Formal Languages and Automata Theory (23CS602)

Lecture Notes

UNIT-1

Introduction to Finite Automata: Structural Representations, Automata and
Complexity, the Central Concepts of Automata Theory — Alphabets, Strings,
Languages, Problems. Nondeterministic Finite Automata: Formal
Definition, an application, Text Search, Finite Automata with Epsilon-
Transitions.

Deterministic Finite Automata: Definition of DFA, How A DFA Process
Strings, The language of DFA, Conversion of NFA with €-transitions to
NFA without €-transitions. Conversion of NFA to DFA, Moore and Melay
machines

AUTOMATA THEORY:

e Automaton = an abstract computing device. A mathematical device which acts
as a computer for computation.

e Note: A “device” need not even be a physical hardware.

e The term "Automata" is derived from the Greek word "AUTOMATA" which
means "self- acting".

e Automaton is singular and Automata is plural.

Why study automata theory? or Applications of automata Theory
e The lexical analyzer and Syntax analyzers of a typical Compiler
e Software for designing and checking the behavior of digital circuits
e Software for scanning large bodies of text such as collections of Web pages to

find occurrences of words, phrases or other patterns.
e The software for Natural Language Processing take the help of an automata
theory (Chat boat Application).

INTRODUCTION TO FINITE AUTOMATA:
Symbol :A Symbol is an abstract entity. It cannot be formerly defined as points in
geometry.
Ex: letters or digits or special symbols like !,@,#,$..
Alphabet: A finite set of symbols denoted by Y.
Ex: Y={ab,..z} is called english alphabet
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>={0,1} is called Binary Alphabet
String/Word: Finite sequence of letters from the alphabet. It Is denoted by S or W Ex:

S= computer is a string defined over Y’ ={a,b,c,..z}
Ex: W=010100 is a binary word defined over > ={0,1}
Length of a string: It is the number of symbols present in a given string. It is

denoted by |S|. Ex: S= computer then |S|=8

Empty/Null string (g) :If [S|= 0 then it is called an empty string. It is
denoted by A or €.

Powers of an alphabet (3¥ ):if I is an alphabet then Y* is the set of strings of
length k.

Ex: Y%={c}, >'={0,1}, >?={00,11,01,10 }

Kleene /Star Closure (3>*): The infinite set of all possible strings of all
possible lengths over Y including

eie,Y*=Y"U YU Y2U where Y*is the set of all possible  strings
of length k.

Ex:If > ={a, b} then > * = {¢, a, b, aa, ab, ba, bb, }

Positive Closure (3" ):The infinite set of all possible strings of all possible
lengths over excluding

gie, Y =>rU Y2 U where Z" is the set of all possible strings of length k.
Ex:IfY ={a b}thenY" ={a, b, aa, ab, ba, bb,... }
Strings Concatenation:Let S1 and S2 be two strings. The Concatenation of S1
and S2 is adding the string S2 at the of string S1.

Ex: S1= Computer, S2=Science then S1S2=ComputerScience and
S2S1=Science Computer

Language:A non Empty Subset of > * is called a language. It is denoted by L.

Ex: Let Y={0,1}

>*={¢,0,1,00,11,01,10,111,000,101,011,..}

L={0,00,10,110,...} is called even binary numbers language.
OPERATIONS ON LANGUAGES:

If L1, L2 are two languages then
Union operation: It is denoted as L1UL2 or L1 + L2 , L1/L2 and is defined as
LiUL2={slsisinL1l orsisinL2}.
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Intersection operation: It is denoted as L1NL2 ,and is defined as L1NL2={s|s is in L1
andsis in L2} .

Concatenation operation: It is denoted as L1L2 and is defined as L1L2 = { xy | L1 € x
and L2 ey} Difference operation: It is denoted as L1-L2 ,and is defined as L1-L2={s|s
isin L1 andsisnotin L2}.

Keen Closure operation (L*): It is the language consisting of all words that are
Concatenations of 0 or more words in the original language (including null string).
Problems in Automata Theory: It is the question of deciding whether a given string is a
member of some particular language. Precisely, if Y is an alphabet and L is a language

over Y then the problem L is a given a string W in Y * decide whether or not wis in L.

BLOCK DIAGRAM OF FINITE AUTOMATA:

Input String to be processed

Input
[« | I I I I I I I I

| l R /W Head

Finite State
Control

String
Accept / Reject

Fig: Block Diagram of Finite Automnmata

An automaton with a finite no of states is called finite automaton or Finite state machine.
It consists of three components 1) Input Tape 2) Read/Write Head 3) Finite Control
. Input Tape:

. 1) the input tape is divided in to squares, each square contains a single symbol

from the input alphabet 3.
. ii) The end squares of each tape contain end markers different from symbols of > .

. iii) Absence of end markers indicate the tape is of infinite length.
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. iv) The symbols between end markers is the input string to be processed.
Read/Write Head: The R/W head examines only one square at a time and can
move one square either to the left or the right.

. Finite control: Finite control can be considered as the control unit of an FA. An
automaton always resides in a state. The reading head scans the input from the
input tape and sends it to finite control. In this finite control, it is decided that ‘the
machine is in this state and it is getting this input, so it will go to this state’. The
state transition relations are written in this finite control.

DEF: FINITE AUTOMATA

A finite automaton is a collection of 5-tuple M=(Q, 3, 6, 9O, F), where:
. Q: finite set of states
. > finite set of the input symbol
. qo: initial state
. F: Set of final states
. d: QX Y [1 Qs a Transition function
REPRESENTATION OF FA: Finite automata can be represented in two

ways: (i) Graphical representation and (ii) Tabular representation.

Graphical Representation of FA:

* It is called as transition graph or diagram
« It is a collection of states and transitions
* A state is represented by a circle

* A beginning/initial state is represented as g,
« A final state is represented as

* A directed edge indicates the transition from one state to another state and edges are

labeled with input symbols.

EX: GRAPHICAL REPRESENTATION OF FA

Tabular Representation: Transition table
. It is a table of order mXn.
. First row indicates inputs and first column indicates states and the corresponding

entities are outputs of a transition function.
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. Start state is marked with arrow and final state is marked with * or circle.
) 0 1
fgl gl g2
02 a3 02
a3 - a3

Ex: Consider an automata M=(Q, Y., 3, q0, F) where Q={q0,91,92}, > ={a,b}, F={q2} ,
8(q0,a) =q1, 8(q0,b)=q2, d(ql,a)=qg2, 5(ql,b)=q0, d(q2,a)=q2, 6(q2,b)=q2. Draw transition
diagram and transition table.

b
. N
—l-lfac\{—n | ':I\l
- R
AY, a b | I.T
q q \" )
—+ 7 \\ '
' S
q, 4 Hy hcl‘-'/
a, @ | @ e
PROPERTIES OF TRANSITION FUNCTION (8):
. d(q,e)=q i.e., If the input symbol is null for a given state g, it remains in the same state.
. For all strings w and input symbol a, d(q, aw) = 8(5(q,a),w)

ACCEPTANCE OF A STRING BY FA: A string w is accepted by a finite automata M= (Q,>.,3,q0,F)
if d(qo,w) =g for some q € F.

) 0 1
*q0 02 ql
ql q3 q0
92 q0 q3
q3 ql 92

Ex: Now let us consider the finite state machine whose transition function 0 is given in the form of
transition table. Where Q= {q0,q1,92,q3}, >={0,1} & F={q0}.Test whether the string
110101 is accepted or not

. Sol:
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8(q0,110101)= 8(q1,10101)= 8(qo,0101)= 5(q2,101) = 8(qz,01)= 8(q,1)= 8(qo, €) = qo

Hence

q0->q1->q0->q2->¢3->q1->q0

Here g0 is not a final state. Hence the string is rejected.

TYPES OF FINITE AUTOMATA: There are two types of finit automata DFA-
Deterministic Finite Automata
NFA -Nondeterministic Finite Automata
DFA: It refers to deterministic finite automata. Deterministic refers to the uniqueness of
the computation . In the DFA, the machine goes to one state only for a particular input
character. DFA does not accept the null move.

NFA:It is used to transmit any number of states for a particular input. It can accept the null move.

Some important points about DFA and NFA:
Every DFA is NFA, but the converse need not be true i.e., every NFA need not be DFA.
There can be multiple final states in both NFA and DFA.

DFA is used in Lexical Analysis in Compiler.
Construction of NFA is easier than the construction of DFA

To test string is Accepted or not easier in DFA than in NFA

DETERMINISTIC FINITE AUTOMATA (DFA):

A DFA can represented by a 5-tuple (Q, 3., 3, 90, F) where

Q is a finite set of states.

> is a finite set of symbols called the alphabet.

d is the transition function where 3: Q x> — Q

Qo is the initial state from where any input is processed (g0 € Q).

F is a set of Final states
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e Design a DFA which accepts strings ending with 0 defined over ) = {0, 1} Transition

Diagram: Transition Table:

o 0 1
qo gl go
ql ql qo
. Design a DFA to accept all strings starting with 0 defined over > = {0, 1}
Transition 1Diagram: Transition Table:
0o
1
0 1
go ql g2
ql ql ql
a2 - -

Test whether the string 0101010 is accepted or not

¢ Design a FA which accepts strings starts with 1 and ends with 0 defined over > = {0,

1}

Transition Diagram:
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Transition Table:

o 0 1
rqo
gl

*q2

Test whether the string 11010101 is accepted or not

e Design a FA which accepts the only input 101 defined over Y = {0, 1}

Transition Diagram:

Transition Table:

¢ Design FA which accepts even number of 0's and even number of 1's over >’ = {0, 1}

Transition Diagram:
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Transition Table:

¢ Design FA which accepts odd number of 0's and odd number of 1's defined over ) =

0 1 {0, 1}
q0 ql a3
ql qo q2
g2 g3 gl
a3 02 qo0

¢ Design FA accepts even number of 0's and odd number of 1's defined over > = {0, 1}

Transition Diagram: Transition Table

e Design FA which accepts odd number of 0's and even number of 1's defined over ) =

{0, 1}

Transition Diagram: Transition Table

* Design FA which accepts the set of all strings with three consecutive 0's.
1 1

Transition Table:

e Design a DFA for L(M) = {w | w ¢ {0, 1}*} and W is a string that does not

contain three consecutive 1's}.

e When three consecutive 1's occur the DFA will be:
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1 1 1

Here two consecutive 1's or single 1 is acceptable, hence

@
0 0
A

The stages g0, g1, g2 are the final states. The DFA will generate the strings that

0 0,1

do not contain consecutive 1's like 10, 110, 101,. etc.

Transition Table:

e Design a FA which accepts the strings with an even number of 0's followed by single

1 Transition Diagram: Transition Table:
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Practice Problems

Design a FA with Y = {0, 1} accepts the strings with an even number of 0's
followed

by single 1

Design a finite automata that recognizes i) even no of a’s ii) odd no of b’s defined
over Y ={a, b}

Design a DFA that contains 001as a substring defined over > = {0, 1}

Design a FA to accept strings of a’s and b’s ending with abb defined over Y = {a,

b}
Design a DFA which accepts the strings starting with 1 and ending with 0.

Obtain the DFA that recognizes the language L(M)={W/W is in {a, b ¢}  and W
contains the pattern abac}

Design a DFA for the language L={0M1": m>=0,n>=1}

Design a DFA for the language L={0M1": m>=1,n>=1}

Note: Decimal to Binary

{ 0-0, 1-1, 2-10 , 3-11, 4-100, 5-

101,

6-110, /-111, 8-1000, 9-1001, 10-1010, 11-
1011, 12-1100, 13-1101, 14-1110,....... }

Design a FA which checks whether a given binary number is even

Design a FA that accepts the set of all strings that interpreted as binary
representation of an unsigned decimal number i) which is divisible by 2 ii)
divisible by 3, iii) which is divisible by 5.

Divisible by 2:

Divisible by 3:
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Divisible by 4:

Divisible by 5:

Non-Deterministic Finite Automata (NFA):

NFA stands for Non-Deterministic Finite Automata. It is easy to construct an
NFA than DFA for a given regular language.
The finite automata are called NFA when there exist many paths for specific input
from the current state to the next state.
Every NFA is not DFA, but each NFA can be translated into DFA.
NFA is defined in the same way as DFA but with the following two exceptions,
it
contains multiple next states, and it contains ¢ transition.
Formal definition of NFA:

A NFA can be represented by a 5-tuple (Q, ., 6, qo, F) where

e Q isa finite set of states.

e > isafinite set of symbols called the alphabet.

¢ 3:QxY —2%is atransition function

e (0: initial state

e F: Set of final states

Ex: Design an NFA with Y = {0, 1} accepts all string ending with 01

r

Transition Table:

0 1
g0 {q0,91} {q0}
ql - {92}
*q2 _— _—
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Ex: Design an NFA with > = {0, 1} in which double '1" is followed by double ‘0.

Transition Diagram:
0,1

Transition Table:

0,1

Ex: Design an NFA in which all the string contain a substring 1110

Transition Diagram:
0,1

Transition Table:

0,1

Ex: Design an NFA with > = {0, 1} accepts all string in which the third symbol

from the right end is always 0.
0.1

CONVERSION OF NFA to DFA:

Let, M = (Q, >, 6, q0, F) is an NFA which accepts the language L(M). There
should be equivalent DFA denoted by M' = (Q', >, q0', &', F') such that L(M) =
L(M").

Steps for converting NFA to DFA:
Step 1: Start from the initial state of NFA. Take the state with the ‘[ ]’.

Step 2: place the next states for the initial state for the given inputs in the
next columns put them also in [ ].
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e Step 3: If any new combination of state appears in next state column then take the
combination in the present state column.

e Step 4: If no new combination of state appears then stop the process.

e Step 5: The initial state for the constructed DFA will be the initial state of NFA.

e Step 6: The Final state(s) for the constructed DFA will be the combinations of

states containing at least one final state of NFA.

EX: CONVERT THE GIVEN NFA TO DFA

> DFA NFA

No
The transition from The transition from

1 a state is to a single a state can be to
particular next state multiple next states
for each input for —each input
symbol. Hence it is symbol. Hence it is
called deterministic called ~  non-

deterministic.

2 Empty string NDFA  permits
transitions are not empty string
seen In DFA. transitions.

3 Backtracking  is In ~ NDFA,
allowed in DFA backtracking IS

not always
possible.

4 Requires more Requires less
space. space.

. A string is accepted A string is accepted

by a DFA, if it
transits to a final
state.

by a NDFA, if at
least one of all
possible transitions
ends in a final
state.
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0 0,1 0,1
4@ 1
Qo
1
0 1
—q0 {0} {a1}
ql {a1,q2} {q1}
*02 {02} {0102}

Now we will obtain &' transition for state Q.

3'([q0], 0) = [g0] &'([q0], 1) =[ql] (new state generated)

3'([q1],0) =[a1, q2] (new state generated)

&'([q1], 1) = [q1]

Now we will obtain &' transition on [q1, g2].

&'([ql, q2], 0) = 8(q1, 0) U 8(a2, 0) ={ql, g2} U {92} =[ql, q2]

&'([al, 2], 1) =8(q1, 1) U 8(q2, 1) ={ql} U {ql, 92} ={ql, a2} =[ql, q2]

The state [g1, g2] is the final state because it contains a final state g2.

0 1
—[q0] [q0] [q1]
[a1] [a1,92] [a1]
;‘g]ll [a1,92] [a1,92]
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EX:NFA Tg) DFA CONVERSION
0,1

0 1
g0 {q0,q91} {q1}
*ql -- {q0,g1}

Now we will obtain &' transition for state 0.

3'([q0], 0) ={q0, g1} =[O0, g1] (new state generated)
3'([90], 1) = {q1} = [g1] (new state generated)

The ¢' transition for state g1 is obtained as:
§'([q11,0)=¢ , 8'([q1], 1) = [q0, a1]

Now we will obtain &' transition on [g0, g1].
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5'1(][610, q1], 0) = 8(q0, 0) U 5(q1, 0) ={q0, g1} U ¢ = {00, q1} = [qO,
q

Similarly,
6'([q0, 1], 1) = 8(q0, 1) U (a1, 1) ={ql} U {q0, g1} ={q0, q1} =[q0, qi]

As in the given NFA, g1 is a final state, then in DFA wherever, g1 exists that state
becomes a final state. Hence in the DFA, final states are [g1] and [q0, gl].
Therefore set of final states F = {[q1], [q0, q1]}.

0 1

—[q0] [q0, [q1]
ql]

*[q1] ¢ [q0,

qi]

*[q0, [q0, [q0,

ql] ql] ql]

Even we can change the name of the states of DFA.
SupposeA =[q0] B=[ql] C=[q0,ql]

With these new names the DFA will be as follows:
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0.1

NFA WITH EPSILON TRANSITIONS

Def: If any finite automata contain & (null) move or transition, then that finite
automaton is called NFA with € moves

STA 0 1 EPSI
TES LON
A { { {B}
B A
: }
C
}
B —~ { {C}
B
}
C { { _
C C
} }
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0 1 &

A{E} {B} 0

e 0 {C}

« ¢ {D}

- {F} D

- {D} 0)

1D}
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{B.C}
0)

EPSILON (€) — CLOSURE:

Epsilon closure for a given state X is a set of states which can be reached from the states
X with only (null) or € moves including the state X itself. In other words, e-closure for a
state can be obtained by union operation of the e-closure of the states which can be

reached from X with a single € move in recursive manner.

For the above example € closure are as follows :

€ closure(A) : {A, B, C}, € closure(B) : {B, C}, € closure(C)
{C}

Construction of € -NFA:

Ex: Construct €-NFA with e-transitions and it accepts strings of the

form{onIm20/n,m,0>=O},thatis,anynumberofO'sfoIIowedbyanynumberofl'sfolIowed by
any number of 2's.

