
ALGORITHM DESIGN AND ANALYSIS [23CY603]

 1

UNIT I:

Introduction: Algorithm, Psuedo code for expressing algorithms, Performance Analysis- Space

complexity, Time complexity, Asymptotic Notation- Big oh notation, Omega notation, Theta

notation and Little oh notation.

Divide and conquer: General method, applications-Binary search, Quick sort, Merge sort, Strassen’s

matrix multiplication.

INTRODUCTION TO ALGORITHM

History of Algorithm

The word algorithm comes from the name of a Persian author, Abu Ja’far Mohammed ibnMusa al

Khowarizmi (c. 825 A.D.), who wrote a textbook on mathematics.

He is credited with providing the step-by-step rules for adding, subtracting, multiplying,and

dividing ordinary decimal numbers.

When written in Latin, the name became Algorismus, from which algorithm is but a smallstep

This word has taken on a special significance in computer science, where “algorithm” has come to

refer to a method that can be used by a computer for the solution of a problem

Between 400 and 300 B.C., the great Greek mathematician Euclid invented an algorithm

Finding the greatest common divisor (gcd) of two positive integers.

The gcd of X and Y is the largest integer that exactly divides both X and Y .

Eg.,the gcd of 80 and 32 is 16.

The Euclidian algorithm, as it is called, is considered to be the first non-trivial algorithmever

devised.

What is an Algorithm?

Algorithm is a set of steps to complete a task.

For example,

Task: to make a cup of tea.

Algorithm:

add water and milk to the kettle,

boil it, add tea leaves,

Add sugar, and then serve it in cup.

‘’a set of steps to accomplish or complete a task that is described precisely enough thata

computer can run it’’.

Described precisely: very difficult for a machine to know how much water, milk to beadded

etc. in the above tea making algorithm.

These algorithms run on computers or computational devices..For example, GPS in our

smartphones, Google hangouts.

ALGORITHM DESIGN AND ANALYSIS [23CY603]

 2

GPS uses shortest path algorithm.. Online shopping uses cryptography which uses RSA

algorithm.

Algorithm Definition1:

An algorithm is a finite set of instructions that, if followed, accomplishes a particular task.In

addition, all algorithms must satisfy the following criteria:

Input. Zero or more quantities are externally supplied.
Output. At least one quantity is produced.

Definiteness. Each instruction is clear and unambiguous.

Finiteness. The algorithm terminates after a finite number of steps.

Effectiveness. Every instruction must be very basic enough and must befeasible.

Algorithm Definition2:

An algorithm is a sequence of unambiguous instructions for solving a problem, i.e., forobtaining a

required output for any legitimate input in a finite amount of time.

Algorithms that are definite and effective are also called computational procedures.

A program is the expression of an algorithm in a programming language

Algorithms for Problem Solving

The main steps for Problem Solving are:

Problem definition

Algorithm design / Algorithm specification
Algorithm analysis

Implementation

Testing

[Maintenance]
Step1. Problem Definition
What is the task to be accomplished?

Ex: Calculate the average of the grades for a given student

Step2.Algorithm Design / Specifications:

ALGORITHM DESIGN AND ANALYSIS [23CY603]

 3

Describe: in natural language / pseudo-code / diagrams / etc

Step3. Algorithm analysis
Space complexity - How much space is required

Time complexity - How much time does it take to run the algorithmComputer Algorithm

An algorithm is a procedure (a finite set of well-defined instructions) for accomplishingsome tasks

which, given an initial state terminate in a defined end-state

The computational complexity and efficient implementation of the algorithm are importantin computing,

and this depends on suitable data structures.

Steps 4,5,6: Implementation, Testing, Maintainance

Implementation:
Decide on the programming language to use C, C++, Lisp, Java, Perl, Prolog, assembly, etc.
, etc.

Write clean, well documented code

Test, test, test
Integrate feedback from users, fix bugs, ensure compatibility across different versions

Maintenance.Release Updates,fix bugs

Keeping illegal inputs separate is the responsibility of the algorithmic problem, while treating special classes

of unusual or undesirable inputs is the responsibility of the algorithm itself.

4 Distinct areas of study of algorithms:

How to devise algorithms. Techniques – Divide & Conquer, Branch and Bound ,Dynamic

Programming

How to validate algorithms.

Check for Algorithm that it computes the correct answer for all possible legal inputs.
algorithm validation. First Phase

Second phase Algorithm to Program Program Proving or Program Verification
Solution be stated in two forms:

First Form: Program which is annotated by a set of assertions about the input and outputvariables of

the program predicate calculus

ALGORITHM DESIGN AND ANALYSIS [23CY603]

 4

Second form: is called a specification

4 Distinct areas of study of algorithms (..Contd)

How to analyze algorithms.
Analysis of Algorithms or performance analysis refer to the task of determining howmuch

computing time & storage an algorithm requires

How to test a program 2 phases
Debugging - Debugging is the process of executing programs on sample data sets todetermine

whether faulty results occur and, if so, to correct them.

Profiling or performance measurement is the process of executing a correct program ondata sets and

measuring the time and space it takes to compute the results

PSEUDOCODE:

Algorithm can be represented in Text mode and Graphic mode

Graphical representation is called Flowchart

Text mode most often represented in close to any High level language such as C, Pascal Pseudocode

Pseudocode: High-level description of an algorithm.
More structured than plain English.

Less detailed than a program.

Preferred notation for describing algorithms.

Hides program design issues.

Example of Pseudocode:

To find the max element of an array

Algorithm arrayMax(A, n) Input array A of

n integers Output maximum element of A

currentMax A[0]

for i 1 to n 1 do

if A[i] currentMax then

currentMax A[i]

return currentMax

Control flow
if … then … [else …]

while … do …

repeat … until …

for … do …

Indentation replaces braces

Method declaration

Algorithm method (arg [, arg…])

Input …

Output …

Method call

var.method (arg [, arg…])
Return value

return expression

Expressions

Assignment (equivalent to)

Equality testing (equivalent to)

n2 Superscripts and other mathematical formatting allowed

ALGORITHM DESIGN AND ANALYSIS [23CY603]

 5

PERFORMANCE ANALYSIS:

What are the Criteria for judging algorithms that have a more direct relationship toperformance?

computing time and storage requirements.

Performance evaluation can be loosely divided into two major phases:

a priori estimates and

a posteriori testing.

refer as performance analysis and performance measurement respectively

The space complexity of an algorithm is the amount of memory it needs to run tocompletion.

The time complexity of an algorithm is the amount of computer time it needs to run tocompletion.

Space Complexity:

Space Complexity Example:

Algorithm abc(a,b,c)
{

return a+b++*c+(a+b-c)/(a+b) +4.0;

}

The Space needed by each of these algorithms is seen to be the sum of the followingcomponent

A fixed part that is independent of the characteristics (eg:number,size)of the inputs andoutputs.

The part typically includes the instruction space (ie. Space for the code), space for simple variable and fixed-

size component variables (also called aggregate) space for constants, and so on.

2. A variable part that consists of the space needed by component variables whose size is dependent on the

particular problem instance being solved, the space needed by referencedvariables (to the extent that is

depends on instance characteristics), and the recursion stackspace.

The space requirement s(p) of any algorithm p may therefore be written as,S(P) = c+ Sp(Instance

characteristics)

Where ‘c’ is a constant.

