ALGORITHM DESIGN AND ANALYSIS [23CY603]

UNIT I:

Introduction: Algorithm, Psuedo code for expressing algorithms, Performance Analysis- Space
complexity, Time complexity, Asymptotic Notation- Big oh notation, Omega notation, Theta
notation and Little oh notation.

Divide and conquer: General method, applications-Binary search, Quick sort, Merge sort, Strassen’

matrix multiplication.

INTRODUCTION TO ALGORITHM

History of Algorithm

The word algorithm comes from the name of a Persian author, Abu Ja’far Mohammed ibnMusa al
Khowarizmi (c. 825 A.D.), who wrote a textbook on mathematics.

He is credited with providing the step-by-step rules for adding, subtracting, multiplying,and
dividing ordinary decimal numbers.

When written in Latin, the name became Algorismus, from which algorithm is but a smallstep
This word has taken on a special significance in computer science, where “algorithm’ has come to
refer to a method that can be used by a computer for the solution of a problem

Between 400 and 300 B.C., the great Greek mathematician Euclid invented an algorithm

Finding the greatest common divisor (gcd) of two positive integers.

The gcd of X and Y is the largest integer that exactly divides both X and Y .

Eg.,the gcd of 80 and 32 is 16.

The Euclidian algorithm, as it is called, is considered to be the first non-trivial algorithmever
devised.

What is an Algorithm?
Algorithm is a set of steps to complete a task.
For example,

Task: to make a cup of tea.
Algorithm:

add water and milk to the kettle,
boil it, add tea leaves,

Add sugar, and then serve it in cup.

©a set of steps to accomplish or complete a task that is described precisely enough thata
computer can run it”’.

Described precisely: very difficult for a machine to know how much water, milk to beadded
etc. in the above tea making algorithm.

These algorithms run on computers or computational devices..For example, GPS in our
smartphones, Google hangouts.

D

ALGORITHM DESIGN AND ANALYSIS [23CY603]

GPS uses shortest path algorithm.. Online shopping uses cryptography which uses RSA
algorithm.

Algorithm Definition1:

An algorithm is a finite set of instructions that, if followed, accomplishes a particular task.In
addition, all algorithms must satisfy the following criteria:

Input. Zero or more quantities are externally supplied.

Output. At least one quantity is produced.

Definiteness. Each instruction is clear and unambiguous.

Finiteness. The algorithm terminates after a finite number of steps.

Effectiveness. Every instruction must be very basic enough and must befeasible.

Algorithm Definition2:

An algorithm is a sequence of unambiguous instructions for solving a problem, i.e., forobtaining a
required output for any legitimate input in a finite amount of time.

Algorithms that are definite and effective are also called computational procedures.
A program is the expression of an algorithm in a programming language

problem

L
algorithimm

v
input ————m "computer” ——» output

lorithms § ol i

The main steps for Problem Solving are:

Problem definition

Algorithm design / Algorithm specification
Algorithm analysis

Implementation

Testing

[Maintenance]

Stepl. Problem Definition

What is the task to be accomplished?

Ex: Calculate the average of the grades for a given student

Step2.Algorithm Design / Specifications:

2

ALGORITHM DESIGN AND ANALYSIS [23CY603]

Describe: in natural language / pseudo-code / diagrams / etc

Step3. Algorithm analysis

Space complexity - How much space is required

Time complexity - How much time does it take to run the algorithmComputer Algorithm

An algorithm is a procedure (a finite set of well-defined instructions) for accomplishingsome tasks
which, given an initial state terminate ina defined end-state

The computational complexity and efficient implementation of the algorithm are importantin computing,
and this depends on suitable data structures.

Steps 4,5,6: Implementation, Testing, Maintainance

Implementation:

Decide on the programming language to use C, C++, Lisp, Java, Perl, Prolog, assembly, etc.

, etc.

Write clean, well documented code

Test, test, test

Integrate feedback from users, fix bugs, ensure compatibility across different versions
Maintenance.Release Updates,fix bugs

Keeping illegal inputs separate is the responsibility of the algorithmic problem, while treating special classes
of unusual or undesirable inputs is the responsibility of the algorithm itself.

any legal
input

:

characterization
of all legal
inputs

and =
characterization
of desired outputs
as a function desired
of inputs output
Algorithmic problem Algorithmic solution

4 Distinct areas of study of algorithms:

How to devise algorithms. | Techniques — Divide & Conquer, Branch and Bound ,Dynamic
Programming

How to validate algorithms.

Check for Algorithm that it computes the correct answer for all possible legal inputs. L

algorithm validation. [First Phase

Second phase L Algorithm to Program L Program Proving or Program Verification

L Solution be stated in two forms:

First Form: Program which is annotated by a set of assertions about the input and outputvariables of
the program L predicate calculus

ALGORITHM DESIGN AND ANALYSIS [23CY603]

Second form: is called a specification

4 Distinct areas of study of algorithms (..Contd)

How to analyze algorithms.

Analysis of Algorithms or performance analysis refer to the task of determining howmuch
computing time & storage an algorithm requires

How to test a program L 2 phases L

Debugging - Debugging is the process of executing programs on sample data sets todetermine
whether faulty results occur and, if so, to correct them.

Profiling or performance measurement is the process of executing a correct program ondata sets and
measuring the time and space it takes to compute the results

PSEUDOCODE:

Algorithm can be represented in Text mode and Graphic mode
Graphical representation is called Flowchart
Text mode most often represented in close to any High level language such as C,Pascal | Pseudocode

Pseudocode: High-level description of an algorithm.
_IMore structured than plain English.

L Less detailed than a program.

L Preferred notation for describing algorithms.

L Hides program design issues.

Example of Pseudocode:

To find the max element of an array
Algorithm arrayMax(A, n) Input array A of
n integers Output maximum element of A
currentMax | A[0]

foril ltonlL 1do

if A[i] L currentMax then

currentMax L A[i]

return currentMax

Control flow

if ... then ... [else ...]

while ... do ...

repeat ... until ...

for...do...

Indentation replaces braces

Method declaration

Algorithm method (arg [, arg...])
Input ...

Output ...

Method call

var.method (arg [, arg...])

Return value

return expression

Expressions

Assignment (equivalentto L)
Equality testing (equivalentto L L)
n? Superscripts and other mathematical formatting allowed

4

ALGORITHM DESIGN AND ANALYSIS [23CY603]

PERFORMANCE ANALYSIS:

What are the Criteria for judging algorithms that have a more direct relationship toperformance?
computing time and storage requirements.

Performance evaluation can be loosely divided into two major phases:
a priori estimates and

a posteriori testing.

refer as performance analysis and performance measurement respectively

The space complexity of an algorithm is the amount of memory it needs to run tocompletion.
The time complexity of an algorithm is the amount of computer time it needs to run tocompletion.

Space Complexity:

Space Complexity Example:
Algorithm abc(a,b,c)
{

return a+b++*c+(a+b-c)/(a+b) +4.0;

¥

The Space needed by each of these algorithms is seen to be the sum of the followingcomponent

A fixed part that is independent of the characteristics (eg:number,size)of the inputs andoutputs.
The part typically includes the instruction space (ie. Space for the code), space for simple variable and fixed-
size component variables (also called aggregate) space for constants, and so on.

2. A variable part that consists of the space needed by component variables whose size is dependent on the
particular problem instance being solved, the space needed by referencedvariables (to the extent that is
depends on instance characteristics), and the recursion stackspace.

The space requirement s(p) of any algorithm p may therefore be written as,S(P) = c+ Sp(Instance
characteristics)
Where ‘¢’ is a constant.

Example 2:

Algorithm sum(a,n)

{s=0.0;

for I=1 to n dos= s+a[l]; return s;

}

The problem instances for this algorithm are characterized by n,the number ofelements to be summed.
The space needed d by ‘n’ is one word, since it is of type integer.

The space needed by ‘a’a is the space needed by variables of tyepe array offloating point numbers.
This is atleast ‘n” words, since ‘a’ must be large enough to hold the ‘n’elements to be summed.
So,we obtain Ssum(n)>=(n+s)

[n for a[],one each for n,l a& s]

Time Complexity:

The time T(p) taken by a program P is the sum of the compile time and therun time(execution time)
5

ALGORITHM DESIGN AND ANALYSIS [23CY603]

The compile time does not depend on the instance characteristics. Also we may assume that a compiled
program will be run several times without recompilation .Thisrum time is denoted by tp(instance
characteristics).

The number of steps any problem statement is assigned depends on the kind ofstatement.

. For example, comments & 0 steps.

Assignment statements is 1 steps.

[Which does not involve any calls to other algorithms]

Interactive statement such as for, while & repeat-untila Control part of the statement.

We introduce a variable, count into the program statement to increment count with initial value 0.Statement
to increment count by the appropriate amount are introducedinto the program.

This is done so that each time a statement in the original program is executescount is incremented by the step
count of that statement.

Algorithm:

Algorithm sum(a,n)

{

s=0.0;

count = count+1;for I1=1 to n do

{

count =count+1;s=s+a[l]; count=count+1;
}

count=count+1; count=count+1; return s;
}

If the count is zero to start with, then it will be 2n+3 on termination. So eachinvocation of sum execute a total
of 2n+3 steps.

The second method to determine the step count of an algorithm is to build atable in which we list the total
number of steps contributes by each statement.

L First determine the number of steps per execution (s/e) of the statement and thetotal number of times (ie.,
frequency) each statement is executed.

_By combining these two quantities, the total contribution of all statements, the step count for the entire
algorithm is obtained.

Statement Steps perexecution [Frequency Total

1. Algorithm
Sum(a,n)2.{

3. S=0.0;

4. for 1=1 to n do5.
s=s+a[l];

6. returns;7. }

>
+
[N
>
[ERN
= OO

n+1n1

ORrRPRERPLPEFPLPOO
1

Total 2n+3

ALGORITHM DESIGN AND ANALYSIS [23CY603]

analyse an Algorithm?

Let us form an algorithm for Insertion sort (which sort a sequence of numbers).The pseudocode for the
algorithm is give below.

Pseudo code for insertion Algorithm:

Identify each line of the pseudo code with symbols such as C1, C2 ..

Pseudo code for Insertion Algorithm Line Identification
for j=2 to A length @1
key=A[j] A
/Insert A[j] into sorted Array A[L........ J-1] C3
i=j-1 C4
while i>0 & A[j]>key C5
A[i+1]=A[i] C6
i=i-1 C7
Ali+1]=key C8
Let Ci be the cost of ith line. Since comment lines will not incur any cost C3=0.
Cost No. Of times

Executed
Cl N
C2 n-1
C3=0 n-1
C4 n-1
C5 n-1

> tj

=2

mn
C6 St —1

=2
C7 n

DAL <l

=2
C8 n-1

Running time of the algorithm is:

T(n)=C1n+C2(n-1)+0(n-1)+C4(n-1)+C5(" * tj)+C6(3r tji—1)+C7(3n ti— 1)+
=2 =2 =2

C8(n-1)

ALGORITHM DESIGN AND ANALYSIS [23CY603]

Best _case:

It occurs when Array is sorted.All t; values are 1.

T(n)=C1n+C2(n-1)+0 (n-1)+C4(n-1)+C5(3" 1)+C6(>n 1-1)+C7(3" 1-1)+
C8(n-1) j=2 j=2 =2

=C1n+C2 (n-1) +0 (n-1) +C4 (n-1) +C5 + C8 (n-1)
= (C1+C2+C4+Ch+ C8) n-(C2+C4+C5+ C8)

- Which is of the form an+b.

L - Linear function of n.

L So, linear growth.

Worst case:

It occurs when Array is reverse sorted, and tj =j
T(n)=Cln + C2(n-1)+0 (n-1)+C4(n-1)+C5(X"* j) +C6(Xn J—L)+C7(3 j—1)+
j=2 =2 =2

C8(n-1)

=CIn+C2(n-1)+CA(N-1)+C5(a=l — 1) +CB(X" Gby,cpyn D)+ CB(n-1)

which is of the form an*+bn+c
i=2 2 j=2 2

Quadratic function. So in worst case insertion set grows in n2.Why we concentrate on worst-case running

time?

- The worst-case running time gives a guaranteed upper bound on the running time for
any input.

- For some algorithms, the worst case occurs often. For example, when searching, theworst case often
occurs when the item being searched for is not present, and searchesfor absent items may be frequent.

- Why not analyze the average case? Because it’s often about as bad as the worst case.

Order of growth:

It is described by the highest degree term of the formula for running time. (Drop lower-orderterms. Ignore the
constant coefficient in the leading term.)

Example: We found out that for insertion sort the worst-case running time is of the forman? + bn + c.
Drop lower-order terms. What remains is an2.Ignore constant coefficient. It results in n?>.But we cannot say

that the worst-case running time T(n) equals n? .Rather It grows like n? . But itdoesn’t equal n?>.We say that
the running time is ® (n?) to capture the notion that the order of growth is n?

o

ALGORITHM DESIGN AND ANALYSIS [23CY603]

We usually consider one algorithm to be more efficient than another if its worst-caserunning time has a
smaller order of growth.

Complexity of Algorithms

The complexity of an algorithm M is the function f(n) which gives the running time and/or storage spac
requirement of the algorithm in terms of the size ‘n’ of the input data. Mostly, the storage space required b
an algorithm is simply a multiple of the data size ‘n’.

Complexity shall refer to the running time of the algorithm.

The function f(n), gives the running time of an algorithm, depends not only on the size ‘n’ of the input dat
but also on the particular data. The complexity function f(n) for certain cases are:

1. Best Case : The minimum possible value of f(n) is called the best case.
2. Average Case : The expected value of f(n).

3. Worst Case : The maximum value of f(n) for any key possible input.

ASYMPTOTIC NOTATION

L Formal way notation to speak about functions and classify them

The following notations are commonly use notations in performance analysis and used tocharacterize the
complexity of an algorithm:

1. Big—OH (0) ,

2. Big-OMEGA (Q),
3. Big-THETA (©) and
4. Little-OH (0)

Asymptotic Analysis of Algorithms:

Our approach is based on the asymptotic complexity measure. This means that we don’t try tocount the exact
number of steps of a program, but how that number grows with the size of theinput to the program. That gives
us a measure that will work for different operating systems, compilers and CPUs. The asymptotic complexity!
is written using big-O notation.

It is a way to describe the characteristics of a function in the limit.

It describes the rate of growth of functions.

Focus on what’s important by abstracting away low-order terms and constant factors.
It is a way to compare “sizes” of functions:O= <

T=o0rx< O >

D

=4

ALGORITHM DESIGN AND ANALYSIS [23CY603]

Time complexity Name Example

O(1) Constant Adding an element to thefront
of a linked list

O(logn) Logarithmic Finding an element in asorted
array

O (n) Linear Finding an element in an
unsorted array

O(nlog n) Linear Logarithmic Sorting n itemsby
‘divide-and-conquer’-
Mergesort

o(n?) Quadratic Shortest path between two
nodes in a graph

o(n®) Cubic Matrix Multiplication

0(2") Exponential The Towers of Hanoiproblem

- Big ‘oh’: the function f(n)=0(g(n)) iff there exist positive constants ¢ and no such thatf(n)<=c*g(n) for all n,
n>= no.

- Omega: the function f(n)=(g(n)) iff there exist positive constants ¢ and no such thatf(n) >= c*g(n) for all n, n
>= no.

- Theta: the function f(n)=(g(n)) iff there exist positive constants c1,c2 and no such that clg(n) <= f(n) <= c2
g(n) for alln, n>=no

- Big-O Notation

- This notation gives the tight upper bound of the given function. Generally we represent it as f(n) = O(g
(11)). That means, at larger values of n, the upper bound off(n) is g(n). For example, if f(n) = n* + 100n* +
10n + 50 is the given algorithm, then n* is g(n). That means g(n) gives the maximum rate of growth for f(n)
at larger values of n.

- O —notation defined as O(g(n)) = {f(n): there exist positive constants ¢ and n, such that 0 <= f(n) <%
cg(n) for all n >= no}. g(n) is an asymptotic tight upper bound for f(n). Our objective is to give some rate of
growth g(n) which is greater than given algorithms rate of growth f(n).

- In general, we do not consider lower values of n. That means the rate of growth at lower values of n is not

important. In the below figure, n, is the point from which we consider the rate of growths for a given
algorithm. Below n, the rate of growths may be different.

10

ALGORITHM DESIGN AND ANALYSIS [23CY603]

Rate of Growth cg(n)

f(n)

e Input Size, n

g

Note Analyze the algorithms at larger values of n only What this means is, below no we donot care for rates
of growth.

Omega— © notation

Similar to above discussion, this notation gives the tighter lower bound of the givenalgorithm and we represent it
as f(n) = Q (g(n)). That means, at larger values of n, thetighter lower bound of f(n) is g

For example, if f(n) = 100n? + 10n + 50, g(n) is Q (n?).

The . Q. notation as be defined as Q (g (n)) = {f(n): there exist positive constants ¢ andn, such that 0 <= cg (n)
<= f(n) for all n >= ne}. g(n) is an asymptotic lower bound for f(n). Q (g (n)) is the set of functions with
smaller or same order of growth as f(n).

Rate of Growth

H A1)

!
'
'
1
|
1
1

n, » Input Size, 1

Theta- ® notation

This notation decides whether the upper and lower bounds of a given function are same ornot. The
average running time of algorithm is always between lower bound and upper bound.

If the upper bound (O) and lower bound (€2) gives the same result then ® notation will also have the samg
rate of growth. As an example, let us assume that f(n) = 10n + n is the expression. Then, its tight upper
bound g(n) is O(n). The rate of growth in best case is g (n) =0(n). In this case, rate of growths in best cas
and worst are same. As a result, the average case will also be same.

11

.37

ALGORITHM DESIGN AND ANALYSIS [23CY603]

None: For a given function (algorithm), if the rate of growths (bounds) for O and Q are notsame then the rate
of growth ® case may not be same.

Rate of Growth
4 cg(n)

c1g(n)

- :
1o » Input Size, n

Now consider the definition of ® notation It is defined as ® (g(n)) = {f(71): there exist positive constants C1,
C2 and no such that O<=5 cig(n) <= f(n) <= c,g(n) for all n >= ny.}.g(n) is an asymptotic tight bound for f(n).
® (g(n)) is the set of functions with the same order of growth as g(n).

Important Notes

For analysis (best case, worst case and average) we try to give upper bound (O) and lower bound (2) and
average running time (®). From the above examples, it should also be clearthat, for a given function
(algorithm) getting upper bound (O) and lower bound () and average running time (®) may not be possible
always.

For example, if we are discussing the best case of an algorithm, then we try to give upper bound (O) and
lower bound (Q2) and average running time (®).

In the remaining chapters we generally concentrate on upper bound (O) because knowing lower bound () of
an algorithm is of no practical importance and we use 9 notation if upper bound (O) and lower bound (Q2) are
same.

Little Oh Notation

The little Oh is denoted as o. It is defined as : Let, f(n} and g(n} be the non negativefunctions th
Lim= f(n)
=0

such that f(n}= o(g{n)} i.e f of n is little Oh of g of n.