Transition Diagram:

Transition Table:
a 1

2
AN PN Y
A/ S L
0 1 2 €
B¢ {q0 - - {a1
0 } }
gl - {q1 - {a2
} }
*q2 = - {92 -
}

Ex: Design NFA for language L ={0xIK is multiple of 2 or 3}.
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oo
e, A x_:/’l
c (D)
—=|i 1] v ) } 0
e p .
< _ _,;/ \'--:fq-_\r" 4
0 L
NFA for multiple of 3
NFA for multiple of 2
_—l:I— —
;ﬁ“ﬁf ;} ~
[ T ) (a9 )
N x}_/’
E —
—_— 0
—H'K 5 j'|
e 0
~— —
£ T h
Il 9 | -.?q:\l
ﬁ'.—_—.'i"-"? I\\\'“-T"“‘)I
x .
! |:|
R"Ifq'_\':"/
R

Conversion ofe -NFA TO NFA or elimination of € transitions
e Find e-closure {qi} forall gi € Q.
e Find 8" (g,a)= e-closure (6 (6" (g, €),a)) =¢e-closure (3 (e-closure(q),a))
¢ Repeat Step-2 for each input symbol and each state of given NFA.
e Using the resultant states, the transition table for equivalent NFA without & can be built.

e If the e-closure of a state contains a final state then make the state as final.

Ex: Convert the following € -NFA TO NFA
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Solutions: We will first obtain

e-closures of q0, q1 and g2 as follows:

e-closure(q0) = {q0} , e-closure(ql) = {ql, g2}
e-closure(g2) = {92}

Now the & transition on each input symbol is obtained as:

N

3 (90, a) = e-closure(3(3'(q0, €).a))
closure(8(q0, a))= e- closure(ql)

= = g-closure(d(e-closure(q0),a)) = e-

={q1, g2}

8" (90, b) = e-closure(8(3°(q0, €),b)) = e-closure(d(e-closure(q0),b)) = e-closure(8(q0, b))
=P

8°(02, a) = e-closure(8(3°(q2, €),a)) = e-closure(8(e-closure(g2),a)) = e-closure(3(q2, a))
= g-closure(®) =@

8°(2, b) = e-closure(3(8"(q2, €),b)) = e-closure(3(e-closure(q2),b))

= g-closure(8(q2, b)) = e-closure(q2) ={q2}

Now we will summarize all the computed &' transitions:

8'(q0, a) = {q0, q1} &'(q0, b) =@ &'(ql,a) = @, &'(ql, b) = {q2} §'(a2, ) =@, &'(q2,
b) = {g2} . State q1 and g2 become the final state as e-closure of g1 and g2 contain the

final state g2.

a b
—>q0 {ql, (4]
92}
*ql ) {92}
*q2 ) {92}
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Ex: Convert the following € -NFA TO NFA

0 1 2
Y - Y
PO\ Lo )
— > 9 } = 0, = 9, |
N \___/ Nt
The transition table is
a=0 a=1 a=2 a=¢
—}qcl q, 5] 5] q,
q & q & d,
*q, & 6] d; 5]

CONVERSION FROM &-NFA TO DFA

Step 1: If e-closure(qo )= {P1,P2,..Pn} then [P1P2..Pn] becomes the starting state of DFA.
Step 2: Find oo ([P1P2..Pn] ,a)= e-closure(d(P1,P2,..Pn),a))
Step 3: If we found a new state, take it as current state and repeat step 2.

Step 4: Repeat Step 2 and Step 3 until there is no new state present in the transition table
of DFA.

Step 5: Mark the states of DFA as a final state which contains the final state of NFA.

EX: CONVERT THE NFAWITH ¢ INTO ITS EQUIVALENT DFA.
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Let us obtain e-closure of each state.

e-closure {q0} = {q0, g1, g2}

e-closure {ql1} = {q1} e-closure {92} = {q2} e-closure {93} = {q3}

e-Closure {g4} = {04}

Now, let e-closure {q0} = {q0, q1, g2} be state A.

Hence

8'(A, 0) = e-closure {3((q0, g1, g2), 0) } = e-closure {5(q0, 0) Ud(ql, 0) US(g2, 0) }
= g-closure {q3} ={q3} call it as state B.

d'(A, 1) = e-closure {3((q0, g1, g2), 1) } = e-closure {3((q0, 1) Ud(ql, 1) ué(g2, 1)}

= g-closure {g3} = {93} = B.

Now,
3'(B, 0) = e-closure {5(q3,0)} = ¢
8'(B, 1) = e-closure {5(q3, 1) }=e-closure {g4} ={q4} i.e.state C

For state C: 6'(C, 0) = e-closure {d(q4,0) } =¢3'(C, 1) =e-closure {(q4, 1)} =¢

The DFA will be
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0

Ex: Convert the given NFA with epsilon into its equivalent DFA

L= any no of a’s followed by any no of b’s followed by any no of ¢’s

Solution: Let us obtain the e-closure of each state.

e-closure(q0) = {q0, g1, g2}

e-closure(ql) = {q1, g2}

e-closure(q2) = {92}

Now we will obtain &' transition.

Let e-closure(g0) = {0, g1, g2} call it as state A.

d'(A, 0) = e-closure{5((q0, q1, g2), 0)} = g-closure {3(q0, 0) U3(ql, 0) US(g2, 0)}
= g-closure{q0}={q0, q1, g2}

3'(A, 1) = e-closure{d((q0, g1, g2), 1)} = g-closure {6(q0, 1) US(ql, 1) US(g2, 1)}
= g-closure{ql} ={ql,qg2} callitasstate B

8'(A, 2) = e-closure{d((q0, 1, g2), 2)} = g-closure {d(q0, 2) US(ql, 2) Ud(g2, 2)}
= g-closure{q2} ={g2} callitstate C

Thus we have obtained

§(A,0)=A §(A,1)=B  §(A,2)=C

Now we will find the transitions on states B and C for each input.
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Hence

d'(B, 0) = e-closure{5((ql, q2),0)}  =¢-closure{d(ql,0) Ud(q2, 0)} = e-closure{d} =
¢

8'(B, 1) = e-closure{3((ql, g2), 1)}= e-closure {3(q1l, 1) Ud(g2, 1)} = e-closure{gl}= {q1,
g2} i.e. state B itself

0'(B, 2) = e-closure{d((ql, q2), 2)} = e-closure{d(ql, 2) Ud(q2, 2)} = e-closure{q2} =
{92} i.e. state C itself

Thus we have obtained

§'(B,0)=¢ 8'(B,1)=B &'(B,2)=C

Now we will obtain transitions for C:

8'(C, 0) = e-closure{6(q2, 0)} =e-closure{¢}=¢
8'(C, 1) = e-closure{5(q2, 1)}=e-closure{d}=¢

8'(C, 2) = e-closure {5(q2, 2)}={q2}

As A = {q0, g1, g2} in which final state g2 lies hence A is final state. B = {g1, g2} in
which the state g2 lies hence B is also final state. C = {g2}, the state g2 lies hence C is
also a final state.

MINIMIZATION OF DFA: REDUCTION OF NO OF STATES IN FA:

Any DFA defines a unique language but the converse is not true i.e., for any language
there is a unique DFA is not always true.

INDISTINGUISHABLE AND DISTINGUISHABLE STATES:
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Two states p and q of a DFA are indistinguishable if 3(p,w) is in F => 3(q,w) is in F and
d(p,w) is not in F => 6(q,w) is not in F

Two states p and q of a DFA are distinguishable if 8(p,w) is in F and &(q,w) is hotin F
or vice versa.

DFA MINIMIZATION: MYHILLNERODE THEOREM
Algorithm:
Input — DFA, Output — Minimized DFA
Step 1 :For each pair [p,q] where pisin F and q is in Q-F, mark[p,q]=X
Step 2 :For each pair of distinct state [p,q] in FXF or (Q-F)X(Q-F) do
e if for some input symbol a, 3([p,q],a)=[r,s], if [r,5]=X then
e mark[p,q]=X
e Recursively mark all unmarked pairs which lead to [p,q] on input for all aisin )’
e else
e Forall input symbols a do
put [p.q] on the list for 6([p,q],a) unless &([p,q],a)=[r,1]
Step 3: For each pair [p,q] which is unmarked are the states which are equivalent

Ex: Find minimum-state automaton equivalent to the transition diagram

1 0 1

0 1 N 1 0N
J’ “i'_ "?’ N 7 e)\0 );‘ﬁ\ 0/ N 7 0/
b } Lc; A )— E,AL 1 u\\f 0 'hg le—1 h}
\\f‘c X & e f":/; R N T - \:7/

Transition Table:

0 1
a b a
b a c
C d b
d d a
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e d f
f g e
g f g
h g D

Q={a,b,c,d,e,f,g,n}F={d}NF={a,b,c,e,f,g,h}
Stepl: FXNF={(d,a), (d,b), (d,c),(d,e),(d,f),(d,g),(d,h)}

Mark the above states as one is final and other is non final.

b

c

d X X X

e X

f X

g X

h X

a b c d e f g

NFX
r’:l)|;={(a,b),(a,C),(a,e),(a,f),(a,g),(a,h),(b,C),(b,e),(b,f),(b,g),(b,h),(e,f),(e,g),(e,h),(f,g),(f,h),(g,
Step 2:

¢ Find the states that are distinguishable with a
S([a,b], 0)=[b,a] ~ &([a,b],1)=[a C]
d([a, c], 0)=[b, d] d([a, c], 1) = [a, b] since [b,d]=X mark [a,c]=X since [a,c]=X
mark [a,b]=X
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d([a, €],0) = [b, d] d([a, €], 1) =[a, f] since[b,d]=X mark[a,e]=X

d([a,f],0)=[b,g] &([a,f],D)=1]a,ce] since [a,e]=X mark [a,f]=X
5([a, 9], 0)=1[b,f]  &([a, g], D) =[a d]

d([a,h],0)=1[b,g] o([a, h], D) =[a,d] since[a, d]=X mark[a,h]=X

e Find the states that are distinguishable with b
d([b, c], 0) = [a,d] d([b, ], 1) =[c, b] since [a,d]=X mark [b,c]=X
d([b, €], 0) =[a, d] d([b, €], 1) =[c, f] since[a,d]=X mark[b,e]=X
([b,f],0)=[ag] &(b,f],1)=1c, €]
3([b,g],0)=[a,f] d([b,g],1)=[c,g] since[af]=X mark[b,g]=X
[

d([b,h], 0)=[a,g]  d([b, h], 1) = [c, d] since[c, d]=X mark[b,h]=X (c)Find the states

that are distinguishable with ¢
S([c,e],0)=[d,d]  &([c,e], 1)=[b, f]
8([c,f],0)=[d,g] &(c,f],1)=[b,e] since[d,g]=X mark[c,f]=X
([c,0],0)=[d,f] d([c,g],1)=[b,g] since [d,f]=X mark[c,g]=X
d([c,h],0)=[d,g] &([c,h],1)=[b,d] since[d,g]=X mark[c,h]=X
» Find the states that are distinguishable with e
d([e,f1,0)=1d, q] o([e,f],1)=[f,e] since[d,g]=X mark[e,f]=X
(e, 0],0)=[d,f] d([e,q],1)=[f g] since[d,fl=X mark[e,g]=X
d([e, ], 0) =1[d, g] d([e, h], 1) =[f, d] since[d,g]=X mark[e,h]=X
¢ Find the states that are distinguishable with f
8([f,gl,0)=[g,f]  &([f,g]. 1)=T[e,g] since [e,g]=X markf,g]=X
S(f,h],0)=[g,g] S(f h],1)=[e,d] since[e,d]=X mark[f,h]=X
e Find the states that are distinguishable with g
S([g,h],0)=1[f. g1  &([g.h].1)=[g,d] since[g,d]=X mark[g,h]=X
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0 1
a b a
b a C
C d b
d d a
e d f
f g e
g f g
h g d
0 1
a b a
b a C
C d b
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d d a
e=cC d f=b
f=b g=a e=c

= f=b g=a
a
h g=a d

0 1

a b a
b a C
C d b
d d a

In the above table, [a,g], [b,f] and [c,e] are equivalent states. Hence a==g, b==f, and c==e

Simplified DFA
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b a c
C d b
d d a
h a d

Ex: Minimize the following DFA

FINITE AUTOMATA WITH OUTPUTS: MOORE& MEALY M/C

Finite automata may have outputs corresponding to state or transition. There are two types
of finite state machines that generate output: (i) Moore Machine (ii) Mealy Machine

If the output associated with state then such a machine is called Moore machine, and if
the output is associated with transition then it is called mealy machine.

=AY
—H Oy ,I bin | 'qn
1 0
o1 1 - 2
TN 2N SN } /L l
—= EL:. .I | aq, 1 : CI;. :
' AN
by . “::-—d___ﬁ T, fgﬁr

Moore Machine Mealy Machine

MOORE MACHINE:

Moore machine is a finite state machine in which the next state is decided by the current
state and current input symbol. The output symbol at a given time depends only on the
present state of the machine.

Def: Moore machine can be described by 6-tuple M=(Q, Y, A, 3,90, L) where
Q: finite set of states

> - finite set of input symbols

A: output alphabet

qO: initial state of machine

CSE,NRCM
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o 8: Q x Y — Q is atransition function
J A: Q — A output function
Ex: Design a Moore machine to generate 1's complement of a given binary number.

Solution: To generate 1's complement of a given binary number the simple logic is that if
the input is O then the output will be 1 and if the input is 1 then the output will be 0. That
means there are three states. One state is start state. The second state is for taking O's as
input and produces output as 1. The third state is for taking 1's as input and producing
output as 0.

Hence the Moore machine will be,

' D
———¥a9) 1 .
|
¢ & ) ¢ A )
Next State
Current State Output
0 |
— o o} o} 0
G G 02 1
G2 G ¢} 0
For instance, take one binary number 1011 then
1 0 1 1

+ CT S5 —
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S q q aq q q
t 0 2 1 2 2
a
t
€
O 0 0 1 0 0
u
t
p
u
t

Thus we get 00100 as 1's complement of 1011, we can neglect the initial 0 and the output

which we get is 0100 which is 1's complement of 1011.
Note: The output length for a Moore machine is greater than input by 1.

Ex: Design a Moore machine for a binary input sequence such that if it has a
substring 101, the machine output A, if the input has substring 110, it outputs B
otherwise it outputs C.

Solution: For designing such a machine, we will check two conditions, and those are 101
and 110. If we get 101, the output will be A, and if we recognize 110, the output will be
B. For other strings, the output will be C.

The partial diagram will be:

Start 1 VA 0 1
=ty qo/C ) 4./C @ ;@
Kj

cwc\ 0 ¥ as/B

Now we will insert the possibilities of 0's and 1's for each state. Thus the Moore machine
becomes:
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Ex: Construct a Moore machine that determines whether an input string contains an even

or odd number of 1's. The machine should give 1 as output if an even number of 1's

are in the string and 0 otherwise.

Sol: The Moore machine will be;

This is the required Moore machine. In this machine, state g1 accepts an odd number of

1's and state qO accepts even number of 1's. There is no restriction on a number of zeros.

Hence for 0 input, self- loop can be applied on both the states.

Ex: Design a Moore machine with the input alphabet {0, 1} and output alphabet {Y,

N} which produces Y as output if input sequence contains 1010 as a substring

otherwise, it produces N as output.

CSE,NRCM
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MEALY MACHINE

¢ A Mealy machine is a machine in which output symbol depends upon the present input
symbol and present state of the machine. In the Mealy machine, the output is represented

with each input symbol for each state separated by /.
Def: The Mealy machine can be described by 6- tuple M= (Q, 3., A, q0, , A") where
e Q: finite set of states

e (O: initial state of machine

> finite set of input alphabet

A: output alphabet

d: Q x > — Q transition function

A Q x> —A output function

Ex: Design a Mealy machine for a binary input sequence such that if it has a substring 101,
the machine output A, if the input has substring 110, it outputs B otherwise it
outputs C.

Solution: For designing such a machine, we will check two conditions, and those are 101
and 110. If we get 101, the output will be A. If we recognize 110, the output will be B. For
other strings the output will be C.

The partial diagram will be:
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4@ 1/C @ 0/C @ 1/A =®

q\ 0/B

I

. .d
@

(V]

1/C

Now we will insert the possibilities of 0's and 1's for each state. Thus the Mealy machine
becomes:

0/C

0/C

Ex: Design a mealy machine that scans sequence of input of 0 and 1 and generates
output 'A’ if the input string terminates in 00, output ‘B’ if the string terminates in
11, and output 'C' otherwise.
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CONVERSION FROM MEALY MACHINE TO MOORE MACHINE:

In Moore machine, the output is associated with every state, and in Mealy machine, the
output is given along the edge with input symbol. To convert Moore machine to Mealy
machine, state output symbols are distributed to input symbol paths. But while converting
the Mealy machine to Moore machine, we will create a separate state for every new

output symbol and according to incoming and outgoing edges are distributed.
Mealy to Moore machine Conversion:

Step 1: For each state (Qi), calculate the number of different outputs that are

available in the transition table of the Mealy machine.

Step 2: Copy state Qi, if all the outputs of Qi are the same. Break gi into n states as

Qin, if it has n distinct outputs wheren=0, 1, 2....

Step 3: If the output of initial state is 0, insert a new initial state at the starting which
gives € output.

Ex: Convert the following Mealy machine into equivalent Moore machine.
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a/l

a/l

b/1

Next State
Present State
State O/P State O/P
h A 1 42 0
Q2 Qa4 1 Qa4 1
ds S b 1 ds 1
Qa a3 0 o b 1

* For state g1, there is only one incident edge with output 0. So, we don't need to split this

state in Moore machine.

o For state g2, there is 2 incident edges with output 0 and 1. So, we will split this state into

two states q20( state with output 0) and g21(with output 1).

o For state g3, there is 2 incident edges with output 0 and 1. So, we will split this state into

two states q30( state with output 0) and g31( state with output 1).

e For state g4, there is only one incident edge with output 0. So, we don't need to split this

state in Moore machine.

