
Dr. Manne Venu,
Assistant Professor,

Computer Science and Engineering
(CYBER SECURITY)

Department of CSE(Cyber Security)
, NRCM 1

UNIT-I

Department of CSE(Cyber Security) , NRCM, UNIT-I 2

Department of CSE(Cyber Security) , NRCM, UNIT-I 3

Introduction to Algorithm

⚫ An Algorithm is a sequence of unambiguous instructions for solving a problem,

⚫ i.e., for obtaining a required output for any legitimate input in a finite amount of time.

Department of CSE(Cyber Security) , NRCM, UNIT-I 4

PSEUDOCODE

⚫Pseudocode (pronounced SOO-doh-kohd) is a detailed yet readable
description of what a computer program or algorithm must do, expressed in a
formally-styled natural language rather than in a programming language.

⚫It is sometimes used as a detailed step in the process of developing a program.

⚫It allows programmers to express the design in great detail and provides
programmers a detailed template for the next step of writing code in a specific
programming language.

Department of CSE(Cyber Security) , NRCM, UNIT-I 5

Formatting and Conventions in
Pseudocoding

⚫INDENTATION in pseudocode should be identical to its implementation
in a programming language. Try to indent at least four spaces.

⚫The pseudocode entries are to be cryptic, AND SHOULD NOT BE PROSE.
NO SENTENCES.

⚫No flower boxes in pseudocode.

⚫Do not include data declarations in pseudocode.

Department of CSE(Cyber Security) , NRCM, UNIT-I 6

Some Keywords That Should be Used

⚫As verbs, use the words

⚫generate, Compute, Process,

⚫Set, reset,

⚫ increment,

⚫calculate,

⚫add, sum, multiply, ...

⚫print, display,

⚫ input, output, edit, test , etc.

Department of CSE(Cyber Security) , NRCM, UNIT-I 7

Department of CSE(Cyber Security) , NRCM, UNIT-I 8

Euclid’s Algorithm
Problem: Find gcd(m,n), the greatest common divisor of
two
nonnegative, not both zero integers m and n

Examples: gcd(60,24) = 12, gcd(60,0) = 60,
 gcd(0,0) = ?

Euclid’s algorithm is based on repeated application of

equality gcd(m,n) = gcd(n, m mod n)

until the second number becomes 0, which makes the
problem

trivial.

Example: gcd(60,24) = gcd(24,12) = gcd(12,0) = 12

Department of CSE(Cyber Security) , NRCM, UNIT-I 9

Two descriptions of Euclid’s algorithm

Step 1 If n = 0, return m and stop; otherwise go to Step 2

Step 2 Divide m by n and assign the value fo the remainder to r

Step 3 Assign the value of n to m and the value of r to n. Go to Step 1.

while n ≠ 0 do r ← m mod n m← n

n ← r

return m

Department of CSE(Cyber Security) , NRCM, UNIT-I 10

Divide and Conquer

Sorting: mergesort and quicksort

⋅ Tree traversals

⋅ Binary search

⋅ Matrix multiplication-Strassen’s algorithm

Department of CSE(Cyber Security) , NRCM, UNIT-II 11

UNIT-II

Department of CSE(Cyber Security) , NRCM, UNIT-II 12

Disjoint Sets

⚫ Some applications require maintaining a collection of disjoint sets.

⚫ A Disjoint set S is a collection of sets

⚫ S1,......Sw
n i j Si  S j  

⚫ Each set has a representative which is a member of the set (Usually the

minimum if the elements are comparable)

Department of CSE(Cyber Security) , NRCM, UNIT-II 13

Disjoint Set Operations

⚫ Make-Set(x) – Creates a new set where x is only element (and therefore it is

the

representative of the set). O(1) time

Union(x,y) – Replaces one of the elements of

⚫ Find(x) – Returns the representative of the set containing x

 O(log n) time

Department of CSE(Cyber Security) , NRCM, UNIT-II 14

Analyzing Operations

⚫ We usually analyze a sequence of m operations, of which n of them are Make Set

operations, and m is the total of Make Set, Find, and Union operations

⚫ Each union operations decreases the number of sets in the data structure, so there

can not be more than n-1 Union operations

Department of CSE(Cyber Security) , NRCM, UNIT-II 15

Applications

⚫ Equivalence Relations (e.g Connected Components)

⚫ Minimal Spanning Trees

Department of CSE(Cyber Security) , NRCM, UNIT-II 16

Connected Components

⚫ Given a graph G we first preprocess G to maintain a set of connected

components.