12

ALGORITHM DESIGN AND ANALYSIS [23CY603]

f(n) = o(g(n)) if and only if f'(n) = o(g(n)) and f(n) != ® {g(n))

Applications of Divide and conquer rule or algorithm:

> Binary search,

> Quick sort,

> Merge sort,

> Strassen’s matrix multiplication.

Binary search or Half-interval search algorithm:

1. This algorithm finds the position of a specified input value (the search "key") within an array
sorted by key value.

2. In each step, the algorithm compares the search key value with the key value of themiddle
element of the array.

3. If the keys match, then a matching element has been found and its index, or position,is returned.
4. Otherwise, if the search key is less than the middle element's key, then the algorithmrepeats its

action on the sub-array to the left of the middle element or, if the search key is greater, then the
algorithm repeats on sub array to the right of the middle element.

5. If the search element is less than the minimum position element or greater than themaximum
position element then this algorithm returns not found.

Binary search algorithm by using recursive methodology:

Program for binary search (recursive) Algorithm for binary search (recursive)

int binary_search(int A[], int key, intimin, int imax) Algorithm binary_search(A, key, imin, imax)

{ {

if (imax <imin) if (imax < imin) then return “array is empty”;
return array is empty;if(key<imin || K>imax) if(key<imin || K>imax) then return “element not in
return element not in array listelse array list”else

{ {

intimid = (imin +imax)/2;if (A[imid] > key) imid = (imin +imax)/2;if (A[imid] > key) then
return binary_search(A, key, imin, imid-1);else if (A[imid] < [return binary_search(A, key, imin, imid-1);else if
key) (A[imid] < key) then

return binary_search(A, key, imid+1, imax);else return binary_search(A, key, imid+1, imax);else
return imid; return imid;

}

;)

Time Complexity: Data structure:- Array

For successful search Unsuccessful search
Worst case | O(log n) or 6(log n)Average [O(log n):- for all cases.
casel O(log n) or O(log n)
Best casel O(1) or 6(1)

13

http://en.wikipedia.org/wiki/Sorted_array
http://en.wikipedia.org/wiki/Sorted_array

ALGORITHM DESIGN AND ANALYSIS [23CY603]

MERGE SORT:

The merge sort splits the list to be sorted into two equal halves, and places them in separate arrays. This
sorting method is an example of the DIVIDE-AND-CONQUER paradigm i.e. it breaks the data into two
halves and then sorts the two half data sets recursively, and finally merges them to obtain the complete
sorted list. The merge sort is a comparison sort and has an algorithmic complexity of O (n log n).
Elementary implementations of the merge sort make use oftwo arrays - one for each half of the data set.
The following image depicts the complete procedureof merge sort.

3827/43[3]9/82|10]

i

\

3827] 143[3] 9/82]
/N 4N\
1

982

3}273843 [910/82)

3/911027/38/43|82|
Advantages of Merge Sort:

1. Marginally faster than the heap sort for larger sets

2. Merge Sort always does lesser number of comparisons than Quick Sort. Worst case for merge sof
does about 39% less comparisons against quick sort’s average case.

3. Merge sort is often the best choice for sorting a linked list because the slow random- acces

performance of a linked list makes some other algorithms (such as quick sort) perform poorly, and other§

(such as heap sort) completely impossible.

IAIgorithm for Merge sort: 14

—

ALGORITHM DESIGN AND ANALYSIS [23CY603]

Algorithm mergesort(low, high)

{ .
if(lows<high) then // pividing Problem into Sub-problems and

{ this “mid” is for finding where to split the set.mid=(low+high)/2;

mergesort(low,mid);

mergesort(mid+1,high); //Solve the sub-problemsMerge(low,mid,high); // Combine the solution
}

¥
\void Merge(low, mid,high){k=Iow;

i=low; j=mid+1;

while(i<=mid&&j<=high) do{if(a[i]<=a[j]) then

{
temp[K]=a[i];i++;
k++;

by

else

{
temp[K]=a[j];j++;
k++;

}

}
while(i<=mid) do{temp[k]=a[i];
i++;k++;

by

while(j<=high) do{temp[k]=a[j];
j++;K++;

}
For k=low to high doa[k]=temp[K];
}
For k:=low to high do a[k]=temp[K];
}

15

ALGORITHM DESIGN AND ANALYSIS [23CY603]

Tree call of Merge sort
Consider a example: (From text book) A[1:10]={310,285,179,652,351,423,861,254,450,520}

1, 10
15 6,10
NS 6,8 —1 N9, 10
1,2 3,3 4,4 5,5 6,7 8,8 9,9 10, 10
1,1 1] 2,2
Tree call of Merge sort (1, 10)
- all of Merge Sort Represents the sequenc e & 1recursivie alls that are produced by
ree

“Once observe the explained notes in class room”

Computing Time for Merge sort:

The time for the merging operation in proportional to n, then computing time for merge sortis described
by using recurrence relation.

T(n)=aif n=1; 2T(n/2)+ cn fn>1
Here c, aLConstants. If n is power of 2, n=2%

Form recurrence relationT(n)= 2T(n/2) + cn
2[2T(n/4)+cn/2] + cn

4T (n/4)+2cn

22 T(n/4)+2cn

2® T(n/8)+3cn

2* T(n/16)+4cn2% T(1)+ken an+cn(log n)

16

ALGORITHM DESIGN AND ANALYSIS [23CY603]

merge sort. By representing it by in the form of Asymptotic notation O isT(n)=O(nlog n)

QUICK SORT

Quick Sort is an algorithm based on the DIVIDE-AND-CONQUER paradigm that selects a pivotelement and
reorders the given list in such a way that all elements smaller to it are on one side and those bigger than it are on
the other. Then the sub lists are recursively sorted until the list getscompletely sorted. The time complexity of this
algorithm is O (n log n).

>

Auxiliary space used in the average case for implementing recursive function calls isO (log n)

and hence proves to be a bit space costly, especially when it comes to largedata sets.

>

1,3 2
Its worst case has a time complexity of O (n) which can prove very fatal for largedata sets.

Competitiye/sortin algorithms

Algorithm for Quick sort

b

i++

Algorithm quickSort (a, low, high) {If(high>low) then{ m=partition(a,low,high);
if(low<m) then quick(a,low,m); if(m+1<high) then quick(a,m+1,high);

Algorithm partition(a, low, high){i=low,j=high;
mid=(low-+high)/2;pivot=a[mid];
while(i<=j) do { while(a[i]<=pivot)

while(a[j]>pivot)j--:
if(i<=j){ temp=a[i];
a[i]=a[j]; a[j]=temp;

i++;

-

B

return j;

}

Time Complexity
Name Best case |[AverageCase \WorstCase [oPace
Complexity

Bubble o(n) - o(n?) Oo(n)
Insertion o(n) o(n?) o(n?) Oo(n)
Selection o(r?) o(n?) o(n?) o(n)
Quick O(log n) O(n log n) 0O(n2) O(n + log n)

17

ALGORITHM DESIGN AND ANALYSIS [23CY603]

Merge O(n O(n O(n log O(2n)
log n) log n) n)

Heap O(n O(n log n) O(n log O(n)
log n) n)

Strassen’s Matrix Multiplication:

Let A and B be two nxn Matrices. The product matrix C=AB is also a nxn matrix whose i, j"element is
formed by taking elements in the i row of A and j™ column of B and multiplyingthem to get

C(i, j)=Xi=k<n A(i, k)B(k, j)

Here 1< i & j<n meansiand jarein between 1 and n.

To compute C(i, j) using this formula, we need n multiplications.

The divide and conquer strategy suggests another way to compute the product of two nxnmatrices.

For Simplicity assume n is a power of 2 that is n=2"

Here kL any nonnegative integer.

If nis not power of two then enough rows and columns of zeros can be added to both A andB, so that
resulting dimensions are a power of two.

Let A and B be two nxn Matrices. Imagine that A & B are each partitioned into four squaresub matrices. Each
sub matrix having dimensions n/2xn/2.

The product of AB can be computed by using previous formula.lf AB is product of 2x2 matrices then

A4B " ‘)}{89““ B2 MBS P 1z) ()= (

A21 A22 B21 B22 21 (22

C11=A11B11+A1B21 C12=A11B1o+A1:B22 Co1=A21B11+A2B21 Coo= Ar1B1o+A2 B2

Here 8 multiplications and 4 additions are performed.
Note that Matrix Multiplication are more Expensive than matrix addition and subtraction.

T(n)=b if n<2;
8T(n/2)+ cn? ifn>2

Volker strassen has discovered a way to compute the C;; of above using 7 multiplications and 18 additions or
subtractions.

For this first compute 7 n/2xn/2 matricesP, Q,R, S, T, U & VP=(A11+A22)(B11+B22)

Q=(A21+A22)B11 R=A11(B12-B22) S=A22(B21-B11) T=(A11+Al12)B22 U=(A21-Al11)(B11+B12)
V=(A12-A22)(B21+B22)

Cl1=P+S-T+V

Cl12=R+T T(n)= b if
n<2;

C21=Q+S 7T(n/2)+ cn? if

C22=P+R-Q+U n>2

18

DESIGN AND ANALYSIS OF ALGORITHM [CS3102PC]

UNIT-1

Disjoint Sets: Disjoint set operations, union and find algorithms
Backtracking: General method, applications, n-queen’s problem, sum of subsets problem,graph coloring

Disjoint Sets: If Siand Sj, i#j are two sets, then there is no element that is in both Sjand S;..
For example: n=10 elements can be partitioned into three disjoint sets,

S1

Disjoint set Operations:
Disjoint set Union

Disjoint set Union: ~ Mean$:Cb$gbination of two disjoint sets elements. Form
aboveexample S1 U S2={1,7,8,9,5,2,10 }
For S1 U Satree representation, simply make one of the treeis a
subtreeof the other.

d 1
e 1o B Sy g | B
2 10 2 10
S1US; S2U S

Find: Given element i, find the set containing i.
Form above example:
Find(4) S3 Find(1)
S1Find(10) Sz

DETA REPRESENTATION OF SETS:
Tress can be accomplished easily if, with each set name, we keep a pointer tothe root
of thetree representing that set.

DEPT OF CSE, NRCM 19 DHANANJAY Asst. Prof

DESIGN AND ANALYSIS OF ALGORITHM [CS3102PC]

Set Pointer
Name fields : o

For presenting the union and find algorithms, we ignore the set names andidentify sets
justby the roots of the trees representing them.

For example: if we determine that element ‘i’ is in a tree with root ‘j> has apointer to
entry‘k’ in the set name table, then the set name is just name[Kk]

For unite (adding or combine) to a particular set we use FindPointer function.

Example: If you wish to unite to Sjand Sjthen we wish to unite the tree with
rootsFindPointer (S;) and FindPointer (Sj)

FindPointer [is a function that takes a set name and determines the root ofthe

tree thatrepresents it.

For determining operations:

Find(i) O 15" determine the root of the tree and find its pointer to entry in

setname table.Union(i, j) [Means union of two trees whose roots are i and j.

If set contains numbers 1 through n, we represents tree node
P[1:N].

Maximum number of elements.

nd(i) by following the indices, starting at i until we reach a node with parent value
Example: Find(6) start at 6 and then moves to 6’s parent. Since P[3] is negative, we
reachedthe root.

DEPT OF CSE, NRCM 20 DHANANJAY Asst. Prof

DESIGN AND ANALYSIS OF ALGORITHM [CS3102PC]

Algorithm for finding Union(i, j): | Algorithm for find(i)

Algorithm Simple union(i, j) Algorithm SimpleFind(i)
{

P[i]:=j; /I Accomplishes the union | While(P[i]>0) do i:=P[i];
return i;
¥

If n numbers of roots are there then the above algorithms are not
useful forunion and find.For union of ntrees Union(1,2),
Union(2,3), Union(3,4),.....Union(n-1.n).

For Find i in n trees' Find(1), Find(2),....Find(n).
Time taken for the union (simple union) is u O(1) (constant).
For the n-1 unions O(n).
Time taken for the find for an element at level i of a tree is O O(i).
Fornfinds [o(n?).

To improve the performance of our union and find algorithms by
avoiding thecreation ofdegenerate trees. For this we use a weighting
rule for union(i, j)

WEIGHTING RULE FOR UNION(], J):

If the number of nodes in the tree with root ‘i’ is less than the tree with
root ‘j’,then make ‘j’the parent of ‘i’; otherwise make ‘i’ the parent of

00 © %@.A@ é%@(;)@

]
Union(1,2) Union(1,3)

Union(1,n)

Union(1,4)

Tree obtained using the weighting rule

DEPT OF CSE, NRCM 21 DHANANJAY Asst. Prof

DESIGN AND ANALYSIS OF ALGORITHM [CS3102PC]

| Algorithm for weightedUnion(i, j)

Algorithm WeightedUnion(i,j)

//Union sets with roots iand j, i#

// The weighting rule, p[i]= -count[i] and p[j]= -count[j].
{
temp := p[il+p[jl;

if
T

|
|A8]

{//ihas fewer
nodes.P[i]:=j; U

P[j]:=temp;
}
else

{//jhas fewer or equal
nodes.P[j] :=;

P[i] := telthp;
}

N-QUEENS PROBLEM

N - Queens problem is to place n - queens in such a manner on an n X n chessboard that no
gueensattack each other by being in the same row, column or diagonal.

It can be seen that for n =1, the problem has a trivial solution, and no solution exists for n =2
and n =3.So first we will consider the 4 queens problem and then generate it to n - queens
problem.

Givena 4 x 4 chessboard and number the rows and column of the chessboard 1 through 4.

1 2 3 <}

-

2w N

4x4 chessboard

DEPT OF CSE, NRCM 22 DHANANJAY Asst. Prof

DESIGN AND ANALYSIS OF ALGORITHM [CS3102PC]

Since, we have to place 4 queens such as d1 g2 gz and gs on the chessboard, such that no two
queens attack each other. In such a conditional each queen must be placed on a different row,

Now, we place queen gz in the very first acceptable position (1, 1). Next, we put queen gz so that both

these queens do not attack each other. We find that if we place gz in column 1 and 2, then the
dead end is encountered. Thus the first acceptable position for gz in column 3, i.e. (2, 3) but
then no position is left for placing queen 'gs' safely. So we backtrack one step and place the
queen 'g2" in (2, 4), the next best possible solution. Then we obtain the position for placing 'gz'
which is (3, 2). But later this positionalso leads to a dead end, and no place is found where 'gs'
can be placed safely. Then we have to backtrack till 'g1' and place it to (1, 2) and then all other
queens are placed safely by moving g2 to (2, 4),gato (3, 1) and ga to (4, 3). That is, we get the
solution (2, 4, 1, 3). This is one possible solution for the 4-queens problem. For another
possible solution, the whole method is repeated for all partial solutions. The other solutions for

T 2 3 4
1 O
2| 9z
3 ds
4 A4

4 - queens problems is (3, 1, 4, 2) i.e.

The implicit tree for 4 - queen problem for a solution (2, 4, 1, 3) is as follows:

DEPT OF CSE, NRCM 23 DHANANJAY Asst. Prof

DESIGN AND ANALYSIS OF ALGORITHM [CS3102PC]

0
1/ \5
e T
TN TN,
9 O L
qz gz qz
77NN =
1} qQ,
| a2 a2
0 o
TR oy -—_,
x @
gz
q=
Q4

Fig shows the complete state space for 4 - queens problem. But we can use backtracking method to
generate the necessary node and stop if the next node violates the rule, i.e., if two queens are attacking.

DEPT OF CSE, NRCM 24

DHANANJAY Asst. Prof

DESIGN AND ANALYSIS OF ALGORITHM [CS3102PC]

(2 0 © (@)

2/ 3| 4 1 i/ 2| 4 1 3

@ @ B @ 6)6 0 68 6 @ @

OOOOWH®@E) E@EE O EE®EEE G @ 6

al 3| a4l 2 3| 2| 4| 3| 4| 1| 3 4 21 4 1 21 2f 3| 2| 3 1] 2| 1

HOOEEOLOEEEOEEE@®®®E®® ®E @

ALGORITHM:

Place (k, i)
{

Forj «— 1tok-1
doif (X[j] =1)
or (Abs x [j]) -

i) = (Abs (j- k))

then return

false;

RETURN TRUE;
¥

N - QUEENS (K, N)
{

Fori < 1ton
do if Place (k, i) then
{
X[K] <« i

if (k ==n) then write (x [1 n));
else
N - Queens (k + 1, n);
}
}

SUBSET SUM PROBLEM

It is one of the most important problems in complexity theory. The problem is given an A set of
integersal, a2,...., an upto n integers. The question arises that is there a non-empty subset such
that the sum of the subset is given as M integer?. For example, the set is given as [5, 2, 1, 3, 9],

DEPT OF CSE, NRCM 25 DHANANJAY Asst. Prof

DESIGN AND ANALYSIS OF ALGORITHM [CS3102PC]

and the sum of the subset is 9; the answer is YES as the sum of the subset [5, 3, 1] is equal to 9.
This is an NP-complete problem again. It is the special case of knapsack

Let's understand this problem through
an example.problem.

We have a set of 5 integers given below:
N=4,-2,2231

We want to find out the subset whose sumis equal to 5. There are many solutions to this problem.

The naive approach, i.e., brute-force search generates all the possible subsets of the original
array, i.e., there are 2n possible states. Here the running time complexity would be exponential.
Then, we consider all these subsets in O(N) linear running time and checks whether the sum of
the items is M or not.

The dynamic programming has pseudo-polynomial running time.

Statement: Given a set of positive integers, and a value sum, determine that the sum of the
subset of a given set is equal to the given sum.

THERE ARE TWO WAYS OF SOLVING THE SUBSET PROBLEM:

o Recursion
Dynamic programming

METHOD 1: RECURSION

Let's understand that how can we solve the problem using recursion. Consider the
array which is given below:

ARR =[3, 4, 5, 2]

sum=9 result =]
In the above example, we have taken an array, and the empty array named result that stores all
the values whose resultant sum is equal to 9.

FIRST ELEMENT IN AN ARRAY IS 3. THERE ARE TWO SCENARIOS:

o First scenario is select. The sum is equal to the target sum - value of first
element, i.e., 9 - 3 =6 and the first element, i.e., 3 gets stored in the result array,
i.e., result[].

o Second scenario is reject. The array arr contains the elements 4, 5, 2, i.e., arr =
[4, 5, 2] and sumwould be same as 9 as we are rejecting the element 3. The
result[] array would remain empty.

