Φ. Since there is no terminal that is derived from S.

Ex: Give the language defined by grammar

G = {{S, C}, {a, b}, P, S} where P is given byS → aCa, C → aCa | b, Ans:S

⇒aCa⇒aaCaa⇒aaaCaaa

L(G) = {a
n
 ba

n
 / n ≥ 1}.

Ex: Give the language defined by grammarG = {{S}, {0, 1}, P, S} where P is

given by S → 0S1 | |ε

Ans: S ⇒ 0S1 ⇒ 00S11 ⇒ 0011.

L(G) = {0
n
 1

n
 / n ≥ 0}.

• Construct the string 0100110 from the following grammar by using (i)Leftmost

derivation (ii) Rightmost derivation

S 0S/1AA ,A 0/1A/0B , B 1/0BB,

Ans: Leftmost Derivation

S => 0S=> 01AA => 010BA => 0100BBA => 01001BA => 010011A=> 0100110

(The non-terminals that are replaced are underlined.)

Rightmost Derivation

S => 0S=> 01AA=> 01A0 => 010B0 => 0100BB0 => 0100B10 => 0100110

(The non-terminals that are replaced are underlined.)

Ex: Consider the CFG ({S, X}, {a, b), P, S) where productions are S → baXaS

| ab, X → Xab|aa. Find LMD and RMD for string w = baaaababaab.

Solution: The following is a LMD:

S ⇒baXaS {as S →baXaS}

⇒baXabaS {as X →Xab}

⇒baXababaS {as X →Xab}

Formal Languages and Automata Theory (23CS602)

CSE,NRCM Page 70

⇒baaaababaS {as X →aa}

⇒baaaababaab {as S →ab} The following is a RMD:

S ⇒baXaS {as S →baXaS}

⇒baXaab {as S →ab}

⇒baXabaab {as X →Xab}

⇒baXababaab {as X →Xab}

⇒baaaababaab {as X →aa}

Any word that can be generated by a given CFG can have LMD|RMD.

Ex: Consider the CFG:S → aB | bA, A → a | aS | bAA, B → b | bS | aBB. Find

LMD and RMD for (the string) w = aabbabba.

Ans: The following is a LMD:

S ⇒aB⇒aaBB⇒aabSB⇒aabbAB⇒aabbaB⇒aabbabS⇒aabbabbA⇒aabbabba The

following is a RMD:

S ⇒aB⇒aaBB⇒aaBbS⇒aaBbbA⇒aaBbba⇒aabSbba⇒aabbAbba⇒aabbabba

PARSE TREE:

• A parse tree is the tree representation of deriving a CFL from a given context

free grammar. These types of trees are sometimes called as derivation trees.

• A parse tree is an ordered tree in which the LHS of a production represents a

parent node and the RHS of a production represents a children node.

• Note: The parse tree construction is possible only for CFG.

Procedure to Construct Parse Tree:

• Each vertex of the tree must have a label. The label is a non-terminal or terminal

or null (ε).

• The root of the tree is the start symbol, i.e., S.

• The label of the internal vertices is a non-terminal symbol.

• If there is a production A X1X2….XK, then for a vertex label A, the children of

that node will be X1, X2, .. XK.

• A vertex n is called a leaf of the parse tree if its label is a terminal symbol or

null (ε). Ex:Find the parse tree for generating the string 0100110 from the

following grammar. S 0S/1AAA 0/1A/0B B 1/0BB

For generating the string 0100110 from the given CFG

Formal Languages and Automata Theory (23CS602)

CSE,NRCM Page 71

The Left Most Derivation (LMD) will be S 0S 01AA 010BA

0100BBA 01001BA 010011A 0100110 and the derivation tree is called

Left Most Derivation Tree(LMD Tree)

The Right Most Derivation (RMD) will be S 0S 01AA 01A0

010B0 0100BB0 0100B10 0100110 and the derivation tree is called Right

Most Derivation Tree(RMD Tree).

LMD AND RMD TREES:

Find the parse tree for generating the string 0100110 from the following grammar.

Left Most Derivation Tree Right Most Derivation Tree Ex:

Construct a parse tree for the string aabbaa from the following grammar.

S a/aAS, A SS/SbA/ba

Solution: For generating the string from the given grammar, the derivation will be S

=>aAS=>aSbAS=>aabAS=>aabbaS=>aabbaa

The derivation tree is given in Fig

Formal Languages and Automata Theory (23CS602)

CSE,NRCM Page 72

AMBIGUOUS GRAMMAR:The different parse trees generated from the

different derivations may be the same or may be different.

A grammar of a language is called ambiguous if any of the cases for

generating a particular string, more than one parse tree(LMD Tree. RMD Tree)

can be generated.

Procedure to test ambiguous Grammar: Grammar will be given.Consider a

string which produces two derivation trees to prove that the grammar is

ambiguous.

Ex: Prove that the following grammar is ambiguous.

P: S E + E/E * E/id

Let us take a string id + id*id.

The string can be generated in the following ways.

Derivation (i):S=> S + S=>S + S*S => id + S*S => id + id*S=> id + id*id

Derivation (ii): S => S*S => S + S*S => id + S*S => id + id*S => id + id*id The

parse trees for derivation (i) and (ii) are shown below.

Formal Languages and Automata Theory (23CS602)

CSE,NRCM Page 73

Ex: Consider the Grammar G with productions: S → aS | Sa | a.Show that G

is ambiguous.

Ans: Consider the string w=aa

LMD Tree RMD Tree

LMD Tree!=RMD Tree. Hence the grammar is ambiguous

Ex: The grammar G for PALINDROMES isS → aSa | bSb | a | b |ε.

Check if G is ambiguous.

Ans: Consider the string w=babbab.

LMD Tree RMD Tree

LMD Tree=RMD Tree. Hence the grammar is unambiguous

Ex: Check whether the following grammar is ambiguous or not. S → i C t S |

i C t S e S | a, C → b

Ans: Consider the string w=ibtibtaea

Formal Languages and Automata Theory (23CS602)

CSE,NRCM Page 74

LMD Tree RMD Tree

LMD Tree!=RMD Tree. Hence the grammar is ambiguous

Ex: Consider the Grammar G with productions: S → aS | aSb | X, X → Xa | a

Show that G is ambiguous.

Ans: Consider the string w=aa

LMD Tree RMD Tree

LMD Tree!=RMD Tree. Hence the grammar is ambiguous

Limitations of FA:

• The memory capability of Finite Automata is very limited.

• It can memorize the current input symbol.

• It cannot memorize previously processed symbols.

• Hence, by adding memory concept to FA, we will get Push down Automata.

• PDA is the same as Finite Automata with the attachment of an auxiliary amount of

storage as a stack.

Block Diagram of PDA:

Formal Languages and Automata Theory (23CS602)

CSE,NRCM Page 75

• A PDA consists of four components:

• 1) An input tape, 2) a reading head, 3) a finite control and 4) a stack.

• Input tape: The input tape contains the input symbols. The tape is divided into a

number of squares. Each square contains a single input character. The string

placed in the input tape is traversed from left to right. The two end sides of the

input string contain an infinite number of blank symbols.

• Reading head: The head scans each square in the input tape and reads the input

from the tape. The head moves from left to right. The input scanned by the

reading head is sent to the finite control of the PDA.

• Finite control: The finite control can be considered as a control unit of a PDA.

An automaton always resides in a state. The reading head scans the input from the

input tape and sends it to the finite control. A two-way head is also added with the

finite control to the stack top. Depending on the input taken from the input tape

and the input from the stack top, the finite control decides in which state the

PDA will

Ex:

move and which stack symbol it will push to the stack or pop from the stack or

do nothing on the stack.

• Stack: A stack is a temporary storage of stack symbols. Every move of the

PDA indicates one of the following to the stack

• Push: One stack symbol may be added to the stack

• Pop: One stack symbol may be deleted from the top of the stack. In the stack,

there is always a symbol z0 which denotes the bottom of the stack.

Formal Languages and Automata Theory (23CS602)

CSE,NRCM Page 76

• Def: Push Down Automata

A PDA consists of a 7-tuple M = (Q, Σ, G, δ, q0, z0, F), Where

Q: Finite set of states.

Σ: Finite set of input symbols.

Γ: Finite set of stack symbols.

δ: Q X(Σ U {ε}) XΓ
*

 QXΓ
*
 is a Transition function q0: Initial state of the PDA.

z0: Stack bottom symbol. F: Final state of the PDA.

• PDA has 2 alphabets:

• a) An input alphabet ∑

• b) A stack alphabet Γ

Moves on PDA: A move on PDA may indicate:

• An element may be added to the stack (q, a, b) = (q, ab)

• An element may be deleted from the stack: (q, a, b) = (q, ε) and

• There may or may not be a change of state.

• δ(q, a, b) = (q, ab) indicates that in the state q on seeing a, a is pushed onto the

stack. There is no change of state.

• δ(q, a, b) = (q, ε) indicates that in the state q on seeing a the current top symbol b

is deleted from the stack.

• δ(q, a, b) = (q1, ab) indicates that a is pushed onto the stack and the state is

changed to q1.

