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Introduction to Algorithm 

⚫ An Algorithm is a sequence of unambiguous instructions for solving a problem, 

⚫ i.e., for obtaining a required output for any legitimate input in a finite amount of time. 
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PSEUDOCODE 
 

⚫Pseudocode (pronounced SOO-doh-kohd) is a detailed yet readable 
description of what a computer program or algorithm must do, expressed in a 
formally-styled natural language rather than in a programming language. 

 
⚫It is sometimes used as a detailed step in the process of developing a program. 

 
⚫It allows programmers to express the design in great detail and provides 
programmers a detailed template for the next step of writing code in a specific 
programming language. 
 

 
 
 



Department of CSE(Cyber Security)  ,  NRCM, UNIT-I 5 

Formatting and Conventions in 
Pseudocoding 
 

⚫INDENTATION in pseudocode should be identical to its implementation 
in a programming language. Try to indent at least four spaces. 

⚫The pseudocode entries are to be cryptic, AND SHOULD NOT BE PROSE. 
NO SENTENCES. 

⚫No flower boxes in pseudocode. 

⚫Do not include data declarations in pseudocode. 
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Some Keywords That Should be Used 
 

⚫As verbs, use the words 

⚫generate, Compute, Process, 

⚫Set, reset, 

⚫ increment, 

⚫calculate, 

⚫add, sum, multiply, ... 

⚫print, display, 

⚫ input, output, edit, test , etc. 
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Euclid’s Algorithm 
Problem: Find gcd(m,n), the greatest common divisor of 
two 
nonnegative, not both zero integers m and n 

Examples: gcd(60,24) = 12, gcd(60,0) = 60,
 gcd(0,0) = ? 

 

Euclid’s algorithm is based on repeated application of 

equality gcd(m,n) = gcd(n, m mod n) 

until the second number becomes 0, which makes the 
problem 

trivial. 

 
Example: gcd(60,24) = gcd(24,12) = gcd(12,0) = 12 
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Two descriptions of Euclid’s algorithm 

Step 1 If n = 0, return m and stop; otherwise go to Step 2 

Step 2 Divide m by n and assign the value fo the remainder to r 

Step 3  Assign the value of n to m and the value of r to n. Go to Step 1. 

 

while n ≠ 0 do r ← m mod n m← n 

n ← r 

return m 
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Divide and Conquer  

Sorting: mergesort and quicksort 

 
⋅ Tree traversals 

 
⋅ Binary search 

 
⋅ Matrix multiplication-Strassen’s algorithm 
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UNIT-II 
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Disjoint Sets 

⚫ Some applications require maintaining a collection of disjoint sets. 

 
⚫ A Disjoint set S is a collection of sets 

 

⚫ S1,......Sw
n i j Si  S j    

 
⚫ Each set has a representative which is a member of the set (Usually the 

minimum if the elements are comparable) 
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Disjoint Set Operations 

⚫ Make-Set(x) – Creates a new set where x is only element (and therefore it is 

the 

representative of the set). O(1) time 

Union(x,y) – Replaces one of the elements of 

 

 

⚫ Find(x) – Returns the representative of the set  containing x

 O(log n) time 
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Analyzing Operations 

⚫ We usually analyze a sequence of m operations, of which n of them are Make Set 

operations, and m is the total of Make Set, Find, and Union operations 

 
⚫ Each union operations decreases the number of sets in the data structure, so there 

can not be more than n-1 Union operations 
 



Department of CSE(Cyber Security)  ,  NRCM, UNIT-II 15 

Applications 

⚫ Equivalence Relations (e.g Connected Components) 

 
⚫ Minimal Spanning Trees 
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Connected Components 

⚫ Given a graph G we first preprocess G to maintain a set of connected 

components. 

CONNECTED_COMPONENTS(G) 

 
⚫ Later a series of queries can be executed to check if two vertexes are part of the 

same connected component 

SAME_COMPONENT(U,V) 
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Connected Components 

⚫ During the execution of CONNECTED- COMPONENTS on a 
undirected graph G = (V, E) with k connected components, how many 
time is FIND-SET called? How many times is UNION called? Express 
you answers in terms of |V|, |E|, and k. 
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Solution 

⚫ FIND-SET is called 2|E| times. FIND-SET is called twice on line 4, which is 
executed once for each edge in E[G]. 

 
⚫ UNION is called |V| - k times. Lines 1 and 2 create 
|V| disjoint sets. Each UNION operation decreases the number of disjoint sets 

by one. At the end there are k disjoint sets, so UNION is called |V| - k times. 
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Linked List implementation 

⚫ We maintain a set of linked list, each list corresponds to a 
single set. 

 
⚫ All elements of the set point to the first element which is 

the representative 

 
⚫ A pointer to the tail is maintained so elements are inserted 

at the end of the list 
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UNIT-III 
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DYNAMIC PROGRAMMING 

 

Dynamic programming is a technique for solving problems with overlapping sub 

problems. 

 
Typically, these sub-problems arise from a recurrence relating a solution to a given 

problem with solutions to its smaller sub- problems of the same type. 
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Dynamic programming usually takes one of two 

approaches: 

Bottom-up approach: All subproblems that might be needed are solved in 
advance and then used to build up solutions to larger problems. This approach 
is slightly better in stack space and number of function calls, but it is 
sometimes not intuitive to figure out all the subproblems needed for solving 
the given problem. 

 

Top-down approach: The problem is broken into subproblems, and these 
subproblems are solved and the solutions remembered, in case they need to be 
solved again. This is recursion and Memory Function combined together 
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Examples of DP algorithms. 

• Computing a binomial coefficient 

 

• Longest common subsequence 

 

• Warshall’s algorithm for transitive closure 

 

• Floyd’s algorithm for all-pairs shortest paths 

 

• Constructing an optimal binary search tree 

 

• Some instances of difficult discrete optimization 

problems: 

- traveling salesman 

- knapsack 
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Memory Function. 

In general, we cannot expect more than a constant-factor gain in using the memory 

function method for the knapsack problem because its time efficiency class is the 

same as that of the bottom-up algorithm 

 

A memory function method may be less space-efficient than a space efficient version of a 

bottom-up algorithm 
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UNIT-IV 
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Greedy Algorithm 
 

Similar to dynamic programming, but simpler approach 

Also used for optimization problems 

Idea: When we have a choice to make, make the one that 

looks best right now 

Make a locally optimal choice in hope of getting a globally optimal 

solution 

Greedy algorithms don’t always yield an optimal solution 

Makes the choice that looks best at the moment in order to get 

optimal solution. 

. 



Fractional Knapsack Problem 

 

Knapsack capacity: W 

There are n items: the i-th item has value vi and weight wi 

Goal:  

find xi such that for all 0  xi  1,   i = 1, 2, .., n 

   wixi  W and  

   xivi is maximum 
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Fractional Knapsack Problem 

 

Greedy strategy 1: 

Pick the item with the maximum value 
E.g.: 

W = 1 
w1 = 100,  v1 = 2 
w2 = 1, v2 = 1 
Taking from the item with the maximum value: 

   Total value taken = v1/w1 = 2/100 
Smaller than what the thief can take if choosing the other item 

   Total value (choose item 2) = v2/w2 = 1 
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Huffman Code Problem 

 

Huffman’s algorithm achieves data compression by finding the best 

variable length binary encoding scheme for the symbols that occur 

in the file to be compressed. 
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Huffman Code Problem 

 
In the pseudocode that follows: 

we assume that C is a set of n characters and that each character c €C 

is an object with a defined frequency f [c]. 

The algorithm builds the tree T corresponding to the optimal code 

A min-priority queue Q, is used to identify the two least-frequent objects 

to merge together. 

The result of the merger of two objects is a new object whose frequency 

is the sum of the frequencies of the two objects that were merged 
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UNIT-V 
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 Branch-and-Bound Technique ib Solution vs. 

OptiBasic Conceptsl 

ution 

 

The basic concept underlying the branch-and-bound technique is to  
divide and conquer.  

Since the original “large” problem is hard to solve directly, 
 it is divided into smaller and smaller subproblems 
   until these subproblems can be conquered.  
The dividing (branching) is done by partitioning  the entire set of 
 feasible solutions into smaller and smaller subsets. 
The conquering (fathoming) is done partially by  
 (i) giving a bound for the best solution in the subset; 
 (ii) discarding the subset if the bound indicates that  
    it can’t contain an optimal solution. 
 
These three basic steps  

– branching, bounding, and fathoming –  
are illustrated on the following example. 
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A Multi-Stage Graph Searching Problem 

Utilizing the information about the optimal solution of 
the LP-relaxation 

Fact: If LP-relaxation has integral optimal solution x*,   then x* 

is optimal for IP too.  

In our case, (x1, x2) = (2.25, 3.75) is the optimal solution of the LP-relaxation. 

But, unfortunately,  it is not integral. 

 

The optimal value is 41.25 . 

Fact: OPT(LP-relaxation) ≥ OPT(IP)  

   (for maximization problems) 

That is, the optimal value of the LP-relaxation is an upper bound for the optimal 

value of the integer program. 

In our case, 41.25 is an upper bound for OPT(IP). 
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Branching step 

 
In an attempt to find out more about the location of the IP’s optimal solution, 
partition the feasible region of the LP-relaxation. 
Choose a variable that is fractional in the optimal solution to the LP-relaxation – 
say, x2 . Observe that every feasible IP point must have either x2  3 or x2 ≥ 4 .  
With this in mind, branch on the variable x2 to create the following two 
subproblems: 
    Subproblem 1   Subproblem 2 
  Max Z = 5x1 + 8x2    Max Z = 5x1 + 8x2 
  s.t. x1 + x2  6   s.t. x1 + x2  6 
             5x1 + 9x2  45         5x1 + 9x2  45 
        x2  3           x2 ≥ 4  
        x1 , x2 ≥ 0          x1 , x2 ≥ 0 
Solve both subproblems 
      (note that the original optimal solution (2.25, 3.75) can’t recur) 
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Solution tree 
 
If a subproblem is infeasible, then it is fathomed. 
  In our case, Subproblem 4 is infeasible; fathom it. 

  

The upper bound for OPT(IP) is updated: 39  OPT(IP)  40.55 . 

  

Next branch Subproblem 3 on x2 . 
 (Note that the branching variable might recur). 
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Solution tree 
 
  

 

 
 

 
 
 
 
If the optimal value of a sub problem is  Z*, then it is 
fathomed. 

•In our case, Sub problem 5 is fathomed because 37  39 = Z*.
  

If a sub problem has integral optimal solution x*,  
   and its value > Z*, then x* replaces the current 
incumbent. 

•In our case, Sub problem 5 has integral optimal solution, and 
its value          40>39=Z*. Thus, (0,5) is the new incumbent, and 
new Z*=40.    

If there are no unfathomed subproblems left, then the 
current incumbent is an optimal solution for (IP).  

•In our case,  (0, 5) is an optimal solution with optimal value 40. 
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Branch and Bound Example 
 
 
Solve the following BIP be branch and bound. 

 

  Max  Z = 8x1 + 11x2  
  s.t.     5x1 + 7x2   14 

   0  x1 , x2   1    integer 
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THANK  

YOU 