DEPT OF CSE, NRCM 26 DHANANJAY Asst. Prof

DESIGN AND ANALYSIS OF ALGORITHM [CS3102PC]

arr=[3.452]lsum=9
res [1]

- NOW WE PERFORM THE SAME SELECT AND REJECT
OPERATION ON ELEMENT 4 AS IT IS THE FIRST

ELEMENT OF THE ARRAY NOW.

o Select the element 4 from the array. Since we are selecting 4 from the array so
array arr would contain the elements 5, 2, i.e., arr = [5, 2]. The sum is equal to
the 6-4 = 2 and the element 4 getsstored in the result arr. The result[] = {3, 4}.

o Reject the element 4 from the array. Since we are rejecting the 4 from the array
so array arr would contain the elements 5, 2, i.e., arr = [5, 2]. The sum would
remain same as 6 and the result array would be same as previous, i.e., {3}.

arr=[3,452], sum=9
res []

NOW WE PERFORM THE SELECT AND REJECT OPERATION ON ELEMENT 5.
o Select the element 5 from the array. Since we are selecting 5 from the array so

array arr would contain the elements 2, i.e., arr = [2]. The sum is equal to the 2 -

5 equals to -3 and the element 5gets stored in the result arr. The result[] = {3, 4,

5}
o Reject the element 5 from the array. Since we are rejecting 5 from the array so

array arr would contain the element 2, i.e., arr = [2]. The sum would remain

same as previous, i.e., 6 and the result array would be same as previous, i.e., {3,

4},

DEPT OF CSE, NRCM 27 DHANANJAY Asst. Prof

DESIGN AND ANALYSIS OF ALGORITHM [CS3102PC]

arr=[3.452], sum=9
res[]

=
®

If we observe S-5, we can see that the sum is negative that returns false. It means that there is no
furthersubset available in the set.

CONSIDER R-5. IT ALSO HAS TWO SCENARIOS:

o Select the element 2 from the array. Once the element 2 gets selected, the array
becomes empty, i.e., arr[] = " ™. The sum would be 2-2 equals to 0 and the
element 2 gets stored in the result array. The result[] = [3, 4, 2].

o Reject the element 2 from the array. Once the element 2 gets rejected, the array
becomes empty, i.e., arr[] = " ". The sum would be same as previous, i.e., 2 and
the result array would also be same as previous, i.e., [3, 4].

arr = [3.4.5.2]. sum =9

-l
®

® o

®

CONSIDER R-4. IT HAS TWO SCENARIOS:

DEPT OF CSE, NRCM 28 DHANANJAY Asst. Prof

DESIGN AND ANALYSIS OF ALGORITHM [CS3102PC]

o Select the element 5 from the array. Since we are selecting 5 from the array so
array arr would contain the elements 2, i.e., arr = [2]. The sum would be 6-5
equals to 1 and the element 5 gets stored in the result array. The result[] = [3, 5].

o Reject the element 5 from the array. Since we are rejecting 5 from the array so
array arr would contain the element 2, i.e., arr = [2]. The sum would remain
same as previous, i.e., 6 and the result array would be same as previous, i.e.,

{3}.
arr=[3452], sum=9
res []
|
v v
|
¥ ¥
| I
4 ¥ . ¥
I
v ¥

CONSIDER S-5. IT HAS TWO SCENARIOS:

o Select the element 2 from the array. Since we are selecting 2 from the array so
array arr wouldbe empty, i.e., arr =" ". The sum would be 1-2 equals to -1 and
the element 2 gets stored in the result array. The result[] = [3, 5, 2].

o Reject the element 2 from the array. Since we are rejecting 2 from the array so
array arr would become empty. The sum would remain same as previous, i.e., 1
and the result array would be same as previous, i.e., {3, 5}.

arr=[3,452], sum=9
res[]

i

CONSIDER R-5. IT HAS TWO SCENARIOS:
o Select the element 2 from the array. Since we are selecting 2 from the array so

DEPT OF CSE, NRCM 29 DHANANJAY Asst. Prof

DESIGN AND ANALYSIS OF ALGORITHM [CS3102PC]

array arr wouldbe empty, i.e., arr =" ". The sum would be 6-2 equals to 4 and
the element 2 gets stored in the result array. The result[] = [3, 2].

o Reject the element 2 from the array. Since we are rejecting 2 from the array so
array arr would become empty. The sum would remain same as previous, i.e., 6

and the result array would be same as previous, i.e., {3}.
¥

JOR

Similarly, we get the reject case, i.e., R-3 as shown as below:

arr=[3452] sum=9
res []

arr=[3452].sum=9
res []
|

©
S,

DEPT OF CSE, NRCM 30 DHANANJAY Asst. Prof

DESIGN AND ANALYSIS OF ALGORITHM [CS3102PC]

Algorithm:

def sum_subset(arr, res, sum)if sum ==

return trueif sum < O return false

if len(arr) == 0 and sum!= Oreturn false

arr.pop(0);

if len(arr) > 0 res.append(arr[0])

select = sum_subset (arr, sum-arr[0], res)reject = sum_subset (arr, res, sum)
return reject or sum

Graph coloring

Graph coloring can be described as a process of assigning colors to the vertices of a graph. In this, the
same color should not be used to fill the two adjacent vertices. We can also call graph coloring as Vertex
Coloring. In graph coloring, we have to take care that a graph must not contain any edge whose end
vertices are colored by the same color. This type of graph is known as the Properly colored graph.

Example of Graph coloring

In this graph, we are showing the properly colored graph, which is described as follows:

The above graph contains some points, which are described as follows:
o The same color cannot be used to color the two adjacent vertices.
o Hence, we can call it as a properly colored graph.

APPLICATIONS OF GRAPH COLORING

There are various applications of graph coloring. Some of their important applications are
described as follows:

Assignment

Map coloring
Scheduling the tasks
Sudoku

Prepare time table
Conflict resolution

O O O O O O

DEPT OF CSE, NRCM 31 DHANANJAY Asst. Prof

DESIGN AND ANALYSIS OF ALGORITHM [CS3102PC]

GREEDY ALGORITHM

There are various steps to solve the greedy algorithm, which are described as follows:
Step 1: Inthe first step, we will color the first vertex with first color.
Step 2: Now, we will one by one consider all the remaining vertices (V -1) and do the following:

o We will color the currently picked vertex with the help of lowest number

color if and only if thesame color is not used to color any of its adjacent

vertices.
o Ifits adjacent vertices are using it, then we will select the next least numbered color.
o Ifwe have already used all the previous colors, then a new color will be

used to fill or assign tothe currently picked vertex.

UNIT-I11I

Dynamic Programming: General method, applications- Optimal binary search trees, 0/1
knapsack problem, All pairs shortest path problem, Traveling sales person problem, Reliability
design.

Optimal Binary Search Tree

We know the key values of each node in the tree, and we also know the frequencies of each node
in terms of searching means how much time is required to search a node. The frequency and key-
value determine the overall cost of searching a node. The cost of searching is a very important
factor in various applications. The overall cost of searching a node should be less. The time
required to search a node in BST is more than the balanced binary search tree as a balanced binary
search tree contains a lesser number of levels than the BST. There is one way that can reduce the
cost of a binary search tree is known as an optimal binary search tree.

The Formula for calculating the number of trees:

2n
Ch

n+1

Dynamic Approach

Consider the below table, which contains the keys and frequencies.

0
1
1123 |4] 2
Keys —»10 | 20 | 30 | 40 3
Frequency—» 4 | 2 | 6 3
DEPT OF CSE | NRCM 4|32 DHANANJAY Asst. Prof

https://www.javatpoint.com/binary-search-tree

DESIGN AND ANALYSIS OF ALGORITHM [CS3102PC]

FIRST, WE WILL CALCULATE THE VALUES WHERE J-1 IS EQUAL TO ZERO.

When i=0, j=0, then j-i

=0Wheni=1,j=1,

then j-i = OWhen i = 2,

j=2, then j-i = OWhen i

=3,j=3,thenj-i=0

When i =4, j=4, then

j-i=0

Therefore, ¢[0, 0] =0, c[1, 1] =0, c[2,2] =0, c[3,3]=0, c[4,4] =0
NOW WE WILL CALCULATE THE VALUES WHERE J-1 EQUAL TO 1.

When j=1, i=0 then j-i=1
When j=2, i=1 then

j-i = 1When j=3, i=2

then j-i = 1 When

j=4,i=3thenj-i=1

Now to calculate the cost, we will consider only the jth value.

The cost of ¢[0,1] is 4 (The key is 10, and the cost corresponding to key 10 is
4).The cost of c[1,2] is 2 (The key is 20, and the cost corresponding to key 20 is
2).The cost of c[2,3] is 6 (The key is 30, and the cost corresponding to key 30 is
6)The cost of c[3,4] is 3 (The key is 40, and the cost corresponding to key 40 is

3)

o/l 0| 4
1 0 2
2 0
3 3
DERT_OF OSE_INRCA 33 DHANANJAY Asst. Prof

DESIGN AND ANALYSIS OF ALGORITHM [CS3102PC]

NOwW WE WILL CALCULATE THE VALUES WHERE J-1 =2
When j=2, i=0 then
j-i = 2When j=3, i=1
then j-i = 2 When
j=4,i=2 thenj-i=2
In this case, we will consider two keys.

o When i=0 and j=2, then keys 10 and 20. There are two possible trees that can be made
out from these two keys shown below:

In the first binary tree, cost would be: 4*1 + 2*2 =8

In the second binary tree, cost would be: 4*2 + 2*1 =10
The minimum cost is 8; therefore, c[0,2] = 8

0 1 2 3 4
o 0| 4 8
1 0|2
2 0
3 3
4 0

o When i=1 and j=3, then keys 20 and 30. There are two possible trees that can
be madeout from these two keys shown below:

In the first binary tree, cost would be: 1*2 + 2*6 = 14
In the second binary tree, cost would be: 1*6 + 2*2 =

10The minimum cost is 10; therefore, ¢[1,3] = 10

o When i=2 and j=4, we will consider the keys at 3 and 4, i.e., 30 and 40. There
are twopossible trees that can be made out from these two keys shown as

DEPT OF CSE, NRCM 34 DHANANJAY Asst. Prof

DESIGN AND ANALYSIS OF ALGORITHM [CS3102PC]

below:

In the first binary tree, cost would be: 1*6 + 2*3 =12

In the second binary tree, cost would be: 1*3 + 2*6 =

ilo 1 2 3 4

0

-

2
3
4

0 |4 |8
0| 24
0|6 [12°
0 3
0

15The minimum cost is 12, therefore, c[2,4] = 12

Now we will calculate the values when j-i

= 3When j=3, i=0 then j-i= 3

When j=4, i=1 then j-i = 3

o

When i=0, j=3 then we will consider three keys, i.e., 10, 20, and 30.

The following are the trees that can be made if 10 is considered as a root node.

In the above tree, 10 is the root node, 20 is the right child of node 10, and 30 is the right child ofnode

20.

Cost would be: 1*4 + 2*2 + 3*6 = 26

DEPT OF CSE, NRCM 35

DHANANJAY Asst. Prof

DESIGN AND ANALYSIS OF ALGORITHM [CS3102PC]

In the above tree, 10 is the root node, 30 is the right child of node 10, and 20 is the left child ofnode
20.

Cost would be: 1*4 + 2*6 + 3*2 = 22

The following tree can be created if 20 is considered as the root node.

In the above tree, 20 is the root node, 30 is the right child of node 20, and 10 is the left child ofnode
20.

Cost would be: 1*2 + 4*2 + 6*2 = 22

The following are the trees that can be created if 30 is considered as the root node.

In the above tree, 30 is the root node, 20 is the left child of node 30, and 10 is the left child of

node 20.
Cost would be; 1*6 + 2*2 + 3*4 = 22

In the above tree, 30 is the root node, 10 is the left child of node 30 and 20 is the right child ofnode
10.

DEPT OF CSE, NRCM 36 DHANANJAY Asst. Prof

DESIGN AND ANALYSIS OF ALGORITHM [CS3102PC]

Cost would be: 1*6 + 2*4 + 3*2 =20

Therefore, the minimum cost is 20 which is the 3" root. So, ¢[0,3] is equal to 20.

o When i=1and j=4 then we will consider the keys 20,
30, 40c[1,4] = min{ c[1,1] + c[2,4], c[1,2] + c[3,4], c[1,3] +
c[4,4]}+11

= min{0+12, 2+3, 10+0}+ 11

=min{12, 5, 10} + 11

The minimum value is 5; therefore, c[1,4] = 5+11 =16

ivo 1 2 3 4
o] 0 |4 |8" | 2°
1 0 | 2| 4¢% 16
2 06 |1
3 0o |3
4 0

NOW WE WILL CALCULATE THE VALUES WHEN J-1 =4

When j=4 and i=0 then j-i=4

In this case, we will consider four keys, i.e., 10, 20, 30 and 40. The frequencies of 10, 20, 30 and

40 are 4, 2, 6 and 3 respectively.

w[0,4]=4+2+6+3=15

If we consider 10 as the root node

then CJ[0, 4] = min {c[0,0] +

c[1,4]}+ w[0,4]

min {0 + 16} + 15= 31

If we consider 20 as the root node

thenC[0,4] = min{c[0,1] + c[2,4]}

+w[0,4]

DEPT OF CSE, NRCM

DHANANJAY Asst. Prof

DESIGN AND ANALYSIS OF ALGORITHM [CS3102PC]

=min{4 + 12} + 15
=16+15=31

If we consider 30 as the root node
then,C[0,4] = min{c[0,2] + c[3,4]}
+w[0,4]

=min{8+ 3} +15

=26

If we consider 40 as the root node
then,C[0,4] = min{c[0,3] + c[4,4]}
+w[0,4]

=min{20 + 0} + 15

=35

In the above cases, we have observed that 26 is the minimum cost; therefore, c[0,4] is equal to

26.
iNlo 1 2 3 4
0/ 0 | 4 |8 |20° |26°
1 0 2 |40 |16
2 0|6 [1°
3 0|3
4 0

The optimal binary tree can be created as:

5[0,2]

5[0,0]
5[3,3] 5[4.4]

¥[1.11 v[2.2]

DEPT OF CSE, NRCM 38

DHANANJAY Asst. Prof

DESIGN AND ANALYSIS OF ALGORITHM [CS3102PC]

GENERAL FORMULA FOR CALCULATING THE MINIMUM COST IS:

CIi,j] = min{c[i, k-1] + c[k,j1} + w(i,j)

ALGORITHM:
Algorithm OBST(p, g, n)

/le[l...n+1, 0...n] : Optimal sub tree
/[w[l...n+1, 0...n] : Sum of probability
/I root[1...n, 1...n] : Used to construct OBST

fori¢<1ton+1

DO
eli,i—1] «qi—-1
Wi, i—1]«—qi—1

END

formé& 1tondo

fori<1ton—-m+1ldo
je—i+tm-1
efi, j] « oo

Wi, j] < wli, j— 1] + pj + qj
forr<itojdo

t«—efi, r— 1] +e[r + 1, j] + w[i, j]
ift <eli, j] then

efi, j] —t

root[i, j] «r

E

DEPT OF CSE, NRCM 39 DHANANJAY Asst. Prof

DESIGN AND ANALYSIS OF ALGORITHM [CS3102PC]

D

end

return (e, root)

COMPLEXITY ANALYSIS OF OPTIMAL BINARY SEARCH TREE

It is very simple to derive the complexity of this approach from the above algorithm. It uses three
nested loops. Statements in the innermost loop run in Q(1) time. The running time of the
algorithm is computed as

n n-m+In-1+1

T(n) = Z Z Z ()

m=1 1=1 j=i

n n-m+1 n
= Z Z n= Z n’
m=1 1=1 m=1
= 0 (n)

0/1 Knapsack problem

DEPT OF CSE, NRCM 40 DHANANJAY Asst. Prof

DESIGN AND ANALYSIS OF ALGORITHM [CS3102PC]

Here knapsack is like a container or a bag. Suppose we have given some items which have some
weights or profits. We have to put some items in the knapsack in such a way total value producesa
maximum profit.

For example, the weight of the container is 20 kg. We have to select the items in such a way that
the sum of the weight of items should be either smaller than or equal to the weight of the
container, and the profit should be maximum.

Consider the problem having weights and profits are:
Weights: {3, 4, 6, 5}

Profits: {2, 3, 1, 4}

The weight of the knapsack is

8 kgThe number of items is 4

The above problem can be solved by using the following method:
xi={1,0,0, 1}

={0,0,0, 1}

={0,1,0, 1}

The above are the possible combinations. 1 denotes that the item is completely picked and 0
means that no item is picked. Since there are 4 items so possible combinations will be:

2* = 16; So. There are 16 possible combinations that can be made by using the above problem.
Once all the combinations are made, we have to select the combination that provides the
maximum profit.

Another approach to solve the problem is dynamic programming approach. In dynamic
programming approach, the complicated problem is divided into sub-problems, then we find the
solution of a sub-problem and the solution of the sub-problem will be used to find the solution ofa
complex problem.

First,

we create a matrix shown as below:

0 1 2 3 4 5 6 7 8

w N - O

DEPT OF CSE, NRCM 41 DHANANJAY Asst. Prof

DESIGN AND ANALYSIS OF ALGORITHM [CS3102PC]

In the above matrix, columns represent the weight, i.e., 8. The rows represent the profits and
weights of items. Here we have not taken the weight 8 directly, problem is divided into sub-
problems, i.e., 0,1, 2, 3, 4, 5, 6, 7, 8. The solution of the sub-problems would be saved in the cells
and answer to the problem would be stored in the final cell. First, we write the weights in the
ascending order and profits according to their weights shown as below:

Start filling the table row wise top to bottom from left to right using the formula-

T0,)=MAX{T(1-1,3), VALUE| + T(I-1,
J—WEIGHTI) }

wi = {3, 4, 5, 6}

P| = {2, 3, 4, 1}
The first row and the first column would be 0 as there is no item for w=0

0 1 2 3 4 5 6 7 8
0 O 0 0 0 0 0 0 0 0

1 0
2 0
3 0
4 0
WHEN 1=1, W=1

w1 = 3; Since we have only one item in the set having weight 3, but the capacity of the knapsack
is 1. We cannot fill the item of 3kg in the knapsack of capacity 1 kg so add 0 at M[1][1] shown
as below:

DEPT OF CSE, NRCM 42 DHANANJAY Asst. Prof

DESIGN AND ANALYSIS OF ALGORITHM [CS3102PC]

1 0 0
2 0
3 0
4 0

WHENI=1, W=2

w1 = 3; Since we have only one item in the set having weight 3, but the capacity of the knapsack
is 2. We cannot fill the item of 3kg in the knapsack of capacity 2 kg so add 0 at M[1][2] shown
as below:

o
=
N
w
IN
Ul
o
~
fo¢]

2 0
3 0
4 0
WHEN 1=1, W=3

w1 = 3; Since we have only one item in the set having weight equal to 3, and weight of the
knapsack is also 3; therefore, we can fill the knapsack with an item of weight equal to 3. We put
profit corresponding to the weight 3, i.e., 2 at M[1][3] shown as below:

2 0
3 0
4 0

DEPT OF CSE, NRCM 43 DHANANJAY Asst. Prof

DESIGN AND ANALYSIS OF ALGORITHM [CS3102PC]

WHEN I=1, W =4

w1 = 3; Since we have only one item in the set having weight equal to 3, and weight of the
knapsack is 4; therefore, we can fill the knapsack with an item of weight equal to 3. We put profit
corresponding to the weight 3, i.e., 2 at M[1][4] shown as below:

3

4

0
0

0

0

1 2 3 4 5 6 7
0 0 0 0 0 0 0 0

WHEN I=1, W =5

w1 = 3; Since we have only one item in the set having weight equal to 3, and weight of the
knapsack is 5; therefore, we can fill the knapsack with an item of weight equal to 3. We put profit
corresponding to the weight 3, i.e., 2 at M[1][5] shown as below:

0 1 2 3 4 5 6 7 8
0 0 0 0 0 0 0 0 0
1 0 0 0 2 2 2
2 0
3p 0
4 0
WHEN I =1, W=6

w1 = 3; Since we have only one item in the set having weight equal to 3, and weight of the
knapsack is 6; therefore, we can fill the knapsack with an item of weight equal to 3. We put profit
corresponding to the weight 3, i.e., 2 at M[1][6] shown as below:

DEPT OF CSE, NRCM 44 DHANANJAY Asst. Prof

DESIGN AND ANALYSIS OF ALGORITHM [CS3102PC]

2 0
3 0
4 0

WHEN I=1, W=7

w1 = 3; Since we have only one item in the set having weight equal to 3, and weight of the
knapsack is 7; therefore, we can fill the knapsack with an item of weight equal to 3. We put profit
corresponding to the weight 3, i.e., 2 at M[1][7] shown as below:

2 0
3 0
4 0

WHEN I =1, W =8

w1 = 3; Since we have only one item in the set having weight equal to 3, and weight of the
knapsack is 8; therefore, we can fill the knapsack with an item of weight equal to 3. We put profit
corresponding to the weight 3, i.e., 2 at M[1][8] shown as below:

2 0
3 0
4 0

DEPT OF CSE, NRCM 45 DHANANJAY Asst. Prof

DESIGN AND ANALYSIS OF ALGORITHM [CS3102PC]

NOwW THE VALUE OF 'I' GETS INCREMENTED, AND

BECOMES 2.