GRAPHICAL REPRESENTATION OF PDA:

• Let M = (Q, ∑, Γ, δ, q0, Z0, F) be a PDA where Q = {p, q}, ∑ = {a, b, c}, Γ = {a,

b}, q0 = q, F
= {p}, and δ is given by the following equations:

δ(q, a, z0) = {(q, az0)} /*Push*/

δ(q, b, z0) = {(q, bz0)} /*Push*/

δ(q, a, a) = {(q, aa)}

δ(q, b, a) = {(q, ba)}

Formal Languages and Automata Theory (23CS602)

CSE,NRCM Page 77

δ(q, a , b) = {(q, ab)}

δ(q, b, b) = {(q, bb)}

δ(q, c, z0) = {(p, z0)} /* Neither Push nor Pop*/

δ(q, c,a) = {(p, a)}

δ(q, c, b) = {(p,b)}

δ(p, a, a) = {(p, ε)} /*Pop*/

δ(p, b, b) = {(p, ε)} /*pop*/

INSTANTANEOUS DESCRIPTION OF PDA:

• During processing, the PDA moves from one configuration to another

configuration. At any given instance, the configuration of PDA is expressed by the

current state, the input symbol, and the content of stack.

• The configuration is expressed as a triple (q, x, y), where q- current state.

x - input string to be processed.

y- is the content of the stack where the leftmost symbol corresponds to top of

stack, and the rightmost is the bottom element.

Ex: When string ababcbcb is processed, the instantaneous description is as shown

below.

δ(q, ababcbab, z0)

⇒δ (q, babcbab, az0)

⇒δ(q, abcbab, baz0)

⇒δ(q, bcbab, abaz0)

⇒δ(q, cbab, babaz0)

Formal Languages and Automata Theory (23CS602)

CSE,NRCM Page 78

⇒δ(p, bab, babaz0)

⇒δ(p, ab, abaz0)

⇒δ(p, b, baz0)

⇒ (p, ε, az0)

LANGUAGE ACCEPTANCE BY PDA:

A language can be accepted by a PDA using two approaches:

• Acceptance by final state: The PDA accepts its input by consuming it and

finally it enters the final state.

• Acceptance by empty stack: On reading the input string from the initial

configuration for some PDA, the stack of PDA becomes empty.

Design a PDA which accepts the language L={a
n
b

n
/n>=1}

• Transition Diagram

• Transition functions

δ(q0, a, Z0) = {(q0, aZ0)} /*Push a*/

δ(q0, a, a) = {(q0, aa)} /*Push a*/

δ(q0, b, a) = {(q1, ε)} /* Pop a and change the state*/

δ(q1, b, a) = {(q1, ε)} /*Pop a*/

δ(q1, ε, Z0) = {(qf, Z0)} /*change to final state and halt*/

LANGUAGE ACCEPTANCE BY PDA:

Test whether the string aaabbb is accepted or not using

(a) Stack Empty Method (b) Final State Method

Formal Languages and Automata Theory (23CS602)

CSE,NRCM Page 79

Stack Empty Method:

LANGUAGE ACCEPTANCE BY PDA:

Final State Method

δ(q0, aaabbb, Z0)

⇒δ (q0, aabbb, aZ0)

⇒δ(q0, abbb, aaZ0)

Formal Languages and Automata Theory (23CS602)

CSE,NRCM Page 80

⇒δ(q0, bbb, aaaZ0)

⇒δ(q1, bb, aaZ0)

⇒δ(q1, b, aZ0)

⇒δ(q1, ε , Z0)

⇒δ(qf, ε, Z0)

⇒string is accepted as PDA reached to final state and string is empty.

Ex: Design a PDA which accepts equal number of a’s and b’s over Σ = {a, b}.

Consider a string abbbaa

Formal Languages and Automata Theory (23CS602)

CSE,NRCM Page 81

Ex: Design a PDA that accepts L={0
n
1

2n
/n>=1}

Ex: Design a PDA that accepts L={a
3
b

n
c

n
/n>=0}

Formal Languages and Automata Theory (23CS602)

CSE,NRCM Page 82

Ex: Design a PDA that accepts L={wcw
r
 / w is in (a+b)

*
}

Formal Languages and Automata Theory (23CS602)

CSE,NRCM Page 83

TYPES OF PDA:

• There are two types of PDA.

• Deterministic PDA (DPDA)

• Non-Deterministic PDA (NPDA)

• Deterministic PDA (DPDA): A PDA that has at most one choice of move in any

state is called a deterministic PDA.

• Non-Deterministic PDA (NPDA) provides non-determinism in the moves defined.

• Deterministic PDAs (DPDAs) are very useful in programming languages. For

example, parsers used in Yet Another Compiler Compiler (YACC) are

deterministic PDA's (DPDA).

• A PDA M = (Q, Σ, G, δ, q0, z0, F), is (i) deterministic if and only if δ(q, a, X) has

at most
one move.

• (ii) Non-Deterministic if and only if δ(q, a, X) has one or more moves.

Formal Languages and Automata Theory (23CS602)

CSE,NRCM Page 84

Ex: Design

a PDA which accepts L={WW
R
|W is in (a+b)*} Transition Diagram

Transition Functions

• δ(q0, a, Z0) = (q0, aZ0)

• δ(q0, b, Z0) = (q0, bZ0)

• δ(q0, a, a) = (q0, aa)

• δ(q0, a, a)=(q1, ε)

• δ(q0, b, b) = (q0, bb)

• δ(q0, b, b)=(ql, ε)

• δ(q0, a, b) = (q0, ab)

• δ(q0, b, a) = (q0, ba)

• δ(q1, a, a) = (ql, ε)

δ(ql, b, b) = (q1, ε), δ(q1, ε, Z0) = (qf, Z0)

CONSTRUCTION OF PDA FROM CFG:

• Step 1 − Convert the productions of the CFG into GNF.

• Step 2 − The PDA will have only one state {q}.

• Step 3 − the start symbol of CFG will be the start symbol in the PDA.

• Step 4 − All non-terminals of the CFG will be the stack symbols of the PDA and

all the terminals of the CFG will be the input symbols of the PDA.

• Step 5 − For each production in the form A → aX make a transition δ (q, a,

A)=(q,X).

Formal Languages and Automata Theory (23CS602)

CSE,NRCM Page 85

• Step 6- For each production in the form A → a make a transition δ (q, a, A)=(q,

ε).

Ex: Convert the following CFG in to PDA S aAA, A aS/bS/a

Sol: The grammar is in GNF For S aAA: δ (q, a, S)=(q,AA).

For A aS : δ (q, a, A)=(q,S).

For A bS : δ (q, b, A)=(q,S)

For A a :δ (q, a, A)=(q, ε).

For A → aX :δ (q, a, A)=(q,X).

For A → a :δ (q, a, A)=(q, ε)

The Equivalent PDA:

δ (q, a, S)=(q,AA).

δ (q, a, A)=(q,S).

δ (q, b, A)=(q,S)

δ (q, a, A)=(q, ε)

CONSTRUCTING CFG FOR GIVEN PDA

• To convert the PDA to CFG, we use the following three rules:

• R1: The productions for start symbol S are given by S ➔ [qO, ZO, q] for each state

q in Q.

• R2: Each move that pops a symbol from stack with transition as δ(q, a, Zi) = (q1,

ε) induces a production as [q, Zi, q1] ➔ a for q1in Q.

• R3: Each move that does not pop symbol from stack with transition as

• δ (q, a, ZO) = (q , Z1Z2 Z3Z4…..) induces a production as [q, ZO, qm] a[ql, Zl q2]

[q2, Z2 q3] [q3, Z3 q4] [q4, Z4 q5]…[qm-l, Zmqm] for each qi in Q, where l <i< m.

• After defining all the rules, apply simplification of grammar to get reduced

grammar

Ex:Give the equivalent CFG for the following PDA M = {{q0 , q1 },{a, b},

{Z, ZO}, δ, qO, ZO} where δ is defined by

δ(qO, b, ZO) = (qO, ZZO)δ(qO, ε, ZO) = (qO, ε)δ(qO, b, Z) = (qO, ZZ)

Formal Languages and Automata Theory (23CS602)

CSE,NRCM Page 86

δ(qO, a, Z) = (q1, Z)δ(q1, b, Z) = (q1, ε)δ(q1, a, ZO) = (qO, ZO)

Solution: The states are qO andql, and the stack symbols are Z and ZO.

The states are {S, [qO, ZO, qO], [qO, ZO, q1], [q1, ZO, qO], [q1, ZO, ql], [qO, Z, qO],

[qO, Z, ql], [ql, Z, qO], [q1, Z, q1]}. S- Productions are given by Rule 1

S [qO, ZO, qO] | [qO, ZO, q1]

• The CFG for δ(qO, b, ZO) = (qO, ZZO) is obtained by rule 3 [qO, ZO, qO] b [qO, Z,

qO] [qO, ZO, qO]

[qO, ZO, qO] b [qO, Z, q1] [q1, ZO, qO]

[qO, ZO, q1] b [qO, Z, qO] [qO, ZO, q1]

[qO, ZO, q1] b [qO, Z, q1] [q1, ZO, q1]

• The CFG for δ(qO, ε, ZO) = (qO, ε) is obtained by rule 2 [qO, ZO, qO] ε

• The CFG for δ(qO, b, Z) = (qO, ZZ) is obtained by rule 3 [qO, Z, qO] b [qO, Z,

qO] [qO, Z, qO]

[qO, Z, qO] b [qO, Z, q1] [q1, Z, qO]

[qO, Z, q1] b [qO, Z, qO] [qO, Z, q1]

[qO, Z, q1] b [qO, Z, q1] [q1, Z, q1]

• The CFG for δ(qO, a, Z) = (q1, Z) is obtained by rule 3 [qO, Z, qO] a [q1, Z, qO]

[qO, Z, q1] a[q1, Z, q1]

• The CFG for δ(q1, b, Z) = (q1, ε) is obtained by rule 2 [q1, Z, q1] b

• The CFG for δ(q1, a, ZO) = (qO, ZO) is obtained by rule 2 [ql, ZO, qO] a [qO, ZO,

qO]

[q1, ZO, q1] a[qO, ZO, q1]

UNIT-IV

Normal Forms for Context- Free Grammars: Eliminating useless symbols, Eliminating

€-Productions. Chomsky Normal form Greibach Normal form.