Input 0 1
gl ql 1 g21 1
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q20 g4 1 a4 1
g21 g4 1 g4 1
g30 g21 1 g31 1
g3l g21 1 931 1
g4 q30 0 gl 1
Input 0 1 Output

gl gl 921 1

g20 g4 q4 0

g21 g4 g4 1

q30 g21 g31 0

g31 g21 g31 1

g4 g30 ql 1

0 1 Output
ql ql 921 1
g20 g4 g4 0
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g21 g4 g4 1
930 g21 g3l 0
g3l g21 g3l 1
g4 g30 gl 1
0 1 Output
q0 ql 021 1
gl gl g21 1
g20 g4 g4 0
g21 g4 g4 1
930 g21 g31 0
g3l g21 g3l 1
g4 930 gl 1

Transition diagram for Moore machine :

CSE,NRCM
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a b
.
/‘ — —
m b ooab e a
qi/1) ¥ 20/0} ' M da/1) % qs0/0)
NG & N NG
\\
\'\
b
b 4
T N
/(/1'21;1\% ~ \/qm” L\
N a i /
- a x /
b /
- /

Ex: Convert the following Mealy machine into equivalent Moore machine.

Present Next State 0 Next State 1

State State o/P | State | o/P

¢ % 0 4@ | 0

4, 9, ] q; 0

Transition Diagram:

Page 42
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0/0 o

q

The state g1 has only one output. The state g2 and g3 have both output 0 and 1. So we will
create two states for these states. For g2, two states will be g20(with output 0) and
g21(with output 1). Similarly, for g3 two states will be q30(with output 0) and g31(with

output 1).
Transition table for Moore machine will be:
Present | Next State 0 | Next State 1 o/P
State
q, a4 Y20 o
Y20 A2 930 o
P d2 Y930 1
Y30 Y920 i K 0
S ES 920 R EY 1

Transition diagram for Moore machine will be:
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CONVERSION FROM MOORE MACHINE TO MEALY MACHINE

¢ In the Moore machine, the output is associated with every state, and in the mealy
machine, the output is given along the edge with input symbol. The equivalence of the
Moore machine and Mealy machine means both the machines generate the same output

string for same input string.

¢ We cannot directly convert Moore machine to its equivalent Mealy machine because the
length of the Moore machine is one longer than the Mealy machine for the given input.
To convert Moore machine to Mealy machine, state output symbols are distributed into
input
symbol paths. We are going to use the following method to convert the Moore machine to

Mealy machine.
Method for conversion of Moore machine to Mealy machine

Let M = (Q, Y, 9, A, q0) be a Moore machine. The equivalent Mealy machine can be
represented by M'

=(Q, X, 8, X, 90).
The output function L' can be obtained as: A' (g, a) = M&(q, a)) Ex:Convert the

following Moore machine into its equivalent Mealy machine.

Solution:

The transition table of given Moore machine is as follow.

Q a b O
ut
pu
t(
)
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q q q 0
0 0 1
q q q 1
1 0 1
The equivalent Mealy machine can be obtained as follows:
A (90, ) =M(8(q0, @)) =A(q0) =0
L' (g0, b) =A(8(q0, b)) =X(ql) =1 The A for state ql is as follows:
A' (91, a) =M(S(ql, @) =A(q0) =0
A'(ql, b) =A(3(ql, b)) =A(ql) =1
Hence the transition table for the Mealy machine can be drawn as follows:
)3 Input 0 Input 1
Q State o/P State Oo/P
Qo do 0 Ch 1
e Jo 0 e 1

The equivalent Mealy machine will be

Note: The length of output sequence is 'n+1' in Moore machine and is 'n" in the Mealy

machine
a/0 b/1
OIS

Ex: Convert the following Moore machine into its equivalent Mealy machine.

b/1

a/0
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0 - b Output(})
q0 ql qo0 0
ql gl a2 0
92 ql qo0 1

The equivalent Mealy machine can be obtained as follows:
A'(90, a) =A(3(q0, @)) =Mql) =0
A' (90, b) =A(8(q0, b)) =X(q0) =0 The A for state q1 is as follows:
A (91, 2) =M8(ql, @) =Mql) =0
A (g1, b) =A(8(ql, b)) =A(q2) =1 The A for state q2 is as follows:
A (92, 8) =M(3(q2,8)) =Mql) =0
A" (92, b) =A(8(q2, b)) =2(q0) =0

Hence the transition table for the Mealy machine can be drawn as follows:
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)3 Inputa Input b
Q State Output | State | Output
Go o} 0 Yo 0
G h 0 Q2 1
e o 0 do 0

b/0

Ex:Convert the given Moore machine into its equivalent Mealy machine.

Q a b Output(})
qo qo gl 0
gl g2 go 1
02 gl 92 2

Important Questions PART-A

o Define Star closure / Kleen Closure
e Define Positive Closure

e Define Language

e Define DFA, NFA and epsilon NFA
» Define epsilon closure

® Define Moore and Mealy machines.
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PART-B

Draw the block diagram of Finite Automata and explain each component

Design FA which accepts i) even number of 0's and even number of 1's ii) even
number of 0’s and odd number of 1°’s iii) odd number of 0’s and even number of
1’s and iv) odd number of 0’s and odd number of 1’s over Y, = {0, 1}

Design a DFA for L(M) = {w | w ¢ {0, 1}*} and W is a string that does not
contain

consecutive 1's}.

Obtain the DFA that recognizes the language L(M)={W/W is in {a, b ¢}  and W
contains the pattern abac}

Design a FA that accepts the set of all strings that interpreted as binary
representation of an unsigned decimal number i) which is divisible by 2 ii)
divisible by 4 iii) which is divisible by 5.

Design an NFA with " = {0, 1} in which double '1' is followed by double '0".

Design an NFA with > = {0, 1} accepts all string in which the third symbol from
the
right end is always O.
What are the differences between DFA, NFA
Write the algorithm to convert i) NFA to DFA ii) epsilon NFA to NFA and iii)
epsilon NFA to DFA. Explain by taking an example for each conversion.
Find minimum-state automaton equivaCIJent to the transition diagram
1
0 1 1 o
)"ﬂ"‘?’bﬁ - {})ﬂ\\ — b |
1 ,f“‘_ | 1 ' /
\\4 N Ay _‘x___ < k_A-___&_ e M A \:7,/
_____.- — -] ________.--

Design a Moore machine for a binary input sequence such that if it has a substring
101, the machine output A, if the input has substring 110, it outputs B otherwise it
outputs C

Construct a Moore machine that determines whether an input string contains an
even or odd number of 1's. The machine should give 1 as output if an even number
of 1's are in the string and O otherwise.

Design a Mealy machine for a binary input sequence such that if it has a substring
101, the machine output A, if the input has substring 110, it outputs B otherwise it
outputs C.

Design a mealy machine that scans sequence of input of 0 and 1 and generates
output ‘A" if the input string terminates in 00, output 'B' if the string terminates in
11, and output 'C' otherwise.

Convert the following Mealy machine into equivalent Moore machine
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a/1 a/l b/1

b/1

Convert the following Moore machine into its equivalent Mealy machine

Assignment Questions

e Design a FA that accepts the set of all strings that interpreted as binary
representation of an unsigned decimal number i) which is divisible by 2 ii)
divisible by 4 iii) which is divisible by 5.

e Minimize the following DFA.

*  Enumerate the differences between NFA and DFA.
e Obtain a DFA to accept strings of 0’s, 1’s and 2’s, beginning with a 1, followed by

odd number of 0’s and ending with a 2?
e Obtain a DFA to accept strings starting with two 0’s and ending with at least
two 1°s?

e Obtain a DFA to accept the integer numbers represented in binary and is a
multiple of 5.
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UNIT-N

Regular Expressions: Finite Automata and Regular Expressions, Applications of
Regular Expressions, Algebraic Laws for Regular Expressions, Conversion of Finite
Automata to Regular Expressions.

Pumping Lemma for Regular Languages, Statement of the pumping lemma,
Applications of the Pumping Lemma.

Closure Properties of Regular Languages: Closure properties of Regular languages,
Decision Properties of Regular Languages, Equivalence and Minimization of
Automata.

REGULAR EXPRESSION

The language accepted by finite automata can be easily described by simple expressions
called Regular Expressions. It is the most effective way to represent any language.

The languages accepted by some regular expression are referred to as Regular languages.
A regular expression can also be described as a sequence of pattern that defines a string.

Regular expressions are used to match character combinations in strings. String searching
algorithm used this pattern to find the operations on a string.

Regular Set: sets which are accepted by FA
Ex: L={a,aa,aaa,...}

Regular Expression: Let [ be an I/P alphabet . The RE over [| can be defined as
follows:

"1 isaregular expression.

[ is a regular expression.

Foranyain [/, aisaregular expression.
If r1 and r2 are regular expressions, then
(rl +r2) is aregular expression.

(r1.r2) is a regular expression.

(r1* ) is aregular expression.

(r1") is a regular expression.

WRITE RES FOR THE FOLLOWING LANGUAGES:

Accepting all combinations of a’s over the set [ 1={a} Ans: a"
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Ans:

e Accepting all combinations of a’s over the set [1={a} except null string Ans: a"
Accepting any no of a’s and b’s
Ans: (ath)* or (a/b)*
e Strings ending with 00 over the set {0,1} Ans: (0+1)*00
e Strings starts with 1 and ends with O over the set {0,1} Ans: 1(0/1)*1
Any no of a’s followed by any no of b’s then followed by any no of ¢’s
Ans: a*b*c*
starting and ending with a and having any combination of b's in between.
Ans: ab*b
Starting with a but not having consecutive b's.
L ={a, aba, aab, aba, aaa, abab,.} R = {a + ab}*
. The language accepting all the string in which any number of a's is followed by
any number of b's is followed by any number of c's.
Ans: R =a* b* c*
The language over Y = {0} having even length of the string.
Ans: R = (00)*
For the language L over > = {0, 1} such that all the string do not contain the substring 01.
Ans: The Language is as follows: L = {¢, 0, 1, 00, 11, 10, 100, .. } R = (1* 0%)

For the language containing the string over {0, 1} in which there are at least two
occurrences of 1's between any two occurrences of 1's between any two occurrences of
0’s.

Ans: (0111*0)*.

Similarly, if there is no occurrence of 0's, then any number of 1's are also allowed. Hence
the r.e. for required language is:

R = (1 + (0111*0))*

The regular expression for the language containing the string in which every 0 is
immediately followed by 11.

Ans:R = (011 + 1)*
String which should have at least one 0 and at least one 1.
Ans:R=[0+1)*0(0+1)*1(0+21)*]+[(0+1)*1(0+1)*0(0+1)*]

Describe the language denoted by following regular expression (b* (aaa)* b*)*
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Ans: The language consists of the string in which a's appear triples, there is no restriction
on the

number of b’s.
Algebraic laws for Regular Expressions
e GivenR, P, L, Q as regular expressions, the following identities hold:
e QP*=ge*=¢
+ RR*=R*R=R’
- R*=R"
* (PQ)*P=P(QP)*
- (PrQ*= (PR = (PH+Q)”
e R+@ =0 +R =R (The identity for union)
¢ Reg=¢R=R(The identity for concatenation)
e @ R=R@ =@ (The annihilator for concatenation)
¢ R+ R =R (Idempotent law)
e  P(Q+R) =PQ+PR (Left distributive law)
e (Q+R) P = QP+RP (Right distributive law)
e ¢+RR*=¢+R*R=R*
ARDEN'S THEOREM

Statement: Let B and C are two regular expressions. If C does not contain null string, then
A=B+AC has a unique solution A=BC*

Proof: Given that B and C are two regular expressions and C does not contain null string Case(i):

Let us verify whether A=BC¥* is a solution of A=B+AC

Substitute A =BC* in the above equation A=B+AC
A=B+BC*C=B(g +C*C)=BC* since etRR*=R* BC*=BC*
LHS=RHS==>
Therefore A=BC* is a solution of A=B+AC
Case (ii): Let us PT A=BC* is a unique solution of A=B+AC A=B+AC
=B+(B+AC)C=B+BC+AC?
=B+BC+(B+AC)C= B+BC+BC’ +AC’
= B+BC+BC? +BC® +AC’
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=B(e+C+C? +C% +.....))

= BC*

Therefore A=BC* is a unique solution

Note: Assumptions for Applying Arden’s Theorem

The transition diagram must not have NULL transitions

It must have only one initial state.

Using Arden‘s theorem to construct RE from FA

If there are n number of states in the FA then we will get n number of equations.
The equations are constructed in the following way:

State name= state name from which inputs are coming. Input symbol .i.e., ji represents
the transition from g;j to gi then qi = aji . q;

If gj is a start state then we have:
gi=ai*gi+e
Solve the above equations to obtain final state which contains input symbols only.

Ex: Construct the regular expression for the given DFA

0.1
o [

Start

Solution:
Let us write down the equations gl=9l0+¢

Since gl is the start state, so £ will be added, and the input 0 is coming to g1 from gl
hence we

write State = source state of input x input coming to it Similarly, g2 =ql
1+02193=920+q3(0+1)

Since the final states are g1 and g2, we are interested in solving g1 and g2 only. Let us see
ql
first 09l=9l0+¢

We can re-write it as gl=¢+ql0
Which is similar to R = Q + RP, and gets reduced to R = OP*.
AssumingR=91,Q=¢,P=0 Weget gl=¢.(0)*ql=0*(e.R*=R¥)
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Substituting the value into g2, we will get
2=0*1+q21q2=0*1(1)* (R=Q+RP —QP¥
The regular expression is given by
r=ql+q2=0+011r=0+01"(11=1)

Construction of FA from RE: There are two methods to construct FA from RE. They
are i) Top down approach and ii) Bottom up approach.

Top down Approach:
This is divided into several steps as given in the following.

Step-1: Take two states, one is the beginning state and another is the final state. Make a
transition from the beginning state to the final state and place the RE in between the
beginning and final states

Step-2:If in the RE there is a + (union) sign, then there are parallel paths between the two
states

_,_/;\. P+Q » q _h/c_b
&) A

Step-3: If in the RE there is a .(dot) sign, then one extra state is added between the two
states.

Step-4: If in the RE there is a “** (closure) sign, then a new state is added in between. A
loop is added on the new state and the label A is put between the first to new and new to
last.
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Ex: Construct Finite Automata equivalent to the Regular Expression L = ab(aa + bb)(a +
b)* b.

Step I: Take a beginning state g0 and a final state gf. Between the beginning and final
state place the regular expression.

ab (aa +bb) (a +b)* b :
) ©

Step Il: There are three dots (.) between ab, (aa + bb), (a + b)*, and b. Three extra states
are added between g0 and gf.

ab (aa + bh) (& +E)* b
~(D=—(=2(H=(D—-E

Step I1I: Between ‘a’ and ‘b’ there is a dot (.), o extra state is added

) a ™ b T hma+bb) N AR TN B
D OanOanOanOn©)

Step 1V: In aa + bb there is a +, therefore there is parallel edges between gl and g2.
Between g2 and g3 there is (a + b)*. So, extra state g5 is added between g2 and g3. Loop
with label a, b is placed on g5 and A transition is made between 2, q5 and g5, g3.

~ by
qbaq:‘.b W‘D'—AF@'\'@'J

", i

TBb

Step V: In aa and bb there are dots (.). Thus two extra states are added between gl and g2
(one for aa and another bb). The final finite automata for the given regular expression is
given below.

_@a_®b

Ex: Construct an FA equivalent to the RE: L = (a + b)*(aa + bb)(a + b)*.

Ex: Construct an FA equivalent to the RE: L = ab + (aa + bb)(a + b)* b.

BOTTOM-UP APPROACH (THOMSON CONSTRUCTION):
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Step-1: For input a € Y, the transition diagram is

D@

Finite automata for RE = a

Step-2: If rl and r2 are two RES then the transition diagram for the RErl +r 2'is

b

7 R

Finite automata for RE= (a+b)

Step-3: If r1 and r2 are two RES then the transition diagram for the RErl.r 2is

(o)
RVErEGaran O

Finite automata for RE = ab

Step-4: If r is a RE then the transition diagram for r* is

a,b

~(

Finite automata for RE= (a+b)*

Ex: Construct Finite Automata equivalent to the Regular Expression L = ab(aa + bb)(a +
b)*a.
Solution:
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Step I: The terminal symbols in L are ‘a’ and ‘b’. The transition diagrams for ‘a’ and ‘b’
are given below:

() 8 ) N o))
—~O——0 —O0——0

Step II: The transition diagrams for ‘aa’, ‘ab’, ‘bb’ are given below

_O_a _______ O_a© _.(\_ ________ a 7

Step HI: The transition diagram for (a+b) is given below

Step IV: The transition diagram for (a+b)* is given below

Step VI: The constructed transitional diagram for ab(aa+bb) is given below
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Step VII: The constructed transitional diagram for ab(aa + bb)(a + b)*a is given below
This can be simplified by removing ¢ transitions

EQUIVALENCE OF TWO RES

For every RE there is a finite automata. If the FA constructed both of the REs are same
then we can say that two REs are equivalent

Ex: Prove that the following REs are equivalent. L1 = (a + b)* L2 =a*(b*a)* Solution:

Construct FA for L1:

a b

()

>

Construct FA for L2:
a*(b*a)*
—(® ©)
O——C>
T
CSE,NRCM
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The two FAs are same. Hence the Res are also same.

Ex: Prove that the following REs are equivalent. L1 = 1*(011)*(1*(011)*)* L2 = (1 +
011)

Grammars:

The grammar is basically defined as a set of 4-tuple (V, T, P, S) where

V is a set of non-terminals (variables), T is a set of terminals (primitive symbols), P is a
set of productions (rules) that relate the non-terminals and terminals and S is the start
symbol with which strings in grammar are derived. These productions define the strings

belonging to the corresponding language.
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Production Rule: The production rules of grammar consist of two parts. I) LHS and ii)
RHS. The LHS may contain terminal or non-terminal or both but at least one non-
terminal. The RHS may contain any combination of terminal or non-terminal or both or

epsilon.