WHENI1=2, W =1

The weight corresponding to the value 2 is 4, i.e., w2 = 4. Since we have only one item in the set
having weight equal to 4, and the weight of the knapsack is 1. We cannot put the item of weight4
in a knapsack, so we add 0 at M[2][1] shown as below:

0 1 2 3 4 5 6 7 8
0 O 0 0 0 0 0 0 0 0

2 0 0
3 0
4 0

WHEN I =2, W =2

The weight corresponding to the value 2 is 4, i.e., w2 = 4. Since we have only one item in the set
having weight equal to 4, and the weight of the knapsack is 2. We cannot put the item of weight4
in a knapsack, so we add 0 at M[2][2] shown as below:

WHEN 1=2, W =3

DEPT OF CSE, NRCM 46 DHANANJAY Asst. Prof

DESIGN AND ANALYSIS OF ALGORITHM [CS3102PC]

The weight corresponding to the value 2 is 4, i.e., w2 = 4. Since we have two items in the set
having weights 3 and 4, and the weight of the knapsack is 3. We can put the item of weight 3 in a
knapsack, so we add 2 at M[2][3] shown as below:

0 1 2 3 4 5 6 7 8
0 O 0 0 0 0 0 0 0 0

WHEN =2, W =4

The weight corresponding to the value 2 is 4, i.e.,, w2 = 4. Since we have two items in the set
having weights 3 and 4, and the weight of the knapsack is 4. We can put item of weight 4 in a
knapsack as the profit corresponding to weight 4 is more than the item having weight 3, so we add
3 at M[2][4] shown as below:

0 1 2 3 4 5 6 7 8
0 O 0 0 0 0 0 0 0 0

WHENI1=2, W=5

The weight corresponding to the value 2 is 4, i.e., w2 = 4. Since we have two items in the set
having weights 3 and 4, and the weight of the knapsack is 5. We can put item of weight 4 in a
knapsack and the profit corresponding to weight is 3, so we add 3 at M[2][5] shown as below:

DEPT OF CSE, NRCM 47 DHANANJAY Asst. Prof

DESIGN AND ANALYSIS OF ALGORITHM [CS3102PC]

WHENI1=2, W=6

The weight corresponding to the value 2 is 4, i.e.,, w2 = 4. Since we have two items in the set
having weights 3 and 4, and the weight of the knapsack is 6. We can put item of weight 4 in a
knapsack and the profit corresponding to weight is 3, so we add 3 at M[2][6] shown as below:

0 1 2 3 4 5 6 7
0 O 0 0 0 0 0 0 0 0

WHENI1=2, W=7

The weight corresponding to the value 2 is 4, i.e., w2 = 4. Since we have two items in the set
having weights 3 and 4, and the weight of the knapsack is 7. We can put item of weight 4 and 3
in a knapsack and the profits corresponding to weights are 2 and 3; therefore, the total profit is 5,
so we add 5 at M[2][7] shown as below:

DEPT OF CSE, NRCM 48 DHANANJAY Asst. Prof

DESIGN AND ANALYSIS OF ALGORITHM [CS3102PC]

WHENI1=2, W=8

The weight corresponding to the value 2 is 4, i.e.,, w2 = 4. Since we have two items in the set
having weights 3 and 4, and the weight of the knapsack is 7. We can put item of weight 4 and 3
in a knapsack and the profits corresponding to weights are 2 and 3; therefore, the total profit is 5,
so we add 5 at M[2][7] shown as below:

0
0 O
1 0
2 0
3 0
4 0

NOwW THE VALUE OF

BECOMES 3.

WHENI1=3, W=1

1
0

2
0

3 4
0

2 W2
e T

I' GETS INCREMENTED, AND

The weight corresponding to the value 3 is 5, i.e., w3z = 5. Since we have three items in the set
having weights 3, 4, and 5, and the weight of the knapsack is 1. We cannot put neither of the

items in a knapsack, so we add 0 at M[3][1] shown as below:

0
0 O
1 O
2 0
3 0

1
0

2
0

DEPT OF CSE, NRCM

3 4
0 0
2 2
2 3

49

5
0

6
0

DHANANJAY Asst. Prof

DESIGN AND ANALYSIS OF ALGORITHM [CS3102PC]

4 0
WHENI=3, W=2

The weight corresponding to the value 3 is 5, i.e., w3 = 5. Since we have three items in the set
having weight 3, 4, and 5, and the weight of the knapsack is 1. We cannot put neither of the items
in a knapsack, so we add 0 at M[3][2] shown as below:

0 1 2 3 4 5 6 7
0 O 0 0 0 0 0 0 0 0

3 0 0 0

4 0

WHENI=3,W=3
The weight corresponding to the value 3 is 5, i.e., w3 = 5. Since we have three items in the set of
weight 3, 4, and 5 respectively and weight of the knapsack is 3. The item with a weight 3 can be

put in the knapsack and the profit corresponding to the item is 2, so we add 2 at M[3][3] shown
as below:

0 1 2 3 4 5 6 4 8
0 O 0 0 0 0 0 0 0 0

WHEN1=3, W=4

The weight corresponding to the value 3 is 5, i.e., w3 = 5. Since we have three items in the set of
weight 3, 4, and 5 respectively, and weight of the knapsack is 4. We can keep the item of either
weight 3 or 4; the profit (3) corresponding to the weight 4 is more than the profit corresponding
to the weight 3 so we add 3 at M[3][4] shown as below:

0 1 2 3 4 5 6 7 8

DEPT OF CSE, NRCM 50 DHANANJAY Asst. Prof

DESIGN AND ANALYSIS OF ALGORITHM [CS3102PC]

WHENI1=3,W=5

The weight corresponding to the value 3 is 5, i.e., w3 = 5. Since we have three items in the set of
weight 3, 4, and 5 respectively, and weight of the knapsack is 5. We can keep the item of either
weight 3, 4 or 5; the profit (3) corresponding to the weight 4 is more than the profits
corresponding to the weight 3 and 5 so we add 3 at M[3][5] shown as below:

0 1 2 3 4 5 6 7 8
0 O 0 0 0 0 0 0 0 0

3 0 0 0 1 3 3

4 0
WHEN 1=3, W =6

The weight corresponding to the value 3 is 5, i.e., w3 = 5. Since we have three items in the set of
weight 3, 4, and 5 respectively, and weight of the knapsack is 6. We can keep the item of either
weight 3, 4 or 5; the profit (3) corresponding to the weight 4 is more than the profits
corresponding to the weight 3 and 5 so we add 3 at M[3][6] shown as below:

0 1 2 3 4 5 6 7 8
0 O 0 0 0 0 0 0 0 0

DEPT OF CSE, NRCM 51 DHANANJAY Asst. Prof

DESIGN AND ANALYSIS OF ALGORITHM [CS3102PC]

WHEN =3, W =7

The weight corresponding to the value 3 is 5, i.e., w3 = 5. Since we have three items in the set of
weight 3, 4, and 5 respectively, and weight of the knapsack is 7. In this case, we can keep both the
items of weight 3 and 4, the sum of the profit would be equal to (2 + 3), i.e., 5, so we add 5 at
MI3][7] shown as below:

0
0 O
1 0
2 0
3 0
4 0

1 2 3 4 5 6 7 8
0 0 0 0 0 0 0 0

WHEN1=3,W=8

The weight corresponding to the value 3 is 5, i.e., w3 = 5. Since we have three items in the set of
weight 3, 4, and 5 respectively, and the weight of the knapsack is 8. In this case, we can keep both
the items of weight 3 and 4, the sum of the profit would be equal to (2 + 3), i.e., 5, so we add 5 at
M[3][8] shown as below:

0
0 O
1 O
Py G
Shg g
4 0

1 2 3 4 S 6 7 8
0 0 0 0 0 0 0 0

NOW THE VALUE OF 'I' GETS INCREMENTED AND BECOMES

4.

DEPT OF CSE, NRCM 52 DHANANJAY Asst. Prof

DESIGN AND ANALYSIS OF ALGORITHM [CS3102PC]

WHENI=4, W=1

The weight corresponding to the value 4 is 6, i.e., wa = 6. Since we have four items in the set of
weights 3, 4, 5, and 6 respectively, and the weight of the knapsack is 1. The weight of all the items
is more than the weight of the knapsack, so we cannot add any item in the knapsack; Therefore,
we add 0 at M[4][1] shown as below:

0 1 2 3 4 5 6 7 8

WHENI1=4, W=2

The weight corresponding to the value 4 is 6, i.e., wa = 6. Since we have four items in the set of
weights 3, 4, 5, and 6 respectively, and the weight of the knapsack is 2. The weight of all the items
is more than the weight of the knapsack, so we cannot add any item in the knapsack; Therefore,
we add 0 at M[4][2] shown as below:

0 1 2 3 4 5 6 v 8

0 O 0 0 0 0 0 0 0 0

WHENI1=4, W =3

The weight corresponding to the value 4 is 6, i.e., ws = 6. Since we have four items in the set of
weights 3, 4, 5, and 6 respectively, and the weight of the knapsack is 3. The item with a weight 3
can be put in the knapsack and the profit corresponding to the weight 4 is 2, so we will add 2 at
M[4][3] shown as below:

0 1 2 3 4 5 6 7 8

DEPT OF CSE, NRCM 53 DHANANJAY Asst. Prof

DESIGN AND ANALYSIS OF ALGORITHM [CS3102PC]

0 O 0
1 0 0
2 0 0
3 0 0
4 0 0

WHEN1=4, W=4

The weight corresponding to the value 4 is 6, i.e., ws = 6. Since we have four items in the set of
weights 3, 4, 5, and 6 respectively, and the weight of the knapsack is 4. The item with a weight 4
can be put in the knapsack and the profit corresponding to the weight 4 is 3, so we will add 3 at

M[4][4] shown as below:

0 1
0 0 0
1 O 0
2 0 0
3 0 0
4 0 0

WHENI1=4, W=5

2
0

The weight corresponding to the value 4 is 6, i.e., ws = 6. Since we have four items in the set of
weights 3, 4, 5, and 6 respectively, and the weight of the knapsack is 5. The item with a weight 4
can be put in the knapsack and the profit corresponding to the weight 4 is 3, so we will add 3 at

M[4][5] shown as below:

0 1
0 O 0
1 O 0
2 0 0

2
0

DEPT OF CSE, NRCM

54

DHANANJAY Asst. Prof

DESIGN AND ANALYSIS OF ALGORITHM [CS3102PC]

WHENI=4,W=6

The weight corresponding to the value 4 is 6, i.e., ws = 6. Since we have four items in the set of
weights 3, 4, 5, and 6 respectively, and the weight of the knapsack is 6. In this case, we can put
the items in the knapsack either of weight 3, 4, 5 or 6 but the profit, i.e., 4 corresponding to the
weight 6 is highest among all the items; therefore, we add 4 at M[4][6] shown as below:

0 1 2 3 4 5 6 7 8
0 O 0 0 0 0 0 0 0 0

WHENI=4, W=7

The weight corresponding to the value 4 is 6, i.e., wa = 6. Since we have four items in the set of
weights 3, 4, 5, and 6 respectively, and the weight of the knapsack is 7. Here, if we add two items
of weights 3 and 4 then it will produce the maximum profit, i.e., (2 + 3) equals to 5, so we add 5 at
M[4][7] shown as below:

0 1 2 3 4 5 6 7 8
0 O 0 0 0 0 0 0 0 0

WHEN1=4, W =8

The weight corresponding to the value 4 is 6, i.e., wa = 6. Since we have four items in the set of
weights 3, 4, 5, and 6 respectively, and the weight of the knapsack is 8. Here, if we add two items
of weights 3 and 4 then it will produce the maximum profit, i.e., (2 + 3) equals to 5, so we add 5 at

DEPT OF CSE, NRCM 55 DHANANJAY Asst. Prof

DESIGN AND ANALYSIS OF ALGORITHM [CS3102PC]

M[4][8] shown as below:

0 1 2 3 4 5 6 7 8
0 O 0 0 0 0 0 0 0 0

3 0 0 0 2 3 3 3 5 5

4 0 0 0 2 3 3 4 5 5

As we can observe in the above table that 5 is the maximum profit among all the entries. The
pointer points to the last row and the last column having 5 value. Now we will compare 5 value
with the previous row; if the previous row, i.e., i = 3 contains the same value 5 then the pointer
will shift upwards. Since the previous row contains the value 5 so the pointer will be shifted
upwards as shown in the below table:

0 1 2 3 4 5 6 7 8
0 O 0 0 0 0 0 0 0 0

3 0 0 0 2 3 3 3 5 5

4 0 0 0 2 3 3 4 5 5

Again, we will compare the value 5 from the above row, i.e., i = 2. Since the above row contains
the value 5 so the pointer will again be shifted upwards as shown in the below table:

0 1 2 3 4 5 6 7 8
0 O 0 0 0 0 0 0 0 0

Again, we will compare the value 5 from the above row, i.e., i = 1. Since the above row does not
contain the same value so we will consider the row i=1, and the weight corresponding to the row

DEPT OF CSE, NRCM 56 DHANANJAY Asst. Prof

DESIGN AND ANALYSIS OF ALGORITHM [CS3102PC]

is 4. Therefore, we have selected the weight 4 and we have rejected the weights 5 and 6 shown
below:

x={1,0,0}

The profit corresponding to the weight is 3. Therefore, the remaining profit is (5 - 3) equals to 2.
Now we will compare this value 2 with the row i = 2. Since the row (i = 1) contains the value 2;
therefore, the pointer shifted upwards shown below:

0 1 2 3 4 5 6 7 8
0 O 0 0 0 0 0 0 0 0

Again we compare the value 2 with a above row, i.e., i = 1. Since the row i =0 does not contain
the value 2, so row i = 1 will be selected and the weight corresponding to the i = 1 is 3 shown
below:

X ={1,1,0,0}

The profit corresponding to the weight is 2. Therefore, the remaining profit is 0. We compare 0
value with the above row. Since the above row contains a 0 value but the profit corresponding to
this row is 0. In this problem, two weights are selected, i.e., 3 and 4 to maximize the profit.

ALGORITHM:

Algorithm KNAPSACK (V, W, M)

/I Description: Solve binary knapsack problem using dynamic programming
/I Input: Set of items X, set of weight W, profit of items V and knapsack capacity M
[/l Output: Array V, which holds the solution of problem

fori< 1tondo

VIi, 0] «— 0
END

fori< 1toMdo

DEPT OF CSE, NRCM 57 DHANANJAY Asst. Prof

DESIGN AND ANALYSIS OF ALGORITHM [CS3102PC]

V[0, i] < 0

END

for V[0, i] ¢ 0do
forj< 0toMdo

if wli] < then Vi, j] < max{V[i-1, j], V[i] + V[i— 1, j— W{i][}

ELSE
V[, j] < VIi— 1, j] /1 w[i]>]

E
ND
END

END

Complexity analysis

Dynamic programming finds an optimal solution by constructing a table of size n © M, where n isa
number of items and M is the capacity of the knapsack. This table can be filled up in O(n*m)
time, same is the space complexity.

All Pairs Shortest Path (Floyd-Warshall) Algorithm
ALL PAIRS SHORTEST PATH ALGORITHM —INTRODUCTION
All Pairs Shortest Path Algorithm is also known as the Floyd-Warshall algorithm. And this is an
optimization problem that can be solved using dynamic programming.
Let G =<V, E> be a directed graph, where V is a set of vertices and E is a set of edges with

nonnegative length. Find the shortest path between each pair of nodes.
L = Matrix, which gives the length of each edge

L[i, j] = 0, ifi == j /I Distance of node from itself is zero
L[i,j]=o0,ifi#jand (i, j) € E
L[i,jl=w(,]), ifi#jand (i, j) € E // w(i,]) is the weight of the edge (i, j)

PRINCIPLE OF OPTIMALITY
If k is the node on the shortest path fromito j, then the path fromito k and k to j, must also be
shortest.
In the following figure, the optimal path from i to j is either p or summation of p1 and p2.While
considering k™ vertex as intermediate vertex, there are two possibilities :
» Ifkis not part of shortest path fromito j, we keep the distance Dj, j] as it is.

DEPT OF CSE, NRCM 58 DHANANJAY Asst. Prof

https://codecrucks.com/dynamic-programming/

DESIGN AND ANALYSIS OF ALGORITHM [CS3102PC]

» Ifkis part of shortest path from ito j, update distance
DIi, j] asD[i, k] + D[k, j].
Optimal sub structure of the problem is given as :
D“[i, j]=min{ D*"*[i, jI, D*"* [i, K] + D*"* [k, j] }
D = Distance matrix after k™ iteration
ALGORITHM FOR ALL PAIRS SHORTEST PATH

This approach is also known as the Floyd-warshall shortest path algorithm. The algorithm for
all pair shortest path (APSP) problem is described below

Algorithm FLOYD_APSP (L)

/I L is the matrix of size n x n representing original graph
/I D is the distance matrix

DL
fork < 1tondo
fori< 1tondo

forj< 1tondo
DIi,] — min (Di, j**, D[i, K]** + D[k, j]*)

end
end

COMPLEXITY ANALYSIS OF ALL PAIRS SHORTEST PATH ALGORITHM

It is very simple to derive the complexity of all pairs’ shortest path problem from the above

algorithm. It uses three nested loops. The innermost loop has only one statement. The complexity
of that statement is Q(1).

