"' NARSIMHA REDDY ENGINEERING COLLEGE e

UGC AUTONOMOUS INSTITUTION Approved by ACTE

Maisammaguda (V), Kompally - 500100, Secunderabad, Telangana State, India Permanently afilated to NTUH

Object Oriented Programming Through JAVA (23CS305)

Il B. Tech | Semester (NR23)

Prepared by

K.Anusha/Dr.N.Kavitha/P.Revathy/Gopal

CSE/NRCM

UNIT-1
OBJECT-ORIENTED
THINKING,JAVA BASICS

CSE/NRCM

History of Java

Java team members (also known as Green Team), initiated a
revolutionary task to develop a language for digital devices such as set-
top boxes, televisions etc. It was best suited for internet programming.
Later, Java technology as incorporated by Netscape.James Gosling,
Mike Sheridan, and Patrick Naughton initiated the Java language project
In June 1991. The small team of sun engineers called Green Team.

Firstly, it was called "Greentalk" by James Gosling and file extension as
gt. After

that, it was called OAK and was developed as a part of the Green
project.

OAK is a symbol of strength and chosen as a national tree of many
countries like U.S.A., France, Germany, Romania etc. In 1995, Oak was
renamed as "Java" because it was already a trademark by Oak
Technologies. Java is an island of Indonesia where first coffee was
produced (called java coffee).

A Way of Viewing

A way of viewing W@rpl@'an idea to illustrate the object-oriented programming
concept with an example of a real-world situation.

Let us consider a situation, | am at my office and | wish to get food to my family members
who are at my home from a hotel. Because of the distance from my office to home, there
IS no possibility of getting food from a hotel myself. So, how do we solve the issue?

To solve the problem, let me call zomato (an agent in food delevery community), tell
them the variety and quantity of food and the hotel name from which | wish to delever
the food to my family members. Look at the following image.

A way of viewing world with OOP

Object_1 method_1() Data

- ‘e : : < ",;‘ T — _l_; &
- S 1—| ‘ &
firquestimessagel output o 41

Agent

Object.2 method_2() Data
pand — o s oL —
B > B lay—"— <«
- ars €<—>» m Sy == 4
zomato Agest -
Agent
Object.3 method_3() Data
Heapoanses EEJE!:TE:\\ LA -
A £ 4 .
(W) Agent output 4
;..J ,:'-i

CSE/NRCM

JAVA BUZZWORDS OR FEATURES OF
JAVA

« Simple

 Secured

 Platform
iIndependent

 Robust . Features

« Portable of

« Architecture neutral o Java

« Dynamic

* Interpreted

« High Performance

* Multithreaded

* Distributed

CSE/NRCM

APPLICATIONS OF OBJECT ORIENTED
PROGRAMMING

Main application areas of OOP are:

« User interface design such as windows, menu.

 Real Time Systems

« Simulation and Modeling

* Object oriented databases

* Al and Expert System

* Neural Networks and parallel programming

« Decision support and office automation systems
etc.

CSE/NRCM

JDK, JRE and

Java DevelopmbEX{\Kit (JDK):

JDK is an acronym for Java DevelopmentKit. It physically
exists. It

contains JR™ * Amrnlnmene ——

.............

JRE

Java Runtime Environment (JRE):

JRE is an acronym for Java Runtime Environment. It IS
used to provide runtime environment. It is the
Implementation of JVM. It physically exists. It contains set of
libraries + other files that JVM uses at runtime.
Implementations of JVMs are also actively released by
other compAnies hesides Siin Micro Systems.

AN

JDK, JRE and

Java Virtual Maclvine (JVM):

JVM (Java Virtual Machine) acts as a run-time engine to run Java
applications. JVM is the one that actually calls the main method
presentin a java code. JVM is a part of JRE (Java Runtime
Environment).

Java applications are called WORA (Write Once Run Anywhere).
This means a programmer can develop Java code on one system
and can expect it to run on any other Java enabled system without
any adjustment. This is all possible because of JVM.

NOTE: JVM, JRE and JDK are platform dependent because
configuration of each OS differs. But, Java is platform
Independent

Execution Process of Java
Tﬁé@cglf)"&‘mg three steps are used to

create and execute a java program.
 Createasourcecode (.Java file).
« Compilethe source code using javac
command.

 Run or execute .class file uisng java
comme -

CSE/NRCM

JAVA DATA TYPES

Data Types in java

|

Primitive Data Types

® Character

@ Boolean

byte
short
int
long

char

boolean

|

Non-primitive Data Types

CSE/NRCM

— String
— Array
LIt
—Set
— Stack

Vector

—Dictionary

— All user-defined classes
—etc,,

JAVA
A variable is ¥/Harfed/AaBholy beation used to

store a data value. A variable can be defined as a
container that holds a data value.

In java, we use the following syntax to create
variables.

Syntax

data_type

variable _name; (or)

data_type variable _name 1,

variable _name_2,...; (or)

data_type variable name =

value; (or)

data_type variable name_1 = value,
variable name 2 =value,...;

JAVA ARRAYS

Creating an array

In the java programming language, an array must be created using
new operator and with a specific size. The size must be an integer
value but not a byte, short, or long. We use the following syntax to

create an array.

Syntax

data_type array _name|[] = new
data_type[size]; (or)

data_type[] array _name = new data_type][size];

In java, an array can also be Iinitialized at the time of its declaration.
When an array is initialized at the time of its declaration, it need not
specify the size of the array and use of the new operator. Here, the size
IS automatically decided based on the number of values that are
Initialized.

™., — el . " 1 alCT 1/ A/ I AN NN

Multidimensional

In java, we can C!%‘ag Mrray with multiple dimensions. We can create
-

dimensional, 3-dimensional, or any dimensional array.

In Java, multidimensional arrays are arrays of arrays. To create a
multidimensional array variable, specify each additional index using
another set of square brackets. We use the following syntax to create
two-dimensional array.

Syntax

data_type array _name[][] = new

data_type[rows][columns]; (or)

data_typel[][] array_name = new data_type[rows][columns];

When we create a two-dimensional array, it created with a separate index
for rows and columns. The individual element is accessed using the
respective row index followed by the column index. A multidimensional
array can be initialized while it has created using the following syntax.

JAVA OPERATORS

An operator is a symbol used to perform arithmetic
and logical operations. Java provides a rich set of
operators. In java, operators are classified into the
following four types.

« Arithmetic Operators

« Relational (or) Comparison Operators

* Logical Operators

« Assignment Operators

* Bitwise Operators

« Conditional Operators

Arithmetic Operators

Operator |Meaning Example

+ Addition 10+5=15
- Subtraction 10-5=5
* Multiplication 10*5=50
/ Division 10/5=2
% Modulus - Remainder of the Division 5%2=1
++ Increment a++

-- Decrement a--

CSE/NRCM

Relational Operators (<, >, <=, >=,

=)

value otherwise returns FALSE

Operator | Meaning Example

< Returns TRUE if the first value is smaller than second value | 10<5is FALSE
otherwise returns FALSE

> Returns TRUE if the first value is larger than second value|10>5is TRUE
otherwise returns FALSE

<= Returns TRUE if the first value is smaller than or equal to second | 10 <=5 is FALSE

FALSE

>= Returns TRUE if the first value is larger than or equal to second | 10>=5is TRUE
value otherwise returns FALSE

== Returns TRUE if both values are equal otherwise returns FALSE 10==5is FALSE

I= Returns TRUE if both values are not equal otherwise returns | 10!=5is TRUE

CSE/NRCM

Logical Operators

Operator | Meaning Example

& Logical AND - Returns TRUE if all conditions are TRUE | false & true => false
otherwise returns FALSE

| Logical OR - Returns FALSE if all conditions are FALSE | false | true => true
otherwise returns TRUE

A Logical XOR - Returns FALSE if all conditions are same | true " true => false
otherwise returns TRUE

! Logical NOT - Returns TRUE if condition is FLASE and returns | false =>true
FALSE ifitis TRUE

&& short-circuit AND - Similar to Logical AND (&), but once a | false & true => false
decision is finalized it does not evaluate remianing.

I short-circuit OR - Similar to Logical OR (), but once a decision | false | true => true
is finalized it does not evaluate remianing.

CSE/NRCM

Assignment Operators

Operator | Meaning Example

= Assign the right-handside value to left-hand side variable A=15

+= Add both left and right-hand side values and store the result into left- | A +=10
hand side variable

= Subtract right-hand side value from left-hand side variable value and |A-=B
store the result into left-hand side variable

= Multiply right-hand side value with left-hand side variable value and | A=B
store the result into left-hand side variable

= Divide left-hand side variable value with right-hand side variable value | A/=B
and store the result into the left-hand side variable

%= Divide left-hand side variable value with right-hand side variable value | A %=B
and store the remainder into the left-hand side variable

&= Logical AND assignment -

|= Logical OR assignment -

A

Logical XOR assignment

CSE/NRCM

Bitwise Operators

Operator

Meaning

Example

&

the result of Bitwise AND is 1 if all the bits are
1 otherwise itis 0

A&B
= 16 (10000)

the result of Bitwise OR is O if all the bits are 0
otherwise itis 1

A|B
= 29 (11101)

the result of Bitwise XOR is O if all the bits are
same otherwise itis 1

A"B
= 13 (01101)

the result of Bitwise once complement is
negation of the bit (Flipping)

A
= 6 (00110)

<<

the Bitwise left shift operator shifts all the bits to
the left by the specified number of positions

A<<2
= 100 (1100100)

>>

the Bitwise right shift operator shifts all the bits
to the right by the specified number of positions

A>>2
= 6 (00110)

CSE/NRCM

Conditional Operators

The conditional operator Is also called a
ternary operator because it requires three operands.

This operator Is used for decision making. In this operator,
first, we verify a condition, then we perform one operation
out of the two operations based on the condition result.

If the condition iIs TRUE the first option is performed, Iif
the condition is FALSE the second option is performed.

Syntax
Condition ? TRUE Part : FALSE Part;

JAVA EXPRESSIONS

 In the jJava programming language, an
expression Is a collection of operators
and operands that represents a specific

value.

Expression Types
In the java programming language,
expressions are divided into THREE types.
They are as follows.

* Infix Expression

* Postfix Expression

* Prefix Expression

JAVA CONTROL
STATFMENTS

Control Statements

Selection Statements lterative Statements Jump Statements
—if Statement
— Simple if — while break
—if-else — do-while —continue
—nested if — for — return
—if-else-if — for-each
switch Statement

|—switch

CSE/NRCM

JAVA CONTROL
Aemere MENTS felse

statement

Syntax Flow of execution
Syntax Flow of execution

, iftcondition)f
if(condition)

) true-block of statements;
if-block of statements;

]
elsel

]
statement after if-block;
false-block of statements:

]
statement after if-block:;

JAVA CONTROL
STATEMENTS

Switch
Stat——~—"

Syntax

Flow Diagram

Slorly execufion bom this cose

switch (expression or value)

: case valuel: set of statements;
case value2: set of statements; S A
case valued: set of statements;
case valued: set of statements; - SP————rrT—
case valves: sef of statements;
. Sk execution ¥om s case
; default: set of statements; l

Stalements out of ywitch

JAVA CONTROL
STATEMENTS

while do-while

ctaramaoant
S t at emen t Syntax Flow of execution
Syntax Flow of execution dol

while(boolean-expression)| block of statements:

block of statements; Iwhile(boolean-expression);

] statement after do-while;
statement after while;

CSE/NRCM

JAVA CONTROL
STATEMENTS

for for-each
Statement statement

Syntax :
o Flow of execution Svnta

for(initialization; hoolean-expression; medofcation) I - g
block of statemants. for(datalype variableName : Array)i
}

statement after for

block of statements;
|

statement after for;

CSE/NRCM

Flow of execution

not available

JAVA CONTROL
STATEMENTS

break continue
statement statement

while (condition) ;Nh"e (condition)
{
: continue; N 2 v .
break; for (initilization; condition; modification) :or (initilization; condition; modifi
s {
} } -
do continue;

.t;;eak;
do {
{ | -)
continue;

break;
Ew.i';ile (condition) ; } while (condition) ;

JAVA CLASSES

Java is an object-oriented programming language, so everything in
java

program must be based on the object concept.

In a java programming language, the class concept defines the
skeleton

of an object.

The java class is a template of an object. The class defines the
blueprint

of an object. Every class in java forms a new data type.

Once a class got created, we can generate as many objects as we
want.

Every class defines the properties and behaviors of an object.

All the objects of a class have the same properties and behaviors
that

were defined in the class.

Every class of java programming language has the following

JAVA CLASSES

Creating a Class
In java, we use the keyword class to create a class. A class in java
contains properties as variables and behaviors as methods. Following is
the syntax of class in the java.
Syntax
class <ClassName>{

data members declaration;

methods defination;

}

The ClassName must begin with an alphabet, and the Upper-case letter
IS

preferred.

The ClassName must follow all naming rules.

CSE/NRCM

JAVA CLASSES

Creating an Object

In java, an object is an instance of a class. When an object of a class
IS created, the class is said to be instantiated. All the objects that are
created using a single class have the same properties and methods.
But the value of properties is different for every object. Following is
the syntax of class in the java.

Syntax

<ClassName> <objectName> = new <ClassName>();

The objectName must begin with an alphabet, and a Lower-case
letter is preferred.
The objectName must follow all naming rules.

JAVA METHODS

A method is a block of statements under a name that gets executes
only when it is called. Every method is used to perform a specific
task. The major advantage of methods is code re-usability (define
the code once, and use it many times).

In a java programming language, a method defined as a behavior of
an

object. That means, every method in java must belong to a

class. Every method in java must be declared inside a

class.

Every method declaration has the following

characteristics. returnType - Specifies the data type

of a return value. name - Specifies a unigue name to

identify it.

parameters - The data values it may accept or recieve.

{ } - Defienes the block belongs to the method.

JAVA METHODS

Creating a method
A method is created inside the class and it may be created with any access
specifier.
However, specifying access specifier is optional.
Following is the syntax for creating methods in java.
Syntax
class <ClassName>{
<accessSpecifier> <returnType> <methodName>(parameters){

block of statements;

-
}

A The methodName must begin with an alphabet, and the Lower-case letter is
preferred.

A The methodName must follow all naming rules.

A [f you don't want to pass parameters, we ignore it.

A |f a method defined with return type other than void, it must contain the
return statement, otherwise, it may bé-ighored."

JAVA METHODS

Calling a method

In java, a method call precedes with the object name of the class to which it
belongs and a dot operator. It may call directly if the method defined with the static
modifier. Every method call must be made, as to the method name with
parentheses (), and it must terminate with a semicolon.

Syntax

<objectName>.<methodName>(actualArguments);

A The method call must pass the values to parameters if it has.

A If the method has a return type, we must provide the receiver.

A The objectName must begin with an alphabet, and a Lower-case letter is
preferred.

A The objectName must follow all naming rules.

Variable arguments of a method

In java, a method can be defined with a variable number of arguments. That means
creating a method that receives any number of arguments of the same data type.
Syntax

<returnType> <methodName>(dataType...parameterName);

When a method has both the normal parameter and variable-argument, then the
variable

cConstructor

A constructor is a special method of a class that has the same name as the class
name. The constructor gets executes automatically on object creation. It does not
require the explicit method call. A constructor may have parameters and access
specifiers too. In java, if you do not provide any constructor the compiler

automatically creates a default constructor. A constructor cannot have return
value.

Let's look at the following example java code.

Example
public class ConstructorExample {

ConstructorExample() {
System.out.printin("Object created!");

}

public static void main(String[] args) {

ConstructorExample obj1 = new ConstructorExample();
ConstructorExample obj2 = new ConstructorExample();

JAVA STRING HANDLING

A string is a sequence of characters surrounded by double gquotations. In a java
programming language, a string is the object of a built-in class String.

In the background, the string values are organized as an array of a character data
type. The string created using a character array cannot be extended. It does not
allow to append more characters after its definition, but it can be modified.

Let's look at the following example java code.