Language Acceptance: Start with the start symbol, at every step, and replace the non-
terminal by the right-hand side (RHS) of the rule. Continue this until a string of terminals

is derived. The string of terminals gives the language accepted by grammar.
Types of Grammars—Chomsky Hierarchy:

Linguist Noam Chomsky defined a hierarchy of languages, in terms of complexity. This
four-level hierarchy, called the Chomsky hierarchy, corresponds to four classes of
machines. Each higher level in the hierarchy incorporates the lower levels, that is,
anything that can be computed by a machine at the lowest level can also be computed by a

machine at the next highest level.

The Chomsky hierarchy classifies grammar according to the form of their productions

into the following levels:

Type 0 grammars—unrestricted grammars: These grammars include all formal
grammars. In unrestricted grammars (URGS), all the productions are of the form o —
where o and f may have any number of terminals and non-terminals, that is, no
restrictions on either side of productions. Every grammar is included in it if it has at least
one non-terminal on the left-hand side (LHS). They generate exactly all languages that
can be recognized by a Turing machine. The language that is recognized by a Turing
machine is defined as a set of all the strings on which it halts. These languages are also

known as recursively enumerable languages.

Ex:

aA — abCB aA — bAA DA — a
S—aAb|e

Type 1 grammars—context-sensitive grammars: These grammars define the context-
sensitive languages. In context-sensitive grammar (CSG), all the productions of the form
a — B where the length of a is less than or equal to the length of B i.e. |a| < |B|, o and B

may have any number of terminals and non-terminals.
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These grammars can have rules of the form aAp — ayp with A as non-terminal and o, f,
and vy are strings of terminals and non-terminals. We can replace A by y where A lies
between o and . Hence the name CSG. The strings o and p may be empty, but y must be
non-empty. It cannot include the rule S— €. These languages are exactly all languages
that can be recognized by linear bound automata.

Ex: aAbcD — abcDbcD

Type 2 grammars — context-free grammars: These grammars define context-free
languages. These are defined by rules of the form oo — B with |o| < | where |a| =1 and is
a non-terminal and B is a string of terminals and non-terminals. We can replace a by
regardless of where it appears. Hence the name context-free grammar (CFG). These
languages are exactly those languages that can be recognized by a pushdown automaton.

Context-free languages define the syntax of all programming languages.

Ex:

S—aS|Sala

S— aAA |bBB| ¢

Type 3 grammars — regular grammars: These grammars generate regular languages.
Such a grammar restricts its rules to a single non-terminal on the LHS. The RHS consists

of either a single terminal or a string of terminals with a single nonterminal on the left or

right end. Here rules can be of the form A—aB|aor A —Ba]a.

The rule S — ¢ is also allowed here. These languages are exactly those languages that can
be recognized by a finite state automaton. This family of formal languages can be
obtained by regular expressions also. Regular languages are used to define search patterns

and the lexical structure of programming languages.

Right linear grammar: A — a A | a Left linear grammar: A — Aa|a
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Table 1.1 Chomsky’s hierarchy

Gramm Languages Automato Productio
ar n n rules
Type 0 Recursivel Turing a—p
y machine No
enumerabl restrictio
e nsonb,a
should
have At
least one
non-
terminal
Type 1 Context- Linear a — B,
sensitive bounded o < |B|
automata
Type 2 Context- Pushdow a— B, |
free n < B, |of
automato =1
n
Type 3 Regular Finite a— B, a
state = {V}
automato and B =
n V{T}* or
{T}*V or
T*

The hierarchy of languages and the machine that can recognize the same is shown below.

Unrestricted Language s Turing Machine
Contexi-sensitive Language |¢ Linear bound Automata
Context-free Language |« Pushdown Automata

Aegqular Language I =i Finite Automata

¥

Every RG is context-free, every CFG is context-sensitive and every CSG is unrestricted.
So the family of regular languages can be recognized by any machine. CFLs are
recognized by pushdown automata, linear bound automata, and Turing machines. CSLs
are recognized by linear bound automata and Turing machines. Unrestricted languages

are recognized by only Turing machines.
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REGULAR GRAMMAR

A regular grammar is a mathematical object, G, with four components, G = (N, T, P, S),
where

N is a nonempty, finite set of nonterminal symbols,

T is a finite set of terminal symbols , or alphabet, symbols,

P is a set of grammar rules, each of one having one of the forms A—aB A—a A — ¢,
for A, B
€ N,a€ %, and € the empty string, and

S € N is the start symbol.

RE TO RG CONVERSION

Step 1: Construct an equivalent FA for the given RE

Step 2: The no of non-Terminals of the grammar will be equal to the no of states of FA

Step 3: For all transition functions (a) if d(qi, )=qj is not in F then the production is of the
form AlaB (b) if 6(qi,a)=q; is in F then the productions are of the form A 1aB and Ala,
where A &B are corresponding to states gi and gj respectively.

Step 4: The start symbol of the grammar corresponding to the initial state of finite
automata

Ex: Construct Regular grammar for the RE a*(a+b)b*

RG for the above RE is A JaA/aB/bB/a/b Bl 'bB/b

Ex: Construct RG for the RE ab(a+b)*
RG is A"1aB Bl 1bC/b
Cl1aC/bClalb

PUMPING LEMMA FOR RLS
The pumping lemma is generally used to prove certain languages are not regular

Language is said to be regular: If a DFA,NFA or epsilon NFA can be constructed to
exactly accept a language

If a RE can be constructed to exactly generate the strings in a language.
Formal Definition of Pumping Lemma:

if L is a regular language represented with automaton with maximum of n states , then
there is a word in L such that the length |Z|>=n, we may write Z=UVW in such a way that
|UV|<+n,
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[V|>=1, and for all i>=0, UV'W is in L.

Ex: Prove that L = {a'b’ | i > 0} is not regular.

At first, we assume that L is regular and n is the number of states. Let z= aabb=uvw
Where u=a, v= ab, w=b Whein i=0, uv'w=uw=ab is in L

When i=1, uv'w=uvw=aabb is in |

When i=2, uv'w=uv?w=aababbis not in L Hence L is not Regular

Ex: State whether L ={a2n| n > 0} is regular.

Ex: State whether L = {0" | n is a prime} is regular Ex: State whether L = {a"| n > 0}
is regular

Ex: State whether L ={a" b™ | n, m >0} is regular

CLOSURE PROPERTIES OF RLS

Context-free languages are closed under

Union: Let L1 and L2 be two context-free languages. Then L1 U Lz is also context free.
Example

LetLi={a"b", n> 0}. Corresponding grammar G1 will have P: S1 — aAbjab
LetLo={c"d™, m> 0}. Corresponding grammar Gz will have P: S2 — cBb| ¢
Unionof Liand L2, L=L1U L2={a"m"}u {c"d"}

The corresponding grammar G will have the additional production S — S1 | S2
Concatenation: If L1 and L2 are context free languages, then LiLz is also context free.
Example: Union of the languages Liand L2, L = LiL2={a"0"c"d™ }

The corresponding grammar G will have the additional production S — S1 S2

Kleene Star: If L is a context free language, then L* is also context free.

Example

LetL={a"n", n>0}. Corresponding grammar G will have P: S — aAb| ¢

Kleene Star L1 = {a"h"}*

The corresponding grammar G1 will have additional productions S1 — SS1 | €

Context-free languages are not closed under Intersection: If L1 and L2 are context
free languages, then
L1 N L2 is not necessarily context free.

Intersection with Regular Language — If L1 is a regular language and L2 is a context
free language, then L1 N L2 is a context free language.
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Complement — If L1 is a context free language, then L1’ may not be context free

Define Regular Expression

Part-A

Write a regular expression for the language accepting all the strings in which any
number of a's is followed by any number of b's is followed by any number of c's.
State ARDEN'S THEOREM

State and prove ARDEN'S theorem

Define Regular Grammar

State pumping lemma for CFL

PART-B

Construct the regular expression for the given DFA

Start

0.1
o [

Construct an FA equivalent to the RE: L = (a + b)*(aa + bb)(a + b)*.

: Construct Finite Automata equivalent to the Regular Expression L = ab(aa + bb)(a +
b)*a using bottom-up approach.

Construct Regular grammar for the RE a*(a+b)b*

Applications of pumping lemma

Closure Properties of CFLs

Assignments

Prove that e + 0*(1)*(0*(1)*)* = (0 + 1)*
List out a few applications of regular expressions and finite automata.
Construct a NFA that accepts the following languages:
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L(aa* + aba*b*)
L(ab(a + ab)*(a + aa))
L(ab*aa + bba*ab)

L(0* + 1%2%)
e L(10 + (0 + 11)0%1)
o L((a + ba)*bb(b + a)*)

Find the regular expression for the DFA

0
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™ f
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UNIT-III:

Context-Free Grammars: Definition of Context-Free Grammars,
Derivations Using a Grammar, Leftmost and Rightmost Derivations, the
Language of a Grammar, Sentential Forms, Parse Trees, Applications of
Context-Free Grammars, Ambiguity in Grammars and Languages.

Push Down Automata: Definition of the Pushdown Automaton, the
Languages of a PDA, Equivalence of PDA's and CFG's, Acceptance by final
state, Acceptance by empty stack, Deterministic Pushdown Automata. From
CFG to PDA, From PDA to CFG.

Def:
A grammar G=(V,T,P,S) is said to be CFG if all productions in Pare of the form a

[1p Where ais in V , i.e., set of non-terminals and | a | =1, i.e., there will be only
one non-terminal at the left hand side (LHS) and B is in V U X, ie, B is a

combination of non-terminals and terminals.

Ex: Construct a CFG for the language L = {wCwR | W € (& b)*}

Ans: S[1aSa/bSb/C

Ex: Construct a CFG for the regular expression (0 + 1)* 0 1*.

AnNs:

S ASB/0 A T0A/1A/e B —1B/e

Ex:Construct a CFG for the regular expression (011 + 1)* (01)*.

Ans:

S7BC B TABt A 0111 C—DCl¢ D 01
Ex: Construct CFG for defining palindrome over {a , b}.

Ans: S — aSa/bSb/a/b/e

Ex: Construct CFG for the set of strings with equal number of a’s and b’s.
Ans: S — SaShS /SbSaS/e

Ex: Write the language generated by the grammar S — SaShS /SbSaS/e
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Ex: Write the language generated by the grammar S — aSa/bSb/a/b/e

Ex: Write the language generated by the grammar S—aSa/bSh/C

DERIVATION AND PARSE TREE:

Derivation: The process of generating a language from the given production rules
of a grammar. The non-terminals are replaced by the corresponding strings of the
right hand side (RHS) of the production. But if there are more than one non-
terminal, then which of the ones will be replaced must be determined. Depending

on this selection, the derivation is divided into two parts:

Leftmost derivation: A derivation is called a leftmost derivation if we replace
only the leftmost non-terminal by some production rule at each step of the

generating process of the language from the grammar.

Rightmost derivation: A derivation is called a rightmost derivation if we replace
only the right- most non-terminal by some production rule at each step of the

generating process of the language from the grammar.

S =aS=aaS=aaaS—aaaaS—=aaaac = aaaa

The language has the strings {e, a, aa, aaa, ....... \. Ex: Derive a2 from by
grammarS — SS/ a/ € Ans: S = SS=Sa=aa (or)

S = SS= SSS=5Sa=SSSa=SaSa=caSa—¢a ca = aa

Ex: Find L(G) and derive the string abbab for the following grammar?

S — aS/bS/a/b Solution:

S =aS=abS=abbS=abbaS=abbab

Context free language generated by the grammar is (a + b)+.

Ex: Find the language and derive abbaaba from the following grammar: S —
XaaX X —aX|bXle

Solution:

CFL is (a + b)*aa(a + b)*.
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We can derive abbaaba as follows:

S =>XaaX=aXaaX=abXaaX=abbhXaaX=abbsaaX =
abbaaX=abbaabX=abbaabaX

=abbaabae=abbaaba
Ex: Give the language defined by grammarG = {{S}, {a}, {S — SS}, S}
Ans: L(G) = @. Since there is no terminal that is derived from S.

Ex: Give the language defined by grammar

G = {{S, C}, {a, b}, P, S} where P is given byS — aCa, C — aCa | b, Ans:S
=aCa=aaCaa—aaaCaaa

L(G)={a"ba"/n>1}.

Ex: Give the language defined by grammarG = {{S}, {0, 1}, P, S} where P is
givenby S — 0S1 | &

Ans: S = 0S1 = 00S11 = 0011.

L(G)={0"1"/n>0}.

«Construct the string 0100110 from the following grammar by using (i)Leftmost
derivation (ii) Rightmost derivation

S[0S/1AA A [10/1A/0B, B [11/0BB,

Ans: Leftmost Derivation

S=>0S=>01AA =>010BA => 0100BBA => 01001BA => 010011A=> 0100110
(The non-terminals that are replaced are underlined.)

Rightmost Derivation

S =>0S=>01AA=>01A0=>010B0 => 0100BB0 => 0100B10 => 0100110
(The non-terminals that are replaced are underlined.)

Ex: Consider the CFG ({S, X}, {a, b), P, S) where productions are S — baXaS
| ab, X — Xablaa. Find LMD and RMD for string w = baaaababaab.

Solution: The following is a LMD:
S =baXaS {as S —baXaS}
=baXabaS {as X —Xab}
=baXababaS {as X —Xab}
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=baaaababaS {as X —aa}

=baaaababaab {as S —ab} The following is a RMD:

S =baXaS {as S —baXaS}

=baXaab {as S —ab}

=baXabaab {as X —Xab}

=baXababaab {as X —Xab}

=baaaababaab {as X —aa}

Any word that can be generated by a given CFG can have LMD|RMD.

Ex: Consider the CFG:S — aB | bA,A—a|aS|bAA, B — b |bS|aBB. Find
LMD and RMD for (the string) w = aabbabba.

Ans: The following is a LMD:

S =aB=aaBB=aabSB=aabbAB=aabbaB=aabbabS=aabbabbA=aabbabba The
following is a RMD:

S =aB=3aaBB=aaBbS=aaBbbA=aaBbba=aabShba=aabbAbba=aabbabba
PARSE TREE:

« A parse tree is the tree representation of deriving a CFL from a given context
free grammar. These types of trees are sometimes called as derivation trees.

« A parse tree is an ordered tree in which the LHS of a production represents a
parent node and the RHS of a production represents a children node.

» Note: The parse tree construction is possible only for CFG.

Procedure to Construct Parse Tree:

« Each vertex of the tree must have a label. The label is a non-terminal or terminal
or null (g).

« The root of the tree is the start symbol, i.e., S.
« The label of the internal vertices is a non-terminal symbol.

 If there is a production A [1 X1Xa....Xk, then for a vertex label A, the children of
that node will be X1, Xz, .. Xk.

A vertex n is called a leaf of the parse tree if its label is a terminal symbol or
null (¢). Ex:Find the parse tree for generating the string 0100110 from the
following grammar. S [10S/1IAAA [10/1A/0B B [11/0BB

For generating the string 0100110 from the given CFG
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The Left Most Derivation (LMD) will be S [ 0S [101AA [J 010BA
[J0100BBA [1 01001BA [J 010011A [J 0100110 and the derivation tree is called
Left Most Derivation Tree(LMD Tree)

The Right Most Derivation (RMD) will be S [1 0S [101AA (1 01A0 [J
010B0 [J 0100BBO [J 0100B10 [J 0100110 and the derivation tree is called Right
Most Derivation Tree(RMD Tree).

LMD AND RMD TREES:

Find the parse tree for generating the string 0100110 from the following grammar.

Left Most Derivation Tree Right Most Derivation Tree EX:
Construct a parse tree for the string aabbaa from the following grammar.
Sa/aAS, A [JSS/SbA/ba
Solution: For generating the string from the given grammar, the derivation will be S
=>3AS=>aSbAS=>aabAS=>aabbaS=>aabbaa

The derivation tree is given in Fig
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AMBIGUOUS GRAMMAR:The different parse trees generated from the
different derivations may be the same or may be different.

A grammar of a language is called ambiguous if any of the cases for
generating a particular string, more than one parse tree(LMD Tree. RMD Tree)
can be generated.

Procedure to test ambiguous Grammar: Grammar will be given.Consider a
string which produces two derivation trees to prove that the grammar is
ambiguous.

Ex: Prove that the following grammar is ambiguous.
P: S E+E/E*Eld

Let us take a string id + id*id.

The string can be generated in the following ways.

Derivation (i):S=> S + S=>S + S*S =>id + S*S => id + id*S=> id + id*id
Derivation (ii): S=>S*S=>S + S*S=>id + S*S=>id + id*S => id + id*id The

parse trees for derivation (i) and (ii) are shown below.
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Ex: Consider the Grammar G with productions: S — aS | Sa | a.Show that G
is ambiguous.

Ans: Consider the string w=aa

= =1

e

aa

W — 0
W 0

LMD Tree RMD Tree

LMD Tree!=RMD Tree. Hence the grammar is ambiguous

Ex: The grammar G for PALINDROMES isS — aSa | bSb | a | b |[e.
Check if G is ambiguous.

Ans: Consider the string w=babbab.

S
S0

o
¥
=3
o
w
L=3

>
>

&
w
5]
&
]
w

>
>

LMD Tree RMD Tree

LMD Tree=RMD Tree. Hence the grammar is unambiguous

Ex: Check whether the following grammar is ambiguous or not. S - iCtS|
iCtSeS|a,C—Db

Ans: Consider the string w=ibtibtaea
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s S
~ T ~ \ ‘_\
.‘_,-*"i I\?HL I‘ & h{ \\S Y
[ ct ] ) \l p
b i Ct 5 e S
Lol
b a a
LMD Tree RMD Tree

LMD Tree!'=RMD Tree. Hence the grammar is ambiguous
Ex: Consider the Grammar G with productions: S— aS|aSb | X, X —» Xa|a
Show that G is ambiguous.

Ans: Consider the string w=aa

S s
\ % f
X s
Y ¥
X X
] v
a
LMD Tree RMD Tree

LMD Tree!=RMD Tree. Hence the grammar is ambiguous

Limitations of FA:
e The memory capability of Finite Automata is very limited.
e |t can memorize the current input symbol.
e |t cannot memorize previously processed symbols.
e Hence, by adding memory concept to FA, we will get Push down Automata.

e PDA is the same as Finite Automata with the attachment of an auxiliary amount of
storage as a stack.