The running time of the algorithm is computed as :
n n n n n n
Tm) = D, D, 2,0 =) D n=) n*=0@)
k=11=1j=1 k=11=1 k=1
Acrecursive definition is given by

q® 1] if k=0
i |min (dgjk ”,di(ll: D% dg‘ 1) if k=1)

DEPT OF CSE, NRCM 59 DHANANJAY Asst. Prof

DESIGN AND ANALYSIS OF ALGORITHM [CS3102PC]

Example: Apply Floyd-Warshall algorithm for constructing the shortest path. Show thatmatrices
D® and n® computed by the Floyd-Warshall algorithm for the graph.

SOLUTION:

ik _ (k=1) 4(k-1) k=1)
d]-j = min {dij vdiye T+ dkj)

(k=13
Go_) i
T = _(k=1) .p (k=1) (k=1) (k=1)
3 M 1fd]-]- = dy U+ dkj

se qik=1) - Lik-1) (k=1)
ifdf " < die Y + dif

Step (i) Whenk=0

DY =0 3 G o -4 %= NIL 1 1 NIL 1
oo 0 o0 1 7 NIL NIL NIL 2 2
o0 4 0 -2 oo NIL 3 NIL 3 NIL
2 00 oo 0 oo 4 NIL NIL NIL NIL
oo o0 w0 6 0 NIL NIL NIL 5 NIL
(ii)) When k =1

DEPT OF CSE, NRCM 60 DHANANJAY Asst. Prof

DESIGN AND ANALYSIS OF ALGORITHM [CS3102PC]

ey _ e lk=1) (k=1 (k-1)
di~ = min (dy . dy C +dyg)

(_ 0 LM (0
dyy,=min (d;,, dy; +d;,)

14

dii"':min{m,[]+ o)=

1 (0)
d;s =min (d;g, dj; *dig

(m (0

d'Y =min (-4, 0+-4)=-4

(1) _ (0)
dyy =min (dyy, dy; *dy,

(m (0

dsY = min (c0,00 + 0) = oo

(1) _ e ql® (0, i)
dy; =min(dy;, djy +dy;

dit) = min ((ce,00 + 8) = o0

1y _ s (o)
d3; =min(dgy, dyy *+dyy)

(0) (0)

dY = min (0,00 + 0) = 0

3 8 o -4 ntt)= NIL 1 1 NIL 1|
0 o 1 7 NIL NIL NIL 2 2
4 0 5 o NIL 3 NIL 3 NIL
2 10 0 -2 4 1 1 NIL 1
w o 6 0 NIL NIL NIL 25 NIL

DEPT OF CSE, NRCM 61 DHANANJAY Asst. Prof

DESIGN AND ANALYSIS OF ALGORITHM [CS3102PC]

Step (iii) When k=2

k) _ (k=11 4ik—-1) (k-1)
di” = min (dy "L dy 7+ dy)
(2) _ . - g1} 4(1) (1)
diy = min (d;,,d;; +d;,)
d'? = min {co, 3+ 1)=4
14 — , =
(2 _ . (1) 401} [
dy; = min (d;;,d;; +d;;)
2y _ _
d;] = min(oco , 0+ o0)= o0
2y _ . (1) 401} (1)
d;, = min (d5,.d;; +d;,;)

dyy = min (-5, 4 + 1) =-5

2. (1) 1) (1)
die = min (d;c,d;; +dsys)

dyz’ = min (co, 4 + 7) = 11

4 = min (A3 4 + a8
d;3' = min (10, 5 +c0) = 10
D=0 3 8 4 -4 ml

if

Step (iv) Whenk =3

di” = min (dV, difV + i)
(2} 2y 402 (2 62
dyy, = min(dy,,dj; +d3y

2)—

NIL
NIL
NIL

NIL

1 1 2 1
NIL NIL 2 2
3 NIL 3 2
1 1 NIL 1

NIL NIL 5 NIL

DHANANJAY Asst. Prof

d}¥ = min (4, 8 + (-5)) = 3

[]
d31

DI O]
d31

=20
d32

A
dgs

(4} _

ij

DESIGN AND ANALYSIS OF ALGORITHM [CS3102PC]

3 &8 3 A4 nt¥= NIL 1 1 3
0 o 1 7 NIL NIL NIL 2
4 0 5 m1nm NIL 3 NIL 3
2 10 0 -2 4 1 1 NIL
w o 6 0 NIL NIL NIL 5

min (4~ M. Al - aly Y o
min (A%, al®’ +— a3’ »

min (oo, 1 + 2%y = 3
min (453, Aty + ali’ o

1 =+ 10 = 11

mrim (oo
. =0 =] =D
min (dsg . dsy + dig)

min (7, 1 + (-2 = -1

. =0 3D (=2
mim (A5, doy 4+ di D

min (oo, -5 + 2% = -3

. 20 L= =20
mim (AL . diy + dgT D

min (<, -5 + 5) = 0O
3 &8 3 -4 n'*= NIL 1 1 3
o 11 1 A 4 NIL 4 2
0 0 -5 7 4 4 NIL 3
5 10 0 -2 4 1 1 NIL
11 16 &6 0 4 4 4 5

2
2

1

NIL

2
4

1Y Asst. Prof

NIL

DESIGN AND ANALYSIS OF ALGORITHM [CS3102PC]

Step (vi) Whenk =5
di¥ = min (4, g +)
dy¢ = min (dy5, dy +dg3)

dsy = min (-1, -1 + 0) = -1

5) _ . (4) 04 (2)
d,3 = min (d,5,d,c +dc;

dsy = min (11, -1 + 16) = 11

5) _ . (d) (4] (2}
d;.' = min (dy.,d3c +dcc)

dyy = min (-7, -7+ 0) = -7

D=0 3 8 3 4 n®= NL 1 1 5 1
3.0 111 A 4 NL 4 2 4
30 0 5 7 4 4 NL 3 4
2 5 10 0 2 4 1 1 NL 1
8 11 16 6 0 4 4 4 5 NL

Traveling Salesman Problem — Solve it using Dynamic Programming
BY CODECRUCKS - 09/12/2021

Traveling salesman problem (TSP) is the well studied and well-explored problem of computer

science. Due to its application in diverse fields, TSP has been one of the most interesting
problems for researchers and mathematicians.

TRAVELING SALESMAN PROBLEM —DESCRIPTION

= Traveling salesman problem is stated as, “Given a set of n cities and distance
between eachpair of cities, find the minimum length path such that it covers each
city exactly once and terminates the tour at starting city.”

= Itis not difficult to show that this problem is NP complete problem. There exists n!

DEPT OF CSE, NRCM 64 DHANANJAY Asst. Prof

https://codecrucks.com/author/codecrucks/

DESIGN AND ANALYSIS OF ALGORITHM [CS3102PC]

paths, asearch of the optimal path becomes very slow when n is considerably large.

= Each edge (u, v) in TSP graph is assigned some non-negative weight, which
representsthe distance

= between city u and v. This problem can be solved by finding the Hamiltonian
cycle of thegraph.

= The distance between cities is best described by the weighted graph, where edge
(u, v) indicates the path from city u to v and w(u, v) represents the distance
between cities u andv.

= Let us formulate the solution of TSP using dynamic programming.

= From following figure, d[i, j] = min(d[i, j], d[i, K] + d[k, j])
= Dynamic programming always selects the path which is minimum.
ALGORITHM FOR TRAVELING SALESMAN PROBLEM:

Step 1:

Let d[i, j] indicates the distance between cities i and j. Function C[x, V — { x }]is the cost of thepath
starting from city x. V is the set of cities/vertices in given graph. The aim of TSP is to minimize the cost
function.

Step 2:

Assume that graph contains n vertices V1, V2, ..., Vn. TSP finds a path covering all verticesexactly
once, and the same time it tries to minimize the overall traveling distance.

Step 3:

Mathematical formula to find minimum distance is stated below:C(i,
V)=min{d[i,jl+CG V-{jH}jeVandigV.

TSP problem possesses the principle of optimality, i.e. for d[V1, Vn] to be minimum, any

Complexity Analysis of Traveling salesman problem
Dynamic programming creates n.2" subproblems for n cities. Each sub-problem can be solved in
linear time. Thus the time complexity of TSP using dynamic programming would be O(n?2"). It is
much less than n! but still, it is an exponent. Space complexity is also exponential.

EXAMPLE

Problem: Solve the traveling salesman problem with the associated cost adjacency
matrixusing dynamic programming.
- 24 11 10 9

8 — 2 5 11

DEPT OF CSE, NRCM 65 DHANANJAY Asst. Prof

https://codecrucks.com/dynamic-programming/
https://codecrucks.com/dynamic-programming/
https://codecrucks.com/dynamic-programming/

DESIGN AND ANALYSIS OF ALGORITHM [CS3102PC]

26 12 — 8 7

11 23 24 — 6

5 4 8 11 —
SOLUTION:

Let us start our tour from city 1.

Step 1: Initially, we will find the distance between city 1 and city {2, 3, 4, 5} without visiting
any intermediate city.

Cost(x, v, z) represents the distance from x to z and y as an intermediate

city.Cost(2, @, 1) =4d[2,1] =24

Cost(3,®,1) = d[3,1]=11

Cost(4,®,1) = d[4,1]=10

Cost(5,®,1) = d[51]=9

Step 2: Inthis step, we will find the minimum distance by visiting 1 city as intermediate city.

Cost{2, {3}, 1}
=2+11=13

Cost{2, {4}, 1}
=5+10=15
Cost{2, {5}, 1}
=11+9=20
Cost{3, {2}, 1}
= 12+24=36
Cost{3, {4}, 1}
=8+10=18
Cost{3, {5}, 1}

= d[2, 3] + Cost(3, f, 1)

= d[2, 4] + Cost(4, f, 1)

= d[2, 5] + Cost(5, f, 1)

= d[3, 2] + Cost(2, f, 1)

= d[3, 4] + Cost(4, f, 1)

= d[3, 5] + Cost(5, f, 1)

DEPT OF CSE, NRCM 66

DHANANJAY Asst. Prof

DESIGN AND ANALYSIS OF ALGORITHM [CS3102PC]

= 7+9=16
Cost{4, {2}, 1} = d[4,2]+Cost(2, f,

1)

= 23+24 =47

Cost{4, {3}, 1} = d[4, 3] +Cost(3, T,
1)
=24+11=35

Cost{4, {6}, 1} = d[4, 5] + Cost(5, f,
1)
=6+9=15

Cost{5, {2}, 1} d[5, 2] + Cost(2, f,
1)

= 4+24=28

Cost{5, {3}, 1}

d[s5, 3] + Cost(3, f,
1)
= 8+11=19

d[s5, 4] + Cost(4, f,
1)

Cost{5, {4}, 1}

=11+10=21

Step 3: Inthis step, we will find the minimum distance by visiting 2 cities as intermediate city.Cost(2,
{3,4},1) = min{d[2, 3] + Cost(3, {4}, 1), d[2, 4] + Cost(4, {3}, D]}

min{[2 + 18], [5+ 35] }

min{20, 40} = 20
Cost(2, {4, 5}, 1) = min{d[2, 4] + Cost(4, {5}, 1), d[2, 5] + Cost(5, {4},)]}

min{ [5 +15], [11 + 21] }

min{20, 32} = 20

Cost(2, {3,5}, 1) = min{ d[2, 3] + Cost(3, {4}, 1), d[2, 4] + Cost(4, {3}, 1]}

min{[2 + 18], [5+ 35] }

min{20, 40} = 20

Cost(3, {2,4}, 1) = min{d[3, 2] + Cost(2, {4}, 1), d[3, 4] + Cost(4, {2}, D]}

min{ [12 + 15], [8 + 47] }

min{27, 55} = 27

DEPT OF CSE, NRCM 67 DHANANJAY Asst. Prof

DESIGN AND ANALYSIS OF ALGORITHM [CS3102PC]

Cost(3, {4, 5}, 1) = min{d[3, 4] + Cost(4, {5}, 1), d[3, 5] + Cost(5, {4}, I}
= min{ [8 +15], [7 + 21] }

= min{23, 28} = 23

Cost(3, {2, 5}, 1) = min{ d[3, 2] + Cost(2, {5}, 1), d[3, 5] + Cost(5, {2},)]}
= min{[12 +20], [7 + 28] }

= min{32, 35} = 32

Cost(4, {2, 3}, 1) = min{ d[4, 2] + Cost(2, {3}, 1), d[4, 3] + Cost(3, {2}, 1}
= min{ [23 + 13], [24 + 36] }

= min{36, 60} = 36

Cost(4, {3, 5}, 1) = min{ d[4, 3] + Cost(3, {5}, 1), d[4, 5] + Cost(5, {3},)]}

min { [24 + 16], [6 + 19] }

min{40, 25} =25
Cost(4, {2, 5}, 1) = min{ d[4, 2] + Cost(2, {5}, 1), d[4, 5] + Cost(5, {2},)]}

min{ [23 + 20], [6 + 28] }

min{43, 34} = 34

Cost(5, {2, 3}, 1) = min{ d[5, 2] + Cost(2, {3}, 1), d[5, 3] + Cost(3, {2}, 1)}
= min { [4 +13], [8 + 36] }

= min{17, 44} = 17

Cost(5, {3, 4}, 1) = min{ d[5, 3] + Cost(3, {4}, 1), d[5, 4] + Cost(4, {3}, 1)}
= min { [8 + 18], [11 + 35] }

= min{26, 46} = 26

Cost(5, {2, 4}, 1) = min{ d[5, 2] + Cost(2, {4}, 1), d[5, 4] + Cost(4, {2}, 1)}
= min { [4 + 15], [11+ 47] }

= min{19, 58} = 19

Step4: Inthis step, we will find the minimum distance by visiting 3 cities as
intermediatecity.

Cost(2, {3,4,5}, 1) = min{d[2, 3] +Cost(3, {4, 5}, 1), d[2, 4] + Cost(4, {3, 5}, 1), d[2, 5] +
Cost(5, {3, 4}, 1)}

DEPT OF CSE, NRCM 68 DHANANJAY Asst. Prof

DESIGN AND ANALYSIS OF ALGORITHM [CS3102PC]

min{ 2 + 23, 5 + 25, 11 + 36}
min{25, 30, 47} = 25

Cost(3, {2, 4,5}, 1) = min{d[3, 2] + Cost(2, {4, 5}, 1), d[3, 4] + Cost(4, {2, 5}, 1), d[3, 5] +
Cost(5, {2, 4}, 1)}

= min{ 12+ 20, 8+ 34, 7 + 19}
= min{32, 42, 26} = 26

Cost(4, {2,3,5}, 1) = min{ d[4, 2] + Cost(2, {3, 5}, 1), d[4, 3] + Cost(3, {2, 5}, 1), d[4, 5] +
Cost(5, {2, 3}, 1)}

= min{23 + 30, 24 + 32,6 + 17}
= min{53, 56, 23} = 23

Cost(5, {2, 3,4}, 1) = min{d[5, 2] + Cost(2, {3, 4}, 1), d[5, 3] + Cost(3, {2, 4}, 1), d[5, 4] +
Cost(4, {2, 3}, 1)}

min {4 + 30, 8 + 27, 11 + 36}

min{34, 35, 47} =34

Step5: Inthis step, we will find the minimum distance by visiting 4 cities as an intermediate
city.

Cost(1, {2, 3, 4,5} 1) = min{d[1, 2] + Cost(2, {3, 4, 5}, 1), d[1, 3] + Cost(3, {2, 4, 5}, 1),
d[1, 4] + Cost(4, {2, 3, 5}, 1), d[1, 5] + Cost(5, {2, 3, 4}, 1)}

min{24 +25,11+26,10+23,9+34}

min{49, 37, 33,43} =33
Thus, minimum length tour would be of 33.

TRACE THE PATH:

= Let us find the path that gives the distance of 33.

= Cost(1,{2, 3, 4,5}, 1) is minimum due to d[1, 4], so move from 1 to 4. Path = {1, 4}.
= Cost(4, {2, 3, 5}, 1) is minimum due to d[4, 5], so move from 4 to 5. Path = {1, 4, 5}.
= Cost(5, {2, 3}, 1) is minimum due to d[5, 2], so move from 5 to 2. Path ={1, 4, 5, 2}.
= Cost(2, {3}, 1) is minimum due to d[2, 3], so move from 2 to 3. Path={1, 4, 5, 2,

3}. All cities are visited so come back to 1. Hence the optimum tour would be 1 -4 -5

-2-3-1.

RELIABILITY DESIGN:
Reliability means the ability of an apparatus, machine, or system to consistently perform its

DEPT OF CSE, NRCM 69 DHANANJAY Asst. Prof

http://www.businessdictionary.com/definition/ability.html
http://www.businessdictionary.com/definition/machine.html
http://www.businessdictionary.com/definition/system.html

DESIGN AND ANALYSIS OF ALGORITHM [CS3102PC]

intendedor required function or mission, on demand and without degradation or failure.

Reliability design using dynamic programming is used to solve a problem with a multiplicative
optimization function. The problem is to design a system which is composed of several devices
connected in series (below Fig-3.3(b)). Let r; be the reliability of device D; (i.e. r; is the
probability that device i will function properly). Then, the reliability of the entire system is 7ri.
Even if the individual devices are very reliable (the ri's are very close to one), the reliability of
the system may not be very good.

: of
ilp P
Fig-3.3(a) Devices connected in series
—— or
Stage 1 Stage 2 Stage 3 Stage n

Fig-3.3(b) Multiple Devices Connected in Parallel in each
stage

Multiple copies of the same device type are connected in parallel (Fig-3.3(b)) through the use of
switching circuits. The switching circuits determine which devices in any given group are
functioning properly. They then make use of one such device at each stage.

If stage i contains m copies of device D then the probability that all m have a malfunction
mi i i m i
is(L-ri) . Hence the reliability of stage i becomes 1 - (1 - ri) i. Thus, if ri =0.99 and mj =
2
the stage reliability becomes 0.9999. In any practical situation, the stage reliability will be a

little

m
less than 1 - (1 - ri) ibecause the switching circuits themselves are not fully reliable. Also,failures
of copies of the same device may not be fully independent (e.g. if failure is due to design defect).
Let
us assume that the reliability of stage i is actually given by a function ®i(mi), 1<=i<=n. (It is quite
conceivable that ®j(mi) may decrease after a certain value of m ;). The reliability of
thesystem of stages is [[1<=i<=n ®@i(m).
Our problem is to use device duplication to maximize reliability. This maximization is to be
carried out under a cost constraint.

Let cj be the cost of each unit of device i and let ¢ be the maximum allowable cost of the systembeing

DEPT OF CSE, NRCM 70 DHANANJAY Asst. Prof

http://www.businessdictionary.com/definition/required.html
http://www.businessdictionary.com/definition/required.html
http://www.businessdictionary.com/definition/mission.html
http://www.businessdictionary.com/definition/mission.html
http://www.businessdictionary.com/definition/failure.html

DESIGN AND ANALYSIS OF ALGORITHM [CS3102PC]

designed.