Example

charf] name ={J','a’, 'v', 'a’, "', 'T", 'u’,'t, 'o’, 'r', I, 'a', "', 's'};
[lname[14] ='@"; [/ArraylndexOutOfBoundsExcepti
name[5] =" on

System.out.printin(nam
&he String class defined in the package java.lang
package.

CSE/NRCM

Creating String object in java

Creating String objectin java

In java, we can use the following two ways to create a string object.
Using string literal

Using String constructor

Let's look at the following example java code.

Example

String title ="Java Tutorials"; // Using literals

String siteName = new String("www.btechsmartclass.com"); // Using
constructor

A The String class constructor accepts both string and character array as an
argument.

CSE/NRCM

http://www.btechsmartclass.com/

String handling methods

Method Description Return Value
charAt(int) Finds the character at given index char
length() Finds the length of given string int
compareTo(String) Compares two strings int
compareTolgnoreCase(String) | Compares two strings, ignoring case int
concat(String) Concatenates the object string with argument string. | String
contains(String) Checks whether a string contains sub-string boolean
contentEquals(String) Checks whether two strings are same boolean
equals(String) Checks whether two strings are same boolean
equalslgnoreCase(String) Checks whether two strings are same, ignoring case |boolean
startsWith(String) Checks whether a string starts with the specified boolean
string
endsWith(String) Checks whether a string ends with the specified boolean
string
getBytes() Converts string value to bytes byte[]
hashCode() Finds the hash code of a string int
indexOf(String) Finds the first index of argument string in object int
string
lastIndexOf(String) Finds the last index of argument string in object int

string

CSE/NRCM

String handling methods

Method Description Return Value
ISEmpty() Checks whether a string is empty or not boolean
replace(String, String) Replaces the first string with second string String
replaceAll(String, String) Replaces the first string with second string at all String
occurrences.
substring(int, int) Extracts a sub-string from specified start and end String
index values
toLowerCase() Converts a string to lower case letters String
toUpperCase() Converts a string to upper case letters String
trim() Removes whitespace from both ends String
toString(int) Converts the value to a String object String
split(String) splits the string matching argument string String[]
intern() returns string from the pool String
join(String, String, ...) Joins all strings, first string as delimiter. String

CSE/NRCM

UNIT — I
INHERITANCE,
PACKAGES,

INTERFACES

CSE/NRCM

JAVA INHERITANCE

The inheritance can be defined as

idllews. inheritance IS the acquiring
process of properties of one th
class to another class. Inheritance e

Basics

In inheritance, we use the terms like parent class,
child class, base class, derived class, superclass,
and subclass. The Parent class is the class which
provides features to another class. The parent
class is also known as Base class or
Superclass.

The Child class is the class which receives
features from another class. The child class
IS also known as the Derived Class or
Subclass.

In the inheritance, the child class acquires the
features from its parent class. But the parent class
never acquires the features from its chiid-ciass!

TYPES OF INHERITANCES

There are five types of inheritances, and they
are as

follows.

« Simple Inheritance (or) Single Inheritance
* Multiple Inheritance

* Multi-Level Inheritance

« Hierarchical Inheritance

* Hybrid Inheritance

Simple Inheritance Multiple inheritance

ParentClass ParentClass_| ParentClass_2

e =

Multi Level Inheritance Hierarchical Inheritance
ParentClass

o

=
ﬁ CSE/NRCM

Hybrid Inheritance

S
(crvscis|

Creating Child Class in java

In java, we use the keyword extends to create a child class. The following syntax used
to

create a child class in java.

Syntax

class <ChildClassName> extends <ParentClassName>{

//implementation of child class

}

In a java programming language, a class extends only one class. Extending
multiple classes is not allowed in java.

CSE/NRCM

JAVA ACCESS MODIFIERS

In Java, the access specifiers (also known as access modifiers) used to restrict
the scope or accessibility of a class, constructor, variable, method or data
member of class and interface. There are four access specifiers, and their list is

be | OW Access control for members of class and interface in java
" Accessibility Sa Pack Other Package
default (O I') no modifier fomes ~Locafon] SAMS. IS T e i T T i
public S N .
protecte
Protected

- Default

Private

Private

The public members can be accessed everywhere.

A The private members can be accessed only inside the same class.

A The protected members are accessible to every child class (same package
or other

packages).

A The default members are accessible within the same package but not
outside the

package.
CSE/NRCM

JAVA CONSTRUCTORS IN
Il |Ne|-ry| E)Rdnqt_gﬁpN@Emw the constructors get executed in the

iInheritance

concept.
In the inheritance, the constructors never get inherited to any child class.

In java, the default constructor of a parent class called automatically by the
constructor of its child class. That means when we create an object of the child

12 Source Pedetor Nrvgate Search Pooger Bun Wndon Hel
- e NSO QQe TG . P ' o/t . .| y e
C 2 S raTracicrir At hartarce jaey B comaie Xk = - - R
: class ParentClass{ c
int a;
ParentClass(){
System.out.println(”Inside ParentClass constructor!”);

ermrigteds Coonfratnncirheetane | ave Ansdcato
Inside ParentClass constructor!
Inside ChilaClass constructor!!
Inside ChilaChildClass constructor!

}

class ChildClass extends ParentClass{

Childclass(){
System.out.printin("Inside ChildClass constructor!!”™);
1 I
12 }
class ChildChildClass extends ChildClass{

ChildChildClass(){
System,out.printin(“Inside ChildChildClass constructor|!™);
}
3)
i9 public class Constructorininheritance {

public static void main(String[) args) {

Child(nildClass cb) = new ChildChildClass();

JAVA CONSTRUCTORS IN
I’INHER&?&'N@E‘”S default and parameterized constructor, then only

the default constructor called automatically by the child class constructor.
Let's look at the following example java code.
The parameterized constructor of parent class must be called explicitly using

the super keyword.

t L oot P
O G L- G ™ v &
class ParentClass{
int a;
ParentClas t a)¢
Systen.out.printin(“iInside ParentClass parameterized constructari”™);
this.a = 5;
}
ParentClass()}{
Systen.out.printin{“Inside ParentClass default constructori);
}
}
I class ChildClass extends ParentClass{
ChildClass(){
Systen.out.println(“Inside ChildClass constructor!!™);
4 }
}
public class ConstructorIninheritance {
public static void main(String[] args) {
ChildClass ob] = new CnildClass();
}
225}
© Corarie xx ~ |
fYoss——" oy povvce [Homa Agysd
Inside ParentCl default t t
Inside ChilaCl cons |

CSE/NRCM

JAVA SUPER KEYWORD

In java, super is a keyword used to refers to the parent class object. The super
keyword came into existence to solve the naming conflicts in the inheritance.
When both parent class and child class have members with the same name, then
the super keyword is used to refer to the parent class version.

In java, the super keyword is used for the following purposes.

« Torefer parent class data members

« Torefer parent class methods

« To call parent class constructor

A The super keyword is used inside the child class only.

super to refer parent class data members

When both parent class and child class have data members with the same
name, then the super keyword is used to refer to the parent class data member
from child class. super to refer parent class method

When both parent class and child class have method with the same name, then
the

super keyword is used to refer to the parent class method from child class.
super to call parent class constructor

When an object of child class is created, it automatically calls the parent class

default- constructor before it's own. But, the parameterized constructor of parent
Alace miict ha callad avialicithy rieina tha ctinar Lasaniesrd oScidS FISAAAITIA Alace

JAVA FINAL KEYWORD

In java, the final is a keyword and it is used with the following things.

« With variable (to create constant)

« With method (to avoid method overriding)

» With class (to avoid inheritance)

final with variables

When a variable defined with the final keyword, it becomes a constant, and it
does not allow us to modify the value. The variable defined with the final
keyword allows only a one-time assignment, once a value assigned to it, never
allows us to change it again.

final with methods

When a method defined with the final keyword, it does not allow it to override.
The final method extends to the child class, but the child class can not override or
re-define it. It must be used as it has implemented in the parent class.

final with class
When a class defined with final keyword, it can not be extended by any other

class.

CSE/NRCM

JAVA PYLYMORPHISM

The polymorphism is the process of defining same method with different
Implementation. That

means creating multiple methods with different behaviors.

In java, polymorphism implemented using method overloading and method overriding.
Ad hoc polymorphism

The ad hoc polymorphism is a technigue used to define the same method with

different implementations and different arguments. In a java programming

language, ad hoc polymorphism carried out with a method overloading concept.

In ad hoc polymorphism the method binding happens at the time of compilation. Ad

hoc polymorphism is also known as compile-time polymorphism. Every function call
binded with the respective overloaded method based on the arguments. The ad hoc
polymorphism implemented within the class only.

Pure polymorphism

The pure polymorphism is a technique used to define the same method with the same
arguments but different implementations. In a java programming language, pure
polymorphism carried out with a method overriding concept. In pure polymorphism, the
method binding happens at run time. Pure polymorphism is also known as run-time
polymorphism. Every function call binding with the respective overridden method based
on the object reference.

vdnerat child class has a definition for a fireniberfunction of the parent class, the parent

Py

JAVA METHOD OVERRIDING

The method overriding is the process of re-defining a method in a child class that is
already defined in the parent class. When both parent and child classes have the
same method, then that method is said to be the overriding method.

The method overriding enables the child class to change the implementation of the
method

which aquired from parent class according to its requirement.

In the case of the method overriding, the method binding happens at run time. The
method binding which happens at run time is known as late binding. So, the method
overriding follows late binding.

The method overriding is also known as ¢:==m=2ia mnath 2o Aimm mdab v s 2iee =

polymorphism or pure polymorphism. = .

CSE/NRCM

JAVA METHOD OVERRIDING

Rules for method overriding

« While overriding a method, we must follow the below list of rules.

 Static methods can not be overridden.

» Final methods can not be overridden.

» Private methods can not be overridden.

» Constructor can not be overridden.

« An abstract method must be overridden.

» Use super keyword to invoke overridden method from child class.

* The return type of the overriding method must be same as the parent has it.

* The access specifier of the overriding method can be changed, but the visibility must
Increase but not decrease. For example, a protected method in the parent class can
be made public, but not private, in the child class.

* |f the overridden method does not throw an exception in the parent class, then the
child class overriding method can only throw the unchecked exception, throwing a
checked exception is not allowed.

« If the parent class overridden method does throw an exception, then the child class
overriding method can only throw the same, or subclass exception, or it may not
throw any exception.

CSE/NRCM

JAVA ABSTRACT

Ar@bl;irﬁ@& a class that created using abstract keyword. In other words, a class

prefixed

with abstract keyword is known as an abstract class.

In java, an abstract class may contain abstract methods (methods without
implementation) and

also non-abstract methods (methods with implementation).

We use the following syntax to create an abstract class.

Syntax L
abstract class <ClassName>{ BTy U TR S L e T

import java.util.*;

abstract class Shape { Enter length and brcad?h:
4 int length, breadth, radius; The area of Rectangle is: 8
Scanner input = new Scanner(System.in); *** Finding the Area of Triangle ***
Enter Base And Height: S
abstract void printArea(); The area of Triangle is: 1@

*#% Finding the Area of Cricle ***
11 Enter Radius: ¢
2 class Rectangle extends Shape { The area of Cricle is: 113.04
void printArea() {
4 System.out.println("*** Finding the Area of Rectangle ***");
1 System.out.print("Enter length and breadth: ");
16 length = input.nextInt();
An abstract class cannot be e
1 System.out.println("The area of Recta

}

Instantiated but can be

22 class Triangle extends Shape {

ngle is: “ + length * breadth);

void printArea() {

4 System.out.println(“\n*** Finding the Area of Triangle ***");
referenced. That means we can e e e
(length = input.nextlInt();
breadth = input.nextInt();

not Create an ObJeCt Of an) ; System.out.println("The area of Triangle is: = & (length * breadth) / 2);
abstract class, but base 1 chony sl bty Shooe.
reference can be created.

CSE/NRCM

terminatad > AtstraciClassExamgle Hava Azplication] CAProg
*** Finding the Area of Rectangle ***

JAVA ABSTRACT
Rdle foA@@overriding

« An abstract class must follow the below list of rules.

» An abstract class must be created with abstract keyword.

» An abstract class can be created without any abstract method.

« An abstract class may contain abstract methods and non-abstract methods.

» An abstract class may contain final methods that can not be overridden.

« An abstract class may contain static methods, but the abstract method can not be
static.

« An abstract class may have a constructor that gets executed when the child class
object
created.

« An abstract method must be overridden by the child class, otherwise, it must be
defined as an abstract class.

* An abstract class can not be instantiated but can be referenced.

CSE/NRCM

Java Object Class

In java, the Object class is the super most class of any class hierarchy. The Object
class in the
java programming language is present inside the java.lang package.

Every class in the java programming language is a subclass of Object class by

default.
The Object class is useful when you want to refer to any object whose type you don't
Know.
BEGRIISE TtEtEhsAperclass of ait other classes 1 java, it can referiganyidype of
~Shiact
TCIss() Returns Class class object object
@EROBStO Dy &CHe eTAIBSt object to calling object. boolean

v followihgatable depicts-all bullt-in-methods-of Obiect class-in-iava.

concat(String) | Cleates copy of Invoking object”] I"object

toString() eturns the string representation of invoking object. String

notify() wakes up athread, waiting on invoking object's monitor. void

notifyAll() wakes up all the threads, waiting on invoking object's monitor. void

wait() causes the current thread to wait, until another thread notifies. void

wait(long,int) | causes the current thread to wait for the specified milliseconds and nanoseconds, void

until another thread notifies.
finalize() Itis invoked by the garbage collector before an object is being garbage collected. | void

CSE/NRCM

JAVA FORMS OF INHERITANCE

The inheritance concept used for the number of purposes in the java programming
language. One of the main purposes is substitutability. The substitutability means that
when a child class acquires properties from its parent class, the object of the parent
class may be substituted with the child class object. For example, if B is a child class of
A, anywhere we expect an instance of A we can use an instance of B.

The substitutability can achieve using inheritance, whether using extends or implements
keywords.

The following are the different forms of inheritance in java.

Specialization

Specification

Construction

Extension

Limitation

Combination

VVVVYY

CSE/NRCM

JAVA FORMS OF INHERITANCE

Specialization

It is the most ideal form of inheritance. The subclass is a special case of the parent
class. It

holds the principle of substitutability.

Specification

This is another commonly used form of inheritance. In this form of inheritance, the
parent class just specifies which methods should be available to the child class but
doesn't implement them. The java provides concepts like abstract and interfaces to
support this form of inheritance. It holds the principle of substitutability.

Construction

This is another form of inheritance where the child class may change the behavior
defined by the parent class (overriding). It does not hold the principle of
substitutability.

Extension

This is another form of inheritance where the child class may add its new properties. It
holds

the principle of substitutability.

Limitation

This is another form of inheritance where the subclass restricts the inherited behavior. It
does

nnt hald tha nrinAainla AfF cirihetitritahiility s

JAVA FORMS OF INHERITANCE

Specialization

It is the most ideal form of inheritance. The subclass is a special case of the parent
class. It

holds the principle of substitutability.

Specification

This is another commonly used form of inheritance. In this form of inheritance, the
parent class just specifies which methods should be available to the child class but
doesn't implement them. The java provides concepts like abstract and interfaces to
support this form of inheritance. It holds the principle of substitutability.

Construction

This is another form of inheritance where the child class may change the behavior
defined by the parent class (overriding). It does not hold the principle of
substitutability.

Extension

This is another form of inheritance where the child class may add its new properties. It
holds

the principle of substitutability.

Limitation

This is another form of inheritance where the subclass restricts the inherited behavior. It
does

nnt hald tha nrinAainla AfF cirihetitritahiility s

Benefits and Costs of Inheritance In

Bj@\tﬁa Inheritance

= ¥ Inheritance helps in code reuse. The child class may use the code defined in the
parent
class without re-writing it.

= |nheritance can save time and effort as the main code need not be written again.

= |nheritance provides a clear model structure which is easy to understand.

= Aninheritance leads to less development and maintenance costs.