Block Diagram of PDA:
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Y

\ A

Control Unit
Z. P

A PDA consists of four components:
1) An input tape, 2) a reading head, 3) a finite control and 4) a stack.

Input tape: The input tape contains the input symbols. The tape is divided into a
number of squares. Each square contains a single input character. The string
placed in the input tape is traversed from left to right. The two end sides of the
input string contain an infinite number of blank symbols.

Reading head: The head scans each square in the input tape and reads the input
from the tape. The head moves from left to right. The input scanned by the
reading head is sent to the finite control of the PDA.

Finite control: The finite control can be considered as a control unit of a PDA.
An automaton always resides in a state. The reading head scans the input from the
input tape and sends it to the finite control. A two-way head is also added with the
finite control to the stack top. Depending on the input taken from the input tape
and the input from the stack top, the finite control decides in which state the
PDA will

Ex:

move and which stack symbol it will push to the stack or pop from the stack or
do nothing on the stack.

Stack: A stack is a temporary storage of stack symbols. Every move of the
PDA indicates one of the following to the stack

Push: One stack symbol may be added to the stack

Pop: One stack symbol may be deleted from the top of the stack. In the stack,
there is always a symbol z0 which denotes the bottom of the stack.
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Def: Push Down Automata

A PDA consists of a 7-tuple M = (Q, %, G, 4, q0, z0, F), Where
Q: Finite set of states.

¥ Finite set of input symbols.

I': Finite set of stack symbols.

8: Q X(T U {e}) XI" 0 QXI is a Transition function qo: Initial state of the PDA.
zo: Stack bottom symbol. F: Final state of the PDA.

PDA has 2 alphabets:

a) An input alphabet >

b) A stack alphabet I

Moves on PDA: A move on PDA may indicate:

An element may be added to the stack (9,a,b)=(q, ab)
An element may be deleted from the stack: (q, a, b) = (g, €) and

There may or may not be a change of state.

d(q, a, b) = (g, ab) indicates that in the state g on seeing a, a is pushed onto the
stack. There is no change of state.

d(q, a, b) = (q, ) indicates that in the state q on seeing a the current top symbol b
is deleted from the stack.

d(q, a, b) = (g1, ab) indicates that a is pushed onto the stack and the state is
changed to g1.

GRAPHICAL REPRESENTATION OF PDA:

Let M =(Q, >, T, 9, qo, Zo, F) be a PDA where Q ={p, q}, > ={a, b, c}, I' ={a,
b}, qo=gq,F
={p}, and é is given by the following equations:

8(q, a, zo) = {(q, azo)} [*Push*/
d(q, b, zo) = {(q, bzo)} [*Push*/
5(q, & a) = {(9, aa)}
3(q, b, a) = {(a, ba)}
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d(q, a, b) = {(a, ab)}

8(q, b, b) = {(q, bb)}

3(q, €, zo) = {(p, zo)} /* Neither Push nor Pop*/
5(q, ¢.a) = {(p, @)}

3(q, ¢, b) = {(p.b)}

S(p, a, a) = {(p. &)} [*Pop*/

3(p, b, b) = {(p. &)} [*pop*/

d,e—» d d,d—» ¢

be— Db b,b—»¢

o @

INSTANTANEOUS DESCRIPTION OF PDA:

During processing, the PDA moves from one configuration to another
configuration. At any given instance, the configuration of PDA is expressed by the
current state, the input symbol, and the content of stack.

The configuration is expressed as a triple (q, X, y), where g- current state.

X - input string to be processed.

y- is the content of the stack where the leftmost symbol corresponds to top of
stack, and the rightmost is the bottom element.

EXx: When string ababcbcb is processed, the instantaneous description is as shown
below.

d(q, ababcbab, zo)

=0 (q, babcbab, azo)

=9(q, abcbab, bazo)

=d(q, bchab, abazo)

=0(q, chab, babazo)
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=d(p, bab, babazo)

=d(p, ab, abazo)

=d(p, b, bazo)

= (p, &, azo)

LANGUAGE ACCEPTANCE BY PDA:

A language can be accepted by a PDA using two approaches:

. Acceptance by final state: The PDA accepts its input by consuming it and
finally it enters the final state.

. Acceptance by empty stack: On reading the input string from the initial
configuration for some PDA, the stack of PDA becomes empty.

Design a PDA which accepts the language L={a"b"/n>=1}

Transition Diagram
a, Z/aZ,

a, a/aa

Transition functions

d(qo, &, Zo) = {(qo, aZo)}/*Push a*/

d(qo, a, @) = {(qo, aa)} /*Push a*/

d(qo, b, @) ={(q1, €)} /* Pop aand change the state*/
d(ql, b, a) ={(q1, &)} /*Pop a*/

d(ql, €, Zo) = {(qf, Zo)} [*change to final state and halt*/
LANGUAGE ACCEPTANCE BY PDA:
Test whether the string aaabbb is accepted or not using

(a) Stack Empty Method (b) Final State Method
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Stack Empty Method:

a

a a b b

a |a |a |b |b |b |B

o

Finite control
9

-+

Step 1: Initial configuration

AN

Finite control

_— q,

Step 2: ais pushed

a |a (b |b

/

Finite control
9

Step 3:ais pushed

\ Finite control

9

Step 4: ais pushed

DR CAENCAEE

ala|a|b|b |b |B]

/

SN

Finite control

/

/"

a | q,

| Finite control

Step 6: pop a

LANGUAGE ACCEPTANCE BY PDA:

Final Stat

e Method

d(qo, aaabbb, Zo)
=0 (o, aabbb, aZo)
=0(qo, abbb, aaZo)

q,
Z, |  step 5: pop aand change to new state
a|ajla |b|b |b
.:-"——-'_’-'fﬂf -
Finite control
/ q,
Z, Step 7: pop a

‘a ‘a ‘a |b|b ‘b ‘BE
—

=

—

—

-

/
Finite control

/ q,
Step 8: change to final state and halt
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=0(qo, bbb, aaaZo)

=0(q1, bb, aaZo)

=d(q1, b, aZo)

=3(q1, &, Zo)

=d(qf, €, Z0)

=string is accepted as PDA reached to final state and string is empty.

Ex: Design a PDA which accepts equal number of a’s and b’s over X = {a, b}.

dq,a. Z)=1(q,aZ)

8q,. b, Z)=1(q,.bZ)
d(g,. a,a)=(q,, aa)
8(q,, b, b)=(g,, bb)
8(q,, a.b)=(q,, £)
8(q,. b,a)=(q, £)

dg,.e Z)=(q.Z)

Consider a string abbbaa

ENCENCNENEN S ENCHENENENEN N
Finile control _| Finite control
4, a |le—" 4
Z, Step 1: Initial configuration Z, Step 2: ais pushed
(oo fofalal® ] (2o felefafaf®]
| -
Finite 'cnntrc:ul Finite control
4, b le—] 4,
Z, Step 3:popa Z; Step 4: b is pushed
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Finite control
9y

4

a b b b |a a b b b
- / -f-#_#_f
\ Finite confrol | Finite control
b 9 b e Gy
Z, Step 5. push b Z, Step 6. pop b
a |b b b |a a b b b

Finite control
4

0 Step 7. pop a Z, ’/St

ep 8: change to final state and halt

Ex: Design a PDA that accepts L={0"1?"/n>=1}

0.Zf0z,

0,0/00 1.0.'0'

N - .

«” N\ 1o f"’ “\.m.: / \ ezfz, \\
4,{ |—p —:-Illl o .,'

S " N\

8(q, 0,Z,) = (q,. 0Z)
8(q,, 0, 0) = (q,. 00)
(g, 1,0)=(q,, 0)

8(g. 1.0)=(q,. 2
E-iq L, DJ—{q, 0

&g, & Z)=1(q, Z)

Ex: Design a PDA that accepts L={a*b"c"/n>=0}
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b, bibb c, ble

a,Z/Z, aZ/Z, aZJZ ~

N }’_“\_ N ¢~ b, ZJbZ, ,1*3‘*\ c, ble /"X
_3"|I Gy }—H aQ, |—h-| Q, ¢ [ d, } = O, | = O, |
N N /

e A S e
k\ﬁ% £ 22,
P

N\t

dlg,.a. Z)=1(q,.Z)
da,.a Z)=(q,Z)
Eiq:._ a, ZD}: {q_,zﬂ}
dg,.e. Z)=(q,7Z)
d(q,.b. Z)=1(q,. bZ)
d(g,. b.b)=(q,, bb)
d(g,.c.b)=1(q,. )
d(g,.c.b)=1(q,. )
dg.e. Z)=(q,Z)

Ex: Design a PDA that accepts L={wcw" / w is in (a+b)}

azfaZ,

b.Z/bZ,

a.afaa

B,b-'iib C'ali’z
b,b/bb N ot
baba -~

b+
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g, a. Z)=1(q,aZ)
&(q,, a, a)= (q,, aa)
d(q,. a. b)=(q,, ab)

d(q,. b. Z)=1(q,.bZ)
d(q,. b. a)=(q,, ba)
d(g,. b.b)=(q,, bb)

dlg.c.Z)=(q,.Z)
d(g,.c.a)=(g.a)
d(g,. c,b)=(q,. b)
d(g.a.a)=(g.8)
&g, b,b)=(q,.€)

d(g.e. Z)=(q,Z)

TYPES OF PDA:

e There are two types of PDA.

e Deterministic PDA (DPDA)

e Non-Deterministic PDA (NPDA)

e Deterministic PDA (DPDA): A PDA that has at most one choice of move in any
state is called a deterministic PDA.

e Non-Deterministic PDA (NPDA) provides non-determinism in the moves defined.

e Deterministic PDAs (DPDAs) are very useful in programming languages. For
example, parsers used in Yet Another Compiler Compiler (YACC) are
deterministic PDA's (DPDA).

e APDAM=(Q,Z,G,3,q0, z0, F), is (i) deterministic if and only if 5(q, a, X) has
at most
one mMove.

e (i) Non-Deterministic if and only if 8(q, a, X) has one or more moves.
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a, ZofazD
b, Z/bZ,

a, alaa
a, b/ab
b, b/bb
b, a/ba

b,ble
a.ale

e 27, // S\

q1 W1 qf .
J \ /)
&“-—*'/ Ex: Design

a PDA which accepts L={WW?&®|W is in (a+b)*} Transition Diagram

Transition Functions
e 5(qo, a, Zo) = (qo, aZo)
e 3(qo, b, Zo) = (qo, bZo)
e 3(qo, a, a) = (qo, aa)
* 3(qo, & a)=(q, &)
e 3(qo, b, b) = (qo, bb)
e (qo, b, b)=(ql, ¢
e 3(qo, a, b) = (qo, ab)
e 3(qo, b, @) = (qo, ba)
* d(qua a)=(an ¢)
d(qu, b, b) = (a1, €), d(qy, &, Zo) = (qf, Zo)

CONSTRUCTION OF PDA FROM CFG:
e Step 1 — Convert the productions of the CFG into GNF.
e Step 2 — The PDA will have only one state {q}.
e Step 3 — the start symbol of CFG will be the start symbol in the PDA.

e Step 4 — All non-terminals of the CFG will be the stack symbols of the PDA and
all the terminals of the CFG will be the input symbols of the PDA.

e Step 5 — For each production in the form A — aX make a transition & (q, a,
A)=(a.X).
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e Step 6- For each production in the form A — a make a transition & (g, a, A)=(q,

£).

Ex: Convert the following CFG in to PDA S(1aAA, AlJaS/bS/a
Sol: The grammar is in GNF For SCJaAA: é (q, a, S)=(q,AA).
For AlJaS :d(q,a, A)=(q,S).

For ACIbS : 6 (q, b, A)=(q,S)

For AlJa:d (q, a, A)=(q, ¢).

For A — aX:d (g, a, A)=(q,X).

For A—a:d(q,a A)=(q, ¢

The Equivalent PDA:

d (9, a, S)=(q,AA).

6 (a, a, A)=(9.9).

d (g, b, A)=(q,9)

6 (. a, A)=(a, &)

CONSTRUCTING CFG FOR GIVEN PDA
e To convert the PDA to CFG, we use the following three rules:

e R1: The productions for start symbol S are given by S =>[qo, Zo, q] for each state
qinQ.

e R2: Each move that pops a symbol from stack with transition as 6(q, a, Zi) = (qu,
¢) induces a production as [q, Zi, qi] =>a for q1in Q.

e R3: Each move that does not pop symbol from stack with transition as

e 05(q,a, Zo)=(q, Z1Z2 Z3Za.....) induces a production as [q, Zo, qm] [I a[qi, Zi g2]
[02, Z2 q3] [q3, Z3 g4] [02, Z4 Q5]...[gm-I, ZmQm] for each qi in Q, where | <i< m.

o After defining all the rules, apply simplification of grammar to get reduced
grammar

Ex:Give the equivalent CFG for the following PDA M = {{qo, g1 },{a, b},
{Z, Zo}, 8, qo, Zo} where 9 is defined by

6(qo, b, Zo) = (qo, ZZo)d(qo, &, Zo) = (qo, €)d(qo, b, Z) = (o, ZZ)
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d8(qo, a, Z) = (01, Z)d(q1, b, Z) = (qs, £)d(q, a, Zo) = (o, Zo)
Solution: The states are go andq, and the stack symbols are Z and Zo.

The states are {S, [go, Zo, qo], [go, Zo, q1], [g1, Zo, go], [q1, Zo, q1], [qo, Z, qo],
[go, Z, q1, [a1, Z, go], [a1, Z, g1]}. S- Productions are given by Rule 1

S [0 [go, Zo, go] | [go, Zo, q1]
e The CFG for &(qo, b, Zo) = (go, ZZo) is obtained by rule 3 [go, Zo, qo] [J b [qo, Z,
qo] [go, Zo, qo]
[do, Zo, qo] 1 b [go, Z, q1] [a1, Zo, qo]
[go, Zo, z] [T b [go, Z, qo] [go, Zo, g1]
[go, Zo, qz] [Ib [go, Z, q1] [q, Zo, q1]
e The CFG for 6(qo, €, Zo) = (qo, €) is obtained by rule 2 [go, Zo, qo] (e
e  The CFG for 6(qo, b, Z) = (qo, ZZ) is obtained by rule 3 [qo, Z, qo] [1 b [qo, Z,
go] [go, Z, qo]
[do, Z, go] [V b [qo, Z, q1] [qz, Z, qo]
[do, Z, 1] [ b [qo, Z, qo] [qo, Z, a1
[0, Z, g2] T b [go, Z, q1] [a2, Z, q1]
e The CFG for 6(qO, a, Z) = (g1, Z) is obtained by rule 3 [qo, Z, qo] [J a [q1, Z, qo]
[do, Z, a1] [ a[qs, Z, qi]
e The CFG for 6(q1, b, Z) = (g1, €) is obtained by rule 2 [q1, Z, q1] [ b
e The CFG for 4(q1, a, Zo) = (qo, Zo) is obtained by rule 2 [qi, Zo, qo] [ a [qo, Zo,
qo]

[g1, Zo, q1] TJa[qo, Zo, q1]

UNIT-1V
Normal Forms for Context- Free Grammars: Eliminating useless symbols, Eliminating

€-Productions. Chomsky Normal form Greibach Normal form.
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Pumping Lemma for Context-Free Languages: Statement of pumping
lemma, Applications Closure Properties of Context-Free Languages: Closure
properties of CFL’s, Decision Properties of CFL's

Turing Machines: Introduction to Turing Machine, Formal Description,
Instantaneous description, The language of a Turing machine

SIMPLIFICATION OF CONTEXT-FREE GRAMMAR:

CFG can be simplified in the following three processes.
Removal of useless symbols
Removal of non-generating symbols
Removal of non-reachable symbols
Removal of unit productions

*Removal of null productions Removal of useless symbols Useless symbols
are of two types:

Non-generating symbols are those symbols which do not produce any string
of terminals. Remove those productions whose productions contain those
symbols.

Non-reachable symbols are those symbols which cannot be reached at any
time starting from the start symbol.

Dependency graph can be drawn to identify the symbols that are reachable. To
draw dependency graph all non-terminals are indicated as nodes for each
production A — x1, x2,. xn place an edge from A to xi where xi is non terminal.
The set of nodes that

have path from start node indicate the non-terminals that are reachable.

Ex:Eliminate useless symbols and productions from the following grammar S
— ABa|BC,A—aC|BCC,C—a,B—>bccD—->E E—dF—e

Ans:

Step 1: Eliminate non-generating symbols:

All variables are found to be generating as each of themderive a terminal.

Step 2: Elimination of non-reachable variables: Draw the dependency graph
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From the above graph, D,E and F are non-reachable from S. Hence
remove all the productions which contain non-reachable variables. Therefore the
simplified grammar is

S— ABa|BC,A—aC|BCC,C—a, B— bcc

Ex: Eliminate useless symbols in the following grammar G:S — BC | AB |
CA,A—aC—aB|b

Ans: Here B is not defined; hence it is non-generating symbol. C and A are
reachable and are derivingterminals. Hence, C and A are useful. The reduced
grammar isS — CA,A—3a,C—b.

The non-terminals A and C are reachable from S. Hence the simplified grammar is
S—-CA A—3aC—h

Ex: Eliminate useless symbols in the given G:S — aAa, A —» bBB,B — ab, C
—ab

Solution: Here all the variables are generating symbols. C is not reachable from
start symbol S. Hence remove it. So the reduced grammar isS — aAa, A — bBB,
B — ab,

Ex:Eliminate useless symbols in the following grammar G:S — aS|A|BC, A
—a, B — aa,

C—acCb

Ans: Here C is useless, as it is not deriving any string. B is not reachable. So the
reduced grammar isS — aS |A, A — a

Ex:Remove the useless symbols from the given CFGS [J ACS[1 BAC [1 CB
C 0 ACA [JaB JaC/b To find Non-Generating Symbols:

In the above grammar, C is a non-generating symbol since it does not
generate a string with terminals. Hence, eliminate the productions which contain
the symbol C. Therefore, SLIBA, Alla, Bl1b

To find Non-Reachable Symbols:
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The symbols which cannot be reached at any time starting from the start
symbol. There is no non-reachable symbol in the grammar. So, the minimized
form of the grammar by removing useless symbols is SCIBA, Alla, Bl1b.