CONNECTED_COMPONENTS(G)

⚫ Later a series of queries can be executed to check if two vertexes are part of the

same connected component

SAME_COMPONENT(U,V)

Department of CSE(Cyber Security) , NRCM, UNIT-II 17

Connected Components

⚫ During the execution of CONNECTED- COMPONENTS on a
undirected graph G = (V, E) with k connected components, how many
time is FIND-SET called? How many times is UNION called? Express
you answers in terms of |V|, |E|, and k.

Department of CSE(Cyber Security) , NRCM, UNIT-II 18

Solution

⚫ FIND-SET is called 2|E| times. FIND-SET is called twice on line 4, which is
executed once for each edge in E[G].

⚫ UNION is called |V| - k times. Lines 1 and 2 create
|V| disjoint sets. Each UNION operation decreases the number of disjoint sets

by one. At the end there are k disjoint sets, so UNION is called |V| - k times.

Department of CSE(Cyber Security) , NRCM, UNIT-II 19

Linked List implementation

⚫ We maintain a set of linked list, each list corresponds to a
single set.

⚫ All elements of the set point to the first element which is

the representative

⚫ A pointer to the tail is maintained so elements are inserted

at the end of the list

Department of CSE(Cyber Security) , NRCM, UNIT-III 20

UNIT-III

Department of CSE(Cyber Security) , NRCM, UNIT-III 21

DYNAMIC PROGRAMMING

Dynamic programming is a technique for solving problems with overlapping sub

problems.

Typically, these sub-problems arise from a recurrence relating a solution to a given

problem with solutions to its smaller sub- problems of the same type.

Department of CSE(Cyber Security) , NRCM, UNIT-III 22

Dynamic programming usually takes one of two

approaches:

Bottom-up approach: All subproblems that might be needed are solved in
advance and then used to build up solutions to larger problems. This approach
is slightly better in stack space and number of function calls, but it is
sometimes not intuitive to figure out all the subproblems needed for solving
the given problem.

Top-down approach: The problem is broken into subproblems, and these
subproblems are solved and the solutions remembered, in case they need to be
solved again. This is recursion and Memory Function combined together

Department of CSE(Cyber Security) , NRCM, UNIT-III 23

Examples of DP algorithms.

• Computing a binomial coefficient

• Longest common subsequence

• Warshall’s algorithm for transitive closure

• Floyd’s algorithm for all-pairs shortest paths

• Constructing an optimal binary search tree

• Some instances of difficult discrete optimization

problems:

- traveling salesman

- knapsack

Department of CSE(Cyber Security) , NRCM, UNIT-III 24

Memory Function.

In general, we cannot expect more than a constant-factor gain in using the memory

function method for the knapsack problem because its time efficiency class is the

same as that of the bottom-up algorithm

A memory function method may be less space-efficient than a space efficient version of a

bottom-up algorithm

Department of CSE(Cyber Security) , NRCM, UNIT-IV 25

UNIT-IV

Department of CSE(Cyber Security) , NRCM, UNIT-IV 26

Greedy Algorithm

Similar to dynamic programming, but simpler approach

Also used for optimization problems

Idea: When we have a choice to make, make the one that

looks best right now

Make a locally optimal choice in hope of getting a globally optimal

solution

Greedy algorithms don’t always yield an optimal solution

Makes the choice that looks best at the moment in order to get

optimal solution.

.

Fractional Knapsack Problem

Knapsack capacity: W

There are n items: the i-th item has value vi and weight wi

Goal:

find xi such that for all 0  xi  1, i = 1, 2, .., n

  wixi  W and

  xivi is maximum

Department of CSE(Cyber Security) , NRCM, UNIT-IV 28

Fractional Knapsack Problem

Greedy strategy 1:

Pick the item with the maximum value
E.g.:

W = 1
w1 = 100, v1 = 2
w2 = 1, v2 = 1
Taking from the item with the maximum value:

 Total value taken = v1/w1 = 2/100
Smaller than what the thief can take if choosing the other item

 Total value (choose item 2) = v2/w2 = 1

Department of CSE(Cyber Security) , NRCM, UNIT-IV 29

Huffman Code Problem

Huffman’s algorithm achieves data compression by finding the best

variable length binary encoding scheme for the symbols that occur

in the file to be compressed.

Department of CSE(Cyber Security) , NRCM, UNIT-IV

30

Huffman Code Problem

In the pseudocode that follows:

we assume that C is a set of n characters and that each character c €C

is an object with a defined frequency f [c].

The algorithm builds the tree T corresponding to the optimal code

A min-priority queue Q, is used to identify the two least-frequent objects

to merge together.

The result of the merger of two objects is a new object whose frequency

is the sum of the frequencies of the two objects that were merged

Department of CSE(Cyber Security) , NRCM, UNIT-V 31

UNIT-V

Department of CSE(Cyber Security) , NRCM, UNIT-V
 32

 Branch-and-Bound Technique ib Solution vs.

OptiBasic Conceptsl

ution

The basic concept underlying the branch-and-bound technique is to
divide and conquer.

Since the original “large” problem is hard to solve directly,
 it is divided into smaller and smaller subproblems
 until these subproblems can be conquered.
The dividing (branching) is done by partitioning the entire set of
 feasible solutions into smaller and smaller subsets.
The conquering (fathoming) is done partially by
 (i) giving a bound for the best solution in the subset;
 (ii) discarding the subset if the bound indicates that
 it can’t contain an optimal solution.

These three basic steps

– branching, bounding, and fathoming –
are illustrated on the following example.

Department of CSE(Cyber Security) , NRCM, UNIT-V 33

A Multi-Stage Graph Searching Problem

Utilizing the information about the optimal solution of
the LP-relaxation

Fact: If LP-relaxation has integral optimal solution x*, then x*

is optimal for IP too.

In our case, (x1, x2) = (2.25, 3.75) is the optimal solution of the LP-relaxation.

But, unfortunately, it is not integral.

The optimal value is 41.25 .

Fact: OPT(LP-relaxation) ≥ OPT(IP)

 (for maximization problems)

That is, the optimal value of the LP-relaxation is an upper bound for the optimal

value of the integer program.

In our case, 41.25 is an upper bound for OPT(IP).

Department of CSE(Cyber Security) , NRCM, UNIT-V 34

Branching step

In an attempt to find out more about the location of the IP’s optimal solution,
partition the feasible region of the LP-relaxation.
Choose a variable that is fractional in the optimal solution to the LP-relaxation –
say, x2 . Observe that every feasible IP point must have either x2  3 or x2 ≥ 4 .
With this in mind, branch on the variable x2 to create the following two
subproblems:
 Subproblem 1 Subproblem 2
 Max Z = 5x1 + 8x2 Max Z = 5x1 + 8x2
 s.t. x1 + x2  6 s.t. x1 + x2  6
 5x1 + 9x2  45 5x1 + 9x2  45
 x2  3 x2 ≥ 4
 x1 , x2 ≥ 0 x1 , x2 ≥ 0
Solve both subproblems
 (note that the original optimal solution (2.25, 3.75) can’t recur)

Department of CSE(Cyber Security) , NRCM, UNIT-V 35

Solution tree

If a subproblem is infeasible, then it is fathomed.
 In our case, Subproblem 4 is infeasible; fathom it.

The upper bound for OPT(IP) is updated: 39  OPT(IP)  40.55 .

Next branch Subproblem 3 on x2 .
 (Note that the branching variable might recur).

Department of CSE(Cyber Security) , NRCM, UNIT-V 36

Solution tree

If the optimal value of a sub problem is  Z*, then it is
fathomed.

•In our case, Sub problem 5 is fathomed because 37  39 = Z*.

If a sub problem has integral optimal solution x*,
 and its value > Z*, then x* replaces the current
incumbent.

•In our case, Sub problem 5 has integral optimal solution, and
its value 40>39=Z*. Thus, (0,5) is the new incumbent, and
new Z*=40.

If there are no unfathomed subproblems left, then the
current incumbent is an optimal solution for (IP).

•In our case, (0, 5) is an optimal solution with optimal value 40.

Department of CSE(Cyber Security) , NRCM, UNIT-V 37

Branch and Bound Example

Solve the following BIP be branch and bound.

 Max Z = 8x1 + 11x2
 s.t. 5x1 + 7x2  14

 0  x1 , x2  1 integer

Department of CSE(Cyber Security) , NRCM, UNIT-V 38

THANK

YOU