We wish to solve the following maximization problem:
maximize [[1<=i<=n ®i(m;)

subject to Y 1<=j<=n cimi <=cmi>=1 and integer i, 1<=i<=n

A dynamic programming solution may be obtained in a manner similar to that used for
the knapsackproblem. Since, we may assume each ci; > 0, each mj must be in the range
1<=mi<=uj where

= Lc+cr-Yironcy)/cH

The upper bound ui follows from the observation that mj>=1. An optimal solutionm 1, m 2,

m, is the result of a sequence of decisions, one decision for each mi.
Letfi(x) represent the maximum value of ®(mj), 1<=j<=i subject to the constraints
Y 1<=j<=i cjmj <=x and 1<=mj<=uj, 1<=j<=i. Then, the value of an optimal solution is
fn(c). Thelast decision made requires one to choose my fromone of { I, 2, 3, ..., un.}.
Once a value for my has been chosen, the remaining decisions must be such as to use
the remaining funds ¢ - cnmn in anoptimal way. The principal of optimality holds and

fa(c) = max 1<=mn<zun{ ®n(mn) fn-1(c—cnmn) }

For any fi(x),i>=1 this equation generalizes to

FI(X) = MAX 1cweeo{ P1(MI)

FI-1(C - cimi) }

PROBLEMS BASED ON RELIABILITY

DESIGN:

Q.1 Design a three stage system with device types D1,D2,D3. The costs are Rs. 30, Rs. 15
and Rs.20 respectively. The cost of the system is to be no more than Rs. 105. The reliability of
each device type is 0.9,0.8 and 0.5 respectively.
SOLUTION:
We will first compute u1, uz, uz using

followingformula.uij = (C + Cj—sigma C;j

) Ci
For computing ui

ur = 2(approx value)

DEPT OF CSE, NRCM 71 DHANANJAY Asst. Prof

DESIGN AND ANALYSIS OF ALGORITHM [CS3102PC]

For computing uz

uz = 3(approx value)
For computing us

us=3
Hence (uz U2 us)
Computing
subsequences-

S°=(1,0)
Let Si consist of tuples of the form (f, x)
=(r,c)s’ = {(1,0)}
For device D1
for 1 D1
r1=0.9,c1=30
15" ={(0.9, 30)}

For device D; for 2 Dy

m1=2(2 D1 device in
parallel) Reliability of stage
1=1-(1-r1)?
Reliability of stage 1 = 1-(1- 0.9) 2=
0.99Cost =30*2 = 60
2 St ={(0.99, 60) }
st ={(0.9, 30), (0.99, 60) }
st ={(0.9, 30), (0.99, 60) }

Fgrone Device D2:-
S 1= {(0.72, 45), (0.792, 75) }

For two Device D2:-
2 S% = {(0.864, 60), (0.9504, 90) }

For three Device D2:-
3 S% = {(0.8928, 75), (0.98208, 105) }

%= {(0.72, 45), (0.792, 75), (0.864, 60),(0.9504, 90), (0.8928, 75), (0.98208, 105) }

(0.792, 75), (0.9504, 90) is eleminated due to purging or dominance rule and (0.98208, 105)
iseleminated due to access cost 105.

After this we got

S%={(0.72, 45), (0.864, 60), (0.8928, 75) }

Fqrone Device D3:-
S 1= {(0.36, 65), (0.432, 80), (0.4464, 95) }

FqrTwo Device D3:-
S 0= {(0.54, 85), (0.648, 100)}

FOrR THREE DEVICE D3:-

% = {(0.63, 105) }»

Now we are going to find S

DEPT OF CSE, NRCM 72 DHANANJAY Asst. Prof

DESIGN AND ANALYSIS OF ALGORITHM [CS3102PC]

S® = {(0.36, 65), (0.432, 80), (0.4464, 95), (0.54, 85), (0.648, 100), (0.63, 105) }
Due to purging rule after elimination we get

S® ={(0.36, 65), (0.432, 80), (0.54, 85), (0.648, 100),}

Now

The best design has a

reliability 0f0.648 and a cost

of 100.Tracing back through

S''s

WE DETERMINE THAT M1 =1, M2 =2, M3 =2

UNIT-1V

Greedy method: General method, applications-Job sequencing with deadlines, knapsack
problem, Minimum cost spanning trees, Single source shortest path problem.

Greedy Method:

The greedy method is perhaps (maybe or possible) the
most straight forward designtechnique, used to determine
a feasiblesolution that may or may not be optimal.

Feasible solution:- Most problems have n inputs and its solution
contains a subset of inputsthat satisfies a given constraint(condition).
Any subset that satisfies the constraint is called feasible solution.

Optimal solution: To find a feasible solution that either
maximizes or minimizes a givenobjective function. A feasible
solution that does thisis called optimal solution.

Application of Greedy

Method: Job

sequencing with

deadline0/1

knapsack problem

Minimum cost

spanning trees

(I R R I

Single source shortest path problem.

JOB SEQUENCE WITH DEADLINE:

There is set of n-jobs. For any job i, is a integer deadling di>0 and
profitPi>0, the profit Pi isearned iff the job completed by its deadline.

To complete a job one had to process the job on a machine for one
unitof time. Only onemachine is available for processing jobs.

DEPT OF CSE, NRCM 73 DHANANJAY Asst. Prof

DESIGN AND ANALYSIS OF ALGORITHM [CS3102PC]

A feasible solution for this problem is a subset J of jobs such that
eachjob in this subset canbe completed by its deadline.

The value of a feasible solution J is the sum of the profits of the jobs in J, i.e., >i €jPij
An optimal solution is a feasible solution with maximum value.

The problem involves identification of a subset of jobs which
can be completed by its deadline. Therefore the problem suites
the subset methodology and can be solved by the greedy
method.

Ex: - Obtain the optimal sequence for the following jobs.
j1 J2 j3a

(P1, P2, P3, Ps) = (100, 1€@ML5, 20

(d1, da, d3, da) £ (21,2 1)
n=4
Feasible Processing Value
solution sequence
Ji)2 _
(1.2) (2,1) 100+10=110
(1,3) (1,3)or (3,1) 100+15=115
(1,4) (4,1) 100+27=127
(2,3) (2,3) 10+15=25
(3.4) (4,3) 15+27=42
(1) (1) 100
(2 (2) 10
(3) (3) 15
4) 4) 27

In the example solution ‘3’ is the optimal. In this solution only jobs
1&4 are processed and the value is 127. These jobs must be processed
in the order j4 followed by j1. the process of job 4 begins at time 0 and
ends at time 1. And the processing of job 1 begins at time 1 and ends at
time2. Therefore both the jobs are completed within their deadlines.
The optimization measure for determining the next job to be selected
in to the solution is according to the profit. The next job to include is
that which increases) pi the most, subject to the constraint that the
resulting “j”is the feasible solution. Therefore the greedy strategy is to

consider the jobsin decreasing order of profits.
The greedy algorithm is used to obtain an optimal solution.

We must formulate an optimization measure to determine how the next job is chosen.

DEPT OF CSE, NRCM 74 DHANANJAY Asst. Prof

DESIGN AND ANALYSIS OF ALGORITHM [CS3102PC]

algorithm js(d, j, n)

/ld-> dead line, j>subset of jobs ,n—> total number of jobs

/I d[i]>1 1 <i<narethe dead lines,

/I the jobs are ordered such that p[1]>p[2]>--->p[n]

/lj[i] is the ith job in the optimal solution 1 <i <k, k-> subset range

d[0]=j

0]=0;

=1

k=1;

for i=2 ton

do{r=k;

while((d[j[r]]>d[i]) and
[d[j[r]]#r)) dor=r-1; if((d[j[r]]<d[i])
and (d[i]> r)) then

{

for q:=k to (r+1) setp-1 do j[g+1]=
ilaLilr+1]=i;

k=k+1;

}

1

J

DEPT OF CSE, NRCM 75 DHANANJAY Asst. Prof

DESIGN AND ANALYSIS OF ALGORITHM [CS3102PC]

SINGLE SOURCE SHORTEST PATHS:

[1 Graphs can be used to represent the highway structure of a state or
country with vertices representing cities and edges representing sections
of highway.
] The edges have assigned weights which may be either the distance
between the 2 cities connected by the edge or the average time to drive
along that section ofhighway.
71 For example if A motorist wishing to drive from city A to B thenwe
must answer the following questions
o Isthere a pathfromAto B
o Ifthere is more than one path from A to B which is the shortest path
[1 The length of a path is defined to be the sum of the weights of the edges on that path.

Given a directed graph G(V,E) with weight edge w(u,v). e have to find a

shortest path fromsource vertex SE&v to every other vertex vie v-s.
- Tofind SSSP for directed graphs G(V,E) there are two different algorithms.

» Bellman-Ford Algorithm
» Dijkstra’s algorithm

1 Bellman-Ford Algorithm:- allow —ve weight edges in input graph. Thisalgorithm

either finds a shortest path formsource vertex S€V to other vertexv €V
or detect a —ve weight cycles in G, hence no solution. If there is no
negative weight cycles are

reachable form source vertex S € V to every other vertex ve vV

[] Dijkstra’s algorithm:- allows only +ve weight edges in the inputgraph
and finds ashortest path from source vertex S €V to every other vertex

VEV.
45
Path Length
1 Vo Vs 10
2) VoV, Vs 25
3) Vo Va V3V, 45
4) Vo Vg 45

Graph and shortest paths from v to all destinations

DEPT OF CSE, NRCM 76 DHANANJAY Asst. Prof

DESIGN AND ANALYSIS OF ALGORITHM [CS3102PC]

0 Consider the above directed graph, if node 1 is the source vertex,then
shortest pathfrom 1 to 2 is 1,4,5,2. The length is 10+15+20=45.

[1 To formulate a greedy based algorithm to generate the shortest paths, we
mustconceive of a multistage solution to the problem andalso of an
optimization measure.

[This is possible by building the shortest paths one by one.

] As an optimization measure we can use the sum of the lengthsof all
paths so fargenerated.

0 If we have already constructed ‘i’ shortest paths, then using this
optimization measure,the next path to be constructed should be thenext
shortest minimum length path.

[1 The greedy way to generate the shortest paths from Vo to the
remaining vertices is togenerate these paths in non-decreasingorder
of path length.

71 For this 1%, a shortest path of the nearest vertex is generated.
Then a shortest path tothe 2" nearest vertex is generated and so on.

Algorithm for finding Shortest Path

Algorithm ShortestPath(v, cost, dist, n)

/dist[j], 1<j<n, is set to the length of the shortest path from vertex v to vertex j in graph g
with n-vertices.

I/ dist[v] is zero

{

for i=1 to ndo{

s[i]=false;

dist[i]=cost[v,i];

}

s[v]=true;

dist[v]:=0.0; // put vins

for num=2 to n do{

/I determine n-1 paths fromv

choose u form among those vertices not in's such that dist[u] is minimum.
s[u]=true; // put uins

for (each w adjacent to u with s[w]=false) do

if(distfw]>(dist[u]+cost[u, w])) then

dist[w]=dist[u]+cost[u, w];

}

}

DEPT OF CSE, NRCM 77 DHANANJAY Asst. Prof

DESIGN AND ANALYSIS OF ALGORITHM [CS3102PC]

MINIMUM COST SPANNING TREE:

SPANNING TREE: - A Sub graph ‘n” of o graph ‘G’ is called as a spanning tree if
()] It includes all the vertices of ‘G’
(i) Itis a tree

Minimum cost spanning tree: For a given graph ‘G’ there can be more than one
spanning tree. If weights are assigned to the edges of ‘G’ then the spanning tree
which has the minimum cost of edges is called as minimal spanning tree.

The greedy method suggests that a minimum cost spanning tree can be obtained
by contactingthe tree edge by edge. The next edge to be included in the tree is the
edge that results in a minimum increase in the some of the costs of the edges
included so far.

There are two basic algorithms for finding minimum-cost spanning trees,and
both are greedyalgorithms

OPrim’s Algorithm

Kruskal’s Algorithm
Prim’s Algorithm: Start with any one node in the spanning tree, and
repeatedly add thecheapest edge, and the node it leads to, for which the node is
not already in the spanning tree.

DEPT OF CSE, NRCM 78 DHANANJAY Asst. Prof

DESIGN AND ANALYSIS OF ALGORITHM [CS3102PC]

Edge Cost Spanning tree
(1,2) 0 O—@
(246) 23 (1) 9
6
(16) 5 (O—
3)
©)
(6,4) 20 (2

(44) reject

O—A2
(3,5) 35 -G
©

Stages in Prim’s Algorithm

DEPT OF CSE, NRCM 79 DHANANJAY Asst. Prof

DESIGN AND ANALYSIS OF ALGORITHM [CS3102PC]

PRIM’S ALGORITHM: -

i) Select an edge with minimum cost and include in to the
spanningtree.

ii) Among all the edges which are adjacent with
theselected edge, select the onewith minimum
cost.

iii) Repeat step 2 until ‘n” vertices and (n-1) edges are
been included. And the subgraph obtained does not
contain any cycles.

DEPT OF CSE, NRCM 80 DHANANJAY Asst. Prof

DE

Cost

=

=1 Sh B Cd kD

DESIGN AND ANALYSIS OF ALGORITHM [CS3102PC]

Prim's minimum spanning tree algorithm

Algorithm Prim (E, cost, n,t)

/I E is the set of edges in G. Cost (1:n, 1:n) is the

/I Cost adjacency matrix of an n vertex graph such that

/I Cost (i,J) is either a positive real no. or « if no edge (i,J) exists.

/IA minimum spanning tree is computed and

/IStored in the array T(1:n-1, 2).

/(t (i, %j), + 1(i,2)) is an edge in the minimum cost spanning tree. The final cost is
returne

Let (k, 1) be an edge with min
cost in EMin cost: = Cost (x,1);
T(1,1):=k; +(1,2):=1;
for i:= 1 to n do//initialize near
if (cost (i,I)<cost (i,k) then n east
(1): L;else near (i): = k;
near (k): = near (I):
=0;fori:=2ton-1
do
{//find n-2 additional edges for t
let j be an index such that near (i) 0 & cost (j, near (i)) is
minimum;t (i,1): =j + (i,2): = near (j);
min cost: = Min cost + cost (],
near (j));near (j): = 0;
for k:=1 to n do // update near ()
if ((near (k) 0) and (cost {k, near (k)) >
(}:ost (k,)))then near Z(K): = ji

return mincost;

}

The algorithm takes four arguments E: set of edges, cost is nxn adjacency
matrix cost of (i,j)= +ve integer, if an edge exists between i&j otherwise
infinity. ‘n’ is no/: of vertices. ‘t’ is a (n- 1):2matrix which consists of the
edges of spanning tree.

E={12), (1.6), (23), B4), (45). (47). (56). (5.7), 27) }

1 2 3 4 o 3] T
o 28 o o o 10 o
28) 16)) o) 14
ct 10 ct 12 v} ct ct
o)) 12) 22 o) 18
o))) 22) 25 24
10 ct ct ct 25 ct ct
o) 14) 18 24 o))
" -

DESIGN AND ANALYSIS OF ALGORITHM [CS3102PC]

n=4{1,2,3,45,6,7)

1|1 6 5 4 3 2
2 |6 5 4 3 2 7
Start Vertex
Ending Vertex Edges of spanning tree

) The algorithm will start with a tree that includes only minimum
cost edge of
G. Then edges are added to this tree one by one.

i) The next edge (i,j) to be added is such that i is a
vertex which is already included in the treed and j is
a vertex not yet included in the tree and cost of i,j is
minimum among all edges adjacent to ‘1’.

iii) With each vertex ‘j° next yet included in the tree,
we assign a value near °j°. The value near °j’
represents a vertex in the tree such that cost (j, near
(1) is minimum among all choices for near (j)

iv) We define near (j):= O for all the vertices ‘j’ that are already in the
tree.

v) The next edge to include is defined by the vertex ‘j’
such that (near (j)) -0 and cost of (j, near (j)) is
minimum.

Analysis: -

The time required by the prince algorithm is directly proportional to the
no/: of vertices. If agraph ‘G’ has ‘n’ vertices then the time required by

prim’s algorithm is 0(n2)

KRHSKAL’S ALGORITHM:

Start with no nodes or edges in the spanning tree, and repeatedly add the
cheapest edge that does not create a cycle.

In Kruskals algorithm for determining the spanning tree we arrangethe
edges in the increasing order of cost.

i)

0

All the edges are considered one by one in that order and
deleted from the graph and are included in to the
spanning tree.

DEPT OF CSE, NRCM 82 DHANANJAY Asst. Prof

DESIGN AND ANALYSIS OF ALGORITHM [CS3102PC]

ii) At every stage an edge is included; the sub-graph at a
stage need not be a tree. Infect it is a forest.

iii) At the end if we include ‘n’ vertices and n-1 edges
without forming cycles then we get a single connected
component without any cycles i.e. a tree with
minimum cost.

At every stage, as we include an edge in to the spanning tree, we get
disconnected trees represented by various sets. While including an
edge in to the spanning tree we need to check it does not form cycle.
Inclusion of an edge (i,j) will form a cycle if i,j both are in same set.
Otherwise the edge can be included into the spanning tree.

Kruskal minimum spanning tree algorithm

Algorithm Kruskal (E, cost, n,t)
/IE is the set ofedges in G. ‘G’ has ‘n’ vertices
/[Cost {u,v} is the cost of edge (u,v) t is the set
/lof edges in the minimum cost spanning tree
/[The final cost is returned
{ construct a heap out of the edge costs using heapify;
for i:= 1 to ndo parent (i):= -1 // place in different sets
/leach vertex is in different set {1} {1}
{3}i: = 0; min cost: =0.0;
While (i<n-1) and (heap not empty))do
{
Delete a minimum cost edge (u,v) from the heaps; and reheapify
using adjust;j:= find (u); k:=find (v);
if (j k) then
{ i =1+1;
+(i,1)=u; + (i, 2)=v;
mincost: =
mincost+cost(u,v);
Union (j,k);
}

}

if (i n-1) then write (“No
spanning tree”);else return
mincost;

¥

DEPT OF CSE, NRCM 83 DHANANJAY Asst. Prof

DESIGN AND ANALYSIS OF ALGORITHM [CS3102PC]

Consider the above graph of , Using Kruskal's method the edges of this graph are
considered for inclusion in the minimum cost spanning tree in the order (1, 2), (3,
6). (4,6), (2,6), (1, 4),
(3,5), (2, 5), (4, 5), (2, 3), and (5, 6). This corresponds to the cost

sequence 10, 15, 20, 25, 30, 35, 40, 45, 50, 55. The first four edges are included in
T. The next edge to be consideredis (I, 4). This edge connects two vertices already
connected in T and so it is rejected. Next, the edge(3, 5) is selected and that
completes the spanning tree.