= With inheritance, we will be able to override the methods of the base class so that
the meaningful implementation of the base class method can be designed in the
derived class. An inheritance leads to less development and maintenance costs.

= [ninheritance base class can decide to keep some data private so that it cannot be
altered by the derived class.

Costs of Inheritance

= |nheritance decreases the execution speed due to the increased time and effort it
takes,
the program to jump through all the levels of overloaded classes.

= [nheritance makes the two classes (base and inherited class) get tightly coupled.
This
means one cannot be used independently of each other.

= The changes made in the parent cfass/Wwill @ffect the behavior of child class too.

- Thaea nvioriieca nf inhaoaritkanecrns malzae tha nracdirarm mara ~~amnlavyv

DEFINING PACKAGES

In java, a package is a container of classes, interfaces, and sub-packages. We may
think of it as a

folder in a file directory.

We use the packages to avoid naming conflicts and to organize project-related classes,
Interfaces, and sub-packages into a bundle.

In java, the packages have divided into two

types. Built-in Packages

User-defined Packages

Built-in Packages

The built-in packages are the packages from java API. The Java APl is a library of pre-
defined classes, interfaces, and sub-packages. The built-in packages were included in
the JDK. There are many built-in packages in java, few of them are as java, lang, io, util,
awt, javax, swing, net, sgl, etc. We need to import the built-in packages to use them in
our program. To import a package, we use the import statement.

User-defined Packages
The user-defined packages are the packages created by the user. User is free to

create their own packages.
CSE/NRCM

Definig/Creating a Package in java

We use the package keywordto create or define a package in java programming language.
Syntax
package packageName;

The package statement must be the first statementin the
program. The package name must be a single word.
The package name must use Camel case notation.
Let's consider the following code to create a user-defined package myPackage.
Example
package myPackage;
public class DefiningPackage {

public static void main(String[] args) {

System.out.printin("This class belongs to myPackage.");

}
}

Now, save the above code in a file DefiningPackage.java, and compile it using the following
command.
javac -d . DefiningPackage.java
The above command creates a directory with the package name myPackage, and
the DefiningPackage.class is saved into it. Run the program use the following command.
java myPackage.DefiningPackage
When we use IDE like Eclipse, Netbeans, étC.ithefatkage structure is created automatically.

ACCESS PROTECTION IN JAVA
InPﬁ%}(sﬁ(@e 81_&* the accessibility of the class and its members. For example,

private members are accessible within the same class members only. Java has four access
modifiers, and they are default, private, protected, and public.

In java, the package is a container of classes, sub-classes, interfaces, and sub-packages. The
class acts as a container of data and methods. So, the access modifier decides the accessibility
of class members across the different packages.

In java, the accessibility of the members of a class or interface depends on its access specifiers.
The

following table provides information about the visibility of both data members and

methods. The public members can be accessed everywhere.

The private members can be accessed only inside the same class.

The protected members are accessible to every child class (same package or other packages).
The default members are accessible within the same pnackaae but not outside the package.

Access control for members of class and interface in java

Acc

c ;';.;;s’—w»i??";&g% GameClass | Same Package Other Package

Child class Non-child class Child class |Non-child class

Public

Protected

Default

Private

CSE/NRCM

IMPORTING PACKAGES IN JAVA

In java, the import keyword used to import built-in and user-defined packages. When a package
has

imported, we can refer to all the classes of that package using their name directly.

The import statement must be after the package statement, and before any other

statement. Using an import statement, we may import a specific class or all the

classes from a package.

Using one import statement, we may import only one package or a class.

Using an import statement, we cannot import a class directly, but it must be a part ofa

package. A program may contain any number of import statements.

Importing specific class
Using an importing statement, we can import a specific class. The following syntax is employed to
import a
specific class.
Syntax : import packageName.ClassName;
Let's look at an import statement to import a built-in package and Scanner class.
Example
package myPackage;
import
java.util. Scanner;
public class ImportingExample {

public static void main(String[] args) {

Scanner read = new

P o Y £ < Y T . T

IMPORTING PACKAGES IN JAVA

Importing all the classes

Using an importing statement, we can import all the classes of a package. To import all the classes
of the

package, we use * symbol. The following syntax is employed to import all the classes of a
package.

Syntax

import packageName.*;

Let's look at an import statement to import a built-in package.
Example
package myPackage;
import java.util.*;
public class ImportingExample {
public static void main(String[] args) {
Scanner read = new Scanner(System.in);
int i = read.nextInt();
System.out.printin("You have entered a number "
+1); Random rand = new Random();

int num = rand.nextInt(100);

System.out.printin("Randomly generated number " + num); 1}
In the above code, the class ImportingExample belongs to myPackage package, and it also
importing all

N P D I Y . Y . Y R e~z - 1. N7 . - " AN " s L Y L Sy DY R S T P T |

DEFINING AN INTERFACE IN JAVA

In java, an interface is similar to a class, but it contains abstract methods and static final
variables only.

The interface in Java is another mechanism to achieve abstraction.

We may think of an interface as a completely abstract class. None of the methods in the
interface has an implementation, and all the variables in the interface are constants.

All the methods of an interface, implemented by the class that implements it.

The interface in java enables java to support multiple-inheritance. An interface may extend
only one interface, but a class may implement any number of interfaces.

e

%

An interface is a container of abstract methods and static final variables.

An interface, implemented by a class. (class implements interface).

An interface may extend another interface. (Interface extends Interface).

An interface never implements another interface, or class.

A class may implement any number of interfaces.

We can not instantiate an interface.

Specifying the keyword abstract for interface methods is optional, it automatically added.
All the members of an interface are public by default.

e

%

e

%

XS

%

e

*%

e

*

o

*

J/
00

L)

CSE/NRCM

IMPLEMENTING AN INTERFACE IN

In jgv mperface is implemented by a class. The class that implements an
innjrﬁée stYrovide code for all the methods defined in the interface; otherwise, it
must be defined as an abstract class.

The class uses a keyword implements to implement an interface. A class can

Implement any

number of interfaces. When a class wants to implement more than one interface, we
use

the implements keyword is followed by a comma-separated list of the interfaces
Implemented

by the class.

The following is the syntax for defineing a class that implements an interface.

Syntax
class className implements InterfaceName{

boby-of-the-class

CSE/NRCM

Implementing multiple Interfaces

Implementing multiple Interfaces
When a class wants to implement more than one interface, we use the implements

keyword is followed by a comma-separated list of the interfaces implemented by the

class.
The following is the syntax for defineing a class that implements multiple interfaces.

Syntax
class className implements InterfaceNamel, InterfaceName2, ...{

boby-of-the-class

CSE/NRCM

NESTED INTERFACES IN JAVA

In java, an interface may be defined inside another interface, and also inside a
class. The interface that defined inside another interface or a class is konwn as
nested interface. The nested interface is also refered as inner interface.
The nested interface declared within an interface is public by default.
The nested interface declared within a class can be with any access modifier.
Every nested interface is static by default.
The nested interface cannot be accessed directly. We can only access the nested
Interface by using outer interface or outer class name followed by dot(.), followed by
the nested interface name.
Nested interface inside another interface
The nested interface that defined inside another interface must be accessed
as Outerinterface.lnnerinterface.
Let's look at an example code to illustrate nested interfaces inside another interface.
Example
Interface Outerinterface{

void outerMethod();

Interface Innerinterface{
void
innerMethod(); CSE/NRCM

VARIABLES IN JAVA INTERFACES

In java, an interface is a completely abstract class. An interface is a container of abstract
methods and static final variables. The interface contains the static final variables. The variables
defined in an interface cannot be modified by the class that implements the interface, but it may
use as it defined in the interface.
The variable in an interface is public, static, and final by default.
If any variable in an interface is defined without public, static, and final keywords then, the
compiler automatically adds the same.
No access modifier is allowed except the public for interface variables.
Every variable of an interface must be initialized in the interface itself.
The class that implements an interface can not modify the interface variable, but it may use as it
defined
in the interface.
Example
interface Samplelnterface{

int UPPER_LIMIT = 100;

/int LOWER_LIMIT; /I Error - must be initialised

}

public class InterfaceVariablesExample implements Samplelnterface{
public static void main(String[] args) {
System.out.printin("UPPER LIMIT =" +
} UPPER_LIMIT);
} // UPPER_LIMIT = 150; EQN%?Me modified

EXTENDING AN INTERFACE IN

In@AP\iﬁﬂéce can extend another interface. When an interface wants to extend another
interface, it uses the keyword extends. The interface that extends another interface has its own
members and all the members defined in its parent interface too. The class which implements a
child interface needs to provide code for the methods defined in both child and parent interfaces,
otherwise, it needs to be defined as abstract class.
* An interface can extend another interface.
» An interface cannot extend multiple interfaces.
» An interface can implement neither an interface nor a class.
» The class that implements child interface needs to provide code for all the methods defined in
both
child and parent interfaces.

CSE/NRCM

STREAM IN JAVA

In java, the 10 operations are performed using the concept of streams. Generally, a stream
means a continuous flow of data. In java, a stream is a logical container of data that allows us
to read from and write to it. A stream can be linked to a data source, or data destination, like a
console, file or network connection by java 10 system. The stream-based 10 operations are
faster than normal 10 operations.

The Stream is defined in the java.io package.

To understand the functionality of java streams, look at the following picture.

In Java, every program creates 3 streams
automatically, and these streams are attached to

the console.
System.out: standard output stream for console %

output operations. \ /
System.in: standard input stream for console SuipstStisarn

input

operations.

System.err: standard error stream for console

error

output operations.

The Java streams support many different

kinds of data, including simple bytes, primitige/NRCM
data types, localized characters, and objects.

TYPES OF STREAMS

Java provides two types of streams, and they are as
follows.

Byte Stream
Character Stream

InputStream

— Byte Stream
OQutputStream

Reader

_l Writer

IO Streams—

— Character Stream_—|

CSE/NRCM

BYTE STREAM IN JAVA

In java, the byte stream is an 8 bits carrier. The byte stream in java allows us to transmit 8 bits of
data.
In Java 1.0 version all IO operations were byte oriented, there was no other stream (character
stream). The java byte stream is defined by two abstract classes, InputStream and
OutputStream. The InputStream class used for byte stream based input operations, and the
OutputStream class used for byte stream based output operations.
The InputStream and OutputStream classes have several concreate classes to perform various 10
operations based on the byte stream.
The followina picture shows the classes used for bvte stream operations

Byte Stream

InputStream QutputStream

& 2o S
= . = —BufferedOutputStream
—BufferedinputStream 5 !

— ByteArraylnputStream —ByteArrayOutputStream

g —DataOutputStream
— DatalnputStream .

—ObjectOutputSiream
” A Chren —FiteOutputStream
— FilelnputStream

5 — PipedOutputStream
— PipedinputStream PECRARPMLG

. = — QutputSiream
— [nputStream - = ! '

— FilterOutputSiream

— FilterinputStream nputStream . N
P — PrintStream print() =0 printin()

read() and write{) both are key methods of byte stream

CSE/NRCM

BYTE STREAM IN JAVA

InputStream class
The InputStream class has defined as an abstract class, and it has the following methods

which have

1 nlarmantad by ite Aaanrnerata-pmolaceace
IFEREMCME RS it Pk dSSES:
1 int available()
It returns the number of bytes that can be read from the input stream.
2 int read()
It reads the next byte from the input stream.
3 int read(byte[] b)
It reads a chunk of bytes from the input stream and store them in its byte array, b.
4 void close()
It closes the input stream and also frees any resources connected with this input stream.

OutputStream class
The OutputStream class has defined as an abstract class, and it has the following methods

which have implemented by its concrete classes.

S.No. | Method with Description

1 void write(int n)
It writes byte(contained in an int) to the output stream.

2 void write(byte[] b)
It writes a whole byte array(b) to the output stream.

3 void flush()
It flushes the output steam by forcing out buffered bytes to be written out.

4 void close()
It closes the output stream and also frees any reSoft€es/dorinedtéd with this output stream.

CHARACTER STREAM IN JAVA

In java, when the 10 stream manages 16-bit Unicode characters, it is called a character
stream. The unicode set is basically a type of character set where each character corresponds
to a specific numeric value within the given character set, and every programming language
has a character set.

In java, the character stream is a 16 bits carrier. The character stream in java allows us to
transmit 16 bits of data.

The character stream was introduced in Java 1.1 version. The charater stream

The java character stream is defined by two abstract classes, Reader and Writer. The Reader
class used for character stream based input operations, and the Writer class used for charater
stream based output operations.

The Reader and Writer classes have several concreate classes to nerform various IO operations

based on Character Stream
the character stream. 1
—BufferedReader — BufferedWriter
— CharArra yl—i-‘.‘ur_iéi — CharArrayWriter
— StringReadet — StringWriter
— FileReader — FileWriter
— PipedReader — PipedWriter
— InputStreamReader — OutputStream\Writer
— FilterReader — FilterWnter
— LineNumberReader i PrintStream print() printin()

read() and write() both are key methods of byte stream

CSE/NRCM

CHARACTER STREAM IN JAVA

Reader class
The Reader class has defined as an abstract class, and it has the following methods

which have
iImplemented by its concrete classes
S.No. | Method with Description
1 int read()
It reads the next character from the input stream.
2 int read(char[] cbuffer)
It reads a chunk of charaters from the input stream and store them in its byte array, cbuffer.
3 int read(char[] cbuf, int off, int len)
It reads charaters into a portion of an array.
4 int read(CharBuffer target)
It reads charaters into into the specified character buffer.
5 String readLine()
It reads a line of text. A line is considered to be terminated by any oneof a line feed (\n'), a
carriage return ('\r"), or a carriage returnfollowed immediately by a linefeed.
6 boolean ready()
It tells whether the stream is ready to be read.
7 void close()

It closes the input stream and also frees any resources connected with this input stream.

CSE/NRCM

CHARACTER STREAM IN JAVA

Writer class
The Writer class has defined as an abstract class, and it has the following methods

which have
Implemented bv its concrete classes

S.No. [Method Wwith Description
1 void flush()
It flushes the output steam by forcing out buffered bytes to be written out.
2 void write(char[] cbuf)
It writes a whole array(cbuf) to the outputstream.
3 void write(char[] cbuf, int off, int len)
It writes a portion of an array of characters.
4 void write(intc)
It writes single character.
5 void write(String str)
It writes astring.
6 void write(String str, int off, int len)
It writes a portion of a string.
7 Writer append(charc)
It appends the specified character to the writer.
8 Writer append(CharSequencecsq)
It appends the specified character sequence to the writer
9 Writer append(CharSequencecsq, int start, int end)
It appends a subsequence of the specified character sequence to the writer.
10 void close() CSE/NRCM

It closes the output stream and also frees any resources connected with this output stream.

CONSOLE I/0O OPERATIONS IN

Re Aj le inputin java
In java, there are three ways to read console input. Using the 3 following ways, we can read
input data
from the console.
 Using BufferedReader class
 Using Scanner class
 Using Console class
Let's explore the each method to read data with example.

1. Reading console input using BufferedReader class in java

Reading input data using the BufferedReader class is the traditional technique. This way of
the reading method is used by wrapping the System.in (standard |nput stream) in an
InputStreamReader which is wrapped in a BufferedRear

console. o e

The BufferedReader class has defined in the java.io pac | = e

finally

CSE/NRCM

CONSOLE I/O OPERATIONS IN

dA sole iInput using Scanner class in java
Rea Ing input data using the Scanner class is the most commonly used method. This way of the

reading method is used by wrapping the System.in (standard input stream) which is wrapped in a
Scanner, we can read input from the console.

The Scanner class has defined in the java.util package.

Consider the following example code to understand how to read console input using Scanner

class.

import java.util.Scan

CSE/NRCM

CONSOLE I/0O OPERATIONS IN

3. RdA sole input using Consoleclass in java

Reading input data using the Console class is the most commonly used method. This class was
introduced

in Java 1.6 version.

The Console class has defined in the java.io package.

Consider the following example code to understand how to read console input using Console
class.

Example
import java.io.*;
public class ReadingDemo {
public static void main(String[] args) {
String name;
Console con = System.console();
if(con '=null) {
name = con.readLine("Please enter your name : ");
System.out.printin("Hello, " + name + "!I");

}
else {
System.out.printin("Console not available.");
}
} CSE/NRCM

CONSOLE I/0O OPERATIONS IN

3. RdA sole input using Consoleclass in java

Reading input data using the Console class is the most commonly used method. This class was
introduced

in Java 1.6 version.

The Console class has defined in the java.io package.

Consider the following example code to understand how to read console input using Console
class.

Example
import java.io.*;
public class ReadingDemo {
public static void main(String[] args) {
String name;
Console con = System.console();
if(con '=null) {
name = con.readLine("Please enter your name : ");
System.out.printin("Hello, " + name + "!I");

}
else {
System.out.printin("Console not available.");
}
} CSE/NRCM

CONSOLE I/0O OPERATIONS IN

Wri iAﬁ outputin java

In java, there are two methods to write console output. Using the 2 following methods, we can
write

output data to the console.

« Using print() and printin() methods

Using write() method

1. Writing console output using print() and printin() methods

The PrintStream is a bult-in class that provides two methods print() and printin() to write console
output.

The print() and printin() methods are the most widely used methods for console

output. Both print() and printin() methods are used with System.out stream.

The print() method writes console output in the same line. This method can be used with console
output

only.

The printin() method v = oac .. ~line (new line). This method can be
used with

console ans also with T

Let's look at the follow =~ == tin() methods.

Example i

CSE/NRCM

CONSOLE I/O OPERATIONS IN

WdiAcVaAe output using write() method

Alternatively, the PrintStream class provides a method write() to write console output.

The write() method take integer as argument, and writes its ASCII equalent character on to the
console, it also acept escape sequences.

Let's look at the following code to illustrate write() method.

Example

TmoOAE>a

CSE/NRCM

FILE CLASS IN JAVA

The File is a built-in class in Java. In java, the File class has been defined in the java.io package.
The File class represents a reference to a file or directory. The File class has various methods to
perform operations like creating a file or directory, reading from a file, updating file content, and
deleting a file or directory.

The File class in java has the following constructors.

S.No. | Constructor with Description

1 File(String pathname)

It creates a new File instance by converting the givenpathname string into an abstract pathname. If the
given string isthe empty string, then the result is the empty abstract pathname.

2 File(String parent, String child)

It Creates a new File instance from a parent abstractpathname and a child pathname string. If parent is
null then the new File instance is created as if by invoking thesingle-argument File constructor on the
given child pathnamestring.

3 File(File parent, String child)

It creates a new File instance from a parent abstractpathname and a child pathname string. If parent is
null then the new File instance is created as if by invoking thesingle-argument File constructor on the
given child pathname string.

4 File(URI uri)

It creates a new File instance by converting the given file: URI into an abstract pathname.

CSE/NRCM

FILE CLASS IN JAVA

The File class in java has the following

ethods,
S.No. Methods with Description
1 String getName()
It returns the name of the file or directory that referenced by the current File object.
2 String getParent()
It returns the pathname of the pathname's parent, or null if the pathname does not name a parent directory.
3 String getPath()
It returns the path of curent File.
4 File getParentFile()
It returns the path of the current file's parent; or null if it does not exist.
5 String getAbsolutePath()
It returns the current file or directory path from the root.
6 boolean isAbsolute()
It returns true if the current file is absolute, false otherwise.
7 boolean isDirectory()
It returns true, if the current file is a directory; otherwise returns false.
8 boolean isFile()
It returns true, if the current file is a file; otherwise returns false.
9 boolean exists()
It returns true if the current file or directory exist; otherwise returns false.
10 boolean canRead()
It returns true if and only if the file specified exists and can be read by the application; false otherwise.
11 boolean canWrite()
It returns true if and only if the file specified exists and the application is allowed to write to the file; false otherwise.
12 long length()
It returns the length of the current file.
13 long lastModified()
It returns the time that specifies the file was last modified.
14 boolean createNewFile()
It returns true if the named file does not exist and was successfully created; false if the named file already exists.
15 boolean delete()
It deletes the file or directory. And returns true if and only if the file or directory is successfully deleted; false otherwise.

CSE/NRCM

FILE READING & WRITING IN JAVA

In java, there multiple ways to read data from a file and to write data to a file. The most commonly
used

ways are as follows.

Using Byte Stream (FilelnputStream and

FileOutputStream) Using Character Stream

(FileReader and FileWriter)

Let's look each of these ways.

File Handling using Byte Stream

In java, we can use a byte stream to handle files. The byte stream has the following built-in
classes to perform various operations on a file.

FilelnputStream - It is a built-in class in java that allows reading data from a file. This class has
implemented based on the byte stream. The FilelnputStream class provides a method read() to
read data from a file byte by byte.

FileOutputStream - It is a built-in class in java that allows writing data to a file. This class has
implemented based on the byte stream. The FileOutputStream class provides a method write() to
write data to a file byte by byte.

CSE/NRCM

FILE READING & WRITING IN JAVA

File Handling using Character Stream

In java, we can use a character stream to handle files. The character stream has the following
built-in

classes to perform various operations on a file.

FileReader - It is a built-in class in java that allows reading data from a file. This class has
implemented based on the character stream. The FileReader class provides a method read()
to read data from a file character by character.

FileWriter - It is a built-in class in java that allows writing data to a file. This class has
implemented based on the character stream. The FileWriter class provides a method write() to
write data to a file character by character.

Let's look at the following example program that reads data from a file and writes the same to
another file

using FlleReader and FileWriter classes.

CSE/NRCM

RANDOMACCESSFILE IN JAVA

In java, the java.io package has a built-in class RandomAccesskFile that enables a file to be
accessed randomly. The RandomAccessFile class has several methods used to move the
cursor position in a file. A random access file behaves like a large array of bytes stored in a file.
RandomAccessFile Constructors

The RandomAccesskFile class in java has the following constructors.

S.No. Constructor with Description

1 RandomAccessFile(File fileName, String mode)

It creates a random access file stream to read from, and optionally to write to, the file specified by the
File argument.

2 RandomAccessFile(String fileName, String mode)
It creates a random access file stream to read from, and optionally to write to, a file with the specified
fileName.

Access Modes

Using the RandomAccessFile, a file may created in th following modes.

r - Creates the file with read mode; Calling write methods will result in an IOException.
rw - Creates the file with read and write mode.

rwd - Creates the file with read and write mode - synchronously. All updates to file content is
written to

the disk synchronously.

rws - Creates the file with read and write mode - synchronously. All updates to file content or
meta data is CSE/NRCM

written to the disk svnchronouslv

RandomAccesskFile

it SCiRl 0
m{w 0

It reads byte of data from a file. The byte isreturnedas an integer in the range0-255.
2 int read(byte[] b)

It reads byte of data from file uptob.length, -1 if end of file is reached.
3 int read(byte[] b, int offset, int len)

Itreads bytes initialisingfrom offset positionupto b.length from thebuffer.
4 boolean readBoolean()

Itreads a boolean value from from the file.
5 byte readByte()

It reads signed eight-bitvalue from file.
6 char readChar()

It reads a character value from file.
7 double readDouble()

It reads a double value from file.
8 float readFloat()

It readsa float value from file.
9 long readLong()

It reads a long value from file.
10 int readint()

It reads a integer value from file.
11 void readFully(byte[] b)

It reads bytes initialisingfrom offset position upto b.length from the buffer.
12 void readFully(byte[] b, int offset, int len)

Itreadsbytes initialisingfrom offset positionupto b.length from the buffer.
13 String readUTF()

t reads in a string from the file.
14 void seek(long pos)

It sets the file-pointer(cursor) measured from the beginning of thefile, at which the next read or write occurs.
15 long length()

It returnsthe length of the file.
16 void write(int b)

It writes the specified byte to thefile from thecurrentcursor position.
17 void writeFloat(float v)

It converts thefloat argumenttoan intusingthe floatTolntBitsmethod in class Float, and then writes thatintvalue to the file as a four-byte quantity, highbyte first.
18 void writeDouble(double v)

It converts the double argumentto a long using the doubleToLongBitsmethod in class Double, and then writes thatlong value to the file as an eight-byte quantity, high

byte first. CSE/NRCM

CONSOLE CLASS IN JAVA

In java, the java.io package has a built-in class Console used to read from and write to the
console, if one

exists. This class was added to the Java SE 6. The Console class implements teh
Flushable interface. In java, most the input functionalities of Console class available
through System.in, and the output functionalities available through System.out.

Console class Constructors

The Console class does not have any constructor. We can obtain the Console class

object by calling System.console().

Console class methods
ThConsMRNed«E Pjariqhas the following methods

1 void flush()
It causes buffered outputto be written physically tothe console.
2 String readLine()
It reads a string value from the keyboard, the input is terminated on pressing enter key.
3 String readLine(String promptingString, Object...args)
It displays the given promptingString, and reads a string fron the keyboard; input is terminated on pressng Enter key.
4 char][] readPassword()
It reads a string value from the keyboard, the string is not displayed; the input is terminated on pressing enter key.
5 char][] readPassword(String promptingString, Object...args)

It displays the given promptingString, and reads a string value from the keyboard, the string is not displayed; the input is terminated on
pressing enter key.

6 Console printf(String str, Object....args)
It writes the given string to the console.
7 Console format(String str, Object....args)
It writes the given string to the console.
8 Reader reader()
Itreturns a reference toa Reader connected to the console.
9 Printwriter writer()

It returns a reference to a Writer connected to the condolés E/NR C IV

SERIALIZATION AND DESERIALIZATION

In IEIN ttlalééMAtion IS the process of converting an object into a byte stream so that it can
be stored on to a file, or memory, or a database for future access. The deserialization is reverse
of serialization. The deserialization is the process of reconstructing the object from the serialized
state.

Using serialization and deserialization, we can transfer the Object Code from one Java Virtual
machine to another.

Serialization in Java

In a java programming language, the Serialization is achieved with the help of interface
Serializable. The

class whose object needs to be serialized must implement the Serializable interface.

We use the ObjectOutputStream class to write a serialized object to write to a destination. The
ObjectOutputStream class provides a method writeObject() to serializing an object.

We use the following steps to serialize an object.

Step 1 - Define the class whose object needs to be serialized; it must implement Serializable
interface.

Step 2 - Create a file reference with file path using FileOutputStream class.

Step 3 - Create reference to ObjectOutputStream object with file reference.

Step 4 - Use writeObject(object) method by passing the object that wants to be serialized.

Step 5 - Close the FileOutputStream and ObjectOutputStream.

CSE/NRCM

SERIALIZATION AND DESERIALIZATION
DJSN&UJAMFAV&

In a java programming language, the Deserialization is achieved with the help of class
ObjectinputStream.

This class provides a method readObject() to deserializing an

object. We use the following steps to serialize an object.

Step 1 - Create a file reference with file path in which serialized object is available using
FilelnputStream class.

Step 2 - Create reference to ObjectinputStream object with file reference.

Step 3 - Use readObject() method to access serialized object, and typecaste it to destination type.
Step 4 - Close the FilelnputStream and ObjectinputStream.

CSE/NRCM

ENUM IN JAVA

In java, an Enumeration is a list of named constants. The enum concept was introduced in
Java SE 5 version. The enum in Java programming the concept of enumeration is greatly
expanded with lot more new features compared to the other languages like C, and C++.

In java, the enumeration concept was defined based on the class concept. When we create an
enum in java, it converts into a class type. This concept enables the java enum to have
constructors, methods, and instance variables.

All the constants of an enum are public, static, and final. As they are static, we can access
directly using

enum name.

The main objective of enum is to define our own data types in Java, and they are said to be
enumeration

data types.

Creating enum in Java
To create enum in Java, we use the keyword enum. The syntax for creating enum is similar to
that of class. In java, an enum can be defined outside a class, inside a class, but not inside a
method.
» Every enum is converted to a class that extends the built-in class Enum.
» Every constant of an enum is defined as an object.
» As an enum represents a class, it can have methods, constructors. It also gets a few extra
methods
from the Enum class, and one of themGs;the-allies() method.

AUTOBOXING AND UNBOXING IN

In@AMqﬁimitive data types have defined using the class concept, these classes known as
wrapper

classes. In java, every primitive type has its corresponding wrapper class.

All the wrapper classes in Java were defined in the java.lang package.

The following table shows the primitive type and its corresponding wrapper class.

S.No. Primitive Type Wrapper class
1 byte Byte

2 short Short

3 int Interger

4 long Long

5 float Float

6 double Double

7 char Character

8 boolean Boolean

The Java 1.5 version introduced a concept that converts primitive type to corresponding wrapper

type and
reverses of it.

CSE/NRCM

AUTOBOXING AND UNBOXING IN
AL‘IJ)ﬂ if\Vava

In jav e process of converting a primitive type value into its corresponding wrapper class
objectis

called autoboxing or simply boxing. For example, converting an int value to an Integer class
object. The compiler automatically performs the autoboxing when a primitive type value has
assigned to an object of the corresponding wrapper class.

A We can also perform autoboxing manually using the method valueOf(), which is provided by
every

wrapper class.

Auto un-boxing in Java

In java, the process of converting an object of a wrapper class type to a primitive type value is
called auto

un-boxing or simply unboxing. For example, converting an Integer objectto an int value.

The compiler automatically performs the auto un-boxing when a wrapper class object has
assigned to

aprimitive type.

A We can also perform auto un-boxing manually using the method intValue(), which is
provided by

Integer wrapper class. Similarly every wrapper class has a method for auto un-boxing.

CSE/NRCM

GENERICS IN JAVA

The java generics is a language feature that allows creating methods and class which can
handle any type of data values. The generic programming is a way to write generalized
programs, java supports it by java generics.

The java generics is similar to the templates in the C++ programming

language. Most of the collection framework classes are generic classes.

The java generics allows only non-primitive type, it does not support primitive types like int, float,
char,

etc.

The java generics feature was introduced in Java 1.5 version. In java, generics used angular
brackets “< >”. In java, the generics feature implemented using the following.

QO Generic Method

QA Generic Classe

Generic methods in Java

The java generics allows creating generic methods which can work with a different type of data
values. Using a generic method, we can create a single method that can be called with
arguments of different types. Based on the types of the arguments passed to the generic
method, the compiler handles each method call appropriately.

Generic Class in Java

In java, a class can be defined as a generic class that allows creating a class that can work with
different

types.

A generic class declaration looks like a non-geneéri¢(class declaration, except that the class name
IS

UNIT — [l
EXCEPTION
HANDLING &

MULTITHREADIN
G

CSE/NRCM

EXCEPTION HANDLING IN JAVA

An exception in java programming is an abnormal situation that is araised during the program
execution.

In simple words, an exceptionis a problem that arises at the time of program execution.
When an exception occurs, it disrupts the program execution flow. When an exception occurs,
the program execution gets terminated, and the system generates an error. We use the
exception handling mechanism to avoid abnormal termination of program execution.

Java programming language has a very powerful and efficient exception handling mechanism with
alarge

number of built-in classe
Java programming langt
handling mechanism.

axception

ClassNotFoundException OutOMeamary Brroe

SOLEvcoption StackOverFlowEreor

Arithmetic Excoption

NullPointerfxcaption

NumberformatExsception

IndoxOutOBound s Excoption

ﬂag‘l’v;g:::;lm @ chocked Bxcoptions

. Unchecked Excoptions

StringindexOutOfr
':iqd.sEnc.puon) @ voor

CSE/NRCM

EXCEPTION HANDLING IN JAVA

Reasons for Exception Occurrence

Several reasons lead to the occurrence of an exception. A few of them are as follows.

When we try to open a file that does not exist may lead to an

exception. When the user enters invalid input data, it may lead to an

exception.

When a network connection has lost during the program execution may lead to an

exception. When we try to access the memory beyond the allocated range may lead to an
exception.

The physical device problems may also lead to an exception.

Types of Exception

In java, exceptions have categorized into two types, and they are as follows.

Checked Exception - An exception that is checked by the compiler at the time of compilation is
called a

checked exception.

Unchecked Exception - An exception that can not be caught by the compiler but occurrs at the
time of

program execution is called an unchecked exception.

How exceptions handled in Java?

In java, the exception handling mechanism uses five keywords namely try, catch, finally, throw,
and throws.

We will learn all these concepts in this series of tutorials.

EXCEPTION TYPES IN JAVA

In java, exceptions are mainly categorized into two types, and they are as follows.
Checked Exceptions
Unchecked Exceptions

Checked Exceptions
The checked exception is an exception that is checked by the compiler during the compilation
process to confirm whether the exception is handled by the programmer or not. If it is not
handled, the compiler displays a compilation error using built-in classes.
The checked exceptions are generally caused by faults outside of the code itself like missing
resources,
networking errors, and problems with threads come to mind.
The following are a few built-in classes used to handle checked exceptions in java.

< |IOException

< FileNotFoundException

< ClassNotFoundException

< SQLEXxception

< DataAccessException

< InstantiationException

< UnknownHostException
In the exception class hierarchy, the checked exception classes are the direct children of the
Exception
class. CSE/NRCM

The checked exception is also known as a compile-time exception

Unchecked Exceptions

The unchecked exception is an exception that occurs at the time of program execution. The
unchecked
exceptions are not caught by the compiler at the time of compilation.
The unchecked exceptions are generally caused due to bugs such as logic errors,
improper use of resources, etc.
The following are a few built-in classes used to handle unchecked exceptions in java.
O ArithmeticException
O NullPointerException
O NumberFormatException
O ArraylndexOutOfBoundsException
O StringlndexOutOfBoundsException
In the exception class hierarchy, the unchecked exception classes are the children of
RuntimeException
class, which is a child class of Exception class.
The unchecked except = i=ii ~eption.
Let's look at the followil ~-.oro :cked exceptions.

CSE/NRCM

Exception class
In h*@{t@‘ﬂ@lhsy used to handle exceptions have the following class

hierarchy.

EXCEPTION MODELS IN JAVA

In java, there are two exception models. Java programming language has two models of exception
handling. The exception models that java suports are as follows.

Termination

Model

Resumptive

Model

Let's look into details of each exception model.

Termination Model

In the termination model, when a method encounters an exception, further processing in that
method is terminated and control is transferred to the nearest catch block that can handle the
type of exception encountered.

In other words we can say that in termination model the error is so critical there is no way to get
back to

where the exception occurred.

Resumptive Model

The alternative of termination model is resumptive model. In resumptive model, the exception
handler is expected to do something to stable the situation, and then the faulting method is
retried. In resumptive model we hope to continue the execution after the exception is handled.

In resumptive model we may use a method call that want resumption like behavior. We may also
place the CSE/NRCM

trv block in a while loop that keeps re-enterina the trv block util the result is satisfactorv.

UNCAUGHT EXCEPTIONS IN JAVA

In java, assume that, if we do not handle the exceptions in a program. In this case, when an
exception occurs in a particular function, then Java prints a exception message with the help of
uncaught exception handler.

The uncaught exceptions are the exceptions that are not caught by the compiler but automatically
caught and handled by the Java built-in exception handler.

Java programming language has a very strong exception handling mechanism. It allow us to
handle the

exception use the keywords like try, catch, finally, throw, and throws.

When an uncaught exception occurs, the JVM calls a special private method

known dispatchUncaughtException(), on the Thread class in which the exception occurs and
terminates

the thread. -

The Division b == | " Hruncaught exceptions. Look at the
following code

CSE/NRCM

try AND catch IN JAVA

In java, the try and catch, both are the keywords used for exception handling.

The keyword try is used to define a block of code that will be tests the occurence of an
exception. The keyword catch is used to define a block of code that handles the exception
occured in the respective try block.

The uncaught exceptions are the exceptions that are not caught by the compiler but automatically
caught and handled by the Java built-in exception handler.

Both try and catch are used as a pair. Every try block must have one or more catch blocks. We
can not use

try without atleast one catch, and catch alone can be used (catch without try is not

allowed). The following is the syntax of try and catch blocks.

Syntax

try{

code to be tested

\
catch(ExceptionType object){

code for handling the exception

CSE/NRCM

try AND catch IN JAVA

Multiple catch clauses

In java programming language, a try block may has one or more number of catch blocks. That
means a

single try statement can have multiple catch clauses.

When a try block has more than one catch block, each catch block must contain a different
exception type to be handled.

The multiple catch clauses are defined when the try block contains the code that may lead to
different

type of exceptions.

The try block generates only one exception at a time, and at a time only one catch block is
executed. When there are multiple catch blocks, the order of catch blocks must be from the most
specific exception handler to most general. o

The cas i ismmsiesins SOt ve defined at the last.

ain(Strisg[]

CSE/NRCM

try AND catch IN JAVA

Nested try statements
The java allows to write a try statement inside another try statement. A try block within another try

block

Is known as nested try block.
When there are nested try blocks, each try block must have one or more seperate catch blocks.

fTos

In case of nested try blocks, if an exception occured in the inner try block and it's catch blocks

are unable
to handle it then it transfers the control to the outer try's catch block to handle it.

CSE/NRCM

throw, throws, AND finally KEYWORDS

In ISN thlAMAthrow, throws, and finally are used in the exception handling concept. Let's
look at
each of these keywords.

throw keywordin Java

The throw keyword is used to throw an exception instance explicitly from a try block to
corresponding catch block. That means it is used to transfer the control from try block to
corresponding catch block.

The throw keyword must be used inside the try blcok. When JVM encounters the throw keyword,
it stops

the execution of try block and jump to the corresponding catch block.

Using throw keyword only object of Throwable class or its sub classes can be thrown.

Using throw keyword only one exception can be thrown.

The throw keyword must followed by an throwable instance.

The following is the general syntax for using throw keyword in a try block.
Syntax
throw instance;

Here the instace must be throwable instance and it can be created dynamically using new

operator.
CSE/NRCM

throw, throws, AND finally KEYWORDS
thllm IJAMAava

The throws keyword specifies the exceptions that a method can throw to the default handler and
does not handle itself. That means when we need a method to throw an exception automatically,
we use throws keyword followed by method declaration

When a method throws an exception, we must put the calling statement of method in try-catch
block.

finally keyword in Java

The finally keyword used to define a block that must be executed irrespective of exception
occurence. The basic purpose of finally keyword is to cleanup resources allocated by try block,
such as closing file, closing database connectlon etc

Only one finally block is allowed for & s e |

Use of finally block is optional. e el e °

CSE/NRCM

BUILT-IN EXCEPTIONS IN JAVA

The Java programming language has several built-in exception class that support exception
handling. Every

exception class is suitable to explain certain error situations at run

time. All the built-in exception classes in Java were defined a

packagejava.l -~ Tt o oemee s Teem mem 2E e i the

following image

java. lang

|

>

EI'I'

10Excoption VirtuatMachineErroe

ClassNotFoundE xcoption

OutOfMemoryError

SOLException StackOverFlowErmor

A

NullPointerException
NumbarFormaExceplion

ArrayindexOutOf
BoundsException

. Cheched Exceptions

. Unchocked Excoptions

.[W

StringindexOutOf
BoundsException

CSE/NRCM

List of checked exceptions in Java

S. No. | Exception Class with Description

1 ClassNotFoundException
It is thrown when the Java Virtual Machine (JVM) tries to load a particular class and the specified class
cannot be found in the classpath.

2 CloneNotSupportedException
Used to indicate that the clone method in class Object has been called to clone an object, but that the
object's class does not implement the Cloneable interface.

3 Illegal AccessException
It is thrown when one attempts to access a method or member that visibility qualifiers do not allow.

4 InstantiationException
It is thrown when an application tries to create an instance of a class using the newlInstance method in
class Class , but the specified class object cannot be instantiated because it is an interface or is an
abstract class.

5 InterruptedException
It is thrown when a thread that is sleeping, waiting, or is occupied is interrupted.

6 NoSuchFieldException
It indicates that the class doesn't have a field of a specified name.

7 NoSuchMethodException

It is thrown when some JAR file has a different version at runtime that it had at compile time, a
NoSuchMethodException occurs during reflection when we try to access a method that does not exist.

CSE/NRCM

List of unchecked exceptions Iin Java

S. No. Exception Class with Description
1 ArithmeticException
It handles the arithmetic exceptions like dividion by zero
2 ArrayIndexOutOfBoundsException
It handles the situations like an array has been accessed with an illegal index. The index is either negative or greater than or equal to the size of the
array.
3 ArrayStoreException
It handles the situations like when an attempt has been made to store the wrong type of object into an arrayof objects
4 AssertionError
Itis used to indicate that an assertion has failed
5 ClassCastException
It handles the situation when we tryto improperly casta class from one type to another.
6 Illegal ArgumentException
This exception is thrown in order to indicate thata method has been passed anillegal or inappropriateargument.
7 IllegalMonitorStateException

This indicates that the calling thread has attempted to wait on an object's monitor, or has attempted to notify other threads that wait on an object's
monitor, without owning the specified monitor.

8 IllegalStateException
It signals thata method has been invoked atan illegal or inappropriatetime.
9 Illegal ThreadStateException

Itis thrown by the Java runtime environment, when the programmer is trying to modify the state of the thread when it is illegal.

10 IndexOutOfBoundsException
Itis thrown when attempting to access an invalid index within a collection, such asan array, vector , string , and so forth.

11 NegativeArraySizeException
Itis thrown if an applet tries to create an arraywith negative size.
12 NullPointerException
it is thrown when program attempts to use an object reference that has the null value.
13 NumberFormatException
Itis thrown when we tryto convert a string into a numeric value such as float or integer, but the format of the input string is not appropriateor illegal.
14 SecurityException
Itis thrown by the Java Card Virtual Machine to indicate a security violation.
15 StringIndexOutOfBounds

Itis thrown by the methods of the String class, in order to indicate that an index is either negative, or greater than the size of the string itself.

UrnsupportedOperationExXception .
16 . . sted operation is not sup@ﬁcE/ NR C M
Itis thrown to indicate that the reque

CREATING OWN EXCEPTIONS IN

Th\eJJﬁe\pGAmming language allows us to create our own exception classes which are
basically

subclasses built-in class Exception.

To create our own exception class simply creates a class as a subclass of built-in
Exception class. We may create constructor in the user-defined exception class and pass
a string to Exception class constructor using super(). We can use getMessage() method

© Lwe Exampien - Camlreample
tfu EIr Jowrce: Pefactor Naegate Segech Brgject Bun Aedbiw Help
- N DO G Qo HEF S i . 1 . .t - o|re 8
Throwais x (o f X% -
Terel b 2 { e water s Appk gram =
Logw ape L T
Las is Exceptl elly doe 3 "

CSE/NRCM

MULTITHREADING IN JAVA

The java programming language allows us to create a program that contains one or more parts
that can run simultaneously at the same time. This type of program is known as a multithreading
program. Each part of this program is called a thread. Every thread defines a separate path of
execution in java. A thread is explained in different ways, and a few of them are as specified
below.

A thread is a light wieght process.

A thread may also be defined as follows.

A thread is a subpart of a process that can run individually.

In java, multiple threads can run at a time, which enables the java to write multitasking
programs. The multithreading is a specialized form of multitasking. All modern operating
systems support multitasking. There are two types of multitasking, and they are as follows.
Process-based multitasking

Thread-based multitasking

It is important to know the difference between process-based and thread-based multitasking.

Let's
distinguish both.

CSE/NRCM

Process-based multitasking Vs Thread-based
multitasking

Process-based multitasking Thread-based multitasking

It allows the computer to run two or more |It allows the computer to run two or
programs concurrently more threads concurrently

In this process is the smallest unit. In this thread is the smallest unit.

Process Is a larger unit. Thread is a part of process.

Process is heavy weight. Thread is light weight.

Process requires seperate address space for | Threads share same address space.
each.

Process never gain access over idle time of | Thread gain access over idle time of

CPU. CPU.
Inter process communication is expensive. Inter thread communication is not
expensive.

CSE/NRCM

JAVA THREAD MODEL

In java, a thread goes through different states throughout its execution. These stages are called
thread life cycle states or phases. A thread may in any of the states like new, ready or runnable,
running, blocked or wait, and dead or terminated state. The life cycle of a thread in java is shown

in the following figure.

Thread t1 = new Thread() e e o Thread life cycle in java

t1.start()

time completed / notify() / resumel()

PEaia o it &
l/ \\
'l 3
yield() | T Blocked
\ |

Runnin
g sleep() / wait() / suspend() / join()

stop()
Execution Completed

CREATING THREADS IN JAVA

In java, a thread is a lightweight process. Every java program executes by a thread called the
main thread. When a java program gets executed, the main thread created automatically. All
other threads called from the main thread.

The java programming language provides two methods to create threads, and they are listed
below.

» Using Thread class (by extending Thread class)

= Uisng Runnable interface (by implementing Runnable interface)

Extending Thread class

The java contains a built-in class Thread inside the java.lang package. The Thread class contains
all the

methods that are related to the threads.

To create a thread using Thread class, follow the step given below.

Step-1: Create a class as a child of Thread class. That means, create a class that extends
Thread class. Step-2: Override the run() method with the code that is to be executed by the
thread. The run() method must be public while overriding.

Step-3: Create the object of the newly created class in the main() method.

Step-4: Call the start() method on the object created in the above step.

CSE/NRCM

CREATING THREADS IN JAVA

Implementing Runnable interface

The java contains a built-in interface Runnable inside the java.lang package. The Runnable
interface

implemented by the Thread class that contains all the methods that are related to the
threads. To create a thread using Runnable interface, follow the step given below.

Step-1: Create a class that implements Runnable interface.

Step-2: Override the run() method with the code that is to be executed by the thread. The run()
method

must be public while overriding.

Step-3: Create the object of the newly created class in the main() method.

Step-4: Create the Thread class object by passing above created object as parameter to the
Thread class

constructor.

Step-5: Call the start() method on the Thread class object created in the above step.

CSE/NRCM

More about Thread class

The Thread class in java is a subclass of Object class and it implements Runnable interface.
The Thread

classis available inside the java.lang package. The Thread class has the following syntax.
class Thread extends Object implements Runnable{

The Thread class has the following consructors.

» Thread()

» Thread(String threadName)

» Thread(Runnable objectName)

» Thread(Runnable objectName, String threadName)

CSE/NRCM

Thread class methods.

Method Description Return
Value

run() Defines actual task of the thread. void

start() It moves thre thread from Ready state to Running state by calling | void
run() method.

setName(String) | Assigns a name to the thread. void

getName() Returns the name of the thread. String

setPriority(int) Assigns priority to the thread. void

getPriority() Returns the priority of the thread. int

getld() Returns the ID of the thread. long

activeCount() Returns total number of thread under active. int

currentThread() |Returns the reference of the thread that currently in running | void
state.

sleep(long) moves the thread to blocked state till the specified number of | void
milliseconds.

iIsAlive() Tests if the thread is alive. boolean

yield() Tells to the scheduler that the current thread is willing to yield its | void
current use of a processor.

join() Waits for the thread to end. void

CSE/NRCM

JAVA THREAD PRIORITY

In a java programming language, every thread has a property called priority. Most of the
scheduling algorithms use the thread priority to schedule the execution sequence. In java, the
thread priority range from 1 to 10. Priority 1 is considered as the lowest priority, and priority 10 is
considered as the highest priority. The thread with more priority allocates the processor first.
The java programming language Thread class provides two methods setPriority(int), and
getPriority() to handle thread priorities.

The Thread class also contains three constants that are used to set the thread priority, and they
are listed

below.

MAX_PRIORITY - It has the value 10 and indicates highest

priority. NORM_PRIORITY - It has the value 5 and indicates

normal priority. MIN_PRIORITY - It has the value 1 and

indicates lowest priority.

A The default priority of any thread is 5 (i.e. NORM_PRIORITY).

setPriority() method

The setPriority() method of Thread class used to set the priority of a thread. It takes an integer
range from 1 to 10 as an argument and returns nothing (void).

The regular use of the setPriority() method is as follows.

CSE/NRCM

JAVA THREAD
Th&YN@Hﬂ@NLIpEA&IE The problem of shared resources

occurs when two or more threads get execute at the same time. In such a situation, we need
some way to ensure that the shared resource will be accessed by only one thread at a time, and
this is performed by using the concept called synchronization.

A The synchronization is the process of allowing only one thread to access a shared resource at
a time.

In java, the synchronization is achieved using the following concepts.

O Mutual Exclusion

QInter thread communication

Mutual Exclusion

Using the mutual exclusion process, we keep threads from interfering with one another
while they accessing the shared resource. In java, mutual exclusionis achieved using the
following concepts. Synchronized method

Synchronized block

Synchronized method

When a method created using a synchronized keyword, it allows only one object to accessitat a
time. When an object calls a synchronized method, it put a lock on that method so that other
objects or thread that are trying to call the same method must wait, until the lock is released.
Once the lock is released on the shared resource, one of the threads among the waiting threads
will be allocated to the shared resource. CSE/NRCM

Synchronized block

The synchronized block is used when we want to synchronize only a specific sequence of lines in
a method. For example, let's consider a method with 20 lines of code where we want to
synchronize only a sequence of 5 lines code, we use the synchronized block.

The folllowing syntax is used to define a synchronized block.

Syntax

synchronized(object){ i

block code

X 0 0" Q" Q- HG- ™ +iy

rerrongedBindfaanzie ms

| dmport java.util.*;

class NamelList (
String name = "%;
public int count = @;

public void addName(String nams=, List<Strings> namesilist){
synchronized(this){
this.nane = nane;
count++;

} A
}

1T, 3dd{nane) ;

public int getCount(){
return count;
}
public class SynchronizedBlockExample {
public static void main (String[] args)

RamelList nameslList 1 = pew Namelist();
NameList namesList 2 = new Namelist();
List<String> list = new Arraylist<String>();
nameslist 1.addNase("Rama”, Iist);

anesiist 2.addName("Scetha™, list);

System.ovt.printin{"Threadl: " + pamesList 1.name + °,
Systoem.out.printin{"Thread2: “ ¢ namesList_2.namo +

CSE/NRCM

-I Conwow
XK =i
o e <
e nges - Yymches ined Boccten
Threadl: Rama, 1

Thread2: Seetha, 1

[st_1,getCount{) + "\n");
ist_2.goetCount{) « "\

JAVA INTER THREAD
In@i M@N |I;%AEFF)I@MO or more threads communicate to solve the

problem of polling. In java, polling is the situation to check some condition repeatedly, to take
appropriate action, once the condition is true. That means, in inter-thread communication, a thread
waits until a condition becomes true such that other threads can execute its task. The inter-thread
communication allows the synchronized threads to communicate with each other.

Java provides the following methods to achieve inter thread communication.

Qwait()
Qnotify()
QA notifyAll()
The following table gives detailed description about the above methods.
Method Description
void wait() It makes the current thread to pause its execution until other thread in the same
monitor calls notify()
void notify() It wakes up the thread that called wait() on the same object.
void notifyAll() | It wakes up all the threads that called wait() on the same object.

A Calling notify() or notifyAll() does not actually give up a lock on a

resource.
CSE/NRCM

UNIT =V
EVENT
HANDLING

CSE/NRCM

EVENT HANDLING

Changing the state of an object is known as an event. For example, click on button, dragging
mouse etc. The
java.awt.event package provides many event classes and Listener interfaces for event handling.

ActionEvent ActionListener
MouseEvent MouseListener and MouseMotionListener

MouseWheelEven| MouseWheelListener
t

KeyEvent KeyListener
ltemEvent ltemListener
TextEvent TextListener

AdjustmentEvent | AdjustmentListener

WindowEvent WindowListener
ComponentEvent | ComponentListener

ContainerEvent ContainerListener
FocusEvent FocusListener

CSE/NRCM

EVENT HANDLING

To perform Event Handling, we need to register the source with the listener. For registering the
component
with the Listener, many classes provide the registration methods. For example:
Button
public void addActionListener(ActionListener a){}
Menultem
public void addActionListener(ActionListener a){}
TextField
public void addActionListener(ActionListener
a){} public void addTextListener(TextListener
a){}
TextArea
public void addTextListener(TextListener a){}
Checkbox
public void addltemListener(ltemListener a){}
Choice
public void addIltemListener(ltemListener a){}
List
public void addActionListener(ActionListener a){}
public void addIltemListener(ltemListener a){}

CSE/NRCM

Delegation Event Model in Java

The Delegation Event model is defined to handle events in GUI programming languages. The GUI
stands for
Graphical User Interface, where a user graphically/visually interacts with the system.

The GUI programming is inherently event-driven; whenever a user initiates an activity such as a
mouse activity, clicks, scrolling, etc., each is known as an event that is mapped to a code to
respond to functionality to the user. This is known as event handling.

Event Processing in Java

Java support event processing since Java 1.0. It provides support for AWT (Abstract Window
Toolkit), which is an APl used to develop the Desktop application. In Java 1.0, the AWT was based
on inheritance. To catch and process GUI events for a program, it should hold subclass GUI
components and override action() or handleEvent() methods. The below image demonstrates the

event processir~

Event Processing
5N é\) Invokes
i Creates | {

Event Object —
Listener Interface cy—

CSE/NRCM

Registers

Delegation Event Model in Java

The key advantage of the Delegation Event Model is that the application logic is completely
separated from
the interface logic.

In this model, the listener must be connected with a source to receive the event notifications. Thus,
the events will only be received by the listeners who wish to receive them. So, this approach is more
convenient than the inheritance-based event model (in Java 1.0).

In the older model, an event was propagated up the containment until a component was
handled. This needed components to receive events that were not processed, and it took lots of
time. The Delegation Event model overcame this issue.

Basically, an Event Model is based on the following three components:
Events

Events Sources
Events Listeners

CSE/NRCM

Delegation Event Model in Java

Events

The Events are the objects that define state change in a source. An event can be generated as a
reaction of a user while interacting with GUI elements. Some of the event generation activities are
moving the mouse pointer, clicking on a button, pressing the keyboard key, selecting an item from
the list, and so on. We can also consider many other user operations as events.

The Events may also occur that may be not related to user interaction, such as a timer expires,

counter
exceeded, system failures, or a task is completed, etc. We can define events for any of the applied

actions.

Event Sources
A source is an object that causes and generates an event. It generates an event when the internal

state of
the object is changed. The sources are allowed to generate several different types of events.

A source must register a listener to receive naotifications for a specific event. Each event contains its

registration method. Below is an example:
public void addTypeListener (TypeListenerel)

CSE/NRCM

Delegation Event Model in Java

Event Listeners

An event listener is an object that is invoked when an event triggers. The listeners require two
things; first, it must be registered with a source; however, it can be registered with several resources
to receive naotification about the events. Second, it must implement the methods to receive and
process the received notifications. The methods that deal with the events are defined in a set of
interfaces. These interfaces can be found in the java.awt.event package.

For example, the MouseMotionListener interface provides two methods when the mouse is
dragged and moved. Any object can receive and process these events if it implements the
MouseMotionListener interface.

Types of Events

The events are categories into the following two categories:

The Foreground Events:

The foreground events are those events that require direct interaction of the user. These types of
events are generated as a result of user interaction with the GUI component. For example, clicking
on a button, mouse movement, pressing a keyboard key, selecting an option from the list, etc.

The Background Events :

The Background events are those events that result from the interaction of the end-user. For
example, an

Operating system interrupts system failure (Hardware or Software).

To handle these events, we need an event handling mechanism that provides control over the
events and CSE/NRCM

responses.

HANDLING MOUSE EVENTS

Java MouseListener Interface

The Java MouseListener is notified whenever you change the state of mouse. It is notified
against

MouseEvent. The MouseListener interface is found in java.awt.event package. It has five
methods.

Methods of MouseListener interface

The signature of 5 methods found in MouseListener interface are given below:
public abstractvoid mouseClicked(MouseEvent

e); public abstractvoid

mouseEntered(MouseEvent e); public abstract

void mouseExited(MouseEvent e); public

abstract void mousePressed(MouseEvent e);

public abstractvoid

mouseReleased(MouseEvent e);

CSE/NRCM

HANDLING OF KEYBOARD EVENTS

Java KeyListener Interface

The Java KeyListener is notified whenever you change the state of key. It is notified against
KeyEvent. The

KeyListener interface is found in java.awt.event package, and it has three methods.

Interface declaration
Following is the declaration for java.awt.event.KeyListener interface:

public interface KeyListener extends EventListener

Methods of KeyListener interface

acinnat Y anarintarfana o rer-beleow:
g‘}.CnBIHI 1 Méﬁdﬂlﬁérhlelcu IUdD fUUI Id LI I\C_y I_IOLCI ICI1 II It é&:\rﬁfmﬁ UIVCI MCIUVV.
1. public abstract void keyPressed (KeyEvent e); | It is invoked when a key has been pressed.
2. public abstract void keyReleased (KeyEvent |Itis invoked when a key has been
e); released.
3. public abstract void keyTyped (KeyEvent e); |Itis invoked when a key has been typed.

Methods inherited
This interface inherits methods from the following
interface:
java.awt.EventListener
CSE/NRCM

Jbutton

Jbutton

The JButton class is used to create a labeled button that has platform independent
implementation. The

application result in some action when the button is pushed. It inherits AbstractButton class.

JButton class declaration
public class JButton extends AbstractButton implements Accessible

Commanlv used Cancstriictaors:

Constructor 7| Description” ~ "~~~ ~ " T

JButton() It creates a buttonwith no text and icon.
JButton(String s) | It creates a button with the specified text.
JButton(lconi) It creates a button with the specified icon object.

Commonly used Methods of

ArstractButton class: Description
void setText(String s) Itis used to set specified text on button
String getText() Itis used to returnthe text of the button.
void setEnabled(boolean b) Itis used to enable ordisable the button.
void setlcon(lconb) Itis used to set the specified Icon onthe button.
Icon getlcon() Itis used to get the Icon of the button.
void setMnemonic(int a) Itis used to set the mnemonic on the button.
void addActionListener(ActionListener a) Itis used to add the action listener to this object.

CSE/NRCM

https://www.javatpoint.com/java-actionlistener

JCheckBox

The JCheckBox class is used to create a checkbox. It is used to turn an option on (true) or off
(false). Clicking

on a CheckBox changes its state from "on" to "off" or from "off" to "on ".It inherits JToggleButton
class.

JCheckBox class declaration
Let's see the declaration for javax.swing.JCheckBox class.
e-- class JCheckBoxextends- JToagaleButton-implements Accessible

text, no icon.
JChechBox(String s) Creates an initially unselected check box with text.
JCheckBox(String text, Creates a check box with text and specifies whether or not
boolean selected) it is initially selected.
JCheckBox(Action a) Creates a check box where properties are taken from the

Action supplied.

Commonly used

A | (|
Metioeds: Description
AccessibleContext Itis used to get the AccessibleContext associated with
getAccessibleContext() this JCheckBox.
protected String paramString() It returns a string representation of this JCheckBox.

CSE/NRCM

https://www.javatpoint.com/java-string

JRadioButton

The JRadioButton class is used to create a radio button. Itis used to choose one option from
multiple

options. Itis widely used in exam systems or quiz.

It should be added in ButtonGroup to select one radio button only.

JRadioButton class declaration
Let's see the declaration for javax.swing.JRadioButton class.
public class JRadioButton extends JToggleButton implements Accessible

Commronly used ConSPegators:
JRadioButton(Creates an unselected radio buttonwith no text.
JRadioButton(String s) Createsan unselected radio buttonwith specified text.
JRadioButton(String s, boolean Creates a radio buttonwith the specified text and
selected) selected status.

Commonly used

Méetivdsd S : | Description
void setText(String s) Itis used to set specified text on button.
String getText() Itis used toreturn the text of the button.
void setEnabled(boolean b) Itis used toenable ordisable the button.
void setlcon(lconb) Itis used to set the specified Icon on the button.
Icon getlcon() Itis used to get the Icon of the button.
void setMnemonic(int a) Itis used to set the mnemonic on the button.
void addActionListener(ActionListener a) | Itis used toadd the action listener to this object.

CSE/NRCM

JOptionPane (Dialogs)

The JOptionPane class is used to provide standard dialog boxes such as message dialog box,
confirm dialog box and input dialog box. These dialog boxes are used to display information or get
input from the user. The JOptionPane class inherits JComponent class.

JOptionPane class declaration
public class JOptionPane extends JComponent implements Accessible
Common Constructors of JOptionPane class

Constructor Description

JOptionPane() Itis used to create a JOptionPane with a test message.
JOptionPane(Object Itis used to create an instance of JOptionPane todisplay a
message) message.

JOptionPane(Object Itis used to create an instance of JOptionPane to display a
message, int messageType message with specified message type and default options.

Common Methods of JOptionPane

Clas8s Description

JDialog createDialog(String title) Itis used to create and returna new parentless JDialog with the
specified title.

static void showMessageDialog(Component parentComponent, Object message) Itis used to create an information-message dialog titled "Message".

static void showMessageDialog(Component parentComponent, Object message, Itis used to create a message dialog with given title and messageType.

String title, int messageType)

static int showConfirmDialog(Component parentComponent, Object message) Itis used to create a dialog with the options Yes, No and Cancel; with
the title, Select an Option.

static String showlnputDialog(Component parentComponent, Object message) Itis used to show a question-message dialog requesting input from the

user parented to parentComponent.

void setInputValue(Object newValue) (. SF /N R|(Mtfisqused to set the input value that was selected orinput by the user.

JAVA LIST INTERFACE

The List interface is a child interface of the
Collection interface. The List interface is
available inside the java.util package. It
defines the methods that are commonly
used by classes like ArrayList, LinkedList,
Vector, and Stack.

A The List interface

extends Collection interface.

A The Listinterface allows duplicate
elements.

A The Listinterface preserves the order of
insertion.

A The List allows to access the elements
based

on the index value that starts with zero.

CSE/NRCM

® boolean addAlllint index, Collection ¢)
\cldls all the elements of ¢ to the invoking

® <E> getlint index)
Returns the elemg

b int indexOf(Object obj)

e o @ Methods of interface in java

java.util.List

b void add(
Inserts the ob) at index in the invoking List, Any elements at or beyond the index are shifl

int index, E obj)

from index position

® <E> removelint index)

1ent at index frem the invokine t. The resultin 5t s compacted

nt al index from the ir

® List<E> sublList{int startindex, int endIndex)
Returmns a list containing elements from startindex {0 endindex-1 from the invoking List

nt index, E obj)

gns obj 1o the position index in the invoking List

@ int lastindexOf(Object obj)
- Returns the index value of obj last occurrence in the oking List. Returns -1 if obj not found

Listiterator<E> listiterator()
- Returns an iteralor to the r of the invok

Listlterator<E> listiterator(int index)
f r in iterat hat be

Ins at index of the invinkin

obj first occurrence In the invoking List. Raturns -1 if obj not found

JAVA QUEUE INTERFACE

The Queue interface is a child interface of

_) o ¢ » Methods of @D interface in java
the Collection interface. The Queue

interface is available inside the java.util
package. It defines the methods that are &> slement)
commonly used by classes like W thiows NoSuchElamentEscaption e quet
PriorityQueue and ArrayDeque. $©peck)
ms nullif tf

The Queue is used to organize a sequence . Bl teonsmnssoniibe
of
elements prior to the actual operation. 1 fE."“'"‘°:"’-?S’heag!. e g e

1 vs NoSuchElementException if the o
A The Queue interface

® <E> polll)
-Rem 12 head fram the invol
It returms null it

extends Collection interface.

A The Queue interface allows duplicate
elements.

A The Queue interface preserves the
order of insertion.

The Queue interface defines the following
methods.

CSE/NRCM

JAVA DEQUE INTERFACE

The Deque interface is a child interface of
the Queue interface. The Deque interface is
available inside the java.util package. It
defines the methods that are used by class
ArrayDeque.

A The Deque interface
extends Queue interface.

A The Deque interface allows

duplicate elements.

A The Deque interface preserves the order
of

insertion.

The Deque interface defines the following
methods.

JavautilDeque

void addFirst(E ob))

obj !

void addLastE obj
oby et ¢

boolean offerFirst(E oby)

dctob))

boolean oﬂc-rLas:.(E ob))
: il obj :
void push(E obji
| obj
<E> ggtFnrs{(?
<E> getlast() '
<;>vy)l)(|kF|vﬂ-!{)
<_E) v‘}l:‘L'kL.i'at(4.‘
<E> pollFirst{)
<§> pollLﬂs((l)
<E» popl)
<E> removoFirst()

<E> removelLast({)

boolean removeFirstOccurnre

eoe Methods of EERIED interface In Java

HlegalStateExceplion

llsgalStateException

HiegalStatet xception
tirevws NoSuchElementExcoption

NoSuchElementException

null i deq
NoSuchElomentException

NoSuchElermnentExcepbon

NoSuchElementException

ncelObject obj

ob{ 11

boolean removelastOccurrence(Object obj)
E . i N I OB ‘ e

b

Iterator<E> descendingiteratort)

CSE/NRCM

JAVA SORTEDSET INTERFACE

Set Interface

The Set interface is a child interface of
Collection interface. It does not defines any
additional methods of it, it has all the
methods that are inherited from Collection
interface. The Set interface does not allow
duplicates. Set is a generic interface.

SortedSet Interface

The SortedSet interface is a child interface
of the Set interface. The SortedSet interface
is available inside the java.util package. It
defines the methods that are used by
classes HashSet, LinkedHashSet, and
TreeSet.

A The SortedSet interface extends Set
interface.

A The SortedSet interface does not

allow duplicate elements.

A The SortedSet interface organise the
elements based on the ascending order.

se Meothods of LRSS interface in java

JavautitSortedSet

<E> ﬁflatl)

<E> lastl)

SortedSet<E> hr_v-.mS‘.-_-NE end)
SortedSet<E> m'lbe“t[E start)
SortedSet<E> sub Si:F'fE start. E. end

Comparator<? super E» comparator()
’ ! comparator '

The SortedSet interface defines the following>E/NRCM

methods.

JAVA NAVIGABLESET INTERFACE

The NavigableSet interface is a child

interface of the SortedSet interface. The

NavigableSet interface is available inside the

® <E> ceiling(E obj)

java.util package. It defines the methods Returns tne smalest alement e such that >= b It does et found mull s eturned
that are used by class TreeSet. PRMER o

o o @ Methods of (EVIFEINEEE Y interface in java

nt e such that e <= obj If it does not found nullis retumed

@ <E> higher(E ob))
Returns the lamer ele

A The NavigableSet interface kel R
extends SortedSet interface. RN SRR ST R R
A The SortedSet interface does not allow TSI bt e scbsesty
duplicate elements. $ potiasy

A The SortedSet interface organise the _ |
. L J N“j‘a.vtg}able\‘Sek.B‘ds_als‘cengm’gvSQ’t‘(')4 S—
elements based on the ascending order. '

@ NavngableSet<E> hewdSet(E upperBound boolean lncl)

The NavigableSet interface defines several Returgs all lemerts hal e e (1 upperBound T
Utlllty methOdS that are Used In the Treeset @ NavngableSet<E>h»lSet(ElowerBound booleanlncl) oo

at are greater than lowerBound. 1

class and they are as follows. e

® NavigableSet<E> subSet(E lowerBound, boolean lowincl,
upperBound boolean hlghlncl)
i elements that ; han lowerBound 2 then upperBound
The elements equal to th lo wer Bon d ancl upperBound | .w’»..t towincl and highincl
ire sel lrue

@ |terator<E> descendinglterator()
- RelLirns an terator that moves from areatest t

CSE/NRCM

JAVA ARRAYLIST CLASS

The ArrayList class is a part of java collection framework. It is available inside the java.util
package. The

ArrayList class extends AbstractList class and implements List interface.

The elements of ArrayListare organized as an array internally. The default size of an ArrayList
is 10.

The ArrayListclass is used to create a dynamic array that can grow or shrunk as needed.
A The ArrayListis a child class of AbstractList

A The ArrayListimplements interfaces like List, Serializable, Cloneable, and
RandomAccess.

A The ArrayList allows to store duplicate data values.

A The ArrayList allows to access elements randomly using index-based accessing.

A The ArrayList maintains the order of insertion.

ArrayList class declaration

The ArrayList class has the following declaration.

Example

public class ArrayList<E> extends AbstractList<E> implements List<E>, RandomAccess,
Cloneable,

Serializable

ArrayList class constructors
The ArravList class has the following constructors.

JAVA ARRAYLIST CLASS

Operations on ArrayList

The ArrayList class allow us to perform several operations like adding, accesing, deleting,
updating,

looping, etc. Let's look at each operation with examples.

Adding Items

The ArrayListclass has the following methods to add items.

boolean add(E element) - Appends given element to the ArrayList.

boolean addAll(Collection c¢) - Appends given collection of elements to the ArrayList.
void add(int index, E element) - Inserts the given element at specified index.
boolean addAll(int index, Collection c) - Inserts the given collection of elements at
specified index.

Accessing ltems

The ArrayList class has the following methods to access items.

E get(int index) - Returns element at specified index from the ArrayList.

ArrayList subList(int startindex, int lastindex) - Returns an ArrayList that contails elements
from

specified startindex to lastindex-1 from the invoking ArrayList.

int indexOf(E element) - Returns the index value of given element first occurence in the
ArrayList.

int lastindexOf(E element) - Returns the index value of given element last occurence in the
ArrayList. CSE/NRCM

JAVA ARRAYLIST CLASS

Updating Items

The ArrayList class has the following methods to update or change items.

E set(int index, E newElement) - Replace the element at specified index with

newElement in the invoking ArrayList.

ArrayList replaceAll(UnaryOperator e) - Replaces each element of invoking ArrayList with
the result of applying the operator to that element.

Removing ltems

The ArrayList class has the following methods to remove items.

E remove(intindex) - Removes the element at specified index in the invoking ArrayList.
boolean remove(Object element) - Removes the first occurence of the given element from the
invoking

ArrayList.

boolean removeAll(Collection c¢) - Removes the given collection of elements from the
invoking ArrayList.

void retainAll(Collection c) - Removes all the elements except the given collection of elements
from the

invoking ArrayList.

boolean removelf(Predicate filter) - Removes all the elements from the ArrayList that satisfies
the given

predicate.

void clear() - Removes all the elements fromitheAriayList.

JAVA LINKEDLIST CLASS

The LinkedList class is a part of java collection framework. It is available inside the
java.util package. The LinkedList class extends AbstractSequentiallList class and
implements List and Deque interface. The elements of LinkedList are organized as the
elements of linked list data structure.

The LinkedList class is used to create a dynamic list of elements that can grow or shrunk as
needed.

A The LinkedListis a child class of AbstractSequentialList

A The LinkedListimplements interfaces like List, Deque, Cloneable, and Serializable.

A The LinkedList allows to store duplicate data values.

A The LinkedList maintains the order of insertion.

LinkedList class declaration

The LinkedList class has the following declaration.

Example

public class LinkedList<E> extends AbstractSequentialList<E> implements List<E>, Deque<E>,
Cloneable, Serializable

LinkedList class constructors

The LinkedList class has the following constructors.

LinkedList() - Creates an empty List.

LinkedList(Collection c) - Creates a List withegiver_eollection of elements.

Operations on LinkedLIist

The LinkedList class allow us to perform several operations like adding, accesing, deleting,
updating,
looping, etc. Let's look at each operation with examples.

Adding Items

The LinkedList class has the following methods to add items.

boolean add(E element) - Appends given element to the List.

boolean addAll(Collection c) - Appends given collection of elements to the List.
void add(int position, E element) - Inserts the given element at specified position.
boolean addAll(int position, Collection c) - Inserts the given collection of elements at
specified

position.

void addFirst(E element) - Inserts the given element at beggining of

the list. void addLast(E element) - Inserts the given element at end

of the list. boolean offer(E element) - Inserts the given element at

end of the list.

boolean offerFirst(E element) - Inserts the given element at beggining of the list.
boolean offerLast(E element) - Inserts the given element at end of the list.

void push(E element) - Inserts the given element at beggining of the list.

CSE/NRCM

Operations on LinkedLIist

Accessing Items

The LinkedList class has the following methods to access items.

E get(int position) - Returns element at specified position from the LinkedList.

E element() - Returns the first element from the invoking

LinkedList. E getFirst() - Returns the first element from the

invoking LinkedList. E getLast() - Returns the last element

from the invoking LinkedList.

E peek() - Returns the first element from the invoking LinkedList.

E peekFirst() - Returns the first element from the invoking LinkedList, and returns null if list is
empty. E peekLast() - Returns the last element from the invoking LinkedList, and returns null
if list is empty. int indexOf(E element) - Returns the index value of given element first
occurence in the LinkedList. int lastindexOf(E element) - Returns the index value of given
element last occurence in the LinkedList. E pop() - Returns the first element from the
invoking LinkedList.

Updating Items

The LinkedList class has the following methods to update or change items.

E set(int index, E newElement) - Replace the element at specified index with
newElement in the invoking LinkedList.

CSE/NRCM

Operations on LinkedLIist

Removing ltems

The LinkedList class has the following methods to remove items.

E remove() - Removes the first element from the invoking LinkedList.

E remove(intindex) - Removes the element at specified index in the invoking

LinkedList. boolean remove(Object element) - Removes the first occurrence of the

given element from the invoking LinkedList.

E removeFirst() - Removes the first element from the invoking LinkedList.

E removelast() - Removes the last element from the invoking LinkedList.

boolean removeFirstOccurrence(Object element) - Removes from the first occurrence of
the given

element from the invoking LinkedList.

boolean removelLastOccurrence(Object element) - Removes from the last occurrence of
the given

element from the invoking LinkedList.

E poll() - Removes the first element from the LinkedList, and returns null if the list is
empty.

E pollFirst() - Removes the first element from the LinkedList, and returns null if the list
Is empty. E pollLast() - Removes the last element from the LinkedList, and returns null
if the list is empty. E pop() - Removes the first element from the LinkedList.

void clear() - Removes all the elements from the LinkedList.

CSE/NRCM

JAVA PRIORITYQUEUE CLASS

The PriorityQueue class is a part of java collection framework. It is

available inside the java.util package. The PriorityQueue class extends
AbstractQueue class and implements Serializable interface.

The elements of PriorityQueue are organized as the elements of queue data structure, but it
does not follow FIFO principle. The PriorityQueue elements are organized based on the
priority heap.

The PriorityQueue class is used to create a dynamic queue of elements that can grow or
shrunk as

needed.

A The PriorityQueue is a child class of AbstractQueue

A The PriorityQueue implements interface Serializable.

A The PriorityQueue allows to store duplicate data values, but not null values.

A The PriorityQueue maintains the order of insertion.

A The PriorityQueue used priority heap to organize its elements.

PriorityQueue class declaration

The PriorityQueue class has the following declaration.

Example

public class PriorityQueue<E> extends AbstractQueue<E> implements Serializable

CSE/NRCM

JAVA PRIORITYQUEUE CLASS

PriorityQueue class constructors

The PriorityQueue class has the following constructors.

PriorityQueue() - Creates an empty PriorityQueue with the default initial capacity (11) that
orders its elements according to their natural ordering.

PriorityQueue(Collection c) - Creates a PriorityQueue with given collection of elements.
PriorityQueue(int initialCapacity) - Creates an empty PriorityQueue with the specified initial
capacity. PriorityQueue(int initialCapacity, Comparator comparator) - Creates an empty
PriorityQueue with the specified initial capacity that orders its elements according to the
specified comparator.

PriorityQueue(PriorityQueue pq) - Creates a PriorityQueue with the elements in the specified
priority

gueue.

PriorityQueue(SortedSet ss) - Creates a PriorityQueue with the elements in the specified
SortedSet.

Operations on PriorityQueue

The PriorityQueue class allow us to perform several operations like adding, accesing, deleting,
updating,

looping, etc. Let's look at each operation with examples.

Adding Items

The PriorityQueue class has the following methods to add items.

boolean add(E element) - Appends given element@dthe PriorityQueue.

boolean addAll(Collection ¢c) - Appends aiven collection of elements to the PrioritvyOueue.

JAVA PRIORITYQUEUE CLASS

Accessing Items

The PriorityQueue class has the following methods to access items.

E element() - Returns the first element from the invoking PriorityQueue.

E peek() - Returns the first element from the invoking PriorityQueue, returns null if this queue is
empty.

Updating Items

The PriorityQueue class has no methods to update or change items.

Removing ltems

The PriorityQueue class has the following methods to remove items.

E remove() - Removes the first element from the invoking PriorityQueue.

boolean remove(Object element) - Removes the first occurrence of the given element from the
invoking PriorityQueue.

boolean removeAll(Collection c¢) - Removes all the elements of specified collection from

the invoking PriorityQueue.

boolean removelf(Predicate p) - Removes all of the elements of this collection that satisfy the
given

predicate.

boolean retainAll(Collection c) - Removes all the elements except those are in the specified
collection

from the invoking PriorityQueue.

E poll() - Removes the first element from thesPridrityQueue, and returns null if the list is empty.
void clear() - Removes all the elements from the PrioritvOueue.

JAVA ARRAYDEQUE CLASS

The ArrayDeque class is a part of java collection framework. Itis available inside the java.util
package.

The ArrayDeque class extends AbstractCollection class and implements Deque, Cloneable,
and Serializable interfaces.

The elements of ArrayDeque are organized as the elements of double ended queue data
structure. The ArrayDeque is a special kind of array that grows and allows users to add or
remove an element from both the sides of the queue.

The ArrayDeque class is used to create a dynamic double ended queue of elements that can
grow or

shrunk as needed.

A The ArrayDeque is a child class of AbstractCollection

A The ArrayDeque implements interfaces like Deque, Cloneable, and Serializable.

A The ArrayDeque allows to store duplicate data values, but not null values.

A The ArrayDegque maintains the order of insertion.

A The ArrayDeque allows to add and remove elements at both the ends.

A The ArrayDeque is faster than LinkedList and Stack.

ArrayDeque class declaration
The ArrayDeque class has the following declaration.

Example
public class ArrayDeque<E> extends AbstractCollection<E>implements Deque<E>,
Cloneable, CSE/NRCM

Serializable

JAVA ARRAYDEQUE CLASS

ArrayDeque class constructors

The PriorityQueue class has the following constructors.

ArrayDeque() - Creates an empty ArrayDeque with the default initial capacity (16).
ArrayDeque(Collection c) - Creates a ArrayDeque with given collection of elements.
ArrayDeque(int initialCapacity) - Creates an empty ArrayDeque with the specified initial
capacity.

Operations on ArrayDeque
The ArrayDeque class allow us to perform several operations like adding, accesing, deleting,
updating, looping, etc. Let's look at each operation with examples.

Adding Items

The ArrayDeque class has the following methods to add items.

boolean add(E element) - Appends given element to the ArrayDeque.
boolean addAll(Collection c) - Appends given collection of elements to the ArrayDeque.
void addFirst(E element) - Adds given element at front of the
ArrayDeque. void addLast(E element) - Adds given element at end

of the ArrayDeque. boolean offer(E element) - Adds given element

at end of the ArrayDeque.

boolean offerFirst(E element) - Adds given element at front of the
ArrayDeque. boolean offerLast(E element) - Adds given element at end
of the ArrayDeque. void push(E element) ©Adds(giveh element at front
of the ArravDeque.

JAVA ARRAYDEQUE CLASS

Accessing Items

The ArrayDeque class has the following methods to access items.

E element() - Returns the first element from the invoking

ArrayDeque. E getFirst() - Returns the first element from the

invoking ArrayDeque. E getLast() - Returns the last element

from the invoking ArrayDeque.

E peek() - Returns the first element from the invoking ArrayDeque, returns null if this queue is
empty. E peekFirst() - Returns the first element from the invoking ArrayDeque, returns null if
this queue is empty.

E peekLast() - Returns the last element from the invoking ArrayDeque, returns null if this
gueue is

empty.

CSE/NRCM

JAVA ARRAYDEQUE CLASS

Updating Items
The ArrayDeque class has no methods to update or change items.

Removing Items

The ArrayDeque class has the following methods to remove items.

E remove() - Removes the first element from the invoking ArrayDeque.

E removeFirst() - Removes the first element from the invoking ArrayDeque.

E removelLast() - Removes the last element from the invoking ArrayDeque.

boolean remove(Object 0) - Removes the specified element from the invoking ArrayDeque.
boolean removeFirstOccurrence(Object 0) - Removes the first occurrence of the specified
element in

this ArrayDeque.

boolean removeLastOccurrence(Object 0) - Removes the last occurrence of the specified
element in

this ArrayDeque.

boolean removelf(Predicate p) - Removes all of the elements of ArrayDeque collection that
satisfy the

given predicate.

boolean retainAll(Collection c) - Removes all of the elements of ArrayDeque collection
except specified collection of elements.

E poll() - Removes the first element from the ArrayDeque, and returns null if the list is empty.
E pollFirst() - Removes the first element from the ArrayDeque, and returns null if the list
IS emptv. E pollLast() - Removes the last element from the ArravDeague. and returns null

JAVA HASHSET CLASS

The HashSet class is a part of java collection framework. It is available inside the java.util
package. The

HashSet class extends AbstractSet class and implements Set interface.

The elements of HashSet are organized using a mechanism called hashing. The HashSet is
used to create hash table for storing set of elements.

The HashSet class is used to create a collection that uses a hash table for storing set of
elements.

A The HashSet is a child class of AbstractSet

A The HashSet implements interfaces like Set, Cloneable, and Serializable.

A The HashSet does not allows to store duplicate data values, but null values are allowed.
A The HashSet does not maintains the order of insertion.

A The HashSet initial capacity is 16 elements.

A The HashSet is best suitable for search operations.

HashSet class declaration

The HashSet class has the following declaration.

Example

public class HashSet<E> extends AbstractSet<E> implements Set<E>, Cloneable, Serializable

CSE/NRCM

JAVA HASHSET CLASS

HashSet class constructors

The HashSet class has the following constructors.

HashSet() - Creates an empty HashSet with the default initial capacity (16).
HashSet(Collection c) - Creates a HashSet with given collection of elements.
HashSet(int initialCapacity) - Creates an empty HashSet with the specified initial
capacity. HashSet(int initialCapacity, float loadFactor) - Creates an empty HashSet
with the specified initial capacity and loadFactor.

Operations on HashSet

The HashSet class allow us to perform several operations like adding, accesing, deleting,
updating,

looping, etc. Let's look at each operation with examples.

Adding Items

The HashSet class has the following methods to add items.

boolean add(E element) - Inserts given element to the HashSet.

boolean addAll(Collection c) - Inserts given collection of elements to the HashSet.

CSE/NRCM

MAP INTERFACE CLASSES IN JAVA

The java collection framework has an interface Map that is available inside the java.util

package. The

Map interface is not a subtype of Collection interface.
The Map interface has the following three classes

Class Description

HashMap It implements the Map interface, but it doesn't maintain any order.

LinkedHashMap It implements the Map interface, it also extends HashMap class. It maintains the insertion order.
TreeMap It implements the Map and SortedMap interfaces. It maintains the ascending order.

Commonly used methods defined by Map

intorfacop

"Methad™™ ™~ Description

Object put(Object k, Object v) It performs an entry into the Map.

Object putAll(Map m) It inserts all the entries of m into invoking Map.

Object get(Object k) It returnsthe value associated with given key.

boolean containsKey(Object k) It returns true if map contain k as key. Otherwise false.

Set keySet() It returns a set that contains all the keys from the invoking Map.
Set valueSet() It returns a set that contains all the values from the invoking Map.
Set entrySet() It returns a set that contains all the entries from the invoking Map.

CSE/NRCM

HashMap Class

The HashMap class is a child class of AbstractMap, and it implements the Map interface. The
HashMap

Is used to store the data in the form of key, value pair using hash table concept.
Key Properties of HashMap

HashMap is a child class of AbstractMap class.

HashMap implements the interfeaces Map, Cloneable, and

Serializable. HashMap stores data as a pair of key and value.

HashMap uses Hash table concept to store the data.

HashMap does not allow duplicate keys, but values may be

repeated. HashMap allows only one null key and multiple null

values.

HashMap does not follow any oreder.

HashMap has the default capacity 16 entries.

CSE/NRCM

UNIT =V
APPLETS

CSE/NRCM

The Basic GUI Application

import javax.swing.JOptionPane;

public class HelloworldGUI1

{

public static void main(String[] args) {
JOptionPane.showMessageDialog(null, "Hello
World!);

}
}

When this program is run, a window appears on the screen that contains the message “Hello
World!”. The window also contains an “OK” button for the user to click after reading the
message. When the user clicks this button, the window closes and the program ends. By the
way, this program can be placed in a file named HelloWorldGUI1.java, compiled, and run just
like any other Java program.

CSE/NRCM

LIMITATIONS OF AWT

Summary on limitations of AWT

AWT supports limited number of GUI
components AWT component are Heavy
weight components
AWT components are developed by using platform specific
code AWT components behave differently in different
Oppmtinn Qvstems

A\
S)

URL

Browser

ating

3 resource
pool
2 4
weny . gmall.com /‘3
1 Server
Client 5
=) | E—

Client side programming

Tier-1
View

8

(HTML/AWT/APPLET/Swing)

Tier -2
Controller
Servlets)

Server SIL programming |

-

y

\—2 DataBase side programming
database = —~+———{Tier -3
6 Model

CSE/NRCM

MVC ARCHITECTURE

In real time applications, in the case of server side programming one must follow the
architecture to develop a distributed application.To develop any distributed application, it is
always recommended to follow either 3-tier architecture or 2-tier architecture or n-tier
architecture.

3-tier architecture is also known as MVVC architecture.

M stands for Model (database programming),

V stands for View (client side programming,
HTML/AWT/APPLET/Swing/JSP) C stands for Controller (server side
programming, Servlets).

Model ;

This is the data layer which consists of the business logic of the

system. It consists of all the data of the application

It also represents the state of the application.

It consists of classes which have the connection to the database.

The controller connects with model and fetches the data and sends to the view layer.

The model connects with the database as well and stores the data into a database which is

connected
to it. CSE/NRCM

MVC ARCHITECTURE

Model :

This is the data layer which consists of the business logic of the system.

It consists of all the data of the application

It also represents the state of the application.

It consists of classes which have the connection to the database.
The controller connects with model and fetches the data and sends to the view layer.

The model connects with the database as well and stores the data into a database which is
connected to it.
View :

This is a presentation layer.

It consists of HTML, JSP, etc. into it.

It normally presents the Ul of the application.

It is used to display the data which is fetched from the controller which in turn fetching data from
model

layer classes.

This view layer shows the data on Ul of the application.

Controller:

It acts as an interface between View and Model.

It intercepts all the requests which are coming from the view layer.

It receives the requests from the view layer and processes the requests and does the necessary
validation for

the request. CSE/NRCM

This reaquests is further sent to model laver for data processind. and once the request is processed. it

COMPONENTS

Componentis an object having a graphical representation that can be displayed on the screen and
that can

interact with the user. For examples buttons, checkboxes, list and scrollbars of a graphical user
interface.

A Componentis an akztoot ~iinar Alacc far LI annteale and it vanvacan *s an object with

Object

graphical representat| Button

Label

Component

Checkbox

Choice

List

Container

wWindow Panel

Applet

Frame Dialog

CSE/NRCM

COMPONENTS

Every AWT controls inherits properties from Component

lass

Component Description

Label The easiest control to use is a label. A label is an object of type Label, and it contains a string,which it
displays. Labels are passive controls that do not support any interaction with theuser. Label defines the
following constructors

Button This class creates a labeled button.

Check Box A check box is a graphical component that can be in either an on (true) or off (false) state.

Check Box Group | The CheckboxGroup class is used to group the set of checkbox.

List The List component presents the user with ascrolling list of text items.

Text Field A TextField object is a text component that allows for the editing of asingle line of text.

Text Area A TextArea object is a text component that allows for the editing of a multiple lines of text.

Choice A Choice control is used to show pop up menu of choices. Selected choice is shown on the top of the
menu.

Canvas A Canvas control represents a rectangular area where application can draw something or can receive inputs
created by user.

Image An Image control is superclass for all image classes representing graphical images.

Scroll Bar A Scrollbar control represents a scroll bar component in order to enable user to select from range of values.

Dialog A Dialog control represents a top-level window with a title and a border used to take some form of input
from the user.

File Dialog A FileDialog control represents a dialog window from which the user can select a file.

CSE/NRCM

COMPONENTS

Commonly used Methods of Component

lass:
Method Description
public void add(Component c) inserts a component on this component.

public void setSize(intwidth,int height) sets the size (width and height) of the component.

public void setLayout(LayoutManager m) defines the layout manager for the component.

public void setVisible(boolean status) changes the visibility of the component, by default
false.

void remove(Component obj) Here, obj is a reference to the control you want to
remove.

void removeAll(). 'You can remove all controls by

CSE/NRCM

CONTAINERS

Abstract Windowing Toolkit (AWT): Abstract Windowing Toolkit (AWT) is used for GUI
programming in java.

AWT Container Hierarchy:

Object

Component

?

Container

window Pancl

Applet

Frame Dialog

CSE/NRCM

CONTAINERS

Container:

The Container is a componentin AWT that can contain another components like buttons, textfields,
labels

etc. The classes that extends Container class are known as container.

Window:

The window is the container that have no borders and menubars. You must use frame, dialog or
another

window for creating a window.

Panel:

The Panel is the container that doesn't contain title bar and MenuBars. It can have other
components like

button, textfield etc.

Frame:

The Frame is the container that contain title bar and can have MenuBars. It can have other
components like

button, textfield etc.

CSE/NRCM

Frame
(o) 9=]E3

There are two ways to create a frame:
By extending Frame class (inheritance)
By creating the object of Frame class (association)

Example program to create a frame by extending Frame class
(inheritance) import java.awt.*;
class First extends Frame

{
First()

{

Button b=new Button("click me");

b.setBounds(30,100,80,30);/*setting button position public void setBounds(int xaxis, int yaxis, int
width, int

height); have been used in the above example that sets the position of the

button.*/ add(b);//adding button into frame

setSize(300,300);//frame size 300 width and 300 height setLayout(null);//no layout now bydefault
BorderLayout setVisible(true);//now frame willbe visible, bydefault not visible

}

public static void main(String args(])

{

First f=new First();
} CSE/NRCM

Frame

2.Example program to create a frame by creating the object of
Frame class

import java.awt.*; class First2{

First2(){ Frame f=new Frame();

Button b=new Button("click me"); b.setBounds(30,50,80,30);
f.add(b); f.setSize(300,300); f.setLayout(null); f.setVisible(true);
}

public static void main(String args[]){ First2 f=new First2();

}

}

CSE/NRCM

LAYOUT MANAGERS

The LayoutManagers are used to arrange components in a particular manner. The Java
LayoutManagers facilitates us to control the positioning and size of the components in GUI
forms. LayoutManager is an interface that is implemented by all the classes of layout
managers. There are the following classes that represent the layout managers:

O java.awt.BorderLayout

O java.awt.FlowLayout

O java.awt.GridLayout

O java.awt.CardLayout

O java.awt.GridBagLayout

CSE/NRCM

BorderLayout

The BorderLayout is used to arrange the components in five regions: north, south, east, west,
and center. Each region (area) may contain one componentonly. It is the default layout of a
frame or window. The BorderLayout provides five constants for each region:

public static final int
NORTH public static final
int SOUTH public static
final int EAST public static
final int WEST public
static final int CENTER

Constructors of BorderLayout class:
BorderLayout():

creates a border layout but with no gaps between the components.

BorderLayout(int hgap, int vgap):

E—\

NORTH

WEST

CENTER

EAST

SOUTH

creates a border layout with the given horizontal and vertical gaps between the components.

CSE/NRCM

FlowLayout

The Java FlowLayout class is used to arrange the componentsin a line, one after another (in a
flow). Itis the
default layout of the applet or panel.

| — | hd

il dle e ls e dladle i]l

Fields of FlowLayout
class public static final int
LEFT public static final int
RIGHT public static final int
CENTER public static final
int LEADING public static
final int TRAILING

Constructors of FlowLayout class

FlowLayout(): creates a flow layout with centered alignment and a default 5 unit horizontal and
vertical gap. FlowLayout(int align): creates a flow layout with the given alignment and a default 5
unit horizontal and vertical gap.

FlowLayout(int align, int hgap, int vgap): creates a flow layout with the given alignment and the
given

horizontal and vertical gap.

CSE/NRCM

GridLayout

The Java GridLayout class is used to arrange the components in a rectangular grid. One
componentis
displayed in each rectangle.

Constructors of GridLayout class

GridLayout(): creates a grid layout with one column per component in a row.
GridLayout(introws, int columns): creates a grid layout with the given rows and columns but no
gaps

between the components.

GridLayout(introws, int columns, int hgap, int vgap): creates a grid layout with the given rows
cl £ — O X

CSE/NRCM

CardLayout

The Java CardLayout class manages the components in such a manner that only one component
IS visible at

a time. It treats each component as a card that is why it is known as CardLayout.

Constructors of CardLayout Class
CardLayout(): creates a card layout with zero horizontal and vertical gap.
CardLayout(int hgap, int vgap): creates a card layout with the given horizontal and vertical gap.

Commonly Used Methods of CardLayout Class

public void next(Container parent): is used to flip to the next card of the given container.
public void previous(Container parent): is used to flip to the previous card of the given
container.

public void first(Container parent): is used to flip to the first card of the given container.
public void last(Container parent): is used to flip to the last card of the given container.
public void show(Container parent, String name): is used to flip to the specified card with the
given name.

GridBagLayout

The Java GridBagLayout class is used to align components vertically, horizontally or along their
baseline. The components may not be of the same size. Each GridBagLayout object maintains a
dynamic, rectangular grid of cells. Each component occupies one or more cells known as its
display area. Each component associates an instance of GridBagConstraints. With the help of the
constraints object, we arrange the component's display area on the grid. The GridBagLayout

manages each component's minimum and

preferred sizes in order to determine the component's size. GridBagLayout components are also

arranged in

the rectangular grid but can have many different sizes and can occupy multiple rows or columns.

ger.

Constructor

GrrdBayLaydut(): The par&fifeterless constructdi®te'ei$8d to create a grid bag layout mana
double[] columnWeights Itis used to hold the overrides to the column weights.
int[] columnWidths Itis used to hold the overrides to the column minimum width.
protected comptable It is used to maintains the association between a component and its

Hashtable<Component,GridBagConstr
aints>

gridbag constraints.

protected GridBagConstraints

defaultConstraints

It is used to hold a gridbag constraints instance containing the
default values.

protected GridBagLayoutlnfo layoutlnfo Itis used to hold the layout information for the gridbag.
protectedstatic int MAXGRIDSIZE No longer in use just for backward compatibility

protectedstatic int MINSIZE Itis smallest grid that can be laid outby the grid bag layout.
protectedstatic int PREFERREDSIZE Itis preferred grid size that can be laid out by the grid bag layout.
int[] rowHeights Itis used to hold the overrides to the row minimum heights.
double[] rowWeights Itis used to hold the overrides to the row weights.

CSE/NRCM

Thank
you

CSE/NRCM