REMOVAL OF UNIT PRODUCTIONS:

Production in the form non-terminal [J single non-terminal is called unit
production.

Ex: Remove the unit production from the following grammar. S [JAB, A [J
E B
nc,CobD,Dib,Ela

The productionsare A (1 E,B [ C,and C [1 D. From B [1 C, and C [J D we will
get BL1D Therefore, S [1 AB, A [IE, B [ D, D ->b, E [J a From ALJE and E[Ja,
we get AlJa

From BUID and Db we get B(1b Therefore, SCIAB, Alla, BIb,Dlb, E[Ja

In the above productions, D and E are non-Reachable variables. Hence eliminate
D and E.

Therefore, the simplified grammar is SCJAB, AlJa, Blb

REMOVAL OF NULL PRODUCTIONS
A production in the form NT (¢ is called null production.

Ife (null string) is in the language set generated from the grammar, then that null
production cannot be removed.

That is, if we get, S (e, then that null production cannot be removed from the
production rules.

Procedure to Remove Null Production
Step-1: Construct Vn, the set of all nullable variables

Step-2: For each production B — A, if A is a nullable variable, replace the
nullable variable A by ¢, and add, all possible combinations of strings on the
RHS of production.

Step-3: Do not add the production A — ¢

Ex: Remove the e- production from the following grammar. S [JaA, Al b/ ¢ A

CSE,NRCM
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Vn={A}

Consider SCJaA.

Replace A by € we get S(la Add S(]a to S(1aA

Therefore, the simplified grammar is SCaA/a, Allb

In the above grammar, no null productions, no unit productions, and no useless
symbols.

Hence the grammar is simplified

Ex: Eliminate the null production from the following grammar S— ABaC, A[1BC, B/ b/
e, COOD/ g, DId

Vi={AB,C}

Consider S/ /ABaC. Replace AorBorCorAB or AC orBC or ABC by ¢. Then we get
SCABaC/BaC/AaC/ABa/aC/Aa/Bala.

Similarly, Al 'BC/B/C, B b, CI'ID, DI'/d Eliminate Unit Productions, then we get
SC1ABaC/BaC/AaC/ABa/aC/Aa/Ba/a, A[1BC/d/b, Bl1b,

NORMAL FORM

For a grammar, the RHS of a production can be any string of terminals and
non- terminals

A grammar is said to be in normal form when every production of the grammar
has some septic form.

That means, instead of allowing any no of terminals and non-terminals on the
RHS of the production, we permit only specific members on the RHS of the
production.

Two types of normal forms: (a) CNF (Chomsky Normal Form) and
(b) GNF (Greibach Normal Form)

CNF: CHOMSKY NORMAL FORM

A CFG is said to be in CNF if all the productions of the grammar are in the
following form.

Non-terminal [J String of exactly two non-terminals
*Non-terminal [J Single terminal Ex: ALJBC, Bllb, Clic
PROCEDURE TO CONVERT CFG IN TO CNF:
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+ Eliminate null productions and unit productions. i.e., simplify the grammar
* Include productions of the form A — BC/a asitis.

. Eliminate strings of terminals on the right-hand side of production if they
exceed one as follows: Suppose we have the production S — ala2a3 where
al,a2,a3 are terminals then introduce non-terminal Cai for terminal ai asCal —
al, Ca2 — a2, Ca3 — a3

. To restrict the number of variables on the right-hand side, introduce new
variables and separate them as follows:

Suppose we have the production with n non-terminals as shown below with 5 non-
terminals

Y — X1 X2 X3 X4 X5
Add n-2 new productions using n-2 new non-terminals and modify the production
as in the following:

Y - X1R1R1—-X2R2R2 — X3R3

R3 — X4 X5 where the Ri are new non-terminals.

The language generated by the new CFG is the same as that generated by the
original CFG.

Ex: Convert the following grammar into CNF. S [1bA/aB, Al1bAA/aS/a, B
laBB/bS/a

Stepl: The Grammar is minimized.

Step2: The productions AlJa and B(Ja are in CNF. Hence leave the productions as
itis.

Step 3: The productions SCIbA, S [JaB, A [IbAA, A [JaS, B [1aBB, B [IbS are
not in CNF. So, we have to convert these into CNF.

Let us replace terminal ‘a’ by a non-terminal Ca and terminal ‘b’ by a non-
terminal Co.

Hence, two new productions Call a and Cb[] b will be added to the grammar

By replacing a and b by new non-terminals and including the two productions,
the modified grammar will be

S OCbA/CaB, A [1CbAA/CaS/a, B [1CaBB/CbS/a, Call a, ColJ b In the modified

grammar, all the productions are not in CNF.
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The productions A [JCbAA and B [JCaBB are not in CNF, because they

contain more than two non-terminals at the RHS.

Let us replace AA by a new non-terminal D and BB by another new non-terminal

E. Hence, two new productions D [JAA and E [0 BB will be added to the

grammar.
So, the new modified grammar will be S [JCbA/CaB
A [JCbD/CaS/a
B [1CaE/CaS/a
D 0O AA
E BB
CalJaCblb

Itisin CNF

Ex: Convert following CFG to CNF:
S— AB|aB

A—aab|e

B — bbA

Ex: Convert following CFG to CNF. S — bA | aB
A —bAA|aS|a
B—aBB|bS|b

Ex: Convert following CFG to CNF. S — ASB | ¢
A —aAS|a
B — SbS|A|bb

LEFT RECURSION AND LEFT FACTORING:

« Left Recursion: A context-free grammar is called left recursive if a non-terminal
‘A’ as a leftmost symbol on the right side of a production. Al[JAa

CSE,NRCM
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In other words, a grammar is left recursive if it has a non-terminal ‘A’ such that
there is a derivation.

A =>Aa for some string a

There are two types of left recursion

i) Direct Left Recursion il) Indirect Left Recursion
DIRECT LEFT RECURSION:

Let the grammar be ALl Aa/B, where a and  consists of terminal and/or non-
terminals but B does not start with A.

Elimination of Left Recursion:

For the production A [1 Ao/B, the equivalent grammar after removing the
left recursion is AL BA',  A'DoAl/e

In general, for a grammar in the form
Al Au/ Aaz2/ ...... /Aon /Pl B2/....... / Bn The equivalent productions
are

ADPAL /B2 AL/ /Bn AYADon At o2 A L. Jan Al e

Ex: Remove the left recursion from the following grammar.

ECE+T|T, TOT*F|F ,Fid|(E)

In the grammar there are two immediate left recursions E [JE + Tand T [OT * F. For E

[E + T, the equivalent productions are E OTE® and E'D) + TEYe For T OT * F,
the equivalent productions are T OFT?, THO *FTYe

The CFG after removing the left recursion becomes E => TE*

E'=>+TEYe T OFT'

T'O*FTYe F 0 id | (E)

INDIRECT LEFT RECURSION:

A grammar of the form Al [1 A2a/b, A2[JAlc/d is called indirect left recursion.

Convert indirect left recursion in to direct left recursion and then apply the elimination of
direct left recursion.
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Consider A2 (JAlc/d

Then A2[0A2ac/bc/d. it is in the direct left recursion. Eliminate Direct left recursion
A200bcA2t IdA Y, A thac A2t /e

LEFT FACTORING:

A production rule of the form A Cafl/ap2/. . ./opn is called left factoring.

After left factoring, the previous grammar is transformed into: A [ aAl, Al [J B1/p2/..
. /pn

Ex: Left Factor the following grammar. A (1abB | aB | cdg | cdeB | cdfB
The left factored grammar is ALl aA® /cdA2
Al 0bB/B A g/eB/fB

GREIBACH NORMAL FORM
« Agrammar is said to be in GNF if every production of the grammar is of the form

* Non-terminal [J (single terminal)(non-terminal)*i.e. terminal followed by
any combination of NTs including null.

Lemma I: Substitution Rule:
e LetGbeaCFG.

« If A JBaand B [1 bi/b2/. . . /bn belongs to the production rules (P) of G, then a
new grammar will A [J bia/b2a/. . . /bna

Lemma Il: Elimination of Left Recursion
» LetGbeaCFG.

o If A [0 Aai/Aaz/. . . [Aam/bi/b2/. . . /bn belongs to P of G, then equivalent
grammar is

A Ubi Alfb2 A .. IbeA" [ bafb2l. . . Ton A'DanA'az A, . . fam A" faa/aal. . . Jam
PROCESS FOR CONVERSION OF A CFG INTO GNF

« Step I: The given grammar is in CNF

« Step II: Rename the non-terminals as A1, Az ...... An with A1=S

« Step I11: we need productions must be in the form that the RHS of productions
must start with a terminal or with higher indexed variable.

For each production Ai [JAj a
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« ifi<j leave the production as it is.
 ifi=j then apply lemma2 (Elimination of Left Recursion)
« ifi>j then apply lemmal. (Apply Substitution Rule)
+Step 1V: For each production Ai [JAj a where i<j apply substitution rule. The
resulting productions of the modified grammar will come into GNF. Ex:Convert
the following grammar in to GNF. SCIAA/a, A[1SS/b

« Step I: There are no unit productions and no null production in the grammar. The
given grammar is in CNF.

« Step II: In the grammar, there are two non-terminals S and A. Rename the non-
terminals as Al and A2 respectively. The modified grammar will be Al
[A2A2/a, A2 [1A1ALl/b

Step I11: In the grammar, A2 (1 A1A1l is not in the form Ai JAja where i<j
Apply substitutionrule Therefore, A2 [1 A2A2A1/aAllb
On the above production apply Lemma II, A2[1aA1X/bX/aAl/b, XTTA2A1X/A2A1
The modified grammar Al [JA2A2/a, A2[1aA1X/bX/aAllb, X[TA2A1LX/A2A1
«Step 1V: apply substitution rule on Al [1A2A2/a Therefore, Alll
aA1XA2/bXA2/aA1A2/bA2/a
Apply substitution rule on X (JA2A1X/A2A1
Therefore, X1 aA1XALIX/bXALX/aALALX/bALX/ aA1XAl/bXAl/aAlAl/bAl
The modified grammar is
All] aA1XA2/bXA2/aAl1A2/bA2/a A2[1aA1X/bX/aAllb
X1 aALXALX/bXALX/aA1IAIX/bALX/ aA1XA1/bXA1/aA1A1/bALl The above
grammar is in GNF
Ex: Convert the following grammar in to GNF.
S— XA |BB
B—b|SBX—b

A—a
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Ex: Convertthe CFGto GNFS — AB A
A—aA|eg
B—DbB|e

CLOSURE PROPERTIES OF CONTEXT-FREE LANGUAGES

A set is closed (under an operation) if and only if the operation on two elements of
the set produces another element of the set. If an element outside the set is
produced, then the operation is not closed.

CFL are closed under Union.

If L1 and If L2 are two context free languages, their union L1 U L2 will also
be context free.

Ex: L1={am"c"|m>=0andn>=0%}and L2={a"b™c" |n>=0and m>=
0}LLu L2 ={abc™uam™™ | n>=0 m>= 0} is also context
free. L1 says number of a’s should be equal to number of b’s and L2 says number
of b’s should be equal to number of ¢’s. Their union says either of two conditions
to be true. So it is also context free language.

CFL are closed under Concatenation

If L1 and If L2 are two context free languages, their concatenation L1.L2
will also be context free.

Ex: L1 = { ab"| n >= 0 } and L2 = { c"d"| m >= 0
}L3=1L1.L2={a""c"d™ | m>=0and n>= 0} is also context free.

L1 says number of a’s should be equal to number of b’s and L2 says number of
c¢’s should be equal to number of d’s. Their concatenation says first number of a’s
should be equal to number of b’s, then number of ¢’s should be equal to number
of d’s. So, we can create a PDA which will first push for a’s, pop for b’s, push for
c¢’s then pop for d’s. So it can be accepted by pushdown automata, hence context
free.

CFL are closed under Kleen Closure

If L1 is context free, its Kleene closure L1* will also be context free.
For example, L1={a"n"|n>=0}

L1*={a"b" |n>=0 }*is also context free.
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» CFL are not closed under Intersection

Consider two languages L1= {a"™b""c", where n, I>= 0} and L2 == {a"b"c"**,
where n, k >= 0}.

Consider L=L1N L2
So, L =a™h™c" ¢ a"b"c™* = a"b"c", where n >= 0.
a'b"c" is a context sensitive language not a context free. As one instance is proved

not to be context free then we can decide that context free languages are not

closed under intersection.

CFL are not closed under Intersection and Complementation.

From the set theory, we can prove L1 C L2 = L1 UL2. (D’ Morgan’s Law)
If the union of the complements of L1 and L2 are closed, i.e., also context free,
then the LHS will also be context free. But we have proved that L1 C L2 is not
context free. We are getting a contradiction here. So, CFLs are not closed under

complementation.

PUMPING LEMMA FOR CFL

Let L be a CFL. Then, we can find a natural number n such that 1) Every z € L
where|z|>=n and z can be written as z = uvwxy, for some strings u,v,w,x,yi) | vx |
>=1 ii) | vwx | <= n and uv'wx'ye L forall i>=0

Note: Method to test a language is CFL or not.
« Step I: Assume that L is context free. Find a natural number such that | z | >=n.
» Step Il: So, we can write z = uvwxy for some strings u, v, w, X, Y.

« Step Ill: Find a suitable k such that uviwxiy is not in L. This is a contradiction,
and so L is not context free.

Ex: Using Pumping Lemma, Show that L = {a"PnCn where n >=1} is not CFL
The given language is L = {a"b"c" where n >=1} L={ab, aabbcc, aaabbbccc,....}
Let z=aabbcc=uvwxy

Where u=a,v=a,w=b,x=b,y=cc
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When i=0, uv'wx'y=uwy=abcc isnotin L, Therefore L is nota CFL

Ex: ST L={aP:P is a prime number} is not CFL

Ex: Prove that the language L = {a?/l 2 1} Is not context free.

APPLICATIONS OF CONTEXT-FREE GRAMMAR

The compiler is a program that takes a program written is the source language as
input and translates it into an equivalent program in the target language.

Syntax analysis in an important phase in the compiler design.

In this phase, mainly grammatical errors called syntax errors are checked.

The syntax analyzer (parser) checks whether a given source program satisfies
the rules implied by context-free grammar or not.

If it satisfies, the parser creates the parse tree of that program. Otherwise, the
parser gives the error messages

CFGs are used in speech recognition and also in processing spoken words.

Simplifying grammar: In the above grammar, first identify the non-terminals
that are not defined and eliminate the productions that refer to these productions.
Similarly, use the procedure of eliminating the useless symbols and useless
productions. Hence the complete grammar is as follows

S =[qo, Zo, qo]

[90, Zo, qo] = [qo, Z, q1] [q1, Zo, qo]

[qo, Zo, qo] =%

[do. Z, 1] = [qo, Z, a1] [a1, Z, 1] [qo, Z, q1] -3e[qs, Z, q1]
[a1, Z, q1] =

[91, Zo, o] =& [go, Zo, qo]
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TWO STACK PDA:
A two-stack PDA can be formally described as a 9-tuple  (Q, >, I, I'*, 8, qo, Z1
, 22, F)

e Q-finite number of states

e Y -input alphabet

e T —stackl symbols

o TI''—stack2 symbols
e & -transition function: Q x (Y U {&}) xI' x ' IQX X I'!)
e 0(Qo,a, Z1, Z2) =(q1,aZ1, Z2)
e Qo initial state (go € Q)
e Ziis the initial stackl top symbol (Z1€T)
e Z2is the initial stack2 top symbol (Z2€ ')
e Fisasetof accepting states (F € Q)
Ex: Design a two stack PDA which accepts L={a"b"c": n>=1}. Transition

Diagram

c,a,b/e, €
a,21,22/aZ1,22
a,a,Z2/aa,Z2 b,a,Z2/a,bZ2 b,a,b/a,bb
Transition Functions:

8(qo, &, Z1, Z2) = (qo, a Z1, Z2)
6(qo, a, a, Z2) = (qo, aa, Z2)
6(qo, b, a, Z2) = (qo, a, b Z2)
6(qo, b, a, b) = (qo, a, bb)
o(qo, €, Z1, Z2) = (2, Z1, Z2)
6(qo, ¢, a, b) =(q1, &, €)

6(q1, ¢, a,b) =(qy, &, €)

o(q, €, Z1, Z2) = (q2, Z1, Z2)
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Ex: Design a two-stack PDA for the language L = {a"b"a"b"| n € N}.

d(qo, a, z1,z2) = (90, a,z2)
d(qo, a, a, z2) = (q0, aa, z2)
d(qo, &,z1,22) = (94,21,22)
d(qo, b, a,z2) = (g1, a, b)
d(gl, b, a, b) = (gl, a, bb)
d(gl, a,a, b) =(q2, &, b)
d(g2, a,a, b) = (g2, &, b)
d(g2, b, z1, b) = (g3, z1, ¢)
d(g3, b, z1, b) = (g3, z1, ¢)
d(g3, €, z1,22) = (g4,z1,22)

PART-A

What are the limitations of FA

Draw the block diagram of PDA

Define PDA

Define instantaneous description of PDA.

PART-B

Design a PDA which accepts the language L={a"0"/n>=1}
Design a PDA which accepts L={WWR|W is in (a+b)*}
Convert the following CFG in to PDA Si1aAA, A 1aS/bS/a

Give the equivalent CFG for the following PDA M = {{qo, q: }.{a, b}, {Z,
Zo}, 6, qo, Zo} where & is defined by 8(qo, b, Zo) = (qo, ZZo) d(qo,
g, Z0) = (qo, €)d(qo, b, Z) = (qo, Z2) d(qo, a, Z) = (q1, Z) 6(qu, b,
Z) = (g1, €)d(q1, a, Zo) = (qo, Zo)

Explain two-Stack PDA and construct two-Stack PDA L={a"b"c": n>=1}
Write instantaneous description for the string ababcbcb

Assignment

Design a PDA to accept the language of balanced parentheses (where the number
of opening and closing parentheses is greater than 0).

Design a PDA to accept the language L =a™b"c™ ", wherem>=nand m,n>0
Construct a PDA for the following L = {a"cbh®/n > 1} over alphabet {a, b, c}.
Construct a PDA that accepts the language generated by the following grammar.

S — aB, B — bA/b, A — aB. Show an ID for the string abab for the PDA
generated.

Design a PDAwhich accepts L={0"1"0": m,n>=1}
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Unit-5: Turing Machine

Limitations of Finite State Machine/Finite Automata:
e Can remember only current symbol
e Cannot remember previous long sequence of input
Limitations of Pushdown Automata:

e It uses stack to remember any long input sequence

e Accepts a larger class of languages than that of FA, Computation power is limited

e To overcome the above limitations, Alan Turing has proposed a model called a
Turing Machine(TM) with a two-way infinite tape. The tape is divided into cells,
each of which can hold only one symbol. The input of the machine is a string
w=wlw2w...wn initially written on the left most portion of the tape, followed by

an infinite sequence of blanks B.

e The machine is able to move a read/write head left and right over the tape as it

performs computation. It can read and write symbols on the tape as it pleases.

B B W W W B
1 2 n

BLOCK DIAGRAM OF TURING MACHINE
-

]

Finite ‘

Control
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It is a simple mathematical model of a general purpose computer. It is capable of
performing any calculation which can be performed by any computing machine.

Hence this model is popularly known as “Turing Machine”.

FEATURES OF TM:
It has external memory which remembers arbitrarily long sequence of input.
It has unlimited memory capability.

The model has a facility by which the input at left or right on the tape can be read
easily.

The machine can produce certain output based on its input. In this machine there is
no distinction between input and output symbols.

The TM can be thought of as a finite state automata connected to a read or write
head,

It has one tape which is divided into a number of cells. Each cell can store only
one symbol.

The read or write head can examine one cell at a time.

In one move the machine examine the present symbol under the head on the tape
and present state of an automaton to determine:

A new symbol should be written on the tape in the cell under the head

The head moves one cell either left(L) or right(R), The next state of the automata.
Whether to halt or not.

DEF: TURING MACHINE:

A TM is expressed as a 7-tuple (Q, T, B,Y., 8, q0, F) where:

Q-finite set of states

T -tape alphabet (symbols which can be written on Tape)

Be T -blank symbol (every cell is filled with B except input alphabet initially)
> -the input alphabet (symbols which are part of input alphabet)
6:QxT—QxTx{L,R} transition function which maps.

g0 -the initial state

F -the set of final states.
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INSTANTANEOUS DESCRIPTION OF TM

ID of TM is (1,9,r) where

I- tape contents left to the head of TM

r- tape contents right to the head of TM including the symbol under head and

g- current state

Ex:
[a[b]alb]b —> [ab]b]B]D
q q
Where I=ab I=abb
r=abb r=bb
Current state=q current state:ql

Moves: At any given time the move of TM depends on i) Current state and ii)
input symbol i.e., (q,a). the o/p of move would be (g1, b, L) Where ql = next
state, b= symbol to be replaced by a and L= move left one symbol.

Ex: d(qi,a)= ( qj,b,L) i.e., in the state qi on receiving a symbol a , then change to a
new state qj , replace a by b and the move left.

Acceptance or Rejection by TM:

Let us assume the final Configuration of TM is (u,q,w)
Accept: Ifqe F

Reject: If g € F and /or next moves are not defined/loops
If either accept or reject then TM halts(Stops)

TM as Language Accepter:

M accepts w iff the execution of M on w terminating and ends in the accepting
state

M rejects w iff the execution of M on w terminating and ends in the non accepting
state

M does not accept w iff M rejects or M loops on w,
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Ex: Write IDs for the following TM

8( qova): (qo’va)’ 8( qovb): (qo’va)’ 8( quB): (ql’BvL)! 5( qlvb): (qliY!L) ! 8(
g1,X)= (q1,X,L), &(
g1,B)=(g2,B,H) and string w=abba.

Current state=q0

Current state=q0

Current state= g0

Current state=q0

Current state= g0

Current state= g1

Current state= g1
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Current state= gl

Current state= g1

Current state= g1
3(g1,B)=(g2,B,H)
REPRESENTATION OF TM:

e Representation of TM: A TM can be represented by means of Transition Table
and Transition diagram.

e Representation of TM using Transition Table: The Transition table for the
above TM is as given below.

Representation of TM using Transition Diagram: The states are represented by
vertices and transitions are represented by directed edges. The edges are labeled
in the form of (a ,B, y) or a [1B, y where a(€ T) is the current input symbol, B(€ T)
is the symbol to be replaced with o and y={L,R}. The TM for the above example

q0 _Dl\

q >

(b,b,R) (a,XL)
(b,Y,L)
(X,X,L)

is as

Ex: Design a TM to recognize all strings consisting of even no of a’s defined

over {a} Transition Diagram

CSE,NRCM Page 105




Formal Languages and Automata Theory (23CS602)

Transition Table

(a,a,R)

(a,a,R)

A4

@

8 a B
qo (@aR) (92,B,H)
gL (@aR) -
92 - -

Ex: Design a TM for finding 1’s Complement of a given binary number

Transition Diagram

(0,1,R)
(1,0,R)

[

) @ (B,B,H)
o 0 1 B
q (qo, (Qo, (o,
0 1,R) 0,R) B,H
)
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Ex: Design a TM for finding 2°’s Complement of a given binary number

Transition Diagram

Transition Table

d 0 1 B
o (@0,0R) (@OLR) (@LB.L)
ql (q1,0,L) (2,1,L) --
g2 (g2,1,L) (92,0,L) (g3,B,H)
03 . - -~

Ex: Construct a TM for language consisting of strings having any no of b’s
and even no of a’s defined over {a,b}.

Design a TM to accept strings formed with 0 and 1 and having substring 000
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0/0,R
1R 111 R

—q, | (q,,0,R) (q, 1, R) —
4, (q_?’ 0,R) (q[]ﬂ L, R) -==
9, | (@ 0.R) | (g, 1.R)

q, | (@,0,R) | (q,,1,R) | (q,,B,R)
q,

Ex: Design TM to accept strings belonging to the language (0+1)"

Transition Diagram
11,R
0/0,R

A\
wj B/B,L
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Transition Table

a=0
—q, | (9, 0,R)
q | -

a=B
(q;p B‘- L]

a=1

(9,5 0, R)

Ex: Design a TM to accept strings formed on {0,1} and ending with 000

Transition Diagram
171,R

0/0,R

0/0,R 0/0.R
q, a, Qﬁ
171.R -
— 7R / /
~—___ 1R
Transition Table:
0 1 B
_}q[] (q|5 {]5 R} (q[]s 1-. R} ——
q[ (q:: 0? R) (_q[], l._ R) ——
q, | (9,,0.R) | (q,, 1, R)
q, | (9,0,R) | (q,, LR) | (q,,B,R)
q,\ — —— —
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Ex: Design a TM for accepting strings of the language L={ww": w € (0+1)" }

Transition Diagram

MR
0/0R

—=q, | (,B,R) | (q,B,R) | (q,,B,R)

ql (ql" U'- R) (q|'-' l‘- R] (qg'.- B'- L]

q (9., B,L) i
4; {ql" 0, R) {qp 1, R] {q_,r, B, L]
q-_1 (qjﬂ B'.* L] === ——

da = ="
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Ex: Design a TM for palindrome strings over {a,b} Transition Diagram

b/b,R
a/a,R

q - (q:,B,L) | (q,,B,R)
q | (9.aR) | (q;b,R) | (q.B.L)
q, | (q5BL) - (q,,B,R)
q | (@9aL) | (qub L) | (q,BR)
q, ) ) i
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Ex: Design a TM which accepts L={a"b": n>=1}

a/la,R a/a,L
yiy,R yly,L
/ \ alxR % bly,L
G = q, 4,
N N/
yly.R
X/X,R )
qs\ B/BR }@
N
VYR
a b X Y B
—=q, | (4% R) = (9 ¥: R)
ql l:q]: a'.- R] (qga }'5 L] (q|'-' }r'-' R‘)
q [qgs a, L] - (q[]s X, R) (qg‘- Ys L:'
q] - (q'l ¥ R) (q\ B'- R]
s -

Ex:Design a TM which accepts L={a"b"c": n>=1}
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a/a,L
alfa,R bfb,R ‘I;r):;)lll:
yly.R ZzR 7zl
B N /7 \ / A\
,./ ] \\, a/x,R / \'\ bly,R // \K c/z,L // \K
— 9 |—> —H l—w 9 |
N \ / \ / o/
S~
yly.R T WxR
7~ N\ zzR / N BBR /)
O ds I'—ﬂ A )
e A N A N4
S yliyR AN /zfz,R
a b c X Y z B
_>q[] (qp X, R) T - - (q.i.‘- Y, R) - ==
q, (@,a,R) | (q,¥%R) (9. R)
9, (q,,b,R) | (g2, L) (9,-z. R)
q; (9;,a,L) | (g, b, L) (Qp%-R) | (qu.y. L) | (9,2 L)
q4 . - I == (q4_'. y's R) (qi': Z, R) -
q4 =TT - i - — (qi': Z': R) (q__". B'J R)
qs - - - - - -

TM AS INTEGER FUNCTION:

A Turing machine M computes a function f if, when given input w in the domain
of f, the machine halts in its accept state with f(w) written (leftmost) on the tape.
To use TM as a computational machine, it is required to place the integer numbers
as Om.

Suppose it is required to add two numbers; that is, f(m, n) = m + n, then
the numbers m and n are to be placed on the tape as 0m10n where 1 is a separator
for the numbers m and n. Once processing is completed and the TM halts, the tape
would have the contents as O(m+n), which is the required result of the
computation.
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Ex: Design a TM to add two numbers a and b.

Sol: Let the numbers be 2 and 3. The addition of these numbers using simple logic
is explained. The numbers are placed as B0?10°B.

After processing, the tape content would be BO°B. The simple logic that
can be used is: to replace the occurrence of 0 by B and move to right and replace
1t0 0, so that it is in required form as BO°B.

0/0,R
1/0,R

0 1 B

—q, | (q,;B,R) _— -
q, | (q:0.R) | (q;;0,R) | (q,,B,R)

Qs --- --- ---

Ex: Design TM for Multiplication of two integers
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0/0R 0/0,L
0/0R 11,R 11,L

0 1 X B
—q, (q,, B,R) (9, B.R)
q, (9,0, R) (q, 1,R)
q, (9. %, R) (9, 1,L) —
% (a4, 0, R) | (q, LR) (q, 0, L)
q, (q,, 0.L) (q. 1.L) (q, X, R)
qs (95, 0,L) (9. 1, L) (9 0,L) (a9, B, R)
9 (95, B,R) | (q,,B,R)
i -

Ex: Design TM for f(m,n)=m-n, m>=n

0/0,R 111.R

0/B,R
1/B,R
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0 1 X B
q[] (qp B-: R) l:qi" B., R:I —_— —_—
qJ {qp 0, R} (q:., ]: R) _— o

q_t- (q_';'.- 11 L) (q_:'! ]: R) =TT (q_i_s B'.- ]—']
q (q,:0.L) (q,. L) (9, B,R)
q4 (q._p 01 L) (q_11 B'.- L] T (q__\-. 01 R)

qj (qj'- B-: R) (q_,\'! B‘- R] (qj'.' B-: R) -
q (q.x. L) (q..x, L) (q.. x, L) (9.. B,R)

9a T T

CONVERSION OF REGULAR EXPRESSION TO TM
Stepl: Convert the RE to an equivalent Automaton without epsilon transitions

Step2: Change both the +-initial and final states of the Automata to an
intermediate state

Step3: insert a new initial state with a transition (B,B,R) to the Automata’s initial
state

Step4: convert the transitions with label a to (a,a,R)

Step5: insert a new final state with a transition (B,B,R) from Automata’s final
state to

the new final state.

Ex: Construct a TM for the RE (a+b) (aa+bb) (a+b)”
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UNIT-V
Types of Turing machine: Turing machines and halting

Undecidability: Undecidability, A Language that is Not Recursively
Enumerable, An Undecidable Problem That is RE, Undecidable Problems
about Turing Machines, Recursive languages, Properties of recursive
languages, Post's Correspondence Problem, Modified Post Correspondence
problem, Other Undecidable Problems, Counter machines.

VARIATIONS OF THE TM:
e Multi Tape Turing Machine:

e Multi-tape Turing Machines have multiple tapes where each tape is accessed with
a separate head. Each head can move independently of the other heads. Initially
the input is on tape 1 and others are blank. At first, the first tape is occupied by
the input and the other tapes are kept blank. Next, the machine reads consecutive
symbols under its heads and the TM prints a symbol on each tape and moves its

heads.

* Depending on the present state and i/p symbol scanned by each of the head, the

TM can Change its state.

e Write a new symbol on the respective cell of the respective tape from where the

i/ps were scanned, Move the head one left/right.

Def: A Multi-tape Turing machine can be formally described as a 7-tuple (Q, T,
>, 6, qo,B, F) where

Q is a finite set of states

T is the tape alphabet

> is the input alphabet

8: QXT*OQXT*X{L,R} is a transition function

qo is the initial state
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B is a blank symbol

F is the set of final states

Ex: Design a Multi tape TM for checking whether a binary string is a palindrome or not
Sol: Consider a TM with two tapes. The i/p is written on the first tape.

The machine works by the following process:

Copy the i/p from the first tape to the second tape by traversing the first tape from
left to right.

Traverse from the first tape again from right to left and point the head to the first

symbol of i/p on tape 1.

Moves the two heads pointing on the two tapes in opposite directions checking

that the two symbols are identical and erasing the copy in tape2 at the same time.

T,:0/0,R T,:0/0,L T,:0/0, R
1° !
T,:B/O,R T,:BB, _ T,:0/B,L
T,:1/1,R T,:111,L
T,:B/M, R T,:BMB, _
qo > q‘l
T,:BB, L =/ T.eBR
Tz:BB=— T,:BB, L

Ex: Design a multi-tape TM for L=a"b"c"
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:afa, R

T1
T,:bb, R T,:ck, R T,:BB T:B/B,H
T : B.I'III f R 1. ! 1:C ’ 1 1 — 9
T:; B;aB T,:BB, _ T,. BB, T, aB, L T,: a.r’a,**
T. BIB, - T,:BMb, R T..BB, T,:b/B, L T,: B/B,
T T:BB, _ j T.:Blc, R 2 T,: c/B, L T,:BB*
Yy » 9 » q

P 1 > 2 P
TibbR T..ck, R \_/ T.mB,_
T,:B/B, _ T..BB, T, B/B, L T,.
T,:Bb, R T.BB, _ T,:B/B, L T,.
T,:B/B, T..Be, R T.: BB, L T,: B/B. H
T,:B/B, H
*If any one or two of T,, T., and T, get

2! 3

B but the remaining head/s get ‘a’, 'b’,
or 'c’ then it is a reject

e Multi-head Turing Machine:

A multi-head Turing machine contains two or more heads to read the

symbols on the same tape. In one step all the heads sense the scanned symbols
and move or write independently.

Multi-head Turing machine can be simulated by single head Turing machine.

Control Unit
Multihead
™
2 al| b c d e f g |h

e Design a multi-head TM for checking whether a binary string is a palindrome or
not.

e Sol: Consider a TM with two heads. The heads are pointing to the two ends of the

string on the tape. Both the heads traverse the string in the opposite direction. The
headl has the priority over head2.
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e If both of the heads gets the same symbols, then it traverses the next input right or
left by replacing the present symbol by B.

e If both heads gets B, then halt and declare the string as a palindrome.

H,:0/B, R
H,: 0/B, L H.: 0/0
H,: 1A,
H,.1/B,R ? -
H,.1/B, L 17
1 1 —

TWO-WAY INFINITE TAPE TURING MACHINE
e In general in a TM, there is a left boundary. If the head crosses that boundary and
wants to go left, then the situation is called a crash condition. But the head may

traverse the right side up to infinity. In this sense, the i/p tape of the general TM
can be treated as a one-way infinite tape.

e A TM where there is infinite number of sequences of blank on both sides of the
tape is called a two-way infinite tape TM. A typical diagram of the i/p tape of a
two-way infinite TM is:

- +- - B B a a b b B B - -

MULTI-DIMENSIONAL (K=2) TAPE TURING MACHINE

e It has multi-dimensional tape where head can move any direction that is left,
right, up or down.
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e Multi-dimensional tape Turing machine can be simulated by one-dimensional

Turing machine.

e The i/p tape of 1-D TM is extended to infinite in both sides, but in one direction.
If the i/p tape can be extended infinitely in more than one dimension, then the TM

is called a multi-dimensional TM.

. In general case, consider k=2, which means that the i/p tape is extended to
infinitely in right and down directions. For this case, the read/write head can

move in the left, right, up and down directions.

e The transition function for a K-dimensional TM is 8:QX> [1QXTX{L,R,U,D,H}
where L=Left, R-Right, U-Up and D-Down.

L «—»HR

Finite
Control

NON-DETERMINISTIC TURING MACHINE

A non-deterministic Turing machine has a single, one way infinite tape.For a
given state and input symbol has at least one choice to move (finite number of
choices for the next move), each choice several choices of path that it might
follow for a given input string.A non- deterministic Turing machine is equivalent
to deterministic Turing machine

Def: A non-Deterministic TM is expressed as a 7-tuple (Q, T, B,>, 9, 90, F)
where:

Q-finite set of states
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T -tape alphabet (symbols which can be written on Tape)

Be T -blank symbol (every cell is filled with B except input alphabet initially)
> -the input alphabet (symbols which are part of input alphabet)

8:QxT— 2% T x {L,R} transition function which maps.

go0 -the initial state

F -the set of final states.

Ex: Construct a TM over {a,b} which contains a substring abb.

Ex: Design a TM for 0"1™, where m,n>=0 and n may not be equal to m

Enumerator: It is a type of TM which is attached a printer. It has a work tape and
an o/p tape. The work tape is a write only once tape. At each step, the machine

chooses a symbol to write from the output alphabet on the output tape.

After writing a symbol on the output tape, the head placed on the output
moves right by one position. The enumerator has a special state, say qp , entering
which the output tape is erased and the tape head moves to the leftmost position
and finally the string is printed. A string w is printed as o/p by the enumerator if

the o/p tape contains w at the time the machine enters in to gp.

The transition function of enumerator is 6: QXY XTHQXY X{L,R}XTX{L,R}

UNIVERSAL TM:

e A universal Turing machine (UTM) is a Turing machine that simulates an
arbitrary Turing machine on arbitrary input. The universal machine essentially
achieves this by reading both the description of the machine to be simulated as

well as the input to that machine from its own tape.

e Todesign UTM, add the following to the TM:

e Increase the no of read-write heads (like multiple heads TM)
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Increase the no of input tapes (multiple tape TM)
Increase the dimension of moving the read-write head (K-Dimensional TM)
Add special purpose memory like stack.

A UTM,Mu is an automaton that, given as input the description of any TM
and a string w, can simulate the computation of M for input w. To construct such
an Mu we first choose a standard way of describing TMs.

We may, without loss of generality, assume that M=(Q, {0,1}, {0,1,B}, 3, qo,B,qf)
where gf is a single final state. The alphabet {0,1,B}€ T are represented as a1,az,
and as. The direction left and right are represented as D1 and D2 respectively. The
transitions of TM are encoded in a special binary representation where each
symbol is separated by 1.

Ex: if there is a transition d(qi, aj)= (gk, a,Dm) then the binary representation for
the transition is as given as 0'10'10%10'10™ .

The binary code for the Turing machine is M which has transitions ti, t2, ts,............ tn is
represented as 111t111t211t311............... 11tn111.

Note: The transitions need not be in any particular order.

If a string has to be verified then the problem is represented as a tuple <M,w>
where M is the definition of TM and w is the input string.

Ex: Let M=({q1,02,93}, {0,1}, {0.1.B}, 98, q1, B,{g2}) have moves defined as &(qt,
1)= (a3,
0,R), 8(qgs3, 0)= (qz, 1,R), d(q3, 1)= (g2, O,R), d(q3, B)= (g3, 1,L).

Give the problem representation for the string w=1011

Sol: Let binary representation for states{q1,02,g3}be {0,00,000}, alphabet {0,1,B}
be

{0,00,000} and direction {R,L} be {0,00}. The transitions are represented as
follows:

Transition Binary
Representation

d(qy, 1)= (gs, 010010001010

0O,R)

d(gq3, 0)= (qu, 000101010010

1,R)

d(q3, 1)= (g, 0001001001010

0,R)
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(a3, B)= (qp, 00010001000100100
1,L)

Control Unit of M,

]]]jI'/ \‘IIIII

1. Description of M 3. Internal States of M

2. Tape Contents of M

The problem instance <M,1011> is represented as 111 010010001010 11
000101

010010

11 0001001001010 11 00010001000100100 111 1011

For any input M and w, Tape 1 will keep an encoded definition of M, Tape 2 will
contain the tape contents of M and Tape 3, the internal state of M. Mu looks
first

at the contents of Tapes 2 and 3 to determine the configuration of M. The behavior

of the M is as follows.
1. Check the format of Tape 1 for the validations of the TM model.
No two transitions should begin with Oi10j1 for the same i and j.

Check that if 0'10'10*10'10™ represents a transition, then 1 < j< 3,1 <1< 3,
andl<m<3.

2. Initialize Tape 2 to contain w. Initialize Tape 3 to hold a single O representing
initial state ql. For all the tapes, the tape heads are positioned at the left end and
these symbols are marked to identify the starting position.

3. When Tape 3 holds OO, it is said to reach the final state, and the machine can
halt.
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e 4. Letat any given time as be the symbol currently scanned by tape head 2 and let
O', the contents of Tape 3 (which indicates state). Scan Tape 1 from the left end to

the second 111 looking for a substring beginning with 110'10'1.
e if no such string is found, then halt and reject.

. if found, then let the suffix be 0*10'10™11. Put O on Tape 3, print a on

the tape cell scanned by head 2 and move the head in direction Dm.

e ltisclear that Mu accepts<M, w> if and only if M accepts w. It is also true that if
M runs forever on w, Mu runs forever on <M, w> and if M halts on w without
accepting, Mu also halts on w without accepting.

RECURSIVE AND RECURSIVELY ENUMERABLE LANGUAGES:

e There are three possible outcomes of executing a TM over a given input. The TM

may halt and accept the input Halt and Reject the input or Never Halt.

* Recursive Language: A language is recursive if there exists a TM that accepts
every string of the language and rejects every string (over the same alphabet) that

is not in the language.
« Note: If a language L is recursive, then its complement L* must also be recursive.

* Recursively Enumerable Language: A language is recursively enumerable if
there exists a TM that accepts every string of the language and does not accept the
strings that are not in the language (i.e., strings may be rejected or may cause the

TM to go into an infinite loop).

e Note: Every recursive language is also recursively enumerable but the converse

need not be true.

Recursively enumerable
languages

Recursive languages
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Closure Properties of Recursive and Recursively enumerable languages

e Union: If L1 and If L2 are two recursive languages, their union L1U L2 will also
be recursive because if TM halts for L1 and halts for L2, it will also halt for
LluL2.

e Concatenation: If L1 and If L2 are two recursive languages, their concatenation

L1.L2 will also be recursive.
e Ex:L1={a"0"c"|n>=0}
e L2={d"e™f"|m>=0}
e L3=L1.L2={a"b"c"d"e™™ :m>=0 and n>=0} is also recursive.

e Kleene Closure: If L1is recursive, its kleene closure L1* will also be recursive.

For Example: L1= {a"b"c"|n>=0} L1"= ({a"b"c"|n>=0} ) is also recursive

e Intersection and complement: If L1 and If L2 are two recursive languages, their
intersection L1 N L2 will also be recursive. Similarly, complement of recursive

language L1 which is Y *-L1, will also be recursive.

e The complement of a recursive language is recursive.

Linear Bounded Automata (LBA)

e ANDTMi is called Linear Bound Automata (LBA) if

. Its input alphabet includes two special symbols[ and ] as left and right

end markers .

. It has no moves beyond these end markers. i.e., no left move from [

and no right move from ]. It never changes the symbols [ and ].

End End ‘
Left End Marker Right End Marker
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e Def: A LBA is defined using 8-tuples as M=( Q, X, T, 6,qo,[,].F)

e Where Q, X, T, 8,qoand ,F are same as for NDTM, [ and ] are left and right end
markers.

e Ex: Design LBA for L={a"b"c": n>=1}

INTRODUCTION TO UNDECIDABILITY

e In the theory of computation, we often come across such problems that are
answered either 'yes' or 'no’. The class of problems which can be answered as 'yes'
are called solvable or decidable. Otherwise, the class of problems is said to be

unsolvable or undecidable.

e Decidable: A decision problem that can be solved by an algorithm is called
decidable. All the languages recognized by TM are decidable.

e Ex: Given two numbers x and y, does x evenly divides y?

e Decidable: A decision problem A is called decidable or effectively solvable if A

is a recursive set.
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e Partially decidable: A problem is called partially decidable/semi decidable/
solvable/ provable if A is a recursively enumerable set.
e Undecidable: Partially decidable problems and any other problems that are not

decidable are called undecidable.

e Undecidability of a problem means that there is no particular algorithm that can
determine whether a given problem has a solution or not.

e Post Correspondence Problem (PCP): It is an undecidable decision problem.

Let us define the PCP.

* "The Post's correspondence problem consists of two lists of strings that are of
equal length over the input. The two lists are A = wi, w2, Wz, .., Wn and B = X1, X,

X3,
....xn then there exists a non-empty set of integers i1, i2, i3,............... , in n>=1 such
that, wa,

W2, W3, .... Wn = X1, X2, X3, ... Xn'"

e To solve the post correspondence problem we try all the combinations of iy, i2, i3, ...............
in to find the wi = xi then we say that PCP has a solution and is decidable otherwise
PCP is undecidable.

* Consider the following sequence and find whether it has a solution (decidable) or

not.
i ListA ListB
1 1 111
2 10111 10
3 10 0
Sol:

e |f we take 3, first character in A is 1 and first character in B is 0. So we will not
get same strings.

e |If we take 1 then A starts with 1 and B also starts with 1, but for the next two
characters in A, there is no matching sequence.

e So we starts with 2. i.e., i=2 Therefore
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[ 2
Wi 10111
Xi 10

e Length of first string >second string

e Next consider B which starts with 1. We have 1 and 2. If we consider 2 next

symbol is 0 and does not match. Hence, consider 1.

i 2 1 String
Wi 10111 1 101111
Xi 10 111 10111
« Still Length of first string >second string. Again choose 1
i 2 1 1 String
W 101 1 1 101111
i 11 1
X 10 1 1 101111
i 1 1 11
1 1
e Length of first string <second string. Consider 3
i 2 1 1 3 Strin
g
wW 1 1 1 1 1011
i 0 0 1111
1 0
1
1
X 1 1 1 0 1011
i 0 1 1 1111
1 1 0

e Length of first string = second string, hence stop the procedure and declare the
sequence 2113 as a solution. Therefore, it is decidable.

MPCP: MODIFIED VERSION OF PCP:

e MPCP is decidable <==> PCP is decidable.
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In MPCP, there is the additional requirement on a solution that the first pair on the
list X and Y must be the first pair in the solution.

More formally, an instance of MPCP is two lists
X=wlw2,w3,...wk and Y=x1,x2,x3,. .......... xk

and a solution is a list of 0 or more integers i1,i2,i3,. ip such that
wl,wil,wi2,..wip=x1,xil,xi2,. xip.

The difference between the MPCP and PCP is that in the MPCP, a solution
required to start with the first string on each list.

If we have a problem instance represented in MPCP then it can be reduced to PCP.
If there is a solution for PCP instance then there exists a solution for MPCP
instance.

Procedure to convert MPCP to PCP or Reduction of MPCP to PCP:
Let the list G and H be the given instance of MPCP
Let X be the smallest alphabet containing all the symbols in the list G and H.

Consider two special symbols {6, $} not present in X and find two new lists X
from G
and Y from H using the following rules.

xi of list X is obtained from gi by inserting $ symbol after each character of gi.

yi of list Y is obtained from hi by inserting $ symbol before each character of hi.

Create new words as follows. xo=$g1, yo=h1, Xk+1= 0, yk+1=$6.

Consider the following MPCP instance and find whether it has a solution.

[ gi hi

1 100 1

2 0 100
3 1 00

CSE,NRCM

Sol: Total strings in PCP is 3 where as in MPCP total strings is 5(0" and 4™). 1
This problem can be converted to MPCP by applying the above procedure

Remaining process is same as PCP. In PCP first string is not fixed. We can start

with any arbitrary sequence where as in MPCP we need to start with first string.
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i Xi yi
0 $1$0$0$ $1
1 1$0$0$ $1
2 0% $1$0$0
3 1% $0$0
4 0 $0
i Xi yi
0 $1$0$0% $1
1 1$0$0$ $1
2 0% $1$0$0
3 1$ $0%0
4 0 $0
Step 1:
Solution 0
sequence
Xi $1$0$0%
yi $1
Step 2: identify string in yi starts with 0
Solution 0 3
sequence
Xi $1$0350% 1$
yi $1 $0%0
Step 3: identify string in yi starts with 1(i.e., 2 or 1). Select 2
Solution 0 3 2
sequenc
e
Xi $1$0$0 1% 0%
$
yi $1 $0$ $150%
0 0
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Step 4: Identify string in xi starts with O(i.e., 2 ). Select 2

Solut 0 3 2 2

ion

seque

nce

Xi $13$0 1 0% 0%

$0% $

yi $1 $ $1% $1%
0 030 03$0
$
0

i Xi yi

0 $1$0$0% $1

1 1$0$0% $1

2 0% $1$0$0

3 1% $0$0

4 0 $0

Step 5: identify string in xi starts with 1(i.e., 1 or 3). Select 1

Step 6: identify string in xi starts with 1(i.e., 1 or 3). Select 1

String xi and yi are not matching. Hence select 3 instead of 1

CSE,NRCM Page 132




Formal Languages and Automata Theory (23CS602)

i Xi yi

0 $130$0$ $1

1 1$0$0$ $1

2 0$ $1$0$0
3 1$ $03$0

4 0 $0

Step 7: identify string in xi starts with 0(i.e., 2). Select 2

Step 8: identify string in xi starts with O(i.e., 2). Select 2

Itis in the loop. Hence select 1 in step 3

Solution 0 3 1
sequence
Xi $1$0$0% 1$ 1$0$0$
yi $1 $0$0 $1
i Xi yi
0 $1$0$0% $1
1 1$0$0$ $1
2 0% $1$0$0
3 1$ $0$0
4 0 $6
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Step 9: identify string in yi starts with 1(i.e., 1). Select 1

Solution 0 3 1 1
sequence
Xi $ 1 1% 13
1 $ 0% 0%
$ 0% 0%
0
$
0
$
yi $ $ $1 $1
1 0
$
0

Step 10: identify string in yi starts with 0(i.e., 3). Select 3

Solution 0 3 1 1 3
sequenc
e
Xi $ 1 1 1 1
1 $ $ $ $
$ 0 0
0 $ $
$ 0 0
0 $ $
$
yi $ $ $ $ $
1 0 1 1 0
$ $
0 0

Step 11: identify string in yi starts with 1(i.e., 2). Select 2

i Xi yi

0 $1$0$0$ $1

1 1$0$0$ $1

2 0$ $1$0%$0
3 1$ $0$0

4 0 $6
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Step 12: identify string in yi starts with 1(i.e., 2 or 1).

Select 2
Solution 3 1 1 3 2 2
sequence
Xi 1 1 1 1 0 0
$ $ $ $ $ $
0 0
$ $
0 0
$ $
Vi $ $ $ $ $ $
0 1 1 0 1 1
$ $ $ $
0 0 0 0
$ $
0 0
Step 13: Both are same. Then select 4
Soluti 3 1 1 3 2 2 4
on
sequen
ce
Xi 1 1 1 1 0 0 0
$ $ $ $ $ $
0 0
$ $
0 0
$ $
i $ $ $ $ $ $ $
0 1 1 0 1 1 0
$ $ $ $
0 0 0 0
$ $
0 0

CSE,NRCM
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String xi= $1$0$0 1$ 1$0%50$15080$1808086 String yi= $1$0$0 1%
1$0$0$150$0$1$0$0$6 MPCP Solution Sequence:0,3,1,1,3,2,2,4 PCP Solution
Sequence: 3,1,1,3,2,2,4

P Problems: As the name says these problems can be solved in polynomial time,

i.e.; O(n), O(n2) or O(n), where k is a constant.

NP (Non-Polynomial or Non-deterministic Polynomial-time ) Problems: The
class NP consists of those problems that are verifiable in polynomial time. NP is
the class of decision problems for which it is easy to check the correctness of a
claimed answer, with the aid of a little extra information. Hence, we aren’t asking
for a way to find a solution, but only to verify that an alleged solution really is

correct.

Every problem in this class can be solved in exponential time using exhaustive
search. For example, the Sudoku game.

NP-Hard Problems: A problem is said to be NP-Hard when an algorithm for
solving NP-Hard can be translated to solve any NP problem. Then we can say, this
problem is at least as hard as any NP problem, but it could be much harder or

more complex.

The following problems are NP-Hard

The circuit-satisfiability problem

Set Cover

Vertex Cover

Travelling Salesman Problem

NP-Complete Problems: NP-Complete (NPC) problems are problems that are
present in both the NP and NP-Hard classes. That is NP-Complete problems can
be verified in polynomial time and any NP problem can be reduced to this

problem in polynomial time.
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Examples of NP-Complete problems where no polynomial time algorithm is
known are as

follows —

Determining whether a graph has a Hamiltonian cycle
Determining whether a Boolean formula is satisfactory, etc.

Define Turing Machine

PART-A

Design a TM for finding 2’s Complement of a given binary number
TM as Integer Function

Define Recursive Languages

Define recursively enumerable languages

Define LBA

State PCP and MPCP

PART-B

Construct a TM for language consisting of strings having any no of b’s and even
no of a’s defined over {a,b}.

Design a TM to accept strings formed with 0 and 1 and having substring 000
Design a TM for accepting strings of the language L={ww' : w € (0+1)* }

Design a TM for palindrome strings over {a,b}

Design a TM which accepts L={a"b": n>=1}

Design a TM which accepts L={a"b"c" : n>=1}

Design a TM to add two numbers a and b

Design TM for the Multiplication of two integers

Construct a TM for the RE (a+b)*(aa+bb) (a+b)*
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e Explain Variations of the TM

e Construct a TM over {a,b} which contains a substring abb

e Write a note on Universal Turing Machine

e Closure properties of Recursive and Recursively enumerable languages
e Design LBA for L={a"b"c": n>=1}

e Consider the following sequence and find whether it has a solution (decidable) or

not.
[ List List
A B
1 1 111
2 10111 10
3 10 0

e Write the Procedure to convert MPCP to PCP or Reduction of MPCP to PCP

e Consider the following MPCP instance and find whether it has a solution

i Qi hi

1 100 1

2 0 100
3 1 00

Assignment

e Design TM for the Multiplication of two integers
e Design a TM which accepts L={a"b"c" : n>=1}

« Design a TM for accepting strings of the language L={ww': w € (0+1)* }
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e Consider the following PCP sequence and find whether it has a solution

(decidable) or not.

[ List List
A B

1 0 10

2 01 1

e Does the following PCP problem has a solution.

[ List List
A B

1 b bbb

2 babbb ba

3 ba a
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