Edge Cast
(,2) 10
(3.6) 15
(4.6) 20
(1.4) 30
(3.5} 35
DEri1 ur vorc, nruivi o4

Spanning Forest

DD ®
8@@@@@

®—®@@

@9 &

(2
0@ @

(&

(reject)

LUMNANANJIAT AdDOL FTUI

DESIGN AND ANALYSIS OF ALGORITHM [CS3102PC]

Analysis: - If the no/: of edges in the graph is given by /E/then the time
for Kruskalsalgorithm is given by 0 (|E| log
|E]).

0/1 KNAPSACK PROBLEM:

Let there be 77 items, <1to Zpwhere 2has a value aigd weight . The maximum
weight that we can carry in the bag is W. It is common to assume that all values and weights
are nonnegative. To simplify the representation, we also assume that the items are listed in
increasing order of weight.

n n

U; Ty Z w;x; £ W, z; € {0,1}
1 subject to i=1 Maximize
the sum of the values of the items in the knapsack so that the sum of the weights must
be less than the knapsack's capacity.

Maximize i=

Greedy algorithm for knapsack

Algorithm GreedyKnapsack(m,n)

I p[i:n] and [1:n] contain the profits and weights respectively

/I if the n-objects ordered such that p[i]/w[i]>=p[i+1]/w[i+1], m size of knapsack and
X[1:n] the solution vector L]

{ U

Fori:=1to ndo x[i]:=0.0

U.=m;

Fori:z=1tondo

{

if(w[i]>U) then break;
X[i]:=1.0;

U:=U-w[i];

¥
If(i<=n) then x[i]:=UM[i];

Ex: - Consider 3 objects whose profits and weights are
defined as(P1, P2, P3) =
(25,24, 15)

W1, W2, W3) = (18, 15, 10)

n=3 number ofobjects
m=20 Bagcapacity

DEPT OF CSE, NRCM 85 DHANANJAY Asst. Prof

DESIGN AND ANALYSIS OF ALGORITHM [CS3102PC]

Consider a knapsack of capacity 20. Determine the optimum strategy for placing
the objects in to the knapsack. The problem can be solved by the greedy approach
where in the inputs are arranged according to selection process (greedy strategy)
andsolve the problem in stages. The various greedy strategies for the problem could
be as follows.

(X1, X2, X3) > XiWi 2 Xipi
(1, 2/15, 0) 18x1F< x15 = 20 25x1F° x 24 = 28.2
15 15
(©, 273, 1) % x15+10x1= 20 “x 24 +15x1 = 31
3 3
0,1,%) 1x15+ T x10 = 20 1x24+ * x15 = 31.5
2 2
(%, %, Ya) T2 X 18+ x15+ ¥, x10 = 16. 5 Vs x 25+Y4 X24+ Y4 x15 =
12.5+8+3.75 = 24.25

Analysis: - If we do not consider the time considered for sorting the
inputs then all of the three greedy strategies complexity will be O(n).

UNIT-V: Branch & Bound

Branch and Bound: General method, applications - Travelling sales person problem, 0/1knapsack problem - LC
Branch and Bound solution, FIFO Branch and Bound solution.

NP-Hard and NP-Complete problems: Basic concepts, non deterministic algorithms, NP -Hard and NP-Complete
classes, Cook’s theorem.

Branch & Bound (B & B) is general algorithm (or Systematic method) for finding optimal solution of
various optimization problems, especially in discrete and combinatorialoptimization.

» The B&B strategy is very similar to backtracking in that a state space tree is used to solve

a problem.

» Thedifferences are that the B&B method

v" Does not limit us to any particular way of traversing the tree.

v"Itis used only for optimization problem

v' Itis applicable to a wide variety of discrete combinatorial problem.

» B&B is rather general optimization technique that applies where the greedy method

&dynamic programming fail.

» Itis much slower, indeed (truly), it often (rapidly) leads to exponential time
complexitiesin the worst case.

» The term B&B refers to all state space search methods in which all children of the “E-
node” are generated before any other “live node” can become the “E-node”

v' Live node—> is a node that has been generated but whose children have not yet

DEPT OF CSE, NRCM 86 DHANANJAY Asst. Prof

DESIGN AND ANALYSIS OF ALGORITHM [CS3102PC]

beengenerated.

v' E-node—>is a live node whose children are currently being explored.
Dead node-> is a generated node that is not to be expanded or explored any further.Allchildren of a

dead node have already been expanded

Live Mode: 2_3_ 4, and 5 e ° ° e o oeo

FIFO Branch & Bound (BFS) LIFO Branch & Bound (D-Search)
Children of E-node are Children of E-node are inserted in a
inserted in a gueue. stack.

» We will use 3-types of search strategies in branch and bound
1) FIFO (First In First Out) search
2) LIFO (Last In First Out) search
3) LC(Least Count)search
FIFO B&B:

FIFO Branch & Bound is a BFS.
In this, children of E-Node (or Live nodes) are inserted in a queue.

Implementation of list of live nodes as a queue
v' Least()=> Removes the head of the Queue
v" Add()=> Adds the node to the end of the Queue

> s o
Qeeo &

v" Assume that node ‘12’ is an answer node in FIFO search, 15 we take E-node has ‘1’

DEPT OF CSE, NRCM 87 DHANANJAY Asst. Prof

DESIGN AND ANALYSIS OF ALGORITHM [CS3102PC]

(= [= | = |
[= | = | s [= |
<4 = Lal

= o

LIFO B&B:

LIFO Brach & Bound is a D-search (or DFS).

In this children of E-node (live nodes) are inserted in a stackimplementation of
List of live nodes as a stack

v' Least()=> Removes the top of the stack
v" ADD()=>Adds the node to the top of the stack.

5
2 (1] (1]
3 3 3
1 4 4 4

Least Cost (LC) Search:

The selection rule for the next E-node in FIFO or LIFO branch and bound is sometimes “blind”. i.e.,
the selection rule does not give any preference to a node that has a very good chance of getting the
search to an answer node quickly.

The search for an answer node can often be speeded by using an “intelligent” ranking function. It is
also called an approximate cost function “C”.

Expended node (E-node) is the live node with the best € value.

Branching: A set of solutions, which is represented by a node, can be partitioned into mutually
(jointly or commonly) exclusive (special) sets. Each subset in the partition is represented by a child of
the original node.

Lower bounding: An algorithm is available for calculating a lower bound on the cost of any solution
in a given subset.

Each node X in the search tree is associated with a cost: C(X)

C=cost of reaching the current node, X(E-node) form the root + The cost of reaching an answer node
form X.

C=g(X)+H(X).
Example:
8-puzzle
Cost function: € = g(x) +h(x)

where h(x) = the number of misplaced tiles
and g(x) = the number of moves so farAssumption: move one tile in any

DEPT OF CSE, NRCM 88 DHANANJAY Asst. Prof

DESIGN AND ANALYSIS OF ALGORITHM [CS3102PC]

Initial State
1 |2 |3
516
718 |4

DEPT OF CSE, NRCM

Final State
1 |2 |3
518 |6

7 |4

DHANANJAY Asst. Prof

DESIGN AND ANALYSIS OF ALGORITHM [CS3102PC]

C=1+4=3)
C=1+4=5
1 (2 [3 213 1 |2
5|6 |4 6 3 |6 |3
7 |8 8§ |4 7 (8 |4
Y Y
C=2+1=3 C=2+3=3
1 [2 E 1 3
5 |8 3 16 5 (2 16
7 S | 4 718 [4
/
.
C=3+2=5 "
C=3+0=3
1 [2 [3 112 13
> |8 16 5 (8 [6
7 |4 = T3

Travelling Salesman Problem:

Def:- Find a tour of minimum cost starting from a node S going through other nodes only once
and returning to the starting point S.

Time Conmlexity of TSP for Dynamic Programming algorithm is O(n22”)

B&B algorithms for this problem, the worest case complexity will not be any better than O(n22")

but good bunding functions will enables these B&B algorithms to solve some problem instances in
much less time than required by the dynamic programming alogrithm.

Let G=(V,E) be a directed graph defining an instances of TSP.Let
Cij> cost of edge <i, j>

Cij =00 jf<j, j> @ E

|V|:ne total number of vertices.
Assume that every tour starts & ends at vertex 1.

Solution Space S= {1, I1, 1/ IT isa permutation of (2, 3.4 n) } then |S|=(n-1)!
The size of S reduced by restricting S

Sothat (1, i1,i2,—in1, 1}E Siff <ij, iz1>€ E. 0<jSn-1, io-in=1
DEPT OF CSE, NRCM 90 DHANANJAY Asst. Prof

DESIGN AND ANALYSIS OF ALGORITHM [CS3102PC]

S can be organized into “State space tree”.
Consider the following Example

The above diagram shows tree organization of a complete graph with

[V|=4.
Each leaf node ‘L’ is a solution node and represents the tour defined by the path from the rootto L.

Node 12 represents the tour.

i0=1,i1=2,i2=4,i3=3, i4=1

Node 14 represents the tour.

io=1,i1=3,i2=4,i3=2, i4=1.

TSP is solved by using LC Branch & Bound:

To use LCBB to search the travelling salesperson “State space tree” first define a costfunction
C(.) and other 2 functions C(.) & u(.)

Such that C(r) < C(r) <u(r) > for all nodes .

Cost C(.)~> is the solution node least C(.) corresponds to a shortest tour in G.

C(A)={Length of tour defined by the path fromroot to A if A is leaf Cost of a
minimum-cost leaf in the sub-tree A, if A is not leaf }

Fr@ C(r) < C(r) then C(r) > is the length of the path defined at node A.
Fro vious example the path defined at node 6 is io, i1, i2=1, 2, 4 & it consists edge of

<1,2> & <2,4>
Abetter C(r) can be obtained by using the reduced cost matrix corresponding to G.
» Arow (column) is said to be reduced iff it contains at least one zero & remaining

entriesare non negative.
A matrix is reduced iff every row & column is reduced.

DEPT OF CSE, NRCM 91 DHANANJAY Asst. Prof

DESIGN AND ANALYSIS OF ALGORITHM [CS3102PC]

co 20 30 10 11 oo 10 17 0 1
1S <= 16 4 2 12 o 11 2 0
3 S oo 2 4 0 3 o 0o 2
19 6 18 o 3 15 3 12 o 0
16 4 7 16 oo 11 0 0 12 oo
(a) Cost Matrix (b) Reduced Cost
Matrix
L =25

Given the following cost matrix:

pIEF 20 30 10 111

15 inf 16 4 2
3 5 inf 2 4
[19 6 18 inf 3 |
L 16 4 7 16 irJLC

» The TSP starts from node 1: Node 1

» Reduced Matrix: To get the lower bound of the path starting at node 1
Row # 1: reduce by 10 Row #2: reduce 2 Row #3: reduce by 2

Finf 10 20 Finf 10 20 Finf 10 20
15 inf 16 13 inf 14 13 inf 14
3 5 inf 3 5 inf 1 3 inf
[19 6 18 i| 119 6 18 i| (19 6 18 i
Li6 4 7 16 L16 4 7 16 L16 4 7 16

Row # 4: Reduce by 3: Row # 5: Reduce by 4 Column 1: Reduce by 1

DEPT OF CSE, NRCM 92 DHANANJAY Asst. Prof

DESIGN AND ANALYSIS OF ALGORITHM [CS3102PC]

Finf 10 20 Finf 10 20 Finf 10 20
13 inf 14 13 inf 14 12 inf 14
1 3 inf 1 3 inf (0 3 inf
116 3 15 i| (16 3 15 i| 115 3 15 i
Li6 4 7 16 L12 0 3 120 L11 0 3 12
Column 2: It is reduced. Column 3: Reduce by 3 Column 4: 1t is reduced.
'mf 10 17 ¢ 1' Column 5: It is reduced.
12 inf 11 2 0
0 3 inf 0 2
15 3 12 inf 0
11 0 0 12 inf|

The reduced cost is: RCL =25
So the cost of node 1 is: Cost (1) = 25
The reduced matrix is:

Cost (1) =25
[inf 10 17 0 1
12 inf 11 2 0
0 3 inf 0 2
15 3 12 inf O
L11 0 0 12 inf |
» Chooseto go to vertex2: Node 2

Cost of edge <1,2> is: A(1,2) =10

Set row #1 = inf since we are choosing edge <1,2>

Set column # 2 = inf since we are choosing edge <1,2>
Set A(2,1) =inf

The resulting cost matrix is:

Finf inf inf inf inf 1
inf M 11 2 o
15 inf j 0 0
L inf H I
11
The matrix is reduced:

RCL=0

The cost of node 2 (Considering vertex 2 from vertex 1) is:
Cost(2) =cost(1) + A(1,2) =25+ 10=35

DEPT OF CSE, NRCM 93 DHANANJAY Asst. Prof

DESIGN AND ANALYSIS OF ALGORITHM [CS3102PC]

- Costofedge <1,3>is: A(1,3) = 17 (In the reduced matrix
- Setrow #1 = inf since we are starting from node 1

- Set column # 3 = inf since we are choosing edge <1,3>

- SetA(3,1) =inf

- Theresulting cost matrix is:

Finf inf inf inf inf1q

. inf 2 0
I 1 5 3 0 O |
L inf 12

Reduce the matrix: Rows are reduced

The columns are reduced except for column #

The lower bound is: RCL= 11

The cost of going through node 3 is:
Choose to go to vertex 3: Node 3:

Choose to go to vertex 4: Node 4

Remember that the cost matrix is the one that was reduced at the starting vertex 1Cost of edge <1,4> is: A(1,4) =0
Set row #1 = inf since we are starting from node 1
Set column # 4 = inf since we are choosing edge <1,4>Set A(4,1) = infThe
resulting cost matrix is:
Finf inf inf inf inf 1
12 inf 11 inf 0
0 3 inf inf 2
[inf 3 12 inf 0 |
L 11 0 0 inf inf

DEPT OF CSE, NRCM 94 DHANANJAY Asst. Prof

DESIGN AND ANALYSIS OF ALGORITHM [CS3102PC]

Reduce the matrix: Rows are reduced

The lower bound is: RCL=0
The cost of going through node 4 is:
cost(4) = cost(1l) + RCL + A(1,4)=25+0+0=25

»| Choose to go to vertex 5: Node 5

- Remember that the cost matrix is the one that was reduced at starting vertex 1
- Costofedge<1,5>is: A(1,5)=1

- Setrow #1 = inf since we are starting from node 1

- Set column # 5 = inf since we are choosing edge <1,5>

- SetA(5,1) =inf

- Theresulting cost matrix is:

Finf inf inf inf inf
12 inf 11 2 inf 1

0 3 inf 0 inf
15 3 12 inf

liaf 10 0 12

Reduce the matrix:
Reduce rows:
Reduce row #2: Reduce by 2

e iof i i if g

10 inf 9 0 inf

0 3 inf o 'BF
15 3 12 inf inf

"inf 0 0 12

L inf

DEPT OF CSE, NRCM 95 DHANANJAY Asst. Prof

DESIGN AND ANALYSIS OF ALGORITHM [CS3102PC]

Reduce row #4: Reduce by 3

i2f 9

0 iBf

0 3 inf 0 inf

ailf i iz
10 iBf
12 0 9
inf | 0

Columns are reduced
The lower bound is: RCL=2+3=5
The cost of going through node 5 is:

cost(5) = cost(1) + RCL + A(1,5)=25+5+1=31

Insummary:
So the live nodes we have so far are;

v' 2:cost(2) = 35, path: 1->2
v' 3:cost(3) =53, path: 1->3
v' 4:cost(4) = 25, path: 1->4
v' 5:cost(5) = 31, path: 1->5

inf inf
0 12 inf

Explore the node with the lowest cost: Node 4 has a cost of 25Vertices to

be explored from node 4: 2, 3, and 5
Now we are starting from the cost matrix at node 4 is:

Cost (4) =25
[inf inf inf inf inf |
12 inf 11 inf 0
0 3 inf inf 2
imf 3 12 inf 0
L 11 0 0 inf inf |

DEPT OF CSE, NRCM 96

DHANANJAY Asst. Prof

DESIGN AND ANALYSIS OF ALGORITHM [CS3102PC]

» Choose to go to vertex 2: Node 6 (path is 1->4->2)

Cost of edge <4,2>is: A(4,2) =3

Set row #4 = inf since we are considering edge <4,2>

Set column # 2 = inf since we are considering edge <4,2>
Set A(2,1) = inf

Finf
inf inf inf inf inf 1
0 inf 11 inf 0
inf . inf

DEPT

inf . 2
3 . m
inf inf f
_ inf inf |
inf O f
L 11 inf
Reduce the matrix: Rows are reduced
Columns are
reducedThe lower boundis: RCL=0
The cost of going through node 2 is:
OF CSE , NRCM 97 DHANANJAY Asst. Prof

DESIGN AND ANALYSIS OF ALGORITHM [CS3102PC]

» Choose to go to vertex 3: Node 7 (path is 1->4->3)

Cost of edge <4,3> is: A(4,3) = 12
Set row #4 = inf since we are considering edge <4,3>

Set column # 3 = inf since we are considering edge <4,3>

o iof Bf B iEf,

12 inf inf inf O
iZf3 iRfiElf2
linf inf inf inf inf]

L 11 0 oFF

DEPT OF CSE, NRCM 98 DHANANJAY Asst. Prof

DESIGN AND ANALYSIS OF ALGORITHM [CS3102PC]

Reduce row #3: by 2:

i if if if iZf 4

12 iBf imf i@f O

Reduce column # 1: by 11
Finf inf inf inf inf 1
1 inf inf inf 0
inf 1 inf inf 0
[inf in inf inf inf

L 0 0 iaf inf inf

The lower bound is; RCL = 13

Sothe RCL of node 7 (Considering vertex 3 from vertex 4) is:Cost(7)
=cost(4) + RCL+ A(4,3) =25+13+12=50

DEPT OF CSE, NRCM 99 DHANANJAY Asst. Prof

DESIGN AND ANALYSIS OF ALGORITHM [CS3102PC]

» Choose to go to vertex 5: Node 8 (path is 1->4->5)

Cost of edge <4,5> is: A(4,5) =0

Set row #4 = inf since we are considering edge <4,5>

Set column # 5 = inf since we airﬁj?o nsid q Wf edgfﬁf5> i’l’l_f 1
inf 11 inf inf

3 inf inf inf
L inf

Finf

Reduce the matrix:

Reduced row 2: by 11
inf inf inf1
0 inf in
Finf inf J J
inf inf inf
1 inf 0 inf inf
0 3
L inf O

Insummary: Sothe live nodes we have so far are:

: cost(2) = 35, path: 1->2

: cost(3) = 53, path: 1->3

: cost(5) = 31, path: 1->5

: cost(6) = 28, path: 1->4->2

: cost(7) = 50, path: 1->4->3

: cost(8) = 36, path: 1->4->5

Explore the node with the lowest cost: Node 6 has a cost of 28

0O N OO L1 W N

Vertices to be explored from node 6: 3 and 5

VYV VRS S

Now we are starting from the cost matrix at node 6 is:

DEPT OF CSE, NRCM 100 DHANANJAY Asst. Prof

DESIGN AND ANALYSIS OF ALGORITHM [CS3102PC]

Cost (6) = 28
inf inf inf inf inf |
inf inf 11 inf 0
0 inf inf inf 2
inf inf inf inf inf
L 11 inf 0 inf inf |

DEPT OF CSE, NRCM

101

DHANANJAY Asst. Prof

DESIGN AND ANALYSIS OF ALGORITHM [CS3102PC]

Choose to go to vertex 3: Node 9 (path is 1->4->2->3)
Cost of edge <2,3> is: A(2,3) =11

Set row #2 = inf since we are considering edge <2,3>

Set column # 3 = inf since we are considering edge <2,3>Set
A(3,1) = inf

Finf inf inf inf inf
TS 9 AR inf inf

inf inf inf inf 2 1
finf inf inf inf inf
L11 inf inf inf inf

Reduce the matrix: Reduce row #3: by 2

Finf inf infl inf inf
inf inf inf inf inf
inf inf inf inf O
[inf inf inf inf inf
L11 inf inf inf inf
Reduce column # 1: by 11 1
Finf inf inf inf inf
inf inf inf inf inf
inf inf inf inf 0

DEPT OF CSE, NRCM 102 DHANANJAY Asst. Prof

DESIGN AND ANALYSIS OF ALGORITHM [CS3102PC]

Iif i2f i2lf i2lf iaf L
0 i2f i2lf i2lf i2lf
The lower bound is: RCL=2+11=13

So the cost of node 9 (Considering vertex 3 from vertex 2) is:Cost(9) =
cost(6) + RCL + A(2,3) =28 + 13+ 11 =52

DEPT OF CSE, NRCM 103 DHANANJAY Asst. Prof

DESIGN AND ANALYSIS OF ALGORITHM [CS3102PC]

» Choose to go to vertex 5: Node 10 (path is 1->4->2->5)

Cost of edge <2,5>is: A(2,5) =0

Set row #2 = inf since we are considering edge <2,3>

Set column # 3 = inf since we are considering edge <2,3>
Set A(5,1) = inf

Finf inf inf inf 1inf
inf inf inf inf inf
0 inf inf inf inf
inf inf inf inf Inf

inf inf inf inf Inf

Reduce the matrix: Rows reduced

Columns reduced
The lower bound is: RCL=0

Sothe cost of node 10 (Considering vertex 5 from vertex 2) is:
Cost(10) = cost(6) + RCL+ A(2,3)=28+0+0=28

In summary: So the live nodes we have so far are:

: cost(2) = 35, path: 1->2

: cost(3) = 53, path: 1->3

: cost(5) = 31, path: 1->5

: cost(7) = 50, path: 1->4->3

: cost(8) = 36, path: 1->4->5

: cost(9) = 52, path: 1->4->2->3

AN NN
© 0N U W N

<

DEPT OF CSE, NRCM 104 DHANANJAY Asst. Prof

DESIGN AND ANALYSIS OF ALGORITHM [CS3102PC]

10: cost(2) = 28, path: 1->4->2->5
Explore the node with the lowest cost: Node 10 has a cost of 28
Vertices to be explored from node 10: 3

YV V. V X\

Now we are starting from the cost matrix at node 10 is:

Cost (10)=28
linf inf inf inf inf |
inf inf inf inf inf

0 inf inf inf inf
inf inf inf inf inf

L inf inf 0 inf inf |

» Choose to go to vertex 3: Node 11 (path is 1->4->2->5->3)

Cost of edge <5,3>is: A(5,3) =0

Set row #5 = inf since we are considering edge <5,3>

Set column # 3 = inf since we are considering edge <5,3>

Finf inf inf inf inf 1
inf inf inf inf inf
inf inf inf inf inf

[inf nf inf inf inf

Reduce the matrix: Rows reduced

Columns reduced
The lower bound is: RCL=0

Sothe cost of node 11 (Considering vertex 5 from vertex 3) is:

DEPT

OF CSE , NRCM 105 DHANANJAY Asst. Prof

DESIGN AND ANALYSIS OF ALGORITHM [CS3102PC]

State Space Tree:

Vertex=5

2 | 35 31
9 |52 10 | 28
Vertex=3
11 28

0/1 Knapsack Problem
What is Knapsack Problem: Knapsack problem is a problem in combinatorial
optimization,Given a set of items, each with a mass & a value, determine the
number of each item to include in a collection so thatthe total weight is less than
or equal to a given limit & the total value is aslarge as possible.
0-1 Knapsack Problem can formulate as. Let there be n items, Z1 to Z, where Z;jhas
value

Pi & weight wi. The maximum weight that can

carry inthe bag is m.All values and weights arenon

negative.

Maximize the sum of the values of the items in the knapsack, so that sumof the
weights mustbe less than the knapsack’s capacity m.

The formula can be stated as

maximize X p.x;
l=i=n

subject to X w.x; = M

1=i=n

DEPT OF CSE, NRCM 106 DHANANJAY Asst. Prof

DESIGN AND ANALYSIS OF ALGORITHM [CS3102PC]

To solve 0/1 knapsack problem using B&B:

» Knapsack is a maximization problem

T — PilLy
= Replace the objective fun;ogll"' by the functi%o make it into aminimiza
= The modified knapsack problem is stated as

Minimize — "7 | p;x;

subject to "1 | wiz; < m,

z; €{0,1},1<i<n
> Fixed tuple size solution space:
o Every leaf node in state space tree represents an answer for

varlai Al
is an answer node; other leaf nodes are infeasible

o For optimal solution, define

c(x) = — Z PiTi
1

& e
S15n for every answer node x

» Forinfeasible leaf nodes, C(I) =X

» For non leaf nodes
c(x) = min{c(Ichild(x)), c(rchild(x))}

» Define two functions c”(x) and u(x)
such that for everynode x,

¢"(x) <c(x) <u(x)

> Computing c¢*(-) and u()

Let x be anode atlevel 7,1 < j3<n-+1
Cost of assignment: —) ;o piTi
C[I} E - Zl{_i?;{_j Pilq

We can use u(x) = —) <, ; piTi
Using g — — > 1—i—5 Pz, An improved upper bound function z« (=) is
2e(r) — ubound(g. E Wi, 7 — L, 702)
1 <zi<3

DEPT OF CSE, NRCM 107 DHANANJAY Asst. Prof

DESIGN AND ANALYSIS OF ALGORITHM [CS3102PC]

Algorithm ubound (cp, cw, k, m)

// Input: cp: Current profit total
// Input: cw: Current weight total
// Input: k: Index of last removed item

// Input: m: Knapsack capacity

b=cp; c=cw;

for i:=k+1
to n
do{
if(c+
w[i] <
m)
then {

c:=c+wili]; b=b-pl[i];

}

}

return b;

}

NP-Hard and NP-Complete problems: Basic concepts, non
deterministic algorithms, NP -Hard and NPComplete
classes, Cook’stheorem.

Basic concepts:

NP, Nondeterministic Polynomial time

The problems has best algorithms for their solutions have “Computing
times”, that clusterinto two groups

Group 1 Group 2

DEPT OF CSE, NRCM 108 DHANANJAY Asst. Prof

DESIGN AND ANALYSIS OF ALGORITHM [CS3102PC]

> Problems with solution time bound by > Problems with solution times not
a polynomial of a small degree. bound by polynomial (simply non
polynomial)

> ltalso called “Tractable Algorithms”
These are hard orintractable
problems

Most Searching & Sorting algorithms

are polynomial time algorithms
None of the problems in this group

= has been solved by any polynomial
> Ex: time algorithm
Ordered Search (O (log n)),
Polynomial evaluation O(n) > Ex:

Traveling Sales Person O(n? 2"
Sorting O(n.log n) ’ 0@
napsac

0 one has been ableto develop a polynomial time algorithm for
anyproblem in the 2nd group (i.e., group 2)

So, it is compulsory and finding algorithms whose computing times
aregreater than polynomial very quickly because such vast amounts
of timeto execute that even moderatesize problems cannot be solved.

Theoryof NP-Completeness:

Show that may of the problems with no polynomial time algorithms are
computational timealgorithms are computationally related.

There are two classes of non-polynomial time problems
1. NP-Hard
NP-Complete

3. NP Complete Problem: A problem that is NP-Complete can
solvedin polynomial time ifand only if (iff) all other NP-
Complete problems can also be solved in polynomial time.

4. NP-Hard:Problem canbesolvedin polynomial time then
all NP-Complete problems can besolved in polynomial
time.

5. AIINP-Complete problemsare NP-Hard but some NP-Hard
problemsarenot know to be NP-Complete.

DEPT OF CSE, NRCM 109 DHANANJAY Asst. Prof

DESIGN AND ANALYSIS OF ALGORITHM [CS3102PC]

Nondeterministic Algorithms:

Algorithms with the property that the result of every operation is
uniquelydefined are termedas deterministic algorithms. Such algorithms

agree withthe way programs are executed on a computer.

Algorithms which contain operations whose outcomes are not
uniquely defined but arelimited to specified set of possibilities.

Such algorithmsare called nondeterministic algorithms.

The machine executing such operations is allowed to choose any
one of these outcomessubject to a termination condition to be

definedlater.

To specify nondeterministic algorithms,
thereare 3 new functions. Choice(S).
arbitrarily ~ chooses one of the
elements of sets S Failure (), Signals

an Unsuccessful completion

Success ().Signals a successful completion.

Example for Non Deterministic algorithms:

Algorithm Search(x){
//Problem isto search an element x

/loutput J, suchthat A[J]=x; or J=0ifxisnotin A
J:=Choice(1,n);
if(A[J]:=x) then {

Whenever there is a set of choices
that leads to a successful completion
then one such set of choices is
always made and the algorithm
terminates.

A Nondeterministic algorithm

Write(J); terminates unsuccessfully if and

Success(); only if (iff) there exists no set of

} choices leading to a successful

else{ signal.
write(0);
failure();
}
DEPT OF CSE, NRCM 110 DHANANJAY Asst. Prof

DESIGN AND ANALYSIS OF ALGORITHM [CS3102PC]

Nondeterministic Knapsack algorithm

Algorithm DKP(p, w, n, m, r, X){ p. given Profits

W:=0; w, given Weights

P:=0; n,Number of elements (number of
fori:=1tondo{ p or w)

X[i]:=choice(0, 1); m, Weight of bag limit
W:=W+xX[i]*wWl[i]; P.Final Profit

P:=P+x[i]*p[i]; W, Final weight

i}f((W>m) or (P<r))then Failure();

else Success();

}

The Classes NP-Hard & NP-Complete:

For measuring the complexity of an algorithm, we use the input length
asthe parameter. Forexample, An algorithm A is of polynomial
complexityp() such that the computing time of Ais O(p(n)) for every
input of size n.Decision problem/ Decision algorithm: Any problem for
which the answer is either zero orone is decision problem. Any
algorithm for a decision problem is termed a decision algorithm.

Optimization problem/ Optimization algorithm: Any problem
thatinvolves the identification of an optimal (either minimum or
maximum)

value of a given cost function isknown as an optimization
problem.An optimization algorithm is used to solve an
optimization problem.

P.is the set of all decision problems solvable by deterministic
algorithms in polynomial time.

NP.is the set of all decision problems solvable by nondeterministic
algorithms in polynomial time.

Since deterministicalgorithms are justa special case of nondeterministic,
by this weconcluded that P .NP

DEPT OF CSE, NRCM 111 DHANANJAY Asst. Prof

DESIGN AND ANALYSIS OF ALGORITHM [CS3102PC]

®)

NP

Commonly believed relationship between P
& NP

The most famous unsolvable problems in Computer Science is
Whether P=NP or P#£NPIn considering this problem, s.cook
formulated the following question.

If there any single problem in NP, such that if we showed itto be in ‘P’
then that wouldimply that P=NP.

Cook answered this question with
Theorem: Satisfiability is in P if and only if (iff) P=NP

-)Notation of Reducibility

Let L1 and L2 be problems, Problem Li reduces to L2 (written L1 a
L>2) iff there is a way to solve L1 by a deterministic polynomial
time algorithm using a deterministic algorithm thatsolves L2 in
polynomialtime

This implies that, if we have a polynomial time algorithm for L2,
Thenwe can solve L1 inpolynomial time.

Here a-) is a transitive relationi.e., Liat L2 and L2 a L3 then L1 a Ls

Aproblem L is NP-Hard if and only if (iff) satisfiability reduces to L ie., Statisfiability a
L

A problem L is NP-Complete if and only if (iff) L is NP-Hard and L € NP

P
(O ’

Complete

/”/

DEPT OF CSE, NRCM 112 DHANANJAY Asst. Prof

DESIGN AND ANALYSIS OF ALGORITHM [CS3102PC]

Commonly believed relationship among P, NP, NP-Completeand NP-

HardMost natural problems in NP are either in P or NP- complete.
Examples of NP-complete problems:

> Ppacking problems: SET-PACKING, INDEPENDENT-SET.
> Covering problems: SET-COVER, VERTEX-COVER.

> Sequencing problems: HAMILTONIAN-CYCLE, TSP.

> Partitioning problems: 3-COLOR, CLIQUE.

> Constraint satisfaction problems: SAT, 3-SAT.
Numerical problems: SUBSET-SUM, PARTITION, KNAPSACK

Cook’s Theorem: States that satisfiability is in P if and only if
P=NP
IfP=NPthen satisfiability is in P

If satisfiability is
in P, then
P=NPTo do this

> A-) Any polynomial time nondeterministic decision algorithm.
I-)Input of that algorithm
Then formula Q(A, 1), Such that Q is satisfiable iff ‘A’ has a successfultermination

with Input I.

> |f the length of ‘I’ is ‘n’ and the time complexity of A is p(n) for some polynomial
p() then length of Q is O(p3(n) log n)=0(p*(n))

The time needed to construct Q is also O(p3(n) log n).

> A deterministic algorithm ‘2’ to determine the outcome of ‘A’ on
any input ‘I’'Algorithm Z computes ‘Q’ and then uses a deterministic
algorithm for the satisfiability problem to determine whether ‘Q’ is
satisfiable.If O(q(m)) is the time needed to determine whether a formula
of length ‘m’ issatisfiable then the complexity of ‘2’ is O(p3(n) log n +

a(p?(n)log n)).

> |f satisfiability is ‘p’, then ‘g(m)’ is a polynomial function of ‘m’
and thecomplexity of ‘2’ becomes ‘O(r(n))’ for some polynomial ‘r()’.

> Hence, if satisfiability is in p, then for every nondeterministic algorithm A in
NP, wecan obtain a deterministic Z in p.

By this we shows that satisfiability is in p then P=NP

DEPT OF CSE, NRCM 113 DHANANJAY Asst. Prof

	UNIT I:
	History of Algorithm
	What is an Algorithm?
	For example,
	‘’a set of steps to accomplish or complete a task that is described precisely enough thata computer can run it’’.
	Algorithms for Problem Solving
	4 Distinct areas of study of algorithms:
	PSEUDOCODE:
	Pseudocode: High-level description of an algorithm.
	Example of Pseudocode:
	PERFORMANCE ANALYSIS:
	Space Complexity:
	Example 2:
	Time Complexity:
	Algorithm:
	analyse an Algorithm?
	Pseudo code for insertion Algorithm:
	Best case:
	Worst case:
	Order of growth:
	Complexity of Algorithms
	ASYMPTOTIC NOTATION
	Asymptotic Analysis of Algorithms:
	Big-O Notation
	Omega— Ω notation
	Theta- Θ notation
	Little Oh Notation
	Applications of Divide and conquer rule or algorithm:
	Binary search or Half-interval search algorithm:
	Merge Sort:
	Advantages of Merge Sort:
	Tree call of Merge sort
	Tree call of Merge sort (1, 10)
	Computing Time for Merge sort:
	T(n)= a if n=1; 2T(n/2)+ cn f n>1

	Quick Sort
	Strassen’s Matrix Multiplication:
	Data representation of sets:
	P[1:N].
	Weighting rule for Union(i, j):
	N-Queens Problem
	Algorithm:
	Place (k, i)
	RETURN TRUE;

	Subset Sum Problem

	N = 4, -2, 2, 3, 1
	There are two ways of solving the subset problem:
	Method 1: Recursion
	Let's understand that how can we solve the problem using recursion. Consider the array which is given below:

	First element in an array is 3. There are two scenarios:
	o Now we perform the same select and reject operation on element 4 as it is the first element of the array now.
	Now we perform the select and reject operation on element 5.

	Consider R-5. It also has two scenarios:
	Consider R-4. It has two scenarios:
	Consider S-5. It has two scenarios:
	Consider R-5. It has two scenarios:
	Applications of Graph coloring
	Greedy Algorithm
	UNIT-III
	Optimal Binary Search Tree
	First, we will calculate the values where j-i is equal to zero.
	Now we will calculate the values where j-i equal to 1.
	Now we will calculate the values where j-i = 2
	Now we will calculate the values when j-i = 4

	General formula for calculating the minimum cost is:

	DO
	END
	end
	Complexity Analysis of Optimal Binary Search Tree
	0/1 Knapsack problem
	wi = {3, 4, 5, 6}
	PI = {2, 3, 4, 1}
	The first row and the first column would be 0 as there is no item for w=0
	Now the value of 'i' gets incremented, and becomes 2.
	Now the value of 'i' gets incremented, and becomes 3.
	Now the value of 'i' gets incremented and becomes

	X = { 1, 0, 0}
	X = {1, 1, 0, 0}
	ALGORITHM:

	End
	END
	ELSE
	Complexity analysis
	All Pairs Shortest Path Algorithm – Introduction
	Principle of optimality :
	Algorithm for All Pairs Shortest Path
	Complexity analysis of All Pairs Shortest Path Algorithm
	Solution:
	Traveling salesman problem – Description
	Algorithm for Traveling salesman problem:
	Complexity Analysis of Traveling salesman problem

	Example
	Solution: (1)
	Trace the path:
	Reliability Design:
	Problems based on reliability design:
	Solution: (2)
	For Three Device D3:-

	UNIT-IV
	Greedy Method:
	Application of Greedy

	PRIM’S ALGORITHM: -
	Kruskal’s Algorithm:
	UNIT-V: Branch & Bound
	Example:
	The size of S reduced by restricting S

	𝖥I𝖥Ƒ 20 30 10 11 1
	Choose to go to vertex 3: Node 3:

	I
	10 i𝑛ƒ 9 0 i𝑛ƒ
	𝖥i𝖥ƒ i𝖥ƒ i𝖥ƒ i𝖥ƒ i𝖥ƒ 1
	10 i𝑛ƒ 9 0 i𝑛ƒ
	 Choose to go to vertex 3: Node 7 (path is 1->4->3)
	𝖥i𝖥ƒ i𝖥ƒ i𝖥ƒ i𝖥ƒ i𝖥ƒ 1
	i𝖥ƒ 1 i𝖥ƒ i𝖥ƒ 0

	1
	State Space Tree:
	The Classes NP-Hard & NP-Complete:

