

UNIT – I

FOUNDATIONS OF DIGITAL FORENSICS

What is Digital Forensics?

Digital Forensics is identifying, preserving, examining, and analyzing digital evidence by validating the procedures and final representation of that digital evidence in the court to identify a few legal questions regarding the crime and attacks. It is a method of discovering proofs from digital media like a PC, mobile or cellular devices, servers, or networks. It gives the forensic department group the elite procedures and equipment to resolve difficult digital cases of crimes. Digital Forensics Team will help the forensic team analyze, inspect, identify, and preserve the digital evidence populating digital devices.

Objectives of Digital Forensics

Below are a few objectives of using digital forensics:

- **Evidence to Court:** It recovers, analyzes, and preserves digital and forensic evidence to help the department's investigation to present the evidence in court.
- **Identifying the Culprit:** It aims to cause the attacks and identify the main culprit behind the crimes.
- **Legal Procedures:** To ensure the evidence found at a suspicious crime scene is uncorrupted, we design the methods for collecting and preserving the evidence.
- **Data Redundancy:** Recover the deleted files and subdivide them from digital media to validate them.
- It also encourages you to find the evidence instantly and makes you identify the impact of the culprit on the crime or the attacks.

CYBER CRIME INVESTIGATION AND DIGITAL FORENSICS (23CY602)

- Storing the evidence or the proofs by the procedures in the way of legal custody in the court of law.

Process of Digital Forensics

In the field of Digital Forensics, we follow a pattern where we first identify each case, then preserve and analyze the evidence. We document the findings in a manner that enables us to present the evidence in the court of law, ultimately helping to identify the culprit in the crime.

Digital forensics involves the following steps:

www.educba.com

1. Identification

It is the first and foremost step in the process, including the forensic process, like where the evidence is found, where it is preserved, and how it is stored. Electronic Device media includes PC, digital phones, iPads, etc.

2. Preservation

An isolating place stores the evidence to secure and preserve it from theft. People are prevented from buying digital devices to ensure no proof is meddled with.

3. Analysis

In this phase, the inspection group will reform the chunks of evidence and determine the outcome based on the resulting proofs or evidence. But it may sometimes take several iterations to discover the support on a criminal case.

4. Documentation

In this stage, all possible evidence of data is drawn from the given inputs. It will help in rebuilding the crime scene and analyzing it. The investigators document the correct documentation of the crime scenes by mapping the crime scene, sketching it, and then relating its photographs with the documents.

5. Presentation

To conclude, we summarize and explain the documents.

Types of Digital Forensics

There are a few types of digital forensics that include below:

- **Disk Forensics:** It will deal with deriving the evidence from digital storage media like USB Devices, DVDs, CDs, etc., by gathering the active files or modifying or deleting them.
- **Network Forensics:** It is generally a sub-part of digital forensics relating to the monitoring and detecting system network traffic to extract crucial data for all legal evidence to present at the court.
- **Wireless Forensics:** It is a part of the networking forensics type that aims for wireless forensics to allow the tools needed to gather and extract evidence from networking wireless traffic.
- **Database Forensics:** This type of digital forensics relates to the forensic study and collection of databases and their relevant metadata. It follows investigating techniques to query the database to collect the evidence.
- **Malware Forensics:** This branch of forensics handles identifying malicious code and studying malware issues related to their workload, trojans, viruses, etc.
- **Email Forensics:** This forensic branch handles the recovery of the trashed data and analyses the contents of the emails, including the emails that are deleted or the calendar or the contacts in the email.
- **Memory Forensics:** A forensic analysis collects the data from the computer's cache memory or RAM dump and then gathers the evidence.

Advantages of Digital Forensics

Below are a few advantages of Digital Forensic:

- To assure the security of the digital forensic system.
- To gather the proof in the law of court, which may point to action on the culprit in the crime scene?
- It assures the forensic team to capture relevant information if their digital systems or traffic are not working as expected.
- Accurately track the series of cybercriminals' crimes anywhere throughout the world.
- Gathers extracted, processed, and interpreted the forensic evidence to prove the cybercriminal's action in the law.

Disadvantages of Digital Forensics

Below are a few disadvantages of Digital Forensic:

- There should not be tampering with the digital evidence presented in the court. We need to demonstrate that the data is free from corruption.
- Storing electronic records is very costly.
- Legal advisors should have more knowledge of digital devices.
- It should give the court more secure and easily understandable evidence.
- The Court of Law accepts the evidence only if the tools follow specific standards.
- If the investigating officers are not knowledgeable, the evidence they provide to the court is useless. The judge may discard them.

What is Digital Evidence in Digital Forensics?

Computers and mobile devices have now become an integral part of our lives. We now depend on mobile devices and computer systems which store large amounts of data such as email addresses, contact details, pictures, financial details, videos and Internet history and phone numbers. All of this can give information about people's habits and interests, and can be considered as a digital evidence.

Digital Evidence refers to any useful information that is collected from any electronic device that can reveal the truth about a crime and can be used in the court of law. It can be collected from the computer used for committing crime.

During investigations, we need to collect, preserve and analyze the computer hard drives, media drives such as USB and also mobile devices if needed. Apart from data stored on disks and media devices, all running computers are a storehouse of data located in the computer's main memory or Random Access Memory. Some data which cannot be found on the disks of computer systems can be found in the Random Access Memory, but this can be only achieved when the system is running i.e. the system is not turned off after completion of a task or storing of files because the RAM is volatile and holds the data only till the system is in power on state – once the system is powered off the data on Random Access Memory is erased. The information that is found in the memory may include username and passwords, encryption keys, unencrypted data, unsaved documents, other critical evidence. This information can provide details about user's activity. The process of capturing data from Random Access Memory while the system is in power on state is termed as Live acquisition of Data.

Sources of Digital Evidence:

1. Internet

Evidence obtained from the internet includes information collected from website communications, emails, message boards, chat rooms, file sharing networks and intercepted communications. Message boards and chat rooms contain mountains of information both in real time as well as in archives.

Though sources may easily be tracked and identified, there are many more problems posed by the internet today. The culprits may be outside the jurisdiction of the courts. Also, some websites are designed for user anonymity making identification of culprits more difficult.

2. Computers

Computers are a repository of information with evidence obtained using special extraction methods. Though information may overlap with Internet sources, computers provide many unique and notable pieces of evidence including time stamps, IP addresses, information about VPNs and MAC addresses.

3. Portable Devices

These include information sourced from cell phones, tablets and other handheld devices or gadgets. Because of the dependency society has on portable devices, these have become the lead source of digital evidence in many court cases.

Some other sources of Digital Evidence are:

- Smartphones / Tablets
- Laptops
- CCTV & Surveillance systems
- GPS devices
- Media devices – Pen drive, CD, DVD, External Hard Disks.

Importance of Digital Evidence:

Digital evidence is now used to prosecute all types of crimes, not just e-crime. For example, suspects' e-mail or mobile phone files might contain critical evidence regarding their intent, their whereabouts at the time of a crime and their relationship with other suspects. In 2005, for example, a floppy disk led investigators to the BTK serial killer who had eluded police capture since 1974 and claimed the lives of at least 10 victims. In an effort to fight e-crime and to collect relevant digital evidence for all crimes, law enforcement agencies are incorporating the collection and analysis of digital evidence, also known as computer forensics, into their infrastructure. Law enforcement agencies are challenged by the need to train officers to collect digital evidence and keep up with rapidly evolving technologies such as computer operating systems.

Properties of Digital Evidence:

- **Admissible** – The evidence must be able to be used in court or otherwise. Failure to comply with this rule is equivalent to not collecting the evidence in the first place, except the cost is higher.
- **Authentic** – If you can't tie the evidence positively with the incident, you can't use it to prove anything. You must be able to show that the evidence relates to the incident in a relevant way.
- **Complete** – It's not enough to collect evidence that just shows one perspective of the incident. Not only should you collect evidence that can prove the attacker's actions, but also evidence that could prove their innocence. For instance, if you can show the attacker was logged in at the time of the incident, you also need to show who else was logged in, and why you think they didn't do it.
- **Reliable** – The evidence you collect must be reliable. Your evidence collection and analysis procedures must not cast doubt on the evidences authenticity and veracity.
- **Believable** – The evidence you present should be clearly understandable and believable by a jury. There's no point presenting a binary dump of process memory if the jury has no idea what it all means. Similarly, if you present them with a formatted, human-understandable version, you must be able to show

the relationship to the original binary, otherwise there's no way for the jury to know whether you've faked it.

Pros of Digital Evidence:

- A copy of Original Evidence can be created without tampering the Original Evidence using secure software.
- Digital Integrity of evidence should be maintained.

Cons of Digital Evidence:

- Digital Evidence can be manipulated or changed easily, if not preserved correctly and adeptly.
- Privacy Invasion – While scanning system, all data of user is available and can be misused.

Conclusion:

The domain of computer forensics has grown considerably in the last decade. Electronic devices are being used majorly, which increases the potential of finding digital evidence in any device whenever needed. Several tools and techniques are used to search and analyze devices because of which Digital Evidence is helpful to a great extent in solving cybercrimes.

Principles of Digital Forensics

Digital forensics is a branch of forensic science that focuses on the recovery, investigation, examination, and analysis of digital data to help solve crimes, investigate incidents, and provide evidence in legal proceedings. The basic principles of digital forensics include:

1. **Preservation:** Ensuring that the original data is not altered or destroyed during the investigation process. This involves creating a bit-for-bit copy of the data, known as a forensic image, to preserve the integrity of the evidence.

Example: When investigating a cybercrime, investigators might create a forensic image of a suspect's hard drive to ensure that the original data remains untouched.

2. **Identification:** Recognizing and listing all relevant data sources that might contain evidence. This includes computers, smartphones, network logs, and cloud storage.

Example: Identifying all devices used by an employee who has left a company under suspicious circumstances to check for any potential data breaches or misconduct.

3. **Extraction:** Retrieving data from the identified sources in a manner that maintains its integrity and authenticity.

Example: Extracting email communications from a suspect's inbox without altering the original emails.

4. **Analysis:** Examining the extracted data to identify relevant information that can be used as evidence. This often involves analyzing metadata, file contents, and system logs.

Example: Analyzing browser history to determine if a suspect visited certain websites around the time of a crime.

CYBER CRIME INVESTIGATION AND DIGITAL FORENSICS (23CY602)

5. **Interpretation:** Drawing conclusions from the analyzed data and presenting it in a way that is understandable and admissible in court.

Example: Interpreting patterns of network traffic to establish the timeline of a cyber attack.

6. **Documentation:** Keeping detailed records of every step taken during the investigation, from preservation to interpretation, to ensure the integrity and admissibility of the evidence.

Example: Documenting every command used during a forensic examination of a computer system.

Challenging Aspects of Digital Evidence

Digital evidence plays a crucial role in modern investigations, but it comes with several complexities. The following are the major challenges:

1. Volatility of Digital Evidence

Digital data can be easily modified, deleted, or overwritten. RAM, cache, and active network sessions are extremely volatile, which makes timely collection critical. Any delay may result in loss of crucial evidence.

2. Large Volume of Data

Modern devices generate massive amounts of digital information (emails, logs, messages, cloud data, CCTV, IoT). Searching, filtering, and analyzing such huge datasets requires advanced tools, time, and expertise.

3. Encryption and Password Protection

Strong encryption technologies and secure authentication mechanisms make accessing digital evidence difficult. Without decryption keys, investigators may be unable to retrieve critical information.

4. Anti-Forensic Techniques

Cybercriminals use tools to hide, mask, or destroy data—such as file wiping, steganography, secure deletion, and log manipulation. These intentionally hinder the forensic investigation process.

5. Jurisdictional and Legal Issues

Digital evidence often resides on servers across different states or countries. Laws regarding privacy, data access, and cross-border investigations vary widely, making it difficult to obtain evidence legally and promptly.

6. Authenticity and Integrity Concerns

CYBER CRIME INVESTIGATION AND DIGITAL FORENSICS (23CY602)

Digital data is easy to tamper with. Investigators must ensure proper chain of custody, hashing, and documentation to prove that the evidence was not altered. Maintaining integrity throughout the forensic process is challenging.

7. Rapidly Evolving Technology

New devices, operating systems, cloud platforms, and file formats appear frequently. Investigators must continuously update their skills and tools, as outdated methods may fail to capture modern digital traces.

The Role of Computers in Crime

Computers play a significant role in modern crime, both as **tools for committing offences** and as **targets of criminal activity**. With the growth of the internet, digital devices, and online services, criminals increasingly rely on computers to plan, execute, and hide their illegal actions.

1. Computers as Tools for Crime

Criminals use computers to perform various unlawful activities such as:

- **Hacking:** Unauthorized access to systems, networks, or data.
- **Cyber fraud:** Phishing, identity theft, online banking fraud, and credit card scams.
- **Malware attacks:** Distribution of viruses, ransomware, spyware to steal or damage data.
- **Communication & coordination:** Encrypted messaging, dark-web forums, and social media for planning crimes.

2. Computers as Targets of Crime

Some crimes specifically aim at damaging or exploiting computer systems:

- **Denial-of-Service (DoS/DDoS) attacks** that shut down services.
- **Data breaches** to steal confidential or financial information.
- **Software piracy** and intellectual property theft.

3. Computers as Storage Devices for Evidence

Computers often store digital traces of crime:

- Emails, chat logs, browsing history.
- Documents, transaction records, multimedia files.
- Location & metadata information.

4. Enhancing the Scale and Speed of Crime

Computers allow criminals to:

- Reach global victims instantly.
- Automate attacks using bots and scripts.
- Hide identity using VPNs, proxies, and anonymization tools.

5. Challenges for Law Enforcement

The involvement of computers in crime makes investigations complex due to:

- Encryption and anonymity.
- Cross-border jurisdiction issues.
- Large volumes of digital evidence.

Cyber Crime Law

Cyber Crime Law refers to the set of legal provisions and regulations designed to prevent, detect, and punish crimes committed using computers, networks, and digital technologies. These laws establish rules for protecting data, ensuring privacy, securing online transactions, and penalizing offenders involved in cyber-related illegal activities.

Key Objectives of Cyber Crime Law

1. **Protect individuals and organizations** from online fraud, hacking, identity theft, and data breaches.
2. **Secure digital transactions** and promote trust in e-commerce and online banking.
3. **Prevent misuse of computers** for spreading malware, fake news, and unauthorized access.
4. **Provide legal procedures** for investigation, evidence collection, prosecution, and punishment.
5. **Ensure privacy and data protection** for citizens.

Cyber Crime Law in India (IT Act 2000 & Amendments)

The primary legislation governing cyber crimes in India is the **Information Technology Act, 2000**, amended in **2008**.

Important Sections

1. Hacking & Unauthorized Access

- **Section 66** – Punishes hacking, illegal access, altering, destroying, or stealing data.

CYBER CRIME INVESTIGATION AND DIGITAL FORENSICS (23CY602)

- **Section 66B** – Receiving stolen computer resources.
- **Section 66C** – Identity theft (using passwords, signatures, biometrics illegally).
- **Section 66D** – Online cheating & impersonation (phishing, OTP fraud).
- **Section 66E** – Privacy violations (capturing or sharing private images without consent).
- **Section 66F** – Cyber terrorism.

2. Obscenity & Content-related offences

- **Section 67** – Publishing or transmitting obscene material online.
- **Section 67A/B** – Child pornography or sexually explicit content.

3. Data Protection & Damage

- **Section 43** – Penalty for unauthorized access, damaging systems, spreading viruses, disrupting networks.
- **Section 43A** – Compensation for failing to protect sensitive personal data.

4. Intermediary Liability

- **Section 79** – Gives social media platforms limited liability if they follow due-diligence rules and remove harmful content promptly.

5. Digital Signature & E-Governance

- Legal recognition for electronic records and digital signatures to promote secure digital transactions.

Importance of Cyber Crime Law

- Protects citizens from financial fraud and online scams
- Controls cyber terrorism, cyberbullying, and harassment
- Promotes safe use of social media and the internet
- Helps law enforcement investigate cybercriminals
- Ensures accountability of service providers and companies

Conclusion

Cyber Crime Law plays a crucial role in maintaining safety, security, and trust in the digital world. With increasing dependence on technology, strong cyber laws and continuous updates are essential to combat evolving threats.

UNIT – II
DIGITAL INVESTIGATIONS

Digital Investigation is the systematic process of identifying, collecting, analyzing, and preserving digital evidence from electronic devices (computers, mobiles, networks, cloud systems, IoT, etc.) to uncover facts related to cybercrimes or policy violations.

It ensures that evidence is handled **scientifically**, maintaining **integrity, authenticity, and legal admissibility**.

Objectives of Digital Investigations

- Identify the **source, method, and intent** of cyber incidents
- Recover deleted, hidden, or tampered data
- Reconstruct events (timeline analysis)
- Provide evidence for **court proceedings**
- Support incident response and cybersecurity operations

Types of Digital Investigations

a) Computer Forensics

Examination of computers, laptops, hard disks.

b) Mobile Forensics

Data extraction from smartphones, SIM cards, SD cards.

c) Network Forensics

CYBER CRIME INVESTIGATION AND DIGITAL FORENSICS (23CY602)

Monitoring and analyzing network traffic, logs, packets.

d) Cloud Forensics

Investigations involving distributed cloud environments.

e) IoT Forensics

Handling smart devices, sensors, home automation systems.

f) Malware Forensics

Analyzing malicious code to understand behavior and origins.

DIGITAL INVESTIGATION PROCESS MODELS

1. Preparation

- Tools readiness
- Legal permissions (warrant, authorization)

2. Identification

- Locate potential sources of digital evidence

3. Preservation

- Prevent tampering
- Create **bit-by-bit forensic images**

4. Collection

- Acquire data using validated forensic tools (FTK, EnCase, Autopsy)

5. Examination

- Keyword searches
- File system and metadata analysis
- Recovery of deleted files

6. Analysis

- Correlate findings
- Timeline reconstruction
- Identify suspects and patterns

7. Reporting

- Prepare a formal forensic report with screenshots, logs, and analysis
- Present findings in court

Tools Used in Digital Investigation

- **EnCase:** A powerful forensic suite used to acquire, analyze, and report digital evidence from computers and storage devices.
- **FTK (Forensic Toolkit):** A comprehensive tool that performs fast indexing, searching, and analysis of forensic data with strong evidence-processing capabilities.
- **Autopsy / Sleuth Kit:** An open-source digital forensics platform used for file system analysis, timeline creation, and recovery of deleted data.
- **Cellebrite UFED:** A leading mobile forensics tool used to extract, decode, and analyze data from smartphones, SIM cards, and mobile apps.
- **Wireshark:** A network protocol analyzer that captures and inspects network packets for network-based investigations.
- **Volatility:** A memory forensics framework used to analyze RAM dumps and detect malware, processes, and volatile artifacts.

Challenges in Digital Investigations

- Large volume of data
- Anti-forensic techniques (encryption, wiping tools)
- Cloud data jurisdiction issues
- Rapidly evolving technologies
- Maintaining chain of custody

APPLYING SCIENTIFIC METHOD IN DIGITAL INVESTIGATIONS

In digital investigations, the scientific method provides a structured, repeatable, and objective framework to uncover the truth from digital evidence. It ensures that findings are reliable, defensible in court, and free from bias.

Steps of the Scientific Method in Digital Investigations

1. Observation

- Investigators begin by identifying unusual activity or suspicious digital artifacts (e.g., logs, deleted files, network anomalies).
- This stage involves *collecting initial evidence* without interpretation.

2. Question / Problem Definition

- Formulating clear investigative questions such as:
- *Was this system compromised?*
- *Who accessed the confidential files?*
- *How did the malware spread?*

3. Hypothesis Formation

- Investigators propose possible explanations based on initial observations.
- Example: *The unauthorized login originated from a phishing attack.*

4. Experimentation / Testing

- Using forensic tools and techniques to test hypotheses:
 - Disk imaging and file recovery
 - Log analysis
 - Network traffic reconstruction
- Each test must be **repeatable and documented** to ensure transparency.

5. Analysis of Results

- Compare findings against the hypothesis.
- If evidence supports the hypothesis, it strengthens the case; if not, investigators refine or reject it.

6. Conclusion

- Draw conclusions based on validated evidence.
- Example: *The intrusion was caused by spear-phishing, leading to credential theft.*

7. Reporting

- Document methods, tools, and findings in a clear, unbiased manner.
- Reports must be detailed enough for peer review and admissibility in court.

Why the Scientific Method Matters in Digital Forensics

- **Objectivity:** Prevents bias by relying on evidence, not assumptions.
- **Repeatability:** Ensures other experts can reproduce results.
- **Credibility:** Courts demand scientifically validated methods.
- **Adaptability:** Helps investigators refine approaches as new evidence emerges.

Example Application

Imagine a suspected insider data theft case:

CYBER CRIME INVESTIGATION AND DIGITAL FORENSICS (23CY602)

- Observation:** Sensitive files accessed at odd hours.
- Question:** Was the employee responsible for unauthorized access?
- Hypothesis:** The employee used personal credentials to copy files.
- Testing:** Analyze access logs, USB device history, and file transfer records.
- Results:** Logs confirm file transfers during the employee's login sessions.
- Conclusion:** Evidence supports insider theft.
- Report:** Findings documented for HR and legal proceedings.

HANDLING A DIGITAL CRIME SCENE : FUNDAMENTAL PRINCIPLES

Handling a digital crime scene requires strict adherence to forensic principles to ensure evidence is preserved, reliable, and admissible in court. Investigators must treat digital environments with the same care as physical crime scenes, following structured protocols to avoid contamination or loss of data.

Fundamental Principles of Handling a Digital Crime Scene

1. Securing and Preserving the Scene

- Restrict access to devices and networks involved.
- Prevent suspects or unauthorized personnel from tampering with evidence.
- Disconnect devices from networks if necessary to stop ongoing attacks, but avoid altering data.

2. Maintaining Chain of Custody

- Document every step: who collected, handled, transferred, or analyzed the evidence.
- Use tamper-evident packaging and proper labeling.
- Ensure evidence integrity from collection to courtroom presentation.

3. Identifying Potential Evidence

- Recognize that evidence may reside in multiple sources:
- Computers, servers, mobile phones, IoT devices
- External drives, USBs, CDs/DVDs
- Cloud accounts, emails, logs, and network traffic

4. Proper Collection Techniques

- Use forensic imaging tools to create bit-by-bit copies of storage media.
- Collect volatile data (RAM, running processes, network connections) before powering down systems.
- Avoid using the suspect's system directly to prevent altering timestamps or metadata.

5. Documentation

CYBER CRIME INVESTIGATION AND DIGITAL FORENSICS (23CY602)

- Record the state of devices at the time of seizure (powered on/off, connected peripherals).
- Photograph and log the physical setup of the crime scene.
- Maintain detailed notes for later reconstruction of events.

6. Packaging, Transport, and Storage

- Use anti-static bags and shock-resistant containers for hardware.
- Protect against environmental hazards (heat, moisture, magnetic fields).
- Store evidence in secure, access-controlled facilities.

7. Legal and Ethical Considerations

- Ensure proper authorization (search warrants, consent).
- Respect privacy rights while focusing on relevant evidence.
- Follow jurisdictional laws and international standards for digital forensics.

Example Scenario

In a corporate data breach case:

- Investigators secure affected servers and employee workstations.
- They image hard drives and capture volatile memory.
- Logs are collected from firewalls and intrusion detection systems.
- Chain of custody forms are completed for each device.
- Evidence is packaged and stored securely until analysis.

SURVEYING AND PRESERVING DIGITAL INVESTIGATION

Surveying and preserving in digital investigations are two critical phases that ensure evidence is properly identified, collected, and maintained for later analysis and legal proceedings. Let's break it down clearly:

Surveying a Digital Investigation

Surveying is the **initial assessment of the digital crime scene**. It sets the foundation for the entire investigation.

- **Identify Scope of Investigation**
 - Determine which devices, accounts, and networks are potentially involved.
 - Recognize both physical and cloud-based sources of evidence.
- **Assess Volatile vs. Non-Volatile Data**
 - Volatile data (RAM, running processes, network connections) disappears once a system is powered down.
 - Non-volatile data (hard drives, logs, backups) remains intact.
- **Prioritize Evidence Sources**
 - Focus first on data most likely to be lost or altered.

CYBER CRIME INVESTIGATION AND DIGITAL FORENSICS (23CY602)

- Example: live network traffic capture before imaging hard drives.
- **Document the Scene**
- Record the state of devices (powered on/off, connected peripherals).
- Photograph and log the environment for later reconstruction.

Preserving a Digital Investigation

Preservation ensures that evidence remains **authentic, reliable, and admissible**.

- **Create Forensic Images**
 - Make bit-by-bit copies of storage media using trusted forensic tools.
 - Work only on copies, never the original evidence.
- **Maintain Chain of Custody**
 - Track every person who handles the evidence.
 - Use tamper-proof packaging and detailed logs.
- **Protect Against Contamination**
 - Avoid altering metadata (timestamps, file attributes).
 - Isolate devices from networks to prevent remote tampering.
- **Secure Storage**
 - Store evidence in controlled environments (anti-static bags, secure lockers).
 - Ensure access is restricted to authorized personnel only.
- **Legal Compliance**
- Follow jurisdictional laws and obtain proper warrants.
- Respect privacy while focusing on relevant evidence.

Example Workflow

1. **Survey:** Investigator identifies a compromised workstation and observes suspicious processes running.
2. **Preserve:** RAM is captured immediately, then the hard drive is imaged.
3. **Chain of Custody:** Each step is logged, and evidence is sealed in tamper-proof containers.
4. **Storage:** Evidence is placed in a secure forensic lab for analysis.

UNIT – III
VIOLENT CRIME & DIGITAL INVESTIGATION

When investigating **violent crimes**, digital evidence often plays a crucial role in reconstructing events, identifying suspects, and supporting prosecutions. Digital investigation complements traditional forensic methods by uncovering hidden or overlooked data trails.

✍ Violent Crime & Digital Investigation: Key Connections

1. Digital Footprints of Violent Crimes

- **Communication records:** Texts, emails, social media posts may reveal threats, motives, or planning.
- **Location data:** GPS, cell tower logs, and surveillance footage can place suspects at the crime scene.
- **Multimedia evidence:** Photos, videos, or audio recordings may capture the crime or aftermath.
- **Internet activity:** Search histories (e.g., weapon research, crime planning) can show intent.

2. Digital Crime Scene Management

- Secure devices (phones, laptops, CCTV systems) just like physical evidence.
- Collect volatile data (RAM, live chats, ongoing calls) before it disappears.
- Preserve chain of custody to ensure admissibility in court.

3. Investigative Techniques

- **Forensic imaging:** Creating exact copies of suspect devices for analysis.

CYBER CRIME INVESTIGATION AND DIGITAL FORENSICS (23CY602)

- **Data recovery:** Extracting deleted files, hidden folders, or encrypted communications.
- **Timeline reconstruction:** Using metadata to establish when and how events occurred.
- **Cross-referencing:** Linking digital evidence with physical evidence (bloodstains, fingerprints, witness testimony).

4. Challenges

- **Encryption & anonymization:** Criminals may use secure apps or VPNs.
- **Volume of data:** Massive amounts of logs, messages, and media require advanced filtering.
- **Legal boundaries:** Investigators must respect privacy rights and obtain warrants.

5. Case Example (Generalized)

- In a homicide case, investigators recover the suspect's phone.
- GPS logs show the suspect near the crime scene at the time of death.
- Text messages reveal prior threats to the victim.
- CCTV footage corroborates presence, and metadata from photos confirms timeline.
- Together, digital and physical evidence build a strong case.

Digital investigation in violent crime cases provides context, corroboration, and clarity. It helps establish motive, opportunity, and identity, ensuring justice is supported by both physical and digital truth.

THE ROLE OF COMPUTERS IN VIOLENT CRIME

Computers play a **complex and multifaceted role in violent crime investigations**. They can be both **tools used in committing crimes** and **sources of critical evidence** that help law enforcement reconstruct events and identify perpetrators.

❑ Roles of Computers in Violent Crime

1. Planning and Coordination

- Criminals may use computers to research weapons, locations, or victims.
- Online forums, emails, and encrypted chats can facilitate planning and coordination of violent acts.
- Social media platforms may be used to issue threats or recruit accomplices.

2. Execution Support

- Computers can control or interact with devices used in violent crimes (e.g., smart home systems, surveillance cameras, GPS trackers).
- In some cases, cyber elements (like disabling alarms or hacking into systems) are combined with physical violence.

3. Concealment and Cover-Up

- Perpetrators may attempt to erase incriminating files, alter logs, or use anonymization tools.
- Encryption and dark web services can be leveraged to hide communications or financial transactions related to the crime.

4. Digital Evidence Collection

- Computers belonging to suspects or victims often contain:
 - **Motive evidence:** emails, search histories, financial records.
 - **Opportunity evidence:** GPS logs, login timestamps, access records.
 - **Identity evidence:** user accounts, biometric logins, IP addresses.
- Metadata from files (creation dates, edits, transfers) helps reconstruct timelines.

5. Victimization

- Computers themselves can be targets in violent crimes when linked to critical infrastructure.
- Attacks on hospital systems, transportation networks, or power grids can indirectly cause physical harm.

Investigative Importance

- **Corroboration:** Digital evidence supports physical evidence (DNA, fingerprints, witness testimony).
- **Timeline reconstruction:** Logs and metadata establish when events occurred.
- **Behavioral analysis:** Online activity can reveal psychological state, intent, or escalation patterns.
- **Legal admissibility:** Proper forensic handling ensures evidence is credible in court.

Example Scenario

In a homicide case:

- The suspect's computer shows searches for "how to disable CCTV cameras" and "best time to attack."
- Emails reveal threats sent to the victim.
- GPS logs place the suspect near the crime scene.
- Combined with physical evidence, the computer data strengthens the prosecution's case.

Conclusion

Computers in violent crime are **double-edged**: they can be used by perpetrators to plan, execute, or conceal crimes, but they also serve as **powerful forensic tools** for investigators to uncover truth and secure justice.

PROCESSING DIGITAL CRIME SCENE

Processing a **digital crime scene** is a structured procedure designed to ensure that digital evidence is collected, preserved, and analyzed in a way that maintains its integrity and admissibility in court. Just like a physical crime scene, the digital environment must be handled with precision and care.

Fundamental Steps in Processing a Digital Crime Scene

1. Preparation

- Ensure investigators have proper authorization (warrants, consent).
- Gather forensic tools (write blockers, imaging software, evidence bags).
- Establish protocols for chain of custody and documentation.

2. Securing the Scene

- Restrict access to devices, networks, and accounts involved.
- Prevent suspects or unauthorized personnel from tampering with evidence.
- If necessary, isolate devices from networks to stop ongoing attacks.

3. Surveying and Identifying Evidence

- Identify all potential sources of evidence: computers, mobile phones, servers, IoT devices, cloud accounts.
- Distinguish between volatile data (RAM, live network traffic) and non-volatile data (hard drives, logs).
- Prioritize evidence that is most likely to be lost or altered.

4. Documentation

- Record the state of devices (powered on/off, connected peripherals).
- Photograph and log the physical and digital environment.
- Maintain detailed notes for later reconstruction of events.

5. Collection

- Use forensic imaging tools to create bit-by-bit copies of storage media.
- Capture volatile data before powering down systems.
- Collect logs, emails, chat histories, and metadata.

6. Preservation

- Store evidence in tamper-proof containers and anti-static bags.
- Maintain strict chain of custody records.
- Secure evidence in controlled environments with restricted access.

7. Analysis

- Examine forensic images, logs, and metadata using specialized tools.
- Reconstruct timelines of events.
- Correlate digital evidence with physical evidence and witness testimony.

8. Reporting

- Document findings in a clear, unbiased, and legally defensible manner.
- Ensure reports are detailed enough for peer review and admissibility in court.
- Present conclusions supported by evidence, not assumptions.

Example Scenario

In a corporate cyber-attack case:

1. Investigators secure affected servers and employee workstations.
2. They image hard drives and capture volatile memory.
3. Logs are collected from firewalls and intrusion detection systems.
4. Chain of custody forms are completed for each device.
5. Evidence is analyzed to reconstruct the attack timeline.
6. Findings are reported to management and law enforcement.

Conclusion

Processing a digital crime scene requires **methodical steps—prepare, secure, survey, document, collect, preserve, analyze, and report**. Each stage ensures that digital evidence remains credible, reliable, and admissible in legal proceedings.

INVESTIGATIVE RECONSTRUCTION

Investigative reconstruction in digital forensics is the process of piecing together events from digital evidence to understand *what happened, how it happened, when it happened, and who was involved*. It's essentially the "storytelling" phase of an investigation, where raw data is transformed into a coherent narrative that can stand up in court.

❑ Core Goals of Investigative Reconstruction

- **Timeline Creation:** Establishing the sequence of events using logs, metadata, and file timestamps.

CYBER CRIME INVESTIGATION AND DIGITAL FORENSICS (23CY602)

- **Cause-and-Effect Analysis:** Determining how actions led to outcomes (e.g., malware infection → data exfiltration).
- **Actor Identification:** Linking digital actions to specific individuals or accounts.
- **Contextualization:** Integrating digital evidence with physical evidence, witness testimony, and investigative findings.

Key Steps in Investigative Reconstruction

1. Data Correlation

- Combine evidence from multiple sources: devices, networks, cloud accounts, and physical crime scenes.
- Example: Matching login records with CCTV footage.

2. Timeline Building

- Use metadata (file creation, modification, access times) to reconstruct chronological order.
- Tools like log analysis software or forensic suites help automate this.

3. Event Sequencing

- Identify critical events (e.g., intrusion, file transfer, deletion).
- Place them in logical order to show progression of the crime.

4. Hypothesis Testing

- Compare reconstructed events against investigative hypotheses.
- Example: Did the suspect's claimed timeline match the digital evidence?

5. Validation

- Ensure reconstruction is consistent, repeatable, and supported by multiple evidence sources.
- Peer review or independent verification strengthens credibility.

6. Presentation

- Translate technical findings into clear, understandable reports for courts, management, or law enforcement.
- Use visuals (timelines, charts) to make complex sequences easier to grasp.

Example Scenario

In a corporate insider theft case:

1. Logs show an employee accessed sensitive files at midnight.

CYBER CRIME INVESTIGATION AND DIGITAL FORENSICS (23CY602)

2. USB history reveals a device was connected minutes later.
3. CCTV footage confirms the employee was present in the office.
4. Timeline reconstruction demonstrates the theft sequence: login → file access → USB copy → exit.

Importance

- Provides **clarity** in complex cases.
- Ensures **objectivity** by relying on evidence, not assumptions.
- Strengthens **legal admissibility** by showing a logical, evidence-backed narrative.

Conclusion

Investigative reconstruction is about **turning fragmented digital traces into a defensible story of events**. It bridges the gap between technical evidence and human understanding, making it indispensable in digital crime investigations.

DIGITAL EVIDENCE AS ALIBI

Digital evidence can serve as a powerful alibi in criminal investigations, helping to prove that a suspect was not present at the crime scene or did not commit the alleged act. Because digital traces are often automatically recorded and difficult to falsify without detection, they can provide strong corroboration when used correctly.

➲ How Digital Evidence Functions as an Alibi

1. Location-Based Evidence

- **GPS data:** Smartphones, car navigation systems, and fitness trackers record location history.
- **Cell tower logs:** Show where a phone was connected at a specific time.
- **Surveillance footage:** Digital video systems can confirm presence elsewhere.

2. Time-Stamped Activity

- **Computer logins:** Authentication records can prove someone was online at a given time.
- **Emails or messages:** Sending/receiving communications with timestamps can show activity away from the crime scene.
- **Transaction records:** ATM withdrawals, online purchases, or transport tickets provide verifiable timelines.

3. Digital Interactions

- **Social media posts:** Uploads or live streams can demonstrate presence elsewhere.
- **Work systems:** Remote logins to corporate servers or VPNs can confirm activity.
- **Smart devices:** Home assistants, smart locks, or IoT sensors may record usage data.

Legal Considerations

- **Authenticity:** Evidence must be verified (e.g., metadata analysis, forensic imaging).
- **Chain of custody:** Proper documentation ensures evidence is admissible.
- **Corroboration:** Digital alibis are strongest when supported by physical evidence or witness testimony.
- **Challenges:** Defense must address potential manipulation, spoofing, or shared device usage.

Example Scenario

In a violent crime case:

- A suspect claims they were at home during the incident.
- Investigators find smart TV logs showing Netflix streaming at the exact time of the crime.
- GPS data from the suspect's phone confirms it was at their residence.
- Combined, this digital evidence supports the suspect's alibi.

Conclusion

Digital evidence as an alibi provides **objective, time-stamped, and location-based proof** that can exonerate individuals. When properly collected and preserved, it becomes a critical tool in ensuring justice.

UNIT – IV
CYBER STALKING

Cyberstalking is a form of online harassment where an individual uses digital platforms to repeatedly threaten, monitor, or intimidate another person. It often involves persistent unwanted contact, invasion of privacy, and can escalate into offline stalking or violence if not addressed.

❖ Definition

- Cyberstalking is the **use of the internet, email, social media, or other digital means to harass or threaten someone.**
- It may include sending abusive messages, spreading false information, hacking accounts, or monitoring online activity.
- Unlike casual “online creeping,” cyberstalking is **persistent, malicious, and intended to cause fear or distress.**

Common Forms of Cyberstalking

- **Threats and intimidation:** Sending repeated threatening emails or messages.
- **False accusations:** Spreading rumors or defamatory content online.
- **Identity misuse:** Creating fake profiles to impersonate or discredit the victim.
- **Surveillance:** Tracking someone’s online activity, location data, or social media posts.
- **Data manipulation:** Destroying or altering information to harm the victim.

Impact on Victims

- Victims often experience **fear, anxiety, and loss of privacy.**
- Cyberstalking can escalate into **offline harassment or violence**, making it a serious public safety issue.
- Women are disproportionately affected, though anyone can be targeted.

Prevention & Response

- **Technical safeguards:** Use strong passwords, enable two-factor authentication, and adjust privacy settings.
- **Legal measures:** Many countries now criminalize cyberstalking, though laws vary.
- **Documentation:** Victims should save messages, screenshots, and logs as evidence.
- **Reporting:** Incidents should be reported to law enforcement and platform administrators.
- **Awareness:** Education about online safety reduces vulnerability.

Example Scenario

A victim receives repeated threatening messages on social media. The stalker also hacks into their email and posts false accusations online. Investigators trace IP logs and metadata, linking the harassment to a known individual. With proper documentation and chain of custody, the evidence supports prosecution under cybercrime laws.

Conclusion

Cyberstalking is **not just online annoyance—it is a serious crime** that can cause psychological harm and escalate into physical danger. Effective handling requires **technical, legal, and psychological support systems** to protect victims and hold perpetrators accountable.

COMPUTER BASICS FOR DIGITAL FORENSICS

To work effectively in **digital forensics**, investigators need a solid grasp of computer basics. This knowledge ensures they can properly identify, collect, and analyze evidence without altering or damaging it.

Computer Basics for Digital Forensics

1. Computer Architecture

- **Hardware components:** CPU, RAM, storage devices (HDD, SSD), input/output devices.
- **Importance:** Knowing how data is processed and stored helps in locating evidence (e.g., volatile vs. non-volatile memory).

2. Operating Systems

- **Windows, Linux, macOS, Mobile OS (Android/iOS):** Each has unique file systems and logging mechanisms.

CYBER CRIME INVESTIGATION AND DIGITAL FORENSICS (23CY602)

- **File systems:** NTFS, FAT32, EXT4, APFS — understanding how they store metadata, timestamps, and deleted files is crucial.

3. Data Storage Concepts

- **Primary storage:** RAM (volatile, disappears when powered off).
- **Secondary storage:** Hard drives, SSDs, USBs (non-volatile, persistent).
- **Cloud storage:** Remote servers that require legal access for evidence collection.

4. Networking Basics

- **IP addresses, MAC addresses, DNS, routing:** Essential for tracing online activity.
- **Logs:** Firewalls, routers, and servers generate logs that can reveal intrusion attempts or data transfers.

5. File and Data Structures

- **Metadata:** Information about files (creation date, modification, access times).
- **Hidden/Deleted data:** Knowledge of how files are deleted or hidden helps in recovery.
- **Encryption/Compression:** Understanding how data is protected or packaged.

6. System Logs and Artifacts

- **Event logs:** Record system activities (logins, shutdowns, errors).
- **Registry (Windows):** Stores configuration and usage data.
- **Browser history & cache:** Reveal user activity and intent.

7. Security Concepts

- **Malware types:** Viruses, worms, trojans, ransomware.
- **Authentication:** Passwords, biometrics, two-factor authentication.
- **Access control:** User permissions and privilege escalation.

8. Forensic Principles

- **Imaging:** Creating bit-by-bit copies of drives.
- **Chain of custody:** Documenting evidence handling.
- **Integrity checks:** Using hash functions (MD5, SHA-1, SHA-256) to verify evidence authenticity.

Example Application

In a fraud investigation:

- Knowledge of file systems helps recover deleted spreadsheets.
- Networking basics allow tracing suspicious logins from external IPs.

- Security concepts explain how malware was used to steal credentials.

Conclusion

Digital forensics relies on **core computer knowledge**—hardware, operating systems, storage, networking, and security. Without these basics, investigators risk overlooking or mishandling critical evidence.

APPLYING FORENSICS SCIENCE TO COMPUTERS

Applying **forensic science to computers**—commonly called **computer forensics** or **digital forensics**—means using scientific principles and investigative techniques to identify, collect, preserve, and analyze digital evidence from computer systems. The goal is to uncover the truth in a way that is reliable, repeatable, and admissible in court.

Core Principles of Applying Forensic Science to Computers

1. Identification of Evidence

- Recognize potential sources of digital evidence: hard drives, SSDs, USBs, cloud accounts, emails, logs.
- Distinguish between **volatile data** (RAM, running processes) and **non-volatile data** (files, logs, backups).

2. Preservation

- Prevent alteration or loss of evidence.
- Use forensic imaging tools to create bit-by-bit copies of drives.
- Maintain strict **chain of custody** documentation.

3. Collection

- Gather data using standardized forensic tools (write blockers, imaging software).
- Collect both active files and hidden/deleted data.
- Capture metadata (timestamps, user IDs, system logs).

4. Analysis

- Examine forensic images for incriminating or exonerating evidence.
- Reconstruct timelines of events using logs and metadata.
- Identify malware, unauthorized access, or suspicious file transfers.

5. Interpretation

- Correlate digital findings with physical evidence and witness testimony.
- Test hypotheses about how the crime occurred.
- Ensure conclusions are based on evidence, not assumptions.

6. Presentation

- Document findings in clear, unbiased reports.
- Use visuals (timelines, charts) to explain complex technical evidence.
- Ensure reports are legally defensible and understandable to non-technical audiences.

Importance of Forensic Science in Computers

- **Objectivity:** Evidence is analyzed scientifically, reducing bias.
- **Repeatability:** Methods are standardized so other experts can reproduce results.
- **Legal Admissibility:** Courts require scientifically validated procedures.
- **Crime Solving:** Helps investigate fraud, cyberattacks, insider threats, violent crimes, and more.

Example Application

In a fraud case:

- Investigators investigated the suspect's computer.
- Analysis reveals deleted spreadsheets with altered financial records.
- Metadata shows they were modified during the suspect's login session.
- Combined with witness testimony, the digital evidence supports prosecution.

DIGITAL EVIDENCE ON WINDOWS SYSTEMS

On **Windows systems**, digital evidence is abundant because the operating system records extensive logs, metadata, and artifacts about user activity. Forensic investigators rely on these traces to reconstruct events, identify suspects, and validate alibis.

Key Sources of Digital Evidence on Windows Systems

1. File System Artifacts

- **NTFS Metadata:** Records file creation, modification, and access times (MAC times).
- **Master File Table (MFT):** Contains details about every file and directory.
- **Recycle Bin:** Stores deleted files with metadata about when they were removed.
- **Shadow Copies & Restore Points:** Preserve older versions of files.

2. Windows Registry

- Stores configuration and usage data.
- Evidence examples:
 - Recently accessed files and applications.
 - USB device connection history.
 - User account details and system settings.

3. Event Logs

- **Security logs:** Login attempts, account lockouts, privilege escalations.
- **System logs:** Startup/shutdown times, hardware changes.
- **Application logs:** Errors, crashes, and usage history.

4. User Activity Artifacts

- **Prefetch files:** Show which applications were executed and when.
- **Jump lists:** Record recently opened files and applications.
- **Browser history & cache:** Reveal websites visited, downloads, and online activity.
- **Email clients (Outlook, Thunderbird):** Store communications and attachments.

5. Volatile Data

- **RAM captures:** Running processes, open network connections, encryption keys.
- **Pagefile & hibernation files:** Contain fragments of memory that persist on disk.

6. External Devices

- USB connection logs in the registry.
- Evidence of file transfers or external storage usage.

7. Network Evidence

- Firewall and network logs.
- Remote desktop session records.
- Wi-Fi connection history.

Example Application

In a fraud case:

- Investigators check **event logs** to confirm when the suspect logged in.
- **Registry entries** reveal a USB drive was connected during the incident.
- **Prefetch files** show the suspect opened spreadsheet software at the time of the fraud.
- Together, these artifacts reconstruct the timeline of the crime.

Conclusion

Windows systems are rich in **digital evidence sources**—from registry entries and event logs to file system metadata and volatile memory. Proper forensic handling ensures this evidence remains reliable and admissible in court.

DIGITAL EVIDENCE ON UNIX SYSTEMS

CYBER CRIME INVESTIGATION AND DIGITAL FORENSICS (23CY602)

On **UNIX systems** (including Linux, BSD, and other variants), digital evidence is rich and diverse, but it differs from Windows in structure and storage. Investigators must understand UNIX internals to properly identify, collect, and preserve forensic artifacts.

❑ Key Sources of Digital Evidence on UNIX Systems

1. File System Artifacts

- **EXT, UFS, ZFS, XFS file systems:** Store metadata such as file creation, modification, and access times.
- **Inodes:** Contain information about files (permissions, ownership, timestamps).
- **Deleted files:** May remain recoverable until overwritten.
- **Swap space:** Stores fragments of memory that can reveal user activity.

2. System Logs

- **/var/log directory:** Central repository for logs.
 - auth.log or secure: Records login attempts, authentication failures, privilege escalations.
 - syslog or messages: General system activity.
 - dmesg: Kernel events and hardware activity.
- **Application-specific logs:** Web servers (Apache, Nginx), databases, mail servers.

3. User Activity Artifacts

- **Shell history files:** .bash_history, .zsh_history record commands executed by users.
- **Cron jobs:** Scheduled tasks that may reveal automated malicious activity.
- **Mail spools:** Local email storage in /var/mail/username.
- **Configuration files:** .ssh/authorized_keys, .ssh/known_hosts show remote access activity.

4. Volatile Data

- **Processes:** Running processes can be captured with tools like ps, top, or memory dumps.
- **Network connections:** Active sockets and connections (netstat, /proc/net).
- **RAM dumps:** Reveal encryption keys, passwords, or live sessions.

5. External Devices

- Mounted drives and removable media listed in /etc/fstab or /media.
- Logs of device connections in kernel messages (dmesg).

6. Network Evidence

- Firewall logs (iptables, nftables).

CYBER CRIME INVESTIGATION AND DIGITAL FORENSICS (23CY602)

- SSH session records.
- Web server access logs showing IP addresses, timestamps, and requests.

Example Application

In a server intrusion case:

- Investigators check `/var/log/auth.log` for failed login attempts.
- `.bash_history` reveals commands used to escalate privileges.
- Web server logs show suspicious requests from a foreign IP.
- Inode metadata confirms files were modified during the attack window.

Conclusion

UNIX systems provide **powerful forensic artifacts** through logs, inodes, shell histories, and volatile data. Proper handling ensures investigators can reconstruct events, identify intruders, and preserve evidence for court.

UNIT – V **NETWORK FORENSICS**

Network forensics is a specialized branch of digital forensics that focuses on monitoring, capturing, analyzing, and preserving network traffic to investigate security incidents, cybercrimes, and policy violations. It is essentially the "crime scene investigation" of data in motion.

What is Network Forensics?

- The application of forensic science principles to **network traffic**.
- Involves **collecting and analyzing packets, logs, and communication flows** to reconstruct events.

- Used to detect intrusions, trace attackers, and gather evidence for legal proceedings.

Objectives of Network Forensics

- Identify malicious activity:** Detect intrusions, malware communications, or unauthorized access.
- Reconstruct events:** Understand how an attack unfolded (entry point, lateral movement, data exfiltration).
- Trace attackers:** Link IP addresses, domains, or accounts to suspects.
- Preserve evidence:** Ensure captured traffic is admissible in court.
- Support incident response:** Provide insights for containment and remediation.

Key Techniques

- Packet Capture (PCAP):** Tools like Wireshark or tcpdump record raw network traffic.
- Log Analysis:** Firewalls, IDS/IPS, routers, and servers generate logs that reveal activity.
- Flow Analysis:** NetFlow or sFlow summarize traffic patterns (who talked to whom, when, and how much).
- Correlation:** Cross-referencing logs with packet captures to build a timeline.
- Deep Packet Inspection:** Examining payloads for malicious content or sensitive data leaks.

Legal & Forensic Considerations

- Chain of custody:** Document who collected and handled traffic data.
- Integrity checks:** Use hashing to prove evidence wasn't altered.
- Privacy laws:** Ensure monitoring complies with jurisdictional regulations.
- Admissibility:** Evidence must be collected using reliable, repeatable methods.

Example Scenario

In a corporate data breach:

- Investigators capture suspicious outbound traffic.
- Analysis shows large encrypted transfers to an unknown IP.
- Firewall logs confirm the traffic originated from a compromised server.
- Timeline reconstruction reveals when the attacker gained access and exfiltrated data.
- Evidence is preserved and presented in court to support prosecution.

Conclusion

Network forensics is about **turning live traffic into defensible evidence**. It helps investigators detect, trace, and understand cyberattacks while ensuring evidence integrity for legal use.

NETWORKS BASICS FOR DIGITAL INVESTIGATORS

For digital investigators, **network basics** are essential because so much evidence today flows through or resides in networked environments. Understanding how networks function allows investigators to trace activity, reconstruct events, and uncover hidden communications.

🌐 Core Network Concepts for Digital Investigators

1. Network Models

- **OSI Model (7 layers):** Helps investigators pinpoint where evidence resides (e.g., packet headers at Layer 3, payloads at Layer 7).
- **TCP/IP Model (4 layers):** Practical framework for analyzing internet traffic.

2. IP Addressing

- **IPv4 & IPv6:** Unique identifiers for devices on a network.
- **Public vs. Private IPs:** Distinguish between internet-facing and internal addresses.
- **MAC addresses:** Hardware identifiers useful for tying activity to specific devices.

3. Protocols

- **TCP/UDP:** Transport protocols; TCP provides reliable communication, UDP is faster but connectionless.
- **HTTP/HTTPS:** Web traffic, often a source of incriminating evidence.
- **SMTP/IMAP/POP3:** Email protocols, critical for communication evidence.
- **FTP/SFTP:** File transfers that may indicate data exfiltration.
- **DNS:** Resolves domain names; logs can reveal malicious sites contacted.

4. Network Devices

- **Routers & Switches:** Direct traffic; logs can show communication paths.
- **Firewalls:** Record blocked/allowed traffic, useful for intrusion detection.
- **Servers:** Web, mail, and database servers often hold logs of user activity.

5. Logs & Artifacts

- **Syslogs:** General system activity.
- **Firewall logs:** Show attempted intrusions or suspicious connections.
- **IDS/IPS logs:** Detect and record malicious activity.
- **NetFlow/sFlow:** Summarize traffic patterns (who talked to whom, when, and how much).

6. Network Evidence Collection

- **Packet capture (PCAP):** Using tools like Wireshark or tcpdump to record raw traffic.

CYBER CRIME INVESTIGATION AND DIGITAL FORENSICS (23CY602)

- **Flow analysis:** High-level summaries of traffic.
- **Correlation:** Cross-referencing logs with packet captures to reconstruct events.

7. Legal & Forensic Considerations

- **Chain of custody:** Document who collected and handled traffic data.
- **Integrity checks:** Use hashing to prove evidence wasn't altered.
- **Privacy laws:** Ensure monitoring complies with jurisdictional regulations.

Example Application

In a cyberstalking case:

- Investigators analyze firewall logs to identify repeated connections from the stalker's IP.
- DNS logs reveal the suspect accessed the victim's social media accounts.
- Packet captures confirm malicious messages were sent through specific sessions.

Conclusion

For digital investigators, network basics—**IP addressing, protocols, devices, logs, and forensic collection methods**—are the foundation for uncovering digital evidence in cybercrime cases. Without this knowledge, critical trails of communication and intrusion attempts could be missed.

APPLYING FORENSICS SCIENCE TO NETWORKS

Applying **forensic science to networks**—known as **network forensics**—means using scientific methods to collect, preserve, analyze, and present evidence from network traffic. This is critical in investigating cybercrimes, intrusions, and data breaches, because networks are the pathways through which most digital crimes occur.

Core Principles of Applying Forensic Science to Networks

1. Identification of Evidence

- Recognize potential sources: routers, firewalls, intrusion detection systems (IDS), servers, and packet captures.
- Evidence may include IP addresses, session logs, DNS queries, or suspicious traffic patterns.

2. Preservation

- Capture traffic using tools like **Wireshark**, **tcpdump**, or NetFlow collectors.
- Ensure evidence integrity with hashing and chain of custody documentation.
- Store logs and packet captures securely to prevent tampering.

3. Collection

CYBER CRIME INVESTIGATION AND DIGITAL FORENSICS (23CY602)

- Gather raw packet data (PCAP files).
- Collect system and application logs (web servers, mail servers, VPNs).
- Document timestamps and metadata for correlation.

4. Analysis

- Reconstruct communication sessions to understand attacker behavior.
- Identify anomalies such as unusual ports, encrypted tunnels, or large data transfers.
- Correlate evidence across multiple devices to build a timeline of events.

5. Interpretation

- Determine how the attack occurred (entry point, lateral movement, exfiltration).
- Link network activity to specific users, devices, or external actors.
- Validate hypotheses with repeatable methods.

6. Presentation

- Create clear, unbiased reports for courts or management.
- Use diagrams and timelines to explain complex traffic flows.
- Ensure findings are legally defensible and technically accurate.

Example Scenario

In a ransomware attack:

1. Investigators capture outbound traffic from the infected server.
2. Analysis reveals communication with a known command-and-control (C2) IP.
3. Firewall logs confirm when the connection was established.
4. Timeline reconstruction shows the attacker gained access via phishing, then exfiltrated data before encryption.
5. Evidence is preserved and presented in court to support prosecution.

DIGITAL EVIDENCE ON PHYSICAL AND DATA LINK LAYERS

Physical Layer Evidence (Layer 1)

This layer is about the **raw transmission of bits** over cables, radio waves, or fiber optics. Evidence here often relates to the medium and hardware used.

- **Signal traces:** Electrical signals, radio frequencies, or optical pulses can be captured with specialized equipment.
- **Hardware identifiers:** Serial numbers of network cards, modems, or routers.
- **Physical connections:** Evidence of tapped cables, installed sniffers, or unauthorized hardware.
- **Environmental logs:** Power fluctuations or hardware failures recorded by monitoring systems.

CYBER CRIME INVESTIGATION AND DIGITAL FORENSICS (23CY602)

- **Forensic relevance:** Can prove *how* data was transmitted and whether physical tampering occurred (e.g., cable taps in espionage cases).

Data Link Layer Evidence (Layer 2)

This layer handles **framing, addressing, and error detection**. It's where devices identify themselves and manage access to the medium.

- **MAC addresses:** Unique identifiers tied to network interface cards (NICs). Critical for linking activity to specific devices.
- **ARP tables:** Show mappings between IP addresses and MAC addresses, useful for detecting spoofing.
- **Switch logs:** Record which MAC addresses were seen on which ports.
- **Wireless evidence:** SSIDs, BSSIDs, and Wi-Fi association logs can show which devices connected to a network.
- **Error detection codes:** CRC checks in frames can reveal tampering or transmission errors.
- **Forensic relevance:** Helps investigators tie suspicious traffic to a *specific physical device* and detect spoofing or unauthorized access.

Example Scenario

In a corporate espionage case:

- Investigators discover a rogue device connected to the company's LAN.
- **Physical layer evidence:** Cable taps and unauthorized hardware found in the server room.
- **Data link layer evidence:** Switch logs show the rogue device's MAC address and port of connection.
- Together, this evidence proves both *physical tampering* and *digital intrusion*.

Conclusion

Digital evidence at the **Physical and Data Link layers** is foundational. It ties network activity to **specific hardware and transmission methods**, making it invaluable for proving device presence, detecting tampering, and linking suspects to actions.

DIGITAL EVIDENCE ON NETWORK AND TRANSPORT LAYERS

Network Layer Evidence (Layer 3)

The **Network layer** handles addressing and routing of packets. Evidence here helps investigators trace *where* data came from and *where* it went.

- **IP Addresses:** Source and destination IPs link activity to devices or locations.

CYBER CRIME INVESTIGATION AND DIGITAL FORENSICS (23CY602)

- **Routing Information:** Logs from routers/firewalls show packet paths.
- **Subnet and NAT details:** Reveal internal vs. external addressing, useful in corporate or home networks.
- **TTL (Time to Live):** Can help identify the origin of packets and detect spoofing.
- **ICMP traffic:** Ping requests/replies can show reconnaissance activity.
- **Forensic Relevance:** Establishes geographic or organizational origin of traffic, detects spoofing, and maps attacker movement.

Transport Layer Evidence (Layer 4)

The **Transport layer** manages communication sessions (TCP/UDP). Evidence here shows *how* devices communicated and whether sessions were legitimate or malicious.

- **Port Numbers:** Identify services in use (e.g., TCP 80 for HTTP, TCP 443 for HTTPS, TCP 25 for SMTP).
- **TCP Handshakes:** Logs of SYN, ACK, FIN packets confirm session establishment and termination.
- **UDP Traffic:** Connectionless traffic (e.g., DNS queries, streaming) can reveal covert channels.
- **Session Metadata:** Packet captures show duration, size, and frequency of communications.
- **Error Messages:** TCP resets or dropped packets may indicate intrusion attempts.
- **Forensic Relevance:** Links suspicious activity to specific applications/services, reconstructs attacker sessions, and detects anomalies like port scanning or DoS attacks.

Example Scenario

In a **data exfiltration** case:

- **Network layer evidence:** Firewall logs show outbound traffic from an internal IP to a foreign server.
- **Transport layer evidence:** TCP session records reveal large file transfers over port 443 (HTTPS).
- Together, these artifacts prove that sensitive data was sent outside the organization via encrypted sessions.

Conclusion

Digital evidence at the **Network and Transport layers** provides investigators with the **“who, where, and how”** of communication. It ties suspicious traffic to specific IPs, ports, and sessions, enabling reconstruction of cyberattacks and attribution of malicious activity.