Formal Languages and Automata Theory (23CS602)

CSE,NRCM Page 87

Pumping Lemma for Context-Free Languages: Statement of pumping

lemma, Applications Closure Properties of Context-Free Languages: Closure

properties of CFL’s, Decision Properties of CFL's

Turing Machines: Introduction to Turing Machine, Formal Description,

Instantaneous description, The language of a Turing machine

SIMPLIFICATION OF CONTEXT-FREE GRAMMAR:

• CFG can be simplified in the following three processes.

• Removal of useless symbols

• Removal of non-generating symbols

• Removal of non-reachable symbols

• Removal of unit productions

• Removal of null productions Removal of useless symbols Useless symbols

are of two types:

• Non-generating symbols are those symbols which do not produce any string

of terminals. Remove those productions whose productions contain those

symbols.

• Non-reachable symbols are those symbols which cannot be reached at any

time starting from the start symbol.

• Dependency graph can be drawn to identify the symbols that are reachable. To

draw dependency graph all non-terminals are indicated as nodes for each

production A → x1, x2,. xn place an edge from A to xi where xi is non terminal.

The set of nodes that

have path from start node indicate the non-terminals that are reachable.

Ex:Eliminate useless symbols and productions from the following grammar S

→ ABa | BC, A → aC | BCC, C → a, B → bcc,D → E, E → d, F → e

Ans:

Step 1: Eliminate non-generating symbols:

All variables are found to be generating as each of themderive a terminal.

Step 2: Elimination of non-reachable variables: Draw the dependency graph

Formal Languages and Automata Theory (23CS602)

CSE,NRCM Page 88

From the above graph, D,E and F are non-reachable from S. Hence

remove all the productions which contain non-reachable variables. Therefore the

simplified grammar is

S → ABa | BC, A → aC | BCC, C → a, B → bcc

Ex: Eliminate useless symbols in the following grammar G:S → BC | AB |

CA, A → a, C → aB | b

Ans: Here B is not defined; hence it is non-generating symbol. C and A are

reachable and are derivingterminals. Hence, C and A are useful. The reduced

grammar isS → CA, A → a, C → b.

The non-terminals A and C are reachable from S. Hence the simplified grammar is

S → CA, A → a, C → b.

Ex: Eliminate useless symbols in the given G:S → aAa, A → bBB, B → ab, C

→ a b

Solution: Here all the variables are generating symbols. C is not reachable from

start symbol S. Hence remove it. So the reduced grammar isS → aAa, A → bBB,

B → ab,

Ex:Eliminate useless symbols in the following grammar G:S → aS | A | BC, A

→ a, B → aa,

C → a Cb

Ans: Here C is useless, as it is not deriving any string. B is not reachable. So the

reduced grammar isS → aS | A, A → a

Ex:Remove the useless symbols from the given CFG S AC S BA C CB

C ACA aB aC/b To find Non-Generating Symbols:

In the above grammar, C is a non-generating symbol since it does not

generate a string with terminals. Hence, eliminate the productions which contain

the symbol C. Therefore, S BA, A a, B b

To find Non-Reachable Symbols:

Formal Languages and Automata Theory (23CS602)

CSE,NRCM Page 89

The symbols which cannot be reached at any time starting from the start

symbol. There is no non-reachable symbol in the grammar. So, the minimized

form of the grammar by removing useless symbols is S BA, A a, B b.

REMOVAL OF UNIT PRODUCTIONS:

• Production in the form non-terminal single non-terminal is called unit

production.

• Ex: Remove the unit production from the following grammar. S AB, A

E, B

C,C D, D b, E a

The productions are A E, B C, and C D. From B C, and C D we will

get B D Therefore, S AB, A E, B D, D ->b, E a From A E and E a,

we get A a

From B D and D b we get B b Therefore, S AB, A a, B b,D b, E a

In the above productions, D and E are non-Reachable variables. Hence eliminate

D and E.

Therefore, the simplified grammar is S AB, A a, B b

REMOVAL OF NULL PRODUCTIONS

• A production in the form NT ε is called null production.

• Ifε (null string) is in the language set generated from the grammar, then that null

production cannot be removed.

• That is, if we get, S ε , then that null production cannot be removed from the

production rules.

Procedure to Remove Null Production

Step-1: Construct Vn, the set of all nullable variables

Step-2: For each production B → A, if A is a nullable variable, replace the

nullable variable A by ε , and add, all possible combinations of strings on the

RHS of production.

Step-3: Do not add the production A → ε

Ex: Remove the ε- production from the following grammar. S aA, A b/ ε A

ε is a null production. Therefore A is nullable variable.

Formal Languages and Automata Theory (23CS602)

CSE,NRCM Page 90

Vn={A}

Consider S aA.

Replace A by ε we get S a Add S a to S aA

Therefore, the simplified grammar is S aA/a, A b

In the above grammar, no null productions, no unit productions, and no useless

symbols.

Hence the grammar is simplified

Ex: Eliminate the null production from the following grammar S→ ABaC, A BC, B b/

ε, C D/ ε, D d

Vn={A,B,C}

Consider S ABaC. Replace AorBorCorAB or AC orBC or ABC by ε. Then we get

S ABaC/BaC/AaC/ABa/aC/Aa/Ba/a.

Similarly, A BC/B/C, B b, C D, D d Eliminate Unit Productions, then we get

S ABaC/BaC/AaC/ABa/aC/Aa/Ba/a, A BC/d/b, B b,

NORMAL FORM

• For a grammar, the RHS of a production can be any string of terminals and

non- terminals

• A grammar is said to be in normal form when every production of the grammar

has some septic form.

• That means, instead of allowing any no of terminals and non-terminals on the

RHS of the production, we permit only specific members on the RHS of the

production.

• Two types of normal forms: (a) CNF (Chomsky Normal Form) and

(b) GNF (Greibach Normal Form)

CNF: CHOMSKY NORMAL FORM

• A CFG is said to be in CNF if all the productions of the grammar are in the

following form.

• Non-terminal String of exactly two non-terminals

• Non-terminal Single terminal Ex: A BC, B b, C c

PROCEDURE TO CONVERT CFG IN TO CNF:

Formal Languages and Automata Theory (23CS602)

CSE,NRCM Page 91

• Eliminate null productions and unit productions. i.e., simplify the grammar

• Include productions of the form A → BC / a as it is.

• Eliminate strings of terminals on the right-hand side of production if they

exceed one as follows: Suppose we have the production S → a1a2a3 where

a1,a2,a3 are terminals then introduce non-terminal Cai for terminal ai asCa1 →

a1, Ca2 → a2, Ca3 → a3

• To restrict the number of variables on the right-hand side, introduce new

variables and separate them as follows:

Suppose we have the production with n non-terminals as shown below with 5 non-

terminals

Y → X1 X2 X3 X4 X5

Add n-2 new productions using n-2 new non-terminals and modify the production

as in the following:

Y → X1 R1 R1 → X2 R2 R2 → X3 R3

R3 → X4 X5 where the Ri are new non-terminals.

The language generated by the new CFG is the same as that generated by the

original CFG.

Ex: Convert the following grammar into CNF. S bA/aB, A bAA/aS/a, B

aBB/bS/a

Step1: The Grammar is minimized.

Step2: The productions A a and B a are in CNF. Hence leave the productions as

it is.

Step 3: The productions S bA, S aB, A bAA, A aS, B aBB, B bS are

not in CNF. So, we have to convert these into CNF.

Let us replace terminal ‘a’ by a non-terminal Ca and terminal ‘b’ by a non-

terminal Cb.

Hence, two new productions Ca a and Cb b will be added to the grammar

By replacing a and b by new non-terminals and including the two productions,

the modified grammar will be

S CbA/CaB, A CbAA/CaS/a , B CaBB/CbS/a , Ca a, Cb b In the modified

grammar, all the productions are not in CNF.

Formal Languages and Automata Theory (23CS602)

CSE,NRCM Page 92

The productions A CbAA and B CaBB are not in CNF, because they

contain more than two non-terminals at the RHS.

Let us replace AA by a new non-terminal D and BB by another new non-terminal

E. Hence, two new productions D AA and E BB will be added to the

grammar.

So, the new modified grammar will be S CbA/CaB

A CbD/CaS/a

B CaE/CaS/a

D AA

E BB

Ca a Cb b

It is in CNF

Ex: Convert following CFG to CNF:

S → AB | aB

A → aab | ε

B → bbA

Ex: Convert following CFG to CNF. S → bA | aB

A → bAA | aS | a

B → aBB | bS | b

Ex: Convert following CFG to CNF. S → ASB | ε

A → aAS | a

B → SbS | A | bb

LEFT RECURSION AND LEFT FACTORING:

• Left Recursion: A context-free grammar is called left recursive if a non-terminal

‘A’ as a leftmost symbol on the right side of a production. A Aa

Formal Languages and Automata Theory (23CS602)

CSE,NRCM Page 93

• In other words, a grammar is left recursive if it has a non-terminal ‘A’ such that

there is a derivation.

• A =>Aa for some string a

• There are two types of left recursion

• i) Direct Left Recursion ii) Indirect Left Recursion

DIRECT LEFT RECURSION:

Let the grammar be A Aα/β, where α and β consists of terminal and/or non-

terminals but β does not start with A.

Elimination of Left Recursion:

For the production A Aα/β, the equivalent grammar after removing the

left recursion is A βA
1
, A

1
 αA

1
/ε

In general, for a grammar in the form

A Aα1 / Aα2 / ……/Aαn /β1 / β2 /……./ βn The equivalent productions

are

A β1A
1
 / β2 A

1
 /……./ βn A

1
 A

1
α1 A

1
 / α2 A

1
 / ……/αn A

1
 / ε

Ex: Remove the left recursion from the following grammar.

E E + T | T, T T*F | F , F id | (E)

In the grammar there are two immediate left recursions E E + T and T T * F. For E

E + T, the equivalent productions are E TE
1
 and E

1
 + TE

1
/ε For T T * F,

the equivalent productions are T FT
1
, T

1
 *FT

1
/ε

The CFG after removing the left recursion becomes E => TE
1

E
1
 => + TE

1
/ε T FT

1

T
1

 *FT
1
|ε F id | (E)

INDIRECT LEFT RECURSION:

A grammar of the form A1 A2a/b, A2 A1c/d is called indirect left recursion.

Convert indirect left recursion in to direct left recursion and then apply the elimination of

direct left recursion.

Formal Languages and Automata Theory (23CS602)

CSE,NRCM Page 94

Consider A2 A1c/d

Then A2 A2ac/bc/d. it is in the direct left recursion. Eliminate Direct left recursion

A2 bcA2
1 /dA

1
 , A

1
ac A2

1 /ε

LEFT FACTORING:

A production rule of the form A αβ1/αβ2/. . ./αβn is called left factoring.

After left factoring, the previous grammar is transformed into: A αA1, A1 β1/β2/. .

. /βn

Ex: Left Factor the following grammar. A abB | aB | cdg | cdeB | cdfB

The left factored grammar is A aA
1
 /cdA²

A
1
 bB/B A g/eB/fB

GREIBACH NORMAL FORM

• A grammar is said to be in GNF if every production of the grammar is of the form

• Non-terminal (single terminal)(non-terminal)*i.e. terminal followed by

any combination of NTs including null.

Lemma I: Substitution Rule:

• Let G be a CFG.

• If A Ba and B b1/b2/. . . /bn belongs to the production rules (P) of G, then a

new grammar will A b1a/b2a/. . . /bna

Lemma II: Elimination of Left Recursion

• Let G be a CFG.

• If A Aa1/Aa2/. . . /Aam/b1/b2/. . . /bn belongs to P of G, then equivalent

grammar is

A b1 A
1
/b2 A

1
 /. . . /bnA

1
 / b1/b2/. . . /bn A

1
a1A

1
/a2 A

1
 /. . . /am A

1
 /a1/a2/. . . /am

PROCESS FOR CONVERSION OF A CFG INTO GNF

• Step I: The given grammar is in CNF

• Step II: Rename the non-terminals as A1, A2 ……An with A1=S

• Step III: we need productions must be in the form that the RHS of productions

must start with a terminal or with higher indexed variable.

For each production Ai Aj a

Formal Languages and Automata Theory (23CS602)

CSE,NRCM Page 95

• ifi<j leave the production as it is.

• ifi=j then apply lemma2 (Elimination of Left Recursion)

• ifi>j then apply lemma1. (Apply Substitution Rule)

• Step IV: For each production Ai Aj a where i<j apply substitution rule. The

resulting productions of the modified grammar will come into GNF. Ex:Convert

the following grammar in to GNF. S AA/a, A SS/b

• Step I: There are no unit productions and no null production in the grammar. The

given grammar is in CNF.

• Step II: In the grammar, there are two non-terminals S and A. Rename the non-

terminals as A1 and A2 respectively. The modified grammar will be A1

A2A2/a, A2 A1A1/b

• Step III: In the grammar, A2 A1A1 is not in the form Ai Aj a where i<j

Apply substitutionrule Therefore, A2 A2A2A1/aA1/b

On the above production apply Lemma II, A2 aA1X/bX/aA1/b, X A2A1X/A2A1

The modified grammar A1 A2A2/a, A2 aA1X/bX/aA1/b, X A2A1X/A2A1

• Step IV: apply substitution rule on A1 A2A2/a Therefore, A1

aA1XA2/bXA2/aA1A2/bA2/a

Apply substitution rule on X A2A1X/A2A1

Therefore, X aA1XA1X/bXA1X/aA1A1X/bA1X/ aA1XA1/bXA1/aA1A1/bA1

The modified grammar is

A1 aA1XA2/bXA2/aA1A2/bA2/a A2 aA1X/bX/aA1/b

X aA1XA1X/bXA1X/aA1A1X/bA1X/ aA1XA1/bXA1/aA1A1/bA1 The above

grammar is in GNF

Ex: Convert the following grammar in to GNF.

S → XA | BB

B → b | SB X → b

A → a

Formal Languages and Automata Theory (23CS602)

CSE,NRCM Page 96

Ex: Convert the CFG to GNF S → AB A

A → aA | ε

B → bB | ε

CLOSURE PROPERTIES OF CONTEXT-FREE LANGUAGES

• A set is closed (under an operation) if and only if the operation on two elements of

the set produces another element of the set. If an element outside the set is

produced, then the operation is not closed.

• CFL are closed under Union.

• If L1 and If L2 are two context free languages, their union L1 ∪ L2 will also

be context free.

• Ex: L1 = { a
n
b

n
c

m
 | m >= 0 and n >= 0 } and L2 = { a

n
b

m
c

m
 | n >= 0 and m >=

0 } L1 ∪ L2 = { a
n
b

n
c

m
 ∪a

n
b

m
c

m
 | n >= 0, m >= 0 } is also context

free. L1 says number of a’s should be equal to number of b’s and L2 says number

of b’s should be equal to number of c’s. Their union says either of two conditions

to be true. So it is also context free language.

• CFL are closed under Concatenation

• If L1 and If L2 are two context free languages, their concatenation L1.L2

will also be context free.

• Ex: L1 = { a
n
b

n
 | n >= 0 } and L2 = { c

m
d

m
 | m >= 0

} L3 = L1.L2 = { a
n
b

n
c

m
d

m
 | m >= 0 and n >= 0} is also context free.

• L1 says number of a’s should be equal to number of b’s and L2 says number of

c’s should be equal to number of d’s. Their concatenation says first number of a’s

should be equal to number of b’s, then number of c’s should be equal to number

of d’s. So, we can create a PDA which will first push for a’s, pop for b’s, push for

c’s then pop for d’s. So it can be accepted by pushdown automata, hence context

free.

• CFL are closed under Kleen Closure

If L1 is context free, its Kleene closure L1* will also be context free.

For example, L1 = { a
n
b

n
 | n >= 0 }

L1* = { a
n
b

n
 | n >= 0 }* is also context free.

Formal Languages and Automata Theory (23CS602)

CSE,NRCM Page 97

• CFL are not closed under Intersection

Consider two languages L1= {a
n+1

b
n+1

c
n
, where n, l>= 0} and L2 == {a

n
b

n
c

n+k
,

where n, k >= 0}.

Consider L = L1 ∩ L2

So, L = a
n+1

b
n+1

c
n
 Ç a

n
b

n
c

n+k
 = a

n
b

n
c

n
, where n >= 0.

a
n
b

n
c

n
 is a context sensitive language not a context free. As one instance is proved

not to be context free then we can decide that context free languages are not

closed under intersection.

CFL are not closed under Intersection and Complementation.

From the set theory, we can prove L1 Ç L2 = L1 UL2. (D’ Morgan’s Law)

If the union of the complements of L1 and L2 are closed, i.e., also context free,

then the LHS will also be context free. But we have proved that L1 Ç L2 is not

context free. We are getting a contradiction here. So, CFLs are not closed under

complementation.

PUMPING LEMMA FOR CFL

Let L be a CFL. Then, we can find a natural number n such that 1) Every z ∈ L

where|z|>=n and z can be written as z = uvwxy, for some strings u,v,w,x,yi) | vx |

>=1 ii) | vwx | <= n and uv
i
wx

i
y∈ L for all i>= 0

Note: Method to test a language is CFL or not.

• Step I: Assume that L is context free. Find a natural number such that | z | >=n.

• Step II: So, we can write z = uvwxy for some strings u, v, w, x, y.

• Step III: Find a suitable k such that uv
i
wx

i
y is not in L. This is a contradiction,

and so L is not context free.

Ex: Using Pumping Lemma, Show that L = {anbncn where n >=1} is not CFL

The given language is L = {a
n
b

n
c

n
 where n >=1} L={ab, aabbcc, aaabbbccc,….}

Let z=aabbcc=uvwxy

Where u=a,v=a,w=b,x=b,y=cc

Formal Languages and Automata Theory (23CS602)

CSE,NRCM Page 98

When i=0, uv
i
wx

i
y=uwy=abcc is not in L, Therefore L is not a CFL

Ex: ST L={ap:p is a prime number} is not CFL

Ex: Prove that the language L = {ai2/i ≥ 1 } is not context free.

APPLICATIONS OF CONTEXT-FREE GRAMMAR

• The compiler is a program that takes a program written is the source language as

input and translates it into an equivalent program in the target language.

• Syntax analysis in an important phase in the compiler design.

• In this phase, mainly grammatical errors called syntax errors are checked.

• The syntax analyzer (parser) checks whether a given source program satisfies

the rules implied by context-free grammar or not.

• If it satisfies, the parser creates the parse tree of that program. Otherwise, the

parser gives the error messages

• CFGs are used in speech recognition and also in processing spoken words.

Simplifying grammar: In the above grammar, first identify the non-terminals

that are not defined and eliminate the productions that refer to these productions.

Similarly, use the procedure of eliminating the useless symbols and useless

productions. Hence the complete grammar is as follows

S ➔ [qO, ZO, qO]

[qO, ZO, qO] ➔b [qO, Z, q1] [q1, ZO, qO]

[qO, ZO, qO] ➔ε

[qO, Z, q1] ➔b [qO, Z, q1] [q1, Z, q1] [qO, Z, q1] ➔a[q1, Z, q1]

[q1, Z, q1] ➔b

[q1, ZO, qO] ➔a [qO, ZO, qO]

Formal Languages and Automata Theory (23CS602)

CSE,NRCM Page 99

TWO STACK PDA:

A two-stack PDA can be formally described as a 9-tuple (Q, ∑, Γ, Γ

1
, δ, q0, Z1

, Z2 , F)

• Q-finite number of states

• ∑ -input alphabet

• Γ –stack1 symbols

• Γ
1
 –stack2 symbols

• δ -transition function: Q × (∑ ∪ {ε}) ×Γ x Γ
1

QX ΓX Γ
1
)

• δ(q0,a, Z1 , Z2) =(q1,aZ1 , Z2)

• Q0 initial state (q0 ∈ Q)

• Z1 is the initial stack1 top symbol (Z1∈Γ)

• Z2 is the initial stack2 top symbol (Z2∈Γ
1
)

• F is a set of accepting states (F ∈ Q)

Ex: Design a two stack PDA which accepts L={a
n
b

n
c

n
: n>=1}. Transition

Diagram

c,a,b/ε, ε
a,Z1,Z2/aZ1,Z2
a,a,Z2/aa,Z2 b,a,Z2/a,bZ2 b,a,b/a,bb

Transition Functions:

δ(q0, a, Z1, Z2) = (q0, a Z1, Z2)

δ(q0, a, a, Z2) = (q0, aa, Z2)

δ(q0, b, a, Z2) = (q0, a, b Z2)

δ(q0 , b, a, b) = (q0, a, bb)

δ(q0 , ε, Z1, Z2) = (q2, Z1, Z2)

δ(q0, c, a, b) = (q1, ε, ε)

δ(q1, c, a, b) = (q1, ε, ε)

δ(q1, ε, Z1, Z2) = (q2, Z1, Z2)

Formal Languages and Automata Theory (23CS602)

CSE,NRCM Page 100

Ex: Design a two-stack PDA for the language L = {a
n
b

n
a

n
b

n
| n ∈ N}.

d(q0, a, z1,z2) = (q0, a,z2)
d(q0, a, a, z2) = (q0, aa, z2)
d(q0, ε,z1,z2) = (q4,z1,z2)
d(q0, b, a, z2) = (q1, a, b)
d(q1, b, a, b) = (q1, a, bb)
d(q1, a, a, b) = (q2, ε, b)
d(q2, a, a, b) = (q2, ε, b)
d(q2, b, z1, b) = (q3, z1, ε)
d(q3, b, z1, b) = (q3, z1, ε)
d(q3, ε, z1,z2) = (q4,z1,z2)

PART-A
• What are the limitations of FA

• Draw the block diagram of PDA

• Define PDA

• Define instantaneous description of PDA.

PART-B

• Design a PDA which accepts the language L={a
n
b

n
/n>=1}

• Design a PDA which accepts L={WW
R
|W is in (a+b)*}

• Convert the following CFG in to PDA S aAA, A aS/bS/a

• Give the equivalent CFG for the following PDA M = {{q0 , q1 },{a, b}, {Z,

ZO}, δ, qO, ZO} where δ is defined by δ(qO, b, ZO) = (qO, ZZO) δ(qO,

ε, ZO) = (qO, ε) δ(qO, b, Z) = (qO, ZZ) δ(qO, a, Z) = (q1, Z) δ(q1, b,

Z) = (q1, ε)δ(q1, a, ZO) = (qO, ZO)

• Explain two-Stack PDA and construct two-Stack PDA L={a
n
b

n
c

n
: n>=1}

• Write instantaneous description for the string ababcbcb

Assignment

• Design a PDA to accept the language of balanced parentheses (where the number

of opening and closing parentheses is greater than 0).

• Design a PDA to accept the language L = a
m

b
n
c

m

−

n
, where m > = n and m, n > 0

• Construct a PDA for the following L = {a
n
cb

2n
/n ≥ 1} over alphabet {a, b, c}.

• Construct a PDA that accepts the language generated by the following grammar.
S → aB, B → bA/b, A → aB. Show an ID for the string abab for the PDA

generated.

• Design a PDAwhich accepts L={0
n
1

m
0

n
: m,n>=1}

Formal Languages and Automata Theory (23CS602)

CSE,NRCM Page 101

Unit-5: Turing Machine

Limitations of Finite State Machine/Finite Automata:

• Can remember only current symbol

• Cannot remember previous long sequence of input

Limitations of Pushdown Automata:

• It uses stack to remember any long input sequence

• Accepts a larger class of languages than that of FA, Computation power is limited

• To overcome the above limitations, Alan Turing has proposed a model called a

Turing Machine(TM) with a two-way infinite tape. The tape is divided into cells,

each of which can hold only one symbol. The input of the machine is a string

w=w1w2w...wn initially written on the left most portion of the tape, followed by

an infinite sequence of blanks B.

• The machine is able to move a read/write head left and right over the tape as it

performs computation. It can read and write symbols on the tape as it pleases.

 B B

.

W

1

.

W

2

 W

n

B B

BLOCK DIAGRAM OF TURING MACHINE

Formal Languages and Automata Theory (23CS602)

CSE,NRCM Page 102

It is a simple mathematical model of a general purpose computer. It is capable of

performing any calculation which can be performed by any computing machine.

Hence this model is popularly known as “Turing Machine”.

FEATURES OF TM:

• It has external memory which remembers arbitrarily long sequence of input.

• It has unlimited memory capability.

• The model has a facility by which the input at left or right on the tape can be read

easily.

• The machine can produce certain output based on its input. In this machine there is

no distinction between input and output symbols.

• The TM can be thought of as a finite state automata connected to a read or write

head,

• It has one tape which is divided into a number of cells. Each cell can store only

one symbol.

• The read or write head can examine one cell at a time.

• In one move the machine examine the present symbol under the head on the tape

and present state of an automaton to determine:

• A new symbol should be written on the tape in the cell under the head

• The head moves one cell either left(L) or right(R), The next state of the automata.

• Whether to halt or not.

DEF: TURING MACHINE:

• A TM is expressed as a 7-tuple (Q, T, B,∑, δ, q0, F) where:

• Q-finite set of states

• T -tape alphabet (symbols which can be written on Tape)

• B∈ T -blank symbol (every cell is filled with B except input alphabet initially)

• ∑ -the input alphabet (symbols which are part of input alphabet)

• δ :Q × T → Q × T × {L,R} transition function which maps.

• q0 -the initial state

• F -the set of final states.

Formal Languages and Automata Theory (23CS602)

CSE,NRCM Page 103

INSTANTANEOUS DESCRIPTION OF TM

• ID of TM is (l,q,r) where

• l- tape contents left to the head of TM

• r- tape contents right to the head of TM including the symbol under head and

• q- current state

• Ex:

• Where l=ab l=abb

r=abb r=bb

Current state=q current state=q
1

Moves: At any given time the move of TM depends on i) Current state and ii)

input symbol i.e., (q,a). the o/p of move would be (q1, b, L) Where q1 = next

state, b= symbol to be replaced by a and L= move left one symbol.

Ex: δ(qi,a)= (qj,b,L) i.e., in the state qi on receiving a symbol a , then change to a

new state qj , replace a by b and the move left.

Acceptance or Rejection by TM:

• Let us assume the final Configuration of TM is (u,q,w)

• Accept: If q ∈ F

• Reject: If q ∉ F and /or next moves are not defined/loops

• If either accept or reject then TM halts(Stops)

TM as Language Accepter:

• M accepts w iff the execution of M on w terminating and ends in the accepting

state

• M rejects w iff the execution of M on w terminating and ends in the non accepting

state

• M does not accept w iff M rejects or M loops on w,

Formal Languages and Automata Theory (23CS602)

CSE,NRCM Page 104

Ex: Write IDs for the following TM

δ(q0,a)= (q0,X,R), δ(q0,b)= (q0,b,R), δ(q0,B)= (q1,B,L), δ(q1,b)= (q1,Y,L) , δ(

q1,X)= (q1,X,L), δ(
q1,B)= (q2,B,H) and string w=abba.

B B B a b b a B B B

Current state= q0

B B B X b b a B B B

Current state= q0

B B B X b b a B B B

Current state= q0

B B B X b b a B B B

Current state= q0

B B B X b b X B B B

Current state= q0

B B B X b b X B B B

Current state= q1

B B B X b b X B B B

Current state= q1

B B B X b Y X B B B

Formal Languages and Automata Theory (23CS602)

CSE,NRCM Page 105

Current state= q1

B B B X Y Y X B B B

Current state= q1

B B B X Y Y X B B B

Current state= q1

δ(q1,B)= (q2,B,H)

REPRESENTATION OF TM:

• Representation of TM: A TM can be represented by means of Transition Table

and Transition diagram.

• Representation of TM using Transition Table: The Transition table for the

above TM is as given below.

Representation of TM using Transition Diagram: The states are represented by

vertices and transitions are represented by directed edges. The edges are labeled

in the form of (α ,β, γ) or α β, γ where α(∈T) is the current input symbol, β(∈T)

is the symbol to be replaced with α and γ={L,R}. The TM for the above example

is as

Ex: Design a TM to recognize all strings consisting of even no of a’s defined

over {a} Transition Diagram

Formal Languages and Automata Theory (23CS602)

CSE,NRCM Page 106

Transition Table

δ a B

q0 (q1,a,R) (q2,B,H)

q1 (q0,a,R) --

q2 -- --

Ex: Design a TM for finding 1’s Complement of a given binary number

Transition Diagram

δ 0 1 B

q
0

(q0,

1,R)

(q0,

0,R)

(q1,

B,H

)

Formal Languages and Automata Theory (23CS602)

CSE,NRCM Page 107

Ex: Design a TM for finding 2’s Complement of a given binary number

Transition Diagram

Transition Table

δ 0 1 B

q0 (q0,0,R) (q0,1,R) (q1,B,L)

q1 (q1,0,L) (q2,1,L) --

q2 (q2,1,L) (q2,0,L) (q3,B,H)

q3 -- -- --

Ex: Construct a TM for language consisting of strings having any no of b’s

and even no of a’s defined over {a,b}.

Design a TM to accept strings formed with 0 and 1 and having substring 000

Formal Languages and Automata Theory (23CS602)

CSE,NRCM Page 108

Ex: Design TM to accept strings belonging to the language (0+1)
*

Transition Diagram

Formal Languages and Automata Theory (23CS602)

CSE,NRCM Page 109

Transition Table

Ex: Design a TM to accept strings formed on {0,1} and ending with 000

Transition Diagram

Transition Table:

Formal Languages and Automata Theory (23CS602)

CSE,NRCM Page 110

Ex: Design a TM for accepting strings of the language L={ww
r
: w ∈ (0+1)

*
 }

Transition Diagram

Formal Languages and Automata Theory (23CS602)

CSE,NRCM Page 111

Ex: Design a TM for palindrome strings over {a,b} Transition Diagram

Formal Languages and Automata Theory (23CS602)

CSE,NRCM Page 112

Ex: Design a TM which accepts L={a
n
b

n
: n>=1}

Ex:Design a TM which accepts L={a
n
b

n
c

n
: n>=1}

Formal Languages and Automata Theory (23CS602)

CSE,NRCM Page 113

TM AS INTEGER FUNCTION:

A Turing machine M computes a function f if, when given input w in the domain

of f, the machine halts in its accept state with f(w) written (leftmost) on the tape.

To use TM as a computational machine, it is required to place the integer numbers

as 0m.

Suppose it is required to add two numbers; that is, f(m, n) = m + n, then

the numbers m and n are to be placed on the tape as 0m10n where 1 is a separator

for the numbers m and n. Once processing is completed and the TM halts, the tape

would have the contents as 0(m+n), which is the required result of the

computation.

Formal Languages and Automata Theory (23CS602)

CSE,NRCM Page 114

Ex: Design a TM to add two numbers a and b.

Sol: Let the numbers be 2 and 3. The addition of these numbers using simple logic

is explained. The numbers are placed as B0
2
10

3
B.

After processing, the tape content would be B0
5
B. The simple logic that

can be used is: to replace the occurrence of 0 by B and move to right and replace

1 to 0, so that it is in required form as B0
5
B.

Ex: Design TM for Multiplication of two integers

Formal Languages and Automata Theory (23CS602)

CSE,NRCM Page 115

Ex: Design TM for f(m,n)=m-n, m>=n

Formal Languages and Automata Theory (23CS602)

CSE,NRCM Page 116

CONVERSION OF REGULAR EXPRESSION TO TM

• Step1: Convert the RE to an equivalent Automaton without epsilon transitions

• Step2: Change both the +-initial and final states of the Automata to an

intermediate state

• Step3: insert a new initial state with a transition (B,B,R) to the Automata’s initial
state

• Step4: convert the transitions with label a to (a,a,R)

• Step5: insert a new final state with a transition (B,B,R) from Automata’s final

state to
the new final state.

Ex: Construct a TM for the RE (a+b)
*
(aa+bb) (a+b)

*

Formal Languages and Automata Theory (23CS602)

CSE,NRCM Page 117

UNIT-V

Types of Turing machine: Turing machines and halting

Undecidability: Undecidability, A Language that is Not Recursively

Enumerable, An Undecidable Problem That is RE, Undecidable Problems

about Turing Machines, Recursive languages, Properties of recursive

languages, Post's Correspondence Problem, Modified Post Correspondence

problem, Other Undecidable Problems, Counter machines.

VARIATIONS OF THE TM:

• Multi Tape Turing Machine:

• Multi-tape Turing Machines have multiple tapes where each tape is accessed with

a separate head. Each head can move independently of the other heads. Initially

the input is on tape 1 and others are blank. At first, the first tape is occupied by

the input and the other tapes are kept blank. Next, the machine reads consecutive

symbols under its heads and the TM prints a symbol on each tape and moves its

heads.

• Depending on the present state and i/p symbol scanned by each of the head, the

TM can Change its state.

• Write a new symbol on the respective cell of the respective tape from where the

i/ps were scanned, Move the head one left/right.

Def: A Multi-tape Turing machine can be formally described as a 7-tuple (Q, T,

∑, δ, q0,B, F) where

Q is a finite set of states

T is the tape alphabet

∑ is the input alphabet

δ: QXT
k

QXT
k
X{L,R} is a transition function

q0 is the initial state

Formal Languages and Automata Theory (23CS602)

CSE,NRCM Page 118

B is a blank symbol

F is the set of final states

Ex: Design a Multi tape TM for checking whether a binary string is a palindrome or not

Sol: Consider a TM with two tapes. The i/p is written on the first tape.

The machine works by the following process:

Copy the i/p from the first tape to the second tape by traversing the first tape from

left to right.

Traverse from the first tape again from right to left and point the head to the first

symbol of i/p on tape 1.

Moves the two heads pointing on the two tapes in opposite directions checking

that the two symbols are identical and erasing the copy in tape2 at the same time.

Ex: Design a multi-tape TM for L=a
n
b

n
c

n

Formal Languages and Automata Theory (23CS602)

CSE,NRCM Page 119

• Multi-head Turing Machine:

A multi-head Turing machine contains two or more heads to read the

symbols on the same tape. In one step all the heads sense the scanned symbols

and move or write independently.

Multi-head Turing machine can be simulated by single head Turing machine.

• Design a multi-head TM for checking whether a binary string is a palindrome or

not.

• Sol: Consider a TM with two heads. The heads are pointing to the two ends of the

string on the tape. Both the heads traverse the string in the opposite direction. The

head1 has the priority over head2.

Formal Languages and Automata Theory (23CS602)

CSE,NRCM Page 120

• If both of the heads gets the same symbols, then it traverses the next input right or

left by replacing the present symbol by B.

• If both heads gets B, then halt and declare the string as a palindrome.

TWO-WAY INFINITE TAPE TURING MACHINE

• In general in a TM, there is a left boundary. If the head crosses that boundary and

wants to go left, then the situation is called a crash condition. But the head may

traverse the right side up to infinity. In this sense, the i/p tape of the general TM

can be treated as a one-way infinite tape.

• A TM where there is infinite number of sequences of blank on both sides of the

tape is called a two-way infinite tape TM. A typical diagram of the i/p tape of a

two-way infinite TM is:

-- -- -- B B a a b b B B -- --

MULTI-DIMENSIONAL (K=2) TAPE TURING MACHINE

• It has multi-dimensional tape where head can move any direction that is left,

right, up or down.

Formal Languages and Automata Theory (23CS602)

CSE,NRCM Page 121

• Multi-dimensional tape Turing machine can be simulated by one-dimensional

Turing machine.

• The i/p tape of 1-D TM is extended to infinite in both sides, but in one direction.

If the i/p tape can be extended infinitely in more than one dimension, then the TM

is called a multi-dimensional TM.

• In general case, consider k=2, which means that the i/p tape is extended to

infinitely in right and down directions. For this case, the read/write head can

move in the left, right, up and down directions.

• The transition function for a K-dimensional TM is δ:QX∑ QXTX{L,R,U,D,H}

where L=Left, R-Right, U-Up and D-Down.

NON-DETERMINISTIC TURING MACHINE

A non-deterministic Turing machine has a single, one way infinite tape.For a

given state and input symbol has at least one choice to move (finite number of

choices for the next move), each choice several choices of path that it might

follow for a given input string.A non- deterministic Turing machine is equivalent

to deterministic Turing machine

Def: A non-Deterministic TM is expressed as a 7-tuple (Q, T, B,∑, δ, q0, F)

where:

Q-finite set of states

Formal Languages and Automata Theory (23CS602)

CSE,NRCM Page 122

T -tape alphabet (symbols which can be written on Tape)

B∈ T -blank symbol (every cell is filled with B except input alphabet initially)

∑ -the input alphabet (symbols which are part of input alphabet)

δ :Q × T → 2
Q
 × T × {L,R} transition function which maps.

q0 -the initial state

F -the set of final states.

Ex: Construct a TM over {a,b} which contains a substring abb.

Ex: Design a TM for 0

n
1

m
, where m,n>=0 and n may not be equal to m

Enumerator: It is a type of TM which is attached a printer. It has a work tape and

an o/p tape. The work tape is a write only once tape. At each step, the machine

chooses a symbol to write from the output alphabet on the output tape.

After writing a symbol on the output tape, the head placed on the output

moves right by one position. The enumerator has a special state, say qp , entering

which the output tape is erased and the tape head moves to the leftmost position

and finally the string is printed. A string w is printed as o/p by the enumerator if

the o/p tape contains w at the time the machine enters in to qp.

The transition function of enumerator is δ: QX∑XT QX∑X{L,R}XTX{L,R}

UNIVERSAL TM:

• A universal Turing machine (UTM) is a Turing machine that simulates an

arbitrary Turing machine on arbitrary input. The universal machine essentially

achieves this by reading both the description of the machine to be simulated as

well as the input to that machine from its own tape.

• To design UTM, add the following to the TM:

• Increase the no of read-write heads (like multiple heads TM)

Formal Languages and Automata Theory (23CS602)

CSE,NRCM Page 123

• Increase the no of input tapes (multiple tape TM)

• Increase the dimension of moving the read-write head (K-Dimensional TM)

• Add special purpose memory like stack.

• A UTM,MU is an automaton that, given as input the description of any TM

and a string w, can simulate the computation of M for input w. To construct such

an MU we first choose a standard way of describing TMs.

• We may, without loss of generality, assume that M=(Q, {0,1}, {0,1,B}, δ, q0,B,qf)

where qf is a single final state. The alphabet {0,1,B}∈T are represented as a1,a2,

and a3. The direction left and right are represented as D1 and D2 respectively. The

transitions of TM are encoded in a special binary representation where each

symbol is separated by 1.

Ex: if there is a transition δ(qi, aj)= (qk, al,Dm) then the binary representation for

the transition is as given as 0
i
10

j
10

k
10

l
10

m
 .

• The binary code for the Turing machine is M which has transitions t1, t2, t3, tn is
represented as 111t111t211t311. 11tn111.

• Note: The transitions need not be in any particular order.

• If a string has to be verified then the problem is represented as a tuple <M,w>

where M is the definition of TM and w is the input string.

• Ex: Let M=({q1,q2,q3}, {0,1}, {0.1.B}, δ, q1, B,{q2}) have moves defined as δ(q1,

1)= (q3,
0,R), δ(q3, 0)= (q1, 1,R), δ(q3, 1)= (q2, 0,R), δ(q3, B)= (q3, 1,L).

• Give the problem representation for the string w=1011

• Sol: Let binary representation for states{q1,q2,q3}be {0,00,000}, alphabet {0,1,B}

be

{0,00,000} and direction {R,L} be {0,00}. The transitions are represented as

follows:

Transition Binary

Representation

δ(q1, 1)= (q3,

0,R)

010010001010

δ(q3, 0)= (q1,

1,R)

000101010010

δ(q3, 1)= (q2,

0,R)

0001001001010

Formal Languages and Automata Theory (23CS602)

CSE,NRCM Page 124

δ(q3, B)= (q3,

1,L)

00010001000100100

The problem instance <M,1011> is represented as 111 010010001010 11

 000101

010010

11 0001001001010 11 00010001000100100 111 1011

• For any input M and w, Tape 1 will keep an encoded definition of M, Tape 2 will

contain the tape contents of M and Tape 3, the internal state of M. Mu looks

first

at the contents of Tapes 2 and 3 to determine the configuration of M. The behavior

of the M is as follows.

• 1. Check the format of Tape 1 for the validations of the TM model.

• No two transitions should begin with Oi1Oj1 for the same i and j.

• Check that if O
i
1O

j
1O

k
1O

l
1O

m
 represents a transition, then 1 < j < 3, 1 < l < 3,

and 1 < m < 3.

• 2. Initialize Tape 2 to contain w. Initialize Tape 3 to hold a single O representing

initial state q1. For all the tapes, the tape heads are positioned at the left end and

these symbols are marked to identify the starting position.

• 3. When Tape 3 holds OO, it is said to reach the final state, and the machine can

halt.

Formal Languages and Automata Theory (23CS602)

CSE,NRCM Page 125

• 4. Let at any given time aJ be the symbol currently scanned by tape head 2 and let

O
i
, the contents of Tape 3 (which indicates state). Scan Tape 1 from the left end to

the second 111 looking for a substring beginning with 11O
i
1O

j
1.

• if no such string is found, then halt and reject.

• if found, then let the suffix be O
k
1O

l
1O

m
11. Put O

k
 on Tape 3, print a on

the tape cell scanned by head 2 and move the head in direction Dm.

• It is clear that Mu accepts<M, w> if and only if M accepts w. It is also true that if

M runs forever on w, Mu runs forever on <M, w> and if M halts on w without

accepting, Mu also halts on w without accepting.

RECURSIVE AND RECURSIVELY ENUMERABLE LANGUAGES:

• There are three possible outcomes of executing a TM over a given input. The TM

may halt and accept the input Halt and Reject the input or Never Halt.

• Recursive Language: A language is recursive if there exists a TM that accepts

every string of the language and rejects every string (over the same alphabet) that

is not in the language.

• Note: If a language L is recursive, then its complement L
1
 must also be recursive.

• Recursively Enumerable Language: A language is recursively enumerable if

there exists a TM that accepts every string of the language and does not accept the

strings that are not in the language (i.e., strings may be rejected or may cause the

TM to go into an infinite loop).

• Note: Every recursive language is also recursively enumerable but the converse

need not be true.

Formal Languages and Automata Theory (23CS602)

CSE,NRCM Page 126

Closure Properties of Recursive and Recursively enumerable languages

• Union: If L1 and If L2 are two recursive languages, their union L1∪L2 will also

be recursive because if TM halts for L1 and halts for L2, it will also halt for

L1∪L2.

• Concatenation: If L1 and If L2 are two recursive languages, their concatenation

L1.L2 will also be recursive.

• Ex: L1= {a
n
b

n
c

n
|n>=0}

• L2= {d
m

e
m

f
m

|m>=0}

• L3= L1.L2= { a
n
b

n
c

n
d

m
e

m
f
m

 :m>=0 and n>=0} is also recursive.

• Kleene Closure: If L1is recursive, its kleene closure L1* will also be recursive.

For Example: L1= {a
n
b

n
c

n
|n>=0} L1

*
= ({a

n
b

n
c

n
|n>=0})

*
 is also recursive

• Intersection and complement: If L1 and If L2 are two recursive languages, their

intersection L1 ∩ L2 will also be recursive. Similarly, complement of recursive

language L1 which is ∑*-L1, will also be recursive.

• The complement of a recursive language is recursive.

Linear Bounded Automata (LBA)

• A NDTM is called Linear Bound Automata (LBA) if

• Its input alphabet includes two special symbols[and] as left and right

end markers .

• It has no moves beyond these end markers. i.e., no left move from [

and no right move from]. It never changes the symbols [and].

Formal Languages and Automata Theory (23CS602)

CSE,NRCM Page 127

• Def: A LBA is defined using 8-tuples as M=(Q, Σ, Γ, δ,q0,[,],F)

• Where Q, Σ, Γ, δ,q0 and ,F are same as for NDTM, [and] are left and right end

markers.

• Ex: Design LBA for L={a
n
b

n
c

n
: n>=1}

INTRODUCTION TO UNDECIDABILITY

• In the theory of computation, we often come across such problems that are

answered either 'yes' or 'no'. The class of problems which can be answered as 'yes'

are called solvable or decidable. Otherwise, the class of problems is said to be

unsolvable or undecidable.

• Decidable: A decision problem that can be solved by an algorithm is called

decidable. All the languages recognized by TM are decidable.

• Ex: Given two numbers x and y, does x evenly divides y?

• Decidable: A decision problem A is called decidable or effectively solvable if A

is a recursive set.

Formal Languages and Automata Theory (23CS602)

CSE,NRCM Page 128

• Partially decidable: A problem is called partially decidable/semi decidable/

solvable/ provable if A is a recursively enumerable set.

• Undecidable: Partially decidable problems and any other problems that are not

decidable are called undecidable.

• Undecidability of a problem means that there is no particular algorithm that can

determine whether a given problem has a solution or not.

• Post Correspondence Problem (PCP): It is an undecidable decision problem.

Let us define the PCP.

• "The Post's correspondence problem consists of two lists of strings that are of

equal length over the input. The two lists are A = w1, w2, w3, .. , wn and B = x1, x2,

x3,
....xn then there exists a non-empty set of integers i1, i2, i3, , in n>=1 such

that, w1,
w2, w3, wn = x1, x2, x3, xn"

• To solve the post correspondence problem we try all the combinations of i1, i2, i3, ,
in to find the wi = xi then we say that PCP has a solution and is decidable otherwise

PCP is undecidable.

• Consider the following sequence and find whether it has a solution (decidable) or

not.

i ListA ListB

1 1 111

2 10111 10

3 10 0

Sol:

• If we take 3, first character in A is 1 and first character in B is 0. So we will not

get same strings.

• If we take 1 then A starts with 1 and B also starts with 1, but for the next two

characters in A, there is no matching sequence.

• So we starts with 2. i.e., i=2 Therefore

Formal Languages and Automata Theory (23CS602)

CSE,NRCM Page 129

i 2

Wi 10111

Xi 10

• Length of first string >second string

• Next consider B which starts with 1. We have 1 and 2. If we consider 2 next

symbol is 0 and does not match. Hence, consider 1.

i 2 1 String

Wi 10111 1 101111

Xi 10 111 10111

• Still Length of first string >second string. Again choose 1

i 2 1 1 String

W

i
101

11
1 1 101111

1

x

i
10 1

1

1

1

1

1

101111

11

• Length of first string <second string. Consider 3

i 2 1 1 3 Strin

g

W

i
1

0

1

1

1

1 1 1

0
1011

1111

0

x

i

1

0

1

1

1

1

1

1

0 1011

1111

0

• Length of first string = second string, hence stop the procedure and declare the

sequence 2113 as a solution. Therefore, it is decidable.

MPCP: MODIFIED VERSION OF PCP:

• MPCP is decidable <==> PCP is decidable.

Formal Languages and Automata Theory (23CS602)

CSE,NRCM Page 130

• In MPCP, there is the additional requirement on a solution that the first pair on the

list X and Y must be the first pair in the solution.

• More formally, an instance of MPCP is two lists

• X=w1,w2,w3,....wk and Y=x1,x2,x3,. xk

• and a solution is a list of 0 or more integers i1,i2,i3,. ip such that
w1,wi1,wi2,...wip=x1,xi1,xi2,. xip.

• The difference between the MPCP and PCP is that in the MPCP, a solution

required to start with the first string on each list.

• If we have a problem instance represented in MPCP then it can be reduced to PCP.

If there is a solution for PCP instance then there exists a solution for MPCP

instance.

• Procedure to convert MPCP to PCP or Reduction of MPCP to PCP:

• Let the list G and H be the given instance of MPCP

• Let Σ be the smallest alphabet containing all the symbols in the list G and H.

• Consider two special symbols {θ, $} not present in Σ and find two new lists X

from G
and Y from H using the following rules.

• xi of list X is obtained from gi by inserting $ symbol after each character of gi.

• yi of list Y is obtained from hi by inserting $ symbol before each character of hi.

• Create new words as follows. x0=$g1, y0=h1, xk+1= θ, yk+1=$θ.

Consider the following MPCP instance and find whether it has a solution.

i gi hi

1 100 1

2 0 100

3 1 00

• Sol: Total strings in PCP is 3 where as in MPCP total strings is 5(0
th

 and 4
th

). 1

This problem can be converted to MPCP by applying the above procedure

• Remaining process is same as PCP. In PCP first string is not fixed. We can start

with any arbitrary sequence where as in MPCP we need to start with first string.

Formal Languages and Automata Theory (23CS602)

CSE,NRCM Page 131

i xi yi

0 $1$0$0$ $1

1 1$0$0$ $1

2 0$ $1$0$0

3 1$ $0$0

4 θ $θ

i xi yi

0 $1$0$0$ $1

1 1$0$0$ $1

2 0$ $1$0$0

3 1$ $0$0

4 θ $θ

Step 1:

Solution

sequence
0

xi $1$0$0$

yi $1

Step 2: identify string in yi starts with 0

Solution

sequence
0 3

xi $1$0$0$ 1$

yi $1 $0$0

Step 3: identify string in yi starts with 1(i.e., 2 or 1). Select 2

Solution

sequenc

e

0 3 2

xi $1$0$0

$
1$ 0$

yi $1 0

0
$1$0$

0

Formal Languages and Automata Theory (23CS602)

CSE,NRCM Page 132

Step 4: Identify string in xi starts with 0(i.e., 2). Select 2

Solut

ion

seque

nce

0 3 2 2

xi $1$0

0
1

$
0$ 0$

yi $1 $

0

$

0

1

0$0
1

0$0

i

xi

yi

0

$1$0$0$

$1

1

1$0$0$

$1

2

0$

$1$0$0

3

1$

$0$0

4

θ

$θ

Step 5: identify string in xi starts with 1(i.e., 1 or 3). Select 1

Step 6: identify string in xi starts with 1(i.e., 1 or 3). Select 1

String xi and yi are not matching. Hence select 3 instead of 1

Formal Languages and Automata Theory (23CS602)

CSE,NRCM Page 133

i xi yi
0 $1$0$0$ $1
1 1$0$0$ $1
2 0$ $1$0$0
3 1$ $0$0
4 θ $θ

Step 7: identify string in xi starts with 0(i.e., 2). Select 2

Step 8: identify string in xi starts with 0(i.e., 2). Select 2

It is in the loop. Hence select 1 in step 3

Solution

sequence

0

3

1

xi

$1$0$0$

1$

1$0$0$

yi

$1

$0$0

$1

i xi yi

0 $1$0$0$ $1

1 1$0$0$ $1

2 0$ $1$0$0

3 1$ $0$0

4 θ $θ

Formal Languages and Automata Theory (23CS602)

CSE,NRCM Page 134

Step 9: identify string in yi starts with 1(i.e., 1). Select 1

Solution

sequence
0 3 1 1

xi $

1

$

0

$

0

$

1

$
1$

0$

0$

1$

0$

0$

yi $

1
$

0

$

0

$1 $1

Step 10: identify string in yi starts with 0(i.e., 3). Select 3

Solution

sequenc

e

0 3 1 1 3

xi $

1

$

0

$

0

$

1

$
1

$

0

$

0

$

1

$

0

$

0

$

1

$

yi $

1
$

0

$

0

$

1
$

1
$

0

$

0

Step 11: identify string in yi starts with 1(i.e., 2). Select 2

i xi yi
0 $1$0$0$ $1
1 1$0$0$ $1
2 0$ $1$0$0
3 1$ $0$0
4 θ $θ

Formal Languages and Automata Theory (23CS602)

CSE,NRCM Page 135

Step 12: identify string in yi starts with 1(i.e., 2 or 1).

Select 2

Solution

sequence
0 3 1 1 3 2 2

xi $

1

$

0

$

0

$

1

$
1

$

0

$

0

$

1

$

0

$

0

$

1

$
0

$
0

$

yi $

1
$

0

$

0

$

1
$

1
$

0

$

0

$

1

$

0

$

0

$

1

$

0

$

0

Step 13: Both are same. Then select 4

Soluti

on

sequen

ce

0 3 1 1 3 2 2 4

xi $

1

$

0

$

0

$

1

$
1

$

0

$

0

$

1

$

0

$

0

$

1

$
0

$
0

$
θ

yi $

1
$

0

$

0

$

1
$

1
$

0

$

0

$

1

$

0

$

0

$

1

$

0

$

0

$

θ

Formal Languages and Automata Theory (23CS602)

CSE,NRCM Page 136

String xi= $1$0$0 1$ 1$0$0$1$0$0$1$0$0$θ String yi= $1$0$0 1$

1$0$0$1$0$0$1$0$0$θ MPCP Solution Sequence:0,3,1,1,3,2,2,4 PCP Solution

Sequence: 3,1,1,3,2,2,4

P Problems: As the name says these problems can be solved in polynomial time,

i.e.; O(n), O(n2) or O(n
k
), where k is a constant.

NP (Non-Polynomial or Non-deterministic Polynomial-time) Problems: The

class NP consists of those problems that are verifiable in polynomial time. NP is

the class of decision problems for which it is easy to check the correctness of a

claimed answer, with the aid of a little extra information. Hence, we aren’t asking

for a way to find a solution, but only to verify that an alleged solution really is

correct.

Every problem in this class can be solved in exponential time using exhaustive

search. For example, the Sudoku game.

NP-Hard Problems: A problem is said to be NP-Hard when an algorithm for

solving NP-Hard can be translated to solve any NP problem. Then we can say, this

problem is at least as hard as any NP problem, but it could be much harder or

more complex.

The following problems are NP-Hard

• The circuit-satisfiability problem

• Set Cover

• Vertex Cover

• Travelling Salesman Problem

NP-Complete Problems: NP-Complete (NPC) problems are problems that are

present in both the NP and NP-Hard classes. That is NP-Complete problems can

be verified in polynomial time and any NP problem can be reduced to this

problem in polynomial time.

Formal Languages and Automata Theory (23CS602)

CSE,NRCM Page 137

Examples of NP-Complete problems where no polynomial time algorithm is

known are as

follows −

• Determining whether a graph has a Hamiltonian cycle

• Determining whether a Boolean formula is satisfactory, etc.

• Define Turing Machine

PART-A

• Design a TM for finding 2’s Complement of a given binary number

• TM as Integer Function

• Define Recursive Languages

• Define recursively enumerable languages

• Define LBA

• State PCP and MPCP

PART-B

• Construct a TM for language consisting of strings having any no of b’s and even

no of a’s defined over {a,b}.

• Design a TM to accept strings formed with 0 and 1 and having substring 000

• Design a TM for accepting strings of the language L={ww
r
 : w ∈ (0+1)* }

• Design a TM for palindrome strings over {a,b}

• Design a TM which accepts L={a
n
b

n
: n>=1}

• Design a TM which accepts L={a
n
b

n
c

n
 : n>=1}

• Design a TM to add two numbers a and b

• Design TM for the Multiplication of two integers

• Construct a TM for the RE (a+b)*(aa+bb) (a+b)*

Formal Languages and Automata Theory (23CS602)

CSE,NRCM Page 138

• Explain Variations of the TM

• Construct a TM over {a,b} which contains a substring abb

• Write a note on Universal Turing Machine

• Closure properties of Recursive and Recursively enumerable languages

• Design LBA for L={a
n
b

n
c

n
: n>=1}

• Consider the following sequence and find whether it has a solution (decidable) or

not.

i List

A

List

B

1 1 111

2 10111 10

3 10 0

• Write the Procedure to convert MPCP to PCP or Reduction of MPCP to PCP

• Consider the following MPCP instance and find whether it has a solution

i gi hi

1 100 1

2 0 100

3 1 00

Assignment

• Design TM for the Multiplication of two integers

• Design a TM which accepts L={a
n
b

n
c

n
 : n>=1}

• Design a TM for accepting strings of the language L={ww
r
 : w ∈ (0+1)* }

Formal Languages and Automata Theory (23CS602)

CSE,NRCM Page 139

• Consider the following PCP sequence and find whether it has a solution

(decidable) or not.

i List

A

List

B

1 0 10

2 01 1

• Does the following PCP problem has a solution.

i List

A

List

B

1 b bbb

2 babbb ba

3 ba a

•