Example 2:

Algorithm sum(a,n)

{ s=0.0;

for I=1 to n dos= s+a[I]; return s;

}

The problem instances for this algorithm are characterized by n,the number ofelements to be summed.

The space needed d by ‘n’ is one word, since it is of type integer.

The space needed by ‘a’a is the space needed by variables of tyepe array offloating point numbers.

This is atleast ‘n’ words, since ‘a’ must be large enough to hold the ‘n’elements to be summed.

So,we obtain Ssum(n)>=(n+s)

[n for a[],one each for n,I a& s]

Time Complexity:

The time T(p) taken by a program P is the sum of the compile time and therun time(execution time)

ALGORITHM DESIGN AND ANALYSIS [23CY603]

 6

The compile time does not depend on the instance characteristics. Also we may assume that a compiled

program will be run several times without recompilation .Thisrum time is denoted by tp(instance

characteristics).

The number of steps any problem statement is assigned depends on the kind ofstatement.

• For example, comments à 0 steps.

Assignment statements is 1 steps.

[Which does not involve any calls to other algorithms]

Interactive statement such as for, while & repeat-untilà Control part of the statement.

We introduce a variable, count into the program statement to increment count with initial value 0.Statement

to increment count by the appropriate amount are introducedinto the program.

This is done so that each time a statement in the original program is executescount is incremented by the step

count of that statement.

Algorithm:

Algorithm sum(a,n)

{
s= 0.0;
count = count+1;for I=1 to n do

{

count =count+1;s=s+a[I]; count=count+1;

}
count=count+1; count=count+1; return s;

}

If the count is zero to start with, then it will be 2n+3 on termination. So eachinvocation of sum execute a total

of 2n+3 steps.

The second method to determine the step count of an algorithm is to build atable in which we list the total

number of steps contributes by each statement.

First determine the number of steps per execution (s/e) of the statement and thetotal number of times (ie.,

frequency) each statement is executed.

By combining these two quantities, the total contribution of all statements, the step count for the entire

algorithm is obtained.

Statement Steps perexecution Frequency Total

1. Algorithm

Sum(a,n)2.{

3. S=0.0;

4. for I=1 to n do5.

s=s+a[I];

6. return s;7. }

0
0

1

1

1

1

0

-
-1

n+1n 1

-

0
0

1
n+1n 1

0

Total 2n+3

ALGORITHM DESIGN AND ANALYSIS [23CY603]

 7

analyse an Algorithm?

Let us form an algorithm for Insertion sort (which sort a sequence of numbers).The pseudocode for the

algorithm is give below.

Pseudo code for insertion Algorithm:

Identify each line of the pseudo code with symbols such as C1, C2 ..

Pseudo code for Insertion Algorithm Line Identification

for j=2 to A length C1

key=A[j] C2

//Insert A[j] into sorted Array A[1........ j-1] C3

i=j-1 C4

while i>0 & A[j]>key C5

A[i+1]=A[i] C6

i=i-1 C7

A[i+1]=key C8

Let Ci be the cost of ith line. Since comment lines will not incur any cost C3=0.

Cost No. Of times

Executed

C1 N

C2 n-1

C3=0 n-1

C4 n-1

C5 𝑛−1

∑ 𝑡j

j=2

C6 𝑛

∑ 𝑡j − 1
j=2

C7 𝑛

∑ 𝑡j − 1
j=2

C8 n-1

Running time of the algorithm is:
T(n)=C1n+C2(n-1)+0(n-1)+C4(n-1)+C5(∑𝑛−1 𝑡j)+C6(∑𝑛 𝑡j − 1)+C7(∑𝑛 𝑡j − 1)+
j=2 j=2 j=2

C8(n-1)

ALGORITHM DESIGN AND ANALYSIS [23CY603]

 8

Best case:

It occurs when Array is sorted.All tj values are 1.

T(n)=C1n+C2(n-1)+0 (n-1)+C4(n-1)+C5(∑𝑛−1
1) +C6(∑𝑛 1 − 1)+C7(∑𝑛 1 − 1)+

C8(n-1) j=2 j=2 j=2

=C1n+C2 (n-1) +0 (n-1) +C4 (n-1) +C5 + C8 (n-1)

= (C1+C2+C4+C5+ C8) n-(C2+C4+C5+ C8)

· Which is of the form an+b.

· Linear function of n.

So, linear growth.

Worst case:

It occurs when Array is reverse sorted, and tj =j

T(n)=C1n + C2(n-1)+0 (n-1)+C4(n-1)+C5(∑𝑛−1
j) +C6(∑𝑛 j − 1)+C7(∑𝑛 j − 1) +

j=2 j=2 j=2

C8(n-1)

=C1n+C2(n-1)+C4(n-1)+C5(𝑛(𝑛−1) − 1) +C6(∑𝑛 (𝑛−1)
)+C7(∑𝑛 (𝑛−1))+ C8(n-1)

2

which is of the form an2+bn+c
j=2 2 j=2 2

Quadratic function. So in worst case insertion set grows in n2.Why we concentrate on worst-case running

time?

· The worst-case running time gives a guaranteed upper bound on the running time for
any input.

· For some algorithms, the worst case occurs often. For example, when searching, theworst case often

occurs when the item being searched for is not present, and searchesfor absent items may be frequent.

· Why not analyze the average case? Because it’s often about as bad as the worst case.

Order of growth:

It is described by the highest degree term of the formula for running time. (Drop lower-orderterms. Ignore the

constant coefficient in the leading term.)

Example: We found out that for insertion sort the worst-case running time is of the forman2 + bn + c.

Drop lower-order terms. What remains is an2.Ignore constant coefficient. It results in n2.But we cannot say

that the worst-case running time T(n) equals n2 .Rather It grows like n2 . But itdoesn’t equal n2.We say that

the running time is Θ (n2) to capture the notion that the order of growth is n2.

ALGORITHM DESIGN AND ANALYSIS [23CY603]

 9

We usually consider one algorithm to be more efficient than another if its worst-caserunning time has a

smaller order of growth.

Complexity of Algorithms

The complexity of an algorithm M is the function f(n) which gives the running time and/or storage space

requirement of the algorithm in terms of the size ‘n’ of the input data. Mostly, the storage space required by

an algorithm is simply a multiple of the data size ‘n’.

Complexity shall refer to the running time of the algorithm.

The function f(n), gives the running time of an algorithm, depends not only on the size ‘n’ of the input data

but also on the particular data. The complexity function f(n) for certain cases are:

1. Best Case : The minimum possible value of f(n) is called the best case.

2. Average Case : The expected value of f(n).

3. Worst Case : The maximum value of f(n) for any key possible input.

ASYMPTOTIC NOTATION

Formal way notation to speak about functions and classify them

The following notations are commonly use notations in performance analysis and used tocharacterize the

complexity of an algorithm:

1. Big–OH (O) ,

2. Big–OMEGA (Ω),

3. Big–THETA (Θ) and

4. Little–OH (o)

Asymptotic Analysis of Algorithms:

Our approach is based on the asymptotic complexity measure. This means that we don’t try tocount the exact

number of steps of a program, but how that number grows with the size of theinput to the program. That gives

us a measure that will work for different operating systems, compilers and CPUs. The asymptotic complexity

is written using big-O notation.

· It is a way to describe the characteristics of a function in the limit.

· It describes the rate of growth of functions.

· Focus on what’s important by abstracting away low-order terms and constant factors.

· It is a way to compare “sizes” of functions:O≈ ≤

· Θ ≈ =o ≈ < ω ≈ >

ALGORITHM DESIGN AND ANALYSIS [23CY603]

 10

·

·

Time complexity Name Example

O(1) Constant Adding an element to thefront

of a linked list

O(logn) Logarithmic Finding an element in asorted

array

O (n) Linear Finding an element in an

unsorted array

O(nlog n) Linear Logarithmic Sorting n itemsby

‘divide-and-conquer’-

Mergesort

O(n2) Quadratic Shortest path between two
nodes in a graph

O(n3) Cubic Matrix Multiplication

O(2n) Exponential The Towers of Hanoiproblem

·
· Big ‘oh’: the function f(n)=O(g(n)) iff there exist positive constants c and no such thatf(n)<=c*g(n) for all n,

n>= no.

· Omega: the function f(n)=(g(n)) iff there exist positive constants c and no such thatf(n) >= c*g(n) for all n, n
>= no.

· Theta: the function f(n)=(g(n)) iff there exist positive constants c1,c2 and no such that c1g(n) <= f(n) <= c2

g(n) for all n, n >= no

· Big-O Notation

·

· This notation gives the tight upper bound of the given function. Generally we represent it as f(n) = O(g
(11)). That means, at larger values of n, the upper bound off(n) is g(n). For example, if f(n) = n4 + 100n2 +

10n + 50 is the given algorithm, then n4 is g(n). That means g(n) gives the maximum rate of growth for f(n)

at larger values of n.

·

· O —notation defined as O(g(n)) = {f(n): there exist positive constants c and no such that 0 <= f(n) <=

cg(n) for all n >= no}. g(n) is an asymptotic tight upper bound for f(n). Our objective is to give some rate of

growth g(n) which is greater than given algorithms rate of growth f(n).

·

· In general, we do not consider lower values of n. That means the rate of growth at lower values of n is not

important. In the below figure, no is the point from which we consider the rate of growths for a given

algorithm. Below no the rate of growths may be different.

ALGORITHM DESIGN AND ANALYSIS [23CY603]

 11

Note Analyze the algorithms at larger values of n only What this means is, below no we donot care for rates

of growth.

Omega— Ω notation

Similar to above discussion, this notation gives the tighter lower bound of the givenalgorithm and we represent it

as f(n) = Ω (g(n)). That means, at larger values of n, thetighter lower bound of f(n) is g

For example, if f(n) = 100n2 + 10n + 50, g(n) is Ω (n2).
The . Ω. notation as be defined as Ω (g (n)) = {f(n): there exist positive constants c andno such that 0 <= cg (n)

<= f(n) for all n >= no}. g(n) is an asymptotic lower bound for f(n). Ω (g (n)) is the set of functions with

smaller or same order of growth as f(n).

Theta- Θ notation

This notation decides whether the upper and lower bounds of a given function are same ornot. The

average running time of algorithm is always between lower bound and upper bound.

If the upper bound (O) and lower bound (Ω) gives the same result then Θ notation will also have the same

rate of growth. As an example, let us assume that f(n) = 10n + n is the expression. Then, its tight upper

bound g(n) is O(n). The rate of growth in best case is g (n) = 0(n). In this case, rate of growths in best case

and worst are same. As a result, the average case will also be same.

ALGORITHM DESIGN AND ANALYSIS [23CY603]

 12

None: For a given function (algorithm), if the rate of growths (bounds) for O and Ω are notsame then the rate

of growth Θ case may not be same.

Now consider the definition of Θ notation It is defined as Θ (g(n)) = {f(71): there exist positive constants C1,

C2 and no such that O<=5 c1g(n) <= f(n) <= c2g(n) for all n >= no}.g(n) is an asymptotic tight bound for f(n).

Θ (g(n)) is the set of functions with the same order of growth as g(n).

Important Notes

For analysis (best case, worst case and average) we try to give upper bound (O) and lower bound (Ω) and

average running time (Θ). From the above examples, it should also be clearthat, for a given function

(algorithm) getting upper bound (O) and lower bound (Ω) and average running time (Θ) may not be possible

always.

For example, if we are discussing the best case of an algorithm, then we try to give upper bound (O) and

lower bound (Ω) and average running time (Θ).

In the remaining chapters we generally concentrate on upper bound (O) because knowing lower bound (Ω) of

an algorithm is of no practical importance and we use 9 notation if upper bound (O) and lower bound (Ω) are

same.

Little Oh Notation

The little Oh is denoted as o. It is defined as : Let, f(n} and g(n} be the non negativefunctions th
Lim= ƒ(𝑛)
= 0
such that f(n}= o(g{n)} i.e f of n is little Oh of g of n.

ALGORITHM DESIGN AND ANALYSIS [23CY603]

 13

f(n) = o(g(n)) if and only if f'(n) = o(g(n)) and f(n) != Θ {g(n))

Applications of Divide and conquer rule or algorithm:

 Binary search,

 Quick sort,

 Merge sort,

 Strassen’s matrix multiplication.

Binary search or Half-interval search algorithm:

1. This algorithm finds the position of a specified input value (the search "key") within an array

sorted by key value.

2. In each step, the algorithm compares the search key value with the key value of themiddle

element of the array.

3. If the keys match, then a matching element has been found and its index, or position,is returned.

4. Otherwise, if the search key is less than the middle element's key, then the algorithmrepeats its

action on the sub-array to the left of the middle element or, if the search key is greater, then the

algorithm repeats on sub array to the right of the middle element.

5. If the search element is less than the minimum position element or greater than themaximum

position element then this algorithm returns not found.

Binary search algorithm by using recursive methodology:

Program for binary search (recursive) Algorithm for binary search (recursive)
int binary_search(int A[], int key, int imin, int imax) Algorithm binary_search(A, key, imin, imax)

{

if (imax < imin)

return array is empty;if(key<imin || K>imax)

return element not in array listelse

{

int imid = (imin +imax)/2;if (A[imid] > key)

return binary_search(A, key, imin, imid-1);else if (A[imid] <

key)

return binary_search(A, key, imid+1, imax);else

return imid;

}

}

{

if (imax < imin) then return “array is empty”;

if(key<imin || K>imax) then return “element not in

array list”else

{

imid = (imin +imax)/2;if (A[imid] > key) then

return binary_search(A, key, imin, imid-1);else if

(A[imid] < key) then

return binary_search(A, key, imid+1, imax);else

return imid;
}
}

Time Complexity: Data structure:- Array

 For successful search Unsuccessful search

 Worst case O(log n) or θ(log n)Average

case O(log n) or θ(log n)

Best case O(1) or θ(1)

θ(log n):- for all cases.

http://en.wikipedia.org/wiki/Sorted_array
http://en.wikipedia.org/wiki/Sorted_array

ALGORITHM DESIGN AND ANALYSIS [23CY603]

 14

MERGE SORT:
The merge sort splits the list to be sorted into two equal halves, and places them in separate arrays. This

sorting method is an example of the DIVIDE-AND-CONQUER paradigm i.e. it breaks the data into two

halves and then sorts the two half data sets recursively, and finally merges them to obtain the complete

sorted list. The merge sort is a comparison sort and has an algorithmic complexity of O (n log n).

Elementary implementations of the merge sort make use oftwo arrays - one for each half of the data set.

The following image depicts the complete procedureof merge sort.

Advantages of Merge Sort:

1. Marginally faster than the heap sort for larger sets
2. Merge Sort always does lesser number of comparisons than Quick Sort. Worst case for merge sort

does about 39% less comparisons against quick sort’s average case.

3. Merge sort is often the best choice for sorting a linked list because the slow random- access

performance of a linked list makes some other algorithms (such as quick sort) perform poorly, and others

(such as heap sort) completely impossible.

Algorithm for Merge sort:

ALGORITHM DESIGN AND ANALYSIS [23CY603]

 15

Algorithm mergesort(low, high)

{
if(low<high) then

// Dividing Problem into Sub-problems and

{
this “mid” is for finding where to split the set.mid=(low+high)/2;

mergesort(low,mid);

mergesort(mid+1,high); //Solve the sub-problemsMerge(low,mid,high); // Combine the solution
}

}
void Merge(low, mid,high){k=low;

i=low; j=mid+1;

while(i<=mid&&j<=high) do{if(a[i]<=a[j]) then

{
temp[k]=a[i];i++;

k++;

}
else
{

temp[k]=a[j];j++;
k++;

}

}

while(i<=mid) do{temp[k]=a[i];
i++;k++;

}

while(j<=high) do{temp[k]=a[j];

j++;k++;
}

For k=low to high doa[k]=temp[k];
}
For k:=low to high do a[k]=temp[k];

}

ALGORITHM DESIGN AND ANALYSIS [23CY603]

 16

1, 1
c

2, 2

1, 2 3 , 3

1, 5

4, 4 5, 5

4, 5

Tree call of Merge sort

Consider a example: (From text book) A[1:10]={310,285,179,652,351,423,861,254,450,520}

Tree

Tree call of Merge sort (1, 10)

all of Merge Sort Represents the sequenc e 6o,f6r ecu rsiv7e, c7a lls that are produced by

“Once observe the explained notes in class room”

Computing Time for Merge sort:

The time for the merging operation in proportional to n, then computing time for merge sortis described

by using recurrence relation.

T(n)= a if n=1; 2T(n/2)+ cn f n>1
Here c, a Constants. If n is power of 2, n=2k

Form recurrence relationT(n)= 2T(n/2) + cn

2[2T(n/4)+cn/2] + cn

4T(n/4)+2cn

22 T(n/4)+2cn

23 T(n/8)+3cn

24 T(n/16)+4cn2k T(1)+kcn an+cn(log n)

8, 8

6, 8

6, 10

1, 10

9,9

9, 10

6, 7 10, 10

ALGORITHM DESIGN AND ANALYSIS [23CY603]

 17

merge sort. By representing it by in the form of Asymptotic notation O isT(n)=O(nlog n)

QUICK SORT
Quick Sort is an algorithm based on the DIVIDE-AND-CONQUER paradigm that selects a pivotelement and

reorders the given list in such a way that all elements smaller to it are on one side and those bigger than it are on
the other. Then the sub lists are recursively sorted until the list getscompletely sorted. The time complexity of this

algorithm is O (n log n).

 Auxiliary space used in the average case for implementing recursive function calls is O (log n)

and hence proves to be a bit space costly, especially when it comes to largedata sets.


1, 3
Its worst case has a time complexity of O (n) which can prove very fatal for largedata sets.

Competitive sorting algorithms

Algorithm for Quick sort

Algorithm quickSort (a, low, high) {If(high>low) then{ m=partition(a,low,high);

if(low<m) then quick(a,low,m); if(m+1<high) then quick(a,m+1,high);

}}

Algorithm partition(a, low, high){i=low,j=high;

mid=(low+high)/2;pivot=a[mid];

while(i<=j) do { while(a[i]<=pivot)

i++;

while(a[j]>pivot)j--;
if(i<=j){ temp=a[i];
a[i]=a[j]; a[j]=temp;

i++;

j--;
}}

return j;
}

Name

Time Complexity
Space

Complexity
Best case AverageCase WorstCase

Bubble O(n) - O(n2) O(n)

Insertion O(n) O(n2) O(n2) O(n)

Selection O(n2) O(n2) O(n2) O(n)

Quick O(log n) O(n log n) O(n2) O(n + log n)

2

ALGORITHM DESIGN AND ANALYSIS [23CY603]

 18

Merge O(n
log n)

O(n
log n)

O(n log
n)

O(2n)

Heap O(n
log n)

O(n log n) O(n log
n)

O(n)

Strassen’s Matrix Multiplication:
Let A and B be two n×n Matrices. The product matrix C=AB is also a n×n matrix whose i, jthelement is

formed by taking elements in the ith row of A and jth column of B and multiplyingthem to get

C(i, j)=∑1≤𝑘≤𝑛 𝐴(i, 𝑘)𝐵(𝑘, j)

Here 1≤ i & j ≤ n means i and j are in between 1 and n.

To compute C(i, j) using this formula, we need n multiplications.

The divide and conquer strategy suggests another way to compute the product of two n×nmatrices.

For Simplicity assume n is a power of 2 that is n=2k
Here k any nonnegative integer.
If n is not power of two then enough rows and columns of zeros can be added to both A andB, so that

resulting dimensions are a power of two.

Let A and B be two n×n Matrices. Imagine that A & B are each partitioned into four squaresub matrices. Each

sub matrix having dimensions n/2×n/2.

The product of AB can be computed by using previous formula.If AB is product of 2×2 matrices then
If AB is product of 2×2 matrices then
𝐴11 𝐴12 𝐵11 𝐵12 𝐶11 𝐶12 () () = (

)
𝐴21 𝐴22 𝐵21 𝐵22 𝐶21 𝐶22

C11=A11B11+A12B21 C12=A11B12+A12B22 C21=A21B11+A22B21 C22= A21B12+A22B22

Here 8 multiplications and 4 additions are performed.

Note that Matrix Multiplication are more Expensive than matrix addition and subtraction.

Volker strassen has discovered a way to compute the Ci,j of above using 7 multiplications and 18 additions or

subtractions.

For this first compute 7 n/2×n/2 matrices P, Q, R, S, T, U & VP=(A11+A22)(B11+B22)

Q=(A21+A22)B11 R=A11(B12-B22) S=A22(B21-B11) T=(A11+A12)B22 U=(A21-A11)(B11+B12)

V=(A12-A22)(B21+B22)

C11=P+S-T+V

C12=R+T T(n)= b if
n≤2;

C21=Q+S

C22=P+R-Q+U

7T(n/2)+ cn2 if

n>2

T(n)= b if n≤2;
8T(n/2)+ cn2 if n>2

DESIGN AND ANALYSIS OF ALGORITHM [CS3102PC]

DEPT OF CSE , NRCM 19 DHANANJAY Asst. Prof

sets:

3

UNIT-II
Disjoint Sets: Disjoint set operations, union and find algorithms

Backtracking: General method, applications, n-queen’s problem, sum of subsets problem,graph coloring

Disjoint Sets: If Si and Sj, i≠j are two sets, then there is no element that is in both Si and Sj..

For example: n=10 elements can be partitioned into three disjoint sets,

Disjoint set Operations:

Disjoint set Union

Find(i)

Disjoint set Union: Mea nsS1CUoSm2binat ion of two disjoint sets elements. Form

aboveexample S1 U S2 ={1,7,8,9,5,2,10 }

For S1 U S2 tree representation, simply make one of the treeis a
subtreeof the other.

1 1

7 8 9
5 5 7 8 9

2 10 2 10

S1 U S2 S2 U S1

Find: Given element i, find the set containing i.

Form above example:

Find(4) S3 Find(1)

S1 Find(10) S2

DATA REPRESENTATION OF SETS:
Tress can be accomplished easily if, with each set name, we keep a pointer tothe root
of thetree representing that set.

S1= {1, 7, 8, 9}

S2= {2, 5, 10}

1

7 8 9 2 10 4 6
S1 S2 S3

DESIGN AND ANALYSIS OF ALGORITHM [CS3102PC]

DEPT OF CSE , NRCM 20 DHANANJAY Asst. Prof

For presenting the union and find algorithms, we ignore the set names andidentify sets
justby the roots of the trees representing them.
For example: if we determine that element ‘i’ is in a tree with root ‘j’ has apointer to
entry‘k’ in the set name table, then the set name is just name[k]

For unite (adding or combine) to a particular set we use FindPointer function.
Example: If you wish to unite to Si and Sj then we wish to unite the tree with

rootsFindPointer (Si) and FindPointer (Sj)

FindPointer is a function that takes a set name and determines the root ofthe

tree thatrepresents it.

For determining operations:

Find(i) 1St determine the root of the tree and find its pointer to entry in
setname table.Union(i, j) Means union of two trees whose roots are i and j.

If set contains numbers 1 through n, we represents tree node

P[1:N].
Maximum number of elements.

i 1 2 3 4 5 6 7 8 9 10

P -1 5 -1 3 -1 3 1 1 1 5

 -1.

nd(i) by following the indices, starting at i until we reach a node with parent value
Example: Find(6) start at 6 and then moves to 6’s parent. Since P[3] is negative, we
reachedthe root.

DESIGN AND ANALYSIS OF ALGORITHM [CS3102PC]

DEPT OF CSE , NRCM 21 DHANANJAY Asst. Prof

Algorithm for finding Union(i, j): Algorithm for find(i)

Algorithm Simple union(i, j)
{

P[i]:=j; // Accomplishes the union

}

Algorithm SimpleFind(i)
{

While(P[i]≥0) do i:=P[i];

return i;
}

If n numbers of roots are there then the above algorithms are not
useful forunion and find.For union of n trees Union(1,2),

Union(2,3), Union(3,4),…..Union(n-1,n).

For Find i in n trees Find(1), Find(2),….Find(n).

Time taken for the union (simple union) is O(1) (constant).

For the n-1 unions O(n).

Time taken for the find for an element at level i of a tree is O(i).

For n finds O(n2).

To improve the performance of our union and find algorithms by

avoiding thecreation ofdegenerate trees. For this we use a weighting

rule for union(i, j)

WEIGHTING RULE FOR UNION(I, J):
If the number of nodes in the tree with root ‘i’ is less than the tree with
root ‘j’,then make ‘j’the parent of ‘i’; otherwise make ‘i’ the parent of
‘j’.

DESIGN AND ANALYSIS OF ALGORITHM [CS3102PC]

DEPT OF CSE , NRCM 22 DHANANJAY Asst. Prof

N-QUEENS PROBLEM

N - Queens problem is to place n - queens in such a manner on an n x n chessboard that no

queensattack each other by being in the same row, column or diagonal.

It can be seen that for n =1, the problem has a trivial solution, and no solution exists for n =2

and n =3.So first we will consider the 4 queens problem and then generate it to n - queens

problem.

Given a 4 x 4 chessboard and number the rows and column of the chessboard 1 through 4.

Algorithm WeightedUnion(i,j)

//Union sets with roots i and j, i≠j

// The weighting rule, p[i]= -count[i] and p[j]= -count[j].

{

temp := p[i]+p[j];

 if (p[i]>p[j]) then

{ // i has fewer
nodes.P[i]:=j;

P[j]:=temp;

}

else

{ // j has fewer or equal
nodes.P[j] := i;

P[i] := temp;

}

Algorithm for weightedUnion(i, j)

DESIGN AND ANALYSIS OF ALGORITHM [CS3102PC]

DEPT OF CSE , NRCM 23 DHANANJAY Asst. Prof

Since, we have to place 4 queens such as q1 q2 q3 and q4 on the chessboard, such that no two

queens attack each other. In such a conditional each queen must be placed on a different row,
i.e., we put queen"i" on row "i."

Now, we place queen q1 in the very first acceptable position (1, 1). Next, we put queen q2 so that both

these queens do not attack each other. We find that if we place q2 in column 1 and 2, then the

dead end is encountered. Thus the first acceptable position for q2 in column 3, i.e. (2, 3) but

then no position is left for placing queen 'q3' safely. So we backtrack one step and place the

queen 'q2' in (2, 4), the next best possible solution. Then we obtain the position for placing 'q3'

which is (3, 2). But later this positionalso leads to a dead end, and no place is found where 'q4'

can be placed safely. Then we have to backtrack till 'q1' and place it to (1, 2) and then all other

queens are placed safely by moving q2 to (2, 4),q3 to (3, 1) and q4 to (4, 3). That is, we get the

solution (2, 4, 1, 3). This is one possible solution for the 4-queens problem. For another
possible solution, the whole method is repeated for all partial solutions. The other solutions for

4 - queens problems is (3, 1, 4, 2) i.e.

The implicit tree for 4 - queen problem for a solution (2, 4, 1, 3) is as follows:

DESIGN AND ANALYSIS OF ALGORITHM [CS3102PC]

DEPT OF CSE , NRCM 24 DHANANJAY Asst. Prof

Fig shows the complete state space for 4 - queens problem. But we can use backtracking method to

generate the necessary node and stop if the next node violates the rule, i.e., if two queens are attacking.

DESIGN AND ANALYSIS OF ALGORITHM [CS3102PC]

DEPT OF CSE , NRCM 25 DHANANJAY Asst. Prof

ALGORITHM:

Place (k, i)

{

For j ← 1 to k - 1

do if (x [j] = i)
or (Abs x [j]) -

i) = (Abs (j - k))
then return

false;

RETURN TRUE;
}

N - QUEENS (K, N)
{

For i ← 1 to n

do if Place (k, i) then

{

x [k] ← i;

if (k ==n) then write (x [1 n));

else

N - Queens (k + 1, n);

}

}

SUBSET SUM PROBLEM

It is one of the most important problems in complexity theory. The problem is given an A set of

integersa1, a2,…., an upto n integers. The question arises that is there a non-empty subset such

that the sum of the subset is given as M integer?. For example, the set is given as [5, 2, 1, 3, 9],

DESIGN AND ANALYSIS OF ALGORITHM [CS3102PC]

DEPT OF CSE , NRCM 26 DHANANJAY Asst. Prof

and the sum of the subset is 9; the answer is YES as the sum of the subset [5, 3, 1] is equal to 9.
This is an NP-complete problem again. It is the special case of knapsack

Let's understand this problem through

an example.problem.

We have a set of 5 integers given below:

N = 4, -2, 2, 3, 1

We want to find out the subset whose sum is equal to 5. There are many solutions to this problem.

The naïve approach, i.e., brute-force search generates all the possible subsets of the original

array, i.e., there are 2n possible states. Here the running time complexity would be exponential.

Then, we consider all these subsets in O(N) linear running time and checks whether the sum of

the items is M or not.

The dynamic programming has pseudo-polynomial running time.

Statement: Given a set of positive integers, and a value sum, determine that the sum of the

subset of a given set is equal to the given sum.

THERE ARE TWO WAYS OF SOLVING THE SUBSET PROBLEM:

o Recursion

o Dynamic programming

METHOD 1: RECURSION

Let's understand that how can we solve the problem using recursion. Consider the

array which is given below:

ARR = [3, 4, 5, 2]

sum = 9 result = []

In the above example, we have taken an array, and the empty array named result that stores all

the values whose resultant sum is equal to 9.

FIRST ELEMENT IN AN ARRAY IS 3. THERE ARE TWO SCENARIOS:

o First scenario is select. The sum is equal to the target sum - value of first
element, i.e., 9 - 3 =6 and the first element, i.e., 3 gets stored in the result array,
i.e., result[].

o Second scenario is reject. The array arr contains the elements 4, 5, 2, i.e., arr =
[4, 5, 2] and sumwould be same as 9 as we are rejecting the element 3. The
result[] array would remain empty.

o

DESIGN AND ANALYSIS OF ALGORITHM [CS3102PC]

DEPT OF CSE , NRCM 27 DHANANJAY Asst. Prof

o NOW WE PERFORM THE SAME SELECT AND REJECT

OPERATION ON ELEMENT 4 AS IT IS THE FIRST

ELEMENT OF THE ARRAY NOW.
o Select the element 4 from the array. Since we are selecting 4 from the array so

array arr would contain the elements 5, 2, i.e., arr = [5, 2]. The sum is equal to
the 6-4 = 2 and the element 4 getsstored in the result arr. The result[] = {3, 4}.

o Reject the element 4 from the array. Since we are rejecting the 4 from the array
so array arr would contain the elements 5, 2, i.e., arr = [5, 2]. The sum would
remain same as 6 and the result array would be same as previous, i.e., {3}.

NOW WE PERFORM THE SELECT AND REJECT OPERATION ON ELEMENT 5.
o Select the element 5 from the array. Since we are selecting 5 from the array so

array arr would contain the elements 2, i.e., arr = [2]. The sum is equal to the 2 -
5 equals to -3 and the element 5gets stored in the result arr. The result[] = {3, 4,
5}.

o Reject the element 5 from the array. Since we are rejecting 5 from the array so
array arr would contain the element 2, i.e., arr = [2]. The sum would remain
same as previous, i.e., 6 and the result array would be same as previous, i.e., {3,

4}.

DESIGN AND ANALYSIS OF ALGORITHM [CS3102PC]

DEPT OF CSE , NRCM 28 DHANANJAY Asst. Prof

If we observe S-5, we can see that the sum is negative that returns false. It means that there is no
furthersubset available in the set.

CONSIDER R-5. IT ALSO HAS TWO SCENARIOS:

o Select the element 2 from the array. Once the element 2 gets selected, the array
becomes empty, i.e., arr[] = " ". The sum would be 2-2 equals to 0 and the

element 2 gets stored in the result array. The result[] = [3, 4, 2].
o Reject the element 2 from the array. Once the element 2 gets rejected, the array

becomes empty, i.e., arr[] = " ". The sum would be same as previous, i.e., 2 and

the result array would also be same as previous, i.e., [3, 4].

CONSIDER R-4. IT HAS TWO SCENARIOS:

DESIGN AND ANALYSIS OF ALGORITHM [CS3102PC]

DEPT OF CSE , NRCM 29 DHANANJAY Asst. Prof

o Select the element 5 from the array. Since we are selecting 5 from the array so
array arr would contain the elements 2, i.e., arr = [2]. The sum would be 6-5
equals to 1 and the element 5 gets stored in the result array. The result[] = [3, 5].

o Reject the element 5 from the array. Since we are rejecting 5 from the array so
array arr would contain the element 2, i.e., arr = [2]. The sum would remain
same as previous, i.e., 6 and the result array would be same as previous, i.e.,

{3}.

CONSIDER S-5. IT HAS TWO SCENARIOS:

o Select the element 2 from the array. Since we are selecting 2 from the array so
array arr wouldbe empty, i.e., arr = " ". The sum would be 1-2 equals to -1 and

the element 2 gets stored in the result array. The result[] = [3, 5, 2].

o Reject the element 2 from the array. Since we are rejecting 2 from the array so

array arr would become empty. The sum would remain same as previous, i.e., 1
and the result array would be same as previous, i.e., {3, 5}.

CONSIDER R-5. IT HAS TWO SCENARIOS:
o Select the element 2 from the array. Since we are selecting 2 from the array so

DESIGN AND ANALYSIS OF ALGORITHM [CS3102PC]

DEPT OF CSE , NRCM 30 DHANANJAY Asst. Prof

array arr wouldbe empty, i.e., arr = " ". The sum would be 6-2 equals to 4 and

the element 2 gets stored in the result array. The result[] = [3, 2].
o Reject the element 2 from the array. Since we are rejecting 2 from the array so

array arr would become empty. The sum would remain same as previous, i.e., 6

and the result array would be same as previous, i.e., {3}.

Similarly, we get the reject case, i.e., R-3 as shown as below:

DESIGN AND ANALYSIS OF ALGORITHM [CS3102PC]

DEPT OF CSE , NRCM 31 DHANANJAY Asst. Prof

Algorithm:

def sum_subset(arr, res, sum)if sum ==0

return trueif sum < 0 return false

if len(arr) == 0 and sum!= 0return false

arr.pop(0);

if len(arr) > 0 res.append(arr[0])
select = sum_subset (arr, sum-arr[0], res)reject = sum_subset (arr, res, sum)
return reject or sum

Graph coloring

Graph coloring can be described as a process of assigning colors to the vertices of a graph. In this, the

same color should not be used to fill the two adjacent vertices. We can also call graph coloring as Vertex

Coloring. In graph coloring, we have to take care that a graph must not contain any edge whose end

vertices are colored by the same color. This type of graph is known as the Properly colored graph.

Example of Graph coloring

In this graph, we are showing the properly colored graph, which is described as follows:

The above graph contains some points, which are described as follows:

o The same color cannot be used to color the two adjacent vertices.

o Hence, we can call it as a properly colored graph.

APPLICATIONS OF GRAPH COLORING

There are various applications of graph coloring. Some of their important applications are

described as follows:

o Assignment

o Map coloring

o Scheduling the tasks

o Sudoku

o Prepare time table

o Conflict resolution

DESIGN AND ANALYSIS OF ALGORITHM [CS3102PC]

DEPT OF CSE , NRCM 32 DHANANJAY Asst. Prof

GREEDY ALGORITHM

There are various steps to solve the greedy algorithm, which are described as follows:

Step 1: In the first step, we will color the first vertex with first color.

Step 2: Now, we will one by one consider all the remaining vertices (V -1) and do the following:

o We will color the currently picked vertex with the help of lowest number
color if and only if thesame color is not used to color any of its adjacent
vertices.

o If its adjacent vertices are using it, then we will select the next least numbered color.
o If we have already used all the previous colors, then a new color will be

used to fill or assign tothe currently picked vertex.

UNIT-III
Dynamic Programming: General method, applications- Optimal binary search trees, 0/1

knapsack problem, All pairs shortest path problem, Traveling sales person problem, Reliability

design.

Optimal Binary Search Tree

We know the key values of each node in the tree, and we also know the frequencies of each node

in terms of searching means how much time is required to search a node. The frequency and key-

value determine the overall cost of searching a node. The cost of searching is a very important
factor in various applications. The overall cost of searching a node should be less. The time

required to search a node in BST is more than the balanced binary search tree as a balanced binary

search tree contains a lesser number of levels than the BST. There is one way that can reduce the

cost of a binary search tree is known as an optimal binary search tree.
The Formula for calculating the number of trees:

Dynamic Approach

Consider the below table, which contains the keys and frequencies.

https://www.javatpoint.com/binary-search-tree

DESIGN AND ANALYSIS OF ALGORITHM [CS3102PC]

DEPT OF CSE , NRCM 33 DHANANJAY Asst. Prof

FIRST, WE WILL CALCULATE THE VALUES WHERE J-I IS EQUAL TO ZERO.

When i=0, j=0, then j-i

= 0 When i = 1, j=1,

then j-i = 0When i = 2,

j=2, then j-i = 0When i

= 3, j=3, then j-i = 0

When i = 4, j=4, then

j-i = 0

Therefore, c[0, 0] = 0, c[1 , 1] = 0, c[2,2] = 0, c[3,3] = 0, c[4,4] = 0

NOW WE WILL CALCULATE THE VALUES WHERE J-I EQUAL TO 1.

When j=1, i=0 then j-i = 1
When j=2, i=1 then

j-i = 1When j=3, i=2

then j-i = 1 When

j=4, i=3 then j-i = 1

Now to calculate the cost, we will consider only the jth value.

The cost of c[0,1] is 4 (The key is 10, and the cost corresponding to key 10 is

4).The cost of c[1,2] is 2 (The key is 20, and the cost corresponding to key 20 is

2).The cost of c[2,3] is 6 (The key is 30, and the cost corresponding to key 30 is

6)The cost of c[3,4] is 3 (The key is 40, and the cost corresponding to key 40 is

3)

DESIGN AND ANALYSIS OF ALGORITHM [CS3102PC]

DEPT OF CSE , NRCM 34 DHANANJAY Asst. Prof

NOW WE WILL CALCULATE THE VALUES WHERE J-I = 2

When j=2, i=0 then

j-i = 2When j=3, i=1

then j-i = 2 When

j=4, i=2 then j-i = 2

In this case, we will consider two keys.

o When i=0 and j=2, then keys 10 and 20. There are two possible trees that can be made
out from these two keys shown below:

In the first binary tree, cost would be: 4*1 + 2*2 = 8

In the second binary tree, cost would be: 4*2 + 2*1 = 10
The minimum cost is 8; therefore, c[0,2] = 8

o When i=1 and j=3, then keys 20 and 30. There are two possible trees that can
be madeout from these two keys shown below:

In the first binary tree, cost would be: 1*2 + 2*6 = 14

In the second binary tree, cost would be: 1*6 + 2*2 =

10The minimum cost is 10; therefore, c[1,3] = 10

o When i=2 and j=4, we will consider the keys at 3 and 4, i.e., 30 and 40. There
are twopossible trees that can be made out from these two keys shown as

DESIGN AND ANALYSIS OF ALGORITHM [CS3102PC]

DEPT OF CSE , NRCM 35 DHANANJAY Asst. Prof

below:

In the first binary tree, cost would be: 1*6 + 2*3 = 12

In the second binary tree, cost would be: 1*3 + 2*6 =

15The minimum cost is 12, therefore, c[2,4] = 12

Now we will calculate the values when j-i

= 3When j=3, i=0 then j-i = 3

When j=4, i=1 then j-i = 3

o When i=0, j=3 then we will consider three keys, i.e., 10, 20, and 30.

The following are the trees that can be made if 10 is considered as a root node.

In the above tree, 10 is the root node, 20 is the right child of node 10, and 30 is the right child ofnode

20.

Cost would be: 1*4 + 2*2 + 3*6 = 26

DESIGN AND ANALYSIS OF ALGORITHM [CS3102PC]

DEPT OF CSE , NRCM 36 DHANANJAY Asst. Prof

In the above tree, 10 is the root node, 30 is the right child of node 10, and 20 is the left child ofnode
20.

Cost would be: 1*4 + 2*6 + 3*2 = 22

The following tree can be created if 20 is considered as the root node.

In the above tree, 20 is the root node, 30 is the right child of node 20, and 10 is the left child ofnode

20.

Cost would be: 1*2 + 4*2 + 6*2 = 22

The following are the trees that can be created if 30 is considered as the root node.

In the above tree, 30 is the root node, 20 is the left child of node 30, and 10 is the left child of

node 20.

Cost would be: 1*6 + 2*2 + 3*4 = 22

In the above tree, 30 is the root node, 10 is the left child of node 30 and 20 is the right child ofnode

10.

DESIGN AND ANALYSIS OF ALGORITHM [CS3102PC]

DEPT OF CSE , NRCM 37 DHANANJAY Asst. Prof

Cost would be: 1*6 + 2*4 + 3*2 = 20

Therefore, the minimum cost is 20 which is the 3rd root. So, c[0,3] is equal to 20.

o When i=1 and j=4 then we will consider the keys 20,

30, 40c[1,4] = min{ c[1,1] + c[2,4], c[1,2] + c[3,4], c[1,3] +

c[4,4] } + 11

= min{0+12, 2+3, 10+0}+ 11

= min{12, 5, 10} + 11

The minimum value is 5; therefore, c[1,4] = 5+11 = 16

NOW WE WILL CALCULATE THE VALUES WHEN J-I = 4

When j=4 and i=0 then j-i = 4

In this case, we will consider four keys, i.e., 10, 20, 30 and 40. The frequencies of 10, 20, 30 and

40 are 4, 2, 6 and 3 respectively.

w[0, 4] = 4 + 2 + 6 + 3 = 15

If we consider 10 as the root node

then C[0, 4] = min {c[0,0] +

c[1,4]}+ w[0,4]

min {0 + 16} + 15= 31

If we consider 20 as the root node

thenC[0,4] = min{c[0,1] + c[2,4]}

+ w[0,4]

DESIGN AND ANALYSIS OF ALGORITHM [CS3102PC]

DEPT OF CSE , NRCM 38 DHANANJAY Asst. Prof

= min{4 + 12} + 15

= 16 + 15 = 31

If we consider 30 as the root node

then,C[0,4] = min{c[0,2] + c[3,4]}

+w[0,4]

= min {8 + 3} + 15

= 26

If we consider 40 as the root node

then,C[0,4] = min{c[0,3] + c[4,4]}

+ w[0,4]

= min{20 + 0} + 15

= 35

In the above cases, we have observed that 26 is the minimum cost; therefore, c[0,4] is equal to

26.

The optimal binary tree can be created as:

DESIGN AND ANALYSIS OF ALGORITHM [CS3102PC]

DEPT OF CSE , NRCM 39 DHANANJAY Asst. Prof

GENERAL FORMULA FOR CALCULATING THE MINIMUM COST IS:

C[i,j] = min{c[i, k-1] + c[k,j]} + w(i,j)

ALGORITHM:

Algorithm OBST(p, q, n)

// e[1…n+1, 0…n] : Optimal sub tree

// w[1…n+1, 0…n] : Sum of probability

// root[1…n, 1…n] : Used to construct OBST

for i ← 1 to n + 1

DO

 e[i, i – 1] ← qi – 1

 w[i, i – 1] ← qi – 1

END

for m ← 1 to n do

for i ← 1 to n – m + 1 do

j ← i + m – 1

e[i, j] ← ∞

w[i, j] ← w[i, j – 1] + pj + qj

for r ← i to j do

t ← e[i, r – 1] + e[r + 1, j] + w[i, j]

if t < e[i, j] then

e[i, j] ← t

root[i, j] ← r

E

N

DESIGN AND ANALYSIS OF ALGORITHM [CS3102PC]

DEPT OF CSE , NRCM 40 DHANANJAY Asst. Prof

D

E

N

D

E

N

D

end

return (e, root)

COMPLEXITY ANALYSIS OF OPTIMAL BINARY SEARCH TREE
It is very simple to derive the complexity of this approach from the above algorithm. It uses three

nested loops. Statements in the innermost loop run in Q(1) time. The running time of the

algorithm is computed as

0/1 Knapsack problem

DESIGN AND ANALYSIS OF ALGORITHM [CS3102PC]

DEPT OF CSE , NRCM 41 DHANANJAY Asst. Prof

Here knapsack is like a container or a bag. Suppose we have given some items which have some
weights or profits. We have to put some items in the knapsack in such a way total value producesa

maximum profit.

For example, the weight of the container is 20 kg. We have to select the items in such a way that

the sum of the weight of items should be either smaller than or equal to the weight of the
container, and the profit should be maximum.

Consider the problem having weights and profits are:

Weights: {3, 4, 6, 5}

Profits: {2, 3, 1, 4}

The weight of the knapsack is

8 kgThe number of items is 4

The above problem can be solved by using the following method:

xi = {1, 0, 0, 1}

= {0, 0, 0, 1}

= {0, 1, 0, 1}

The above are the possible combinations. 1 denotes that the item is completely picked and 0

means that no item is picked. Since there are 4 items so possible combinations will be:

2
4
 = 16; So. There are 16 possible combinations that can be made by using the above problem.

Once all the combinations are made, we have to select the combination that provides the

maximum profit.

Another approach to solve the problem is dynamic programming approach. In dynamic
programming approach, the complicated problem is divided into sub-problems, then we find the

solution of a sub-problem and the solution of the sub-problem will be used to find the solution ofa

complex problem.

First,

we create a matrix shown as below:

 0 1 2 3 4 5 6 7 8

0

1

2

3

DESIGN AND ANALYSIS OF ALGORITHM [CS3102PC]

DEPT OF CSE , NRCM 42 DHANANJAY Asst. Prof

In the above matrix, columns represent the weight, i.e., 8. The rows represent the profits and
weights of items. Here we have not taken the weight 8 directly, problem is divided into sub-

problems, i.e., 0, 1, 2, 3, 4, 5, 6, 7, 8. The solution of the sub-problems would be saved in the cells

and answer to the problem would be stored in the final cell. First, we write the weights in the

ascending order and profits according to their weights shown as below:
Start filling the table row wise top to bottom from left to right using the formula-

T (I , J) = MAX { T (I-1 , J) , VALUEI + T(I-1 ,

J – WEIGHTI) }

wi = {3, 4, 5, 6}

PI = {2, 3, 4, 1}

The first row and the first column would be 0 as there is no item for w=0

 0 1 2 3 4 5 6 7 8

0 0 0 0 0 0 0 0 0 0

1 0

2 0

3 0

4 0

WHEN I=1, W=1

w1 = 3; Since we have only one item in the set having weight 3, but the capacity of the knapsack

is 1. We cannot fill the item of 3kg in the knapsack of capacity 1 kg so add 0 at M[1][1] shown

as below:

4

DESIGN AND ANALYSIS OF ALGORITHM [CS3102PC]

DEPT OF CSE , NRCM 43 DHANANJAY Asst. Prof

 0 1 2 3 4 5 6 7 8

0 0 0 0 0 0 0 0 0 0

1 0 0

2 0

3 0

4 0

WHEN I = 1, W = 2

w1 = 3; Since we have only one item in the set having weight 3, but the capacity of the knapsack

is 2. We cannot fill the item of 3kg in the knapsack of capacity 2 kg so add 0 at M[1][2] shown

as below:

0 1 2 3 4 5 6 7 8

0 0 0 0 0 0 0 0 0 0

1 0 0 0

2 0

3 0

4 0

WHEN I=1, W=3

w1 = 3; Since we have only one item in the set having weight equal to 3, and weight of the

knapsack is also 3; therefore, we can fill the knapsack with an item of weight equal to 3. We put

profit corresponding to the weight 3, i.e., 2 at M[1][3] shown as below:

 0 1 2 3 4 5 6 7 8

0 0 0 0 0 0 0 0 0 0

1 0 0 0 2

2 0

3 0

4 0

DESIGN AND ANALYSIS OF ALGORITHM [CS3102PC]

DEPT OF CSE , NRCM 44 DHANANJAY Asst. Prof

WHEN I=1, W = 4

W1 = 3; Since we have only one item in the set having weight equal to 3, and weight of the

knapsack is 4; therefore, we can fill the knapsack with an item of weight equal to 3. We put profit

corresponding to the weight 3, i.e., 2 at M[1][4] shown as below:

 0 1 2 3 4 5 6 7 8

0 0 0 0 0 0 0 0 0 0

1 0 0 0 2 2

2 0

3 0

4 0

WHEN I=1, W = 5

W1 = 3; Since we have only one item in the set having weight equal to 3, and weight of the

knapsack is 5; therefore, we can fill the knapsack with an item of weight equal to 3. We put profit

corresponding to the weight 3, i.e., 2 at M[1][5] shown as below:

 0 1 2 3 4 5 6 7 8

0 0 0 0 0 0 0 0 0 0

1 0 0 0 2 2 2

2 0

3 0

4 0

WHEN I =1, W=6

W1 = 3; Since we have only one item in the set having weight equal to 3, and weight of the

knapsack is 6; therefore, we can fill the knapsack with an item of weight equal to 3. We put profit

corresponding to the weight 3, i.e., 2 at M[1][6] shown as below:

DESIGN AND ANALYSIS OF ALGORITHM [CS3102PC]

DEPT OF CSE , NRCM 45 DHANANJAY Asst. Prof

 0 1 2 3 4 5 6 7 8

0 0 0 0 0 0 0 0 0 0

1 0 0 0 2 2 2 2

2 0

3 0

4 0

WHEN I=1, W = 7

W1 = 3; Since we have only one item in the set having weight equal to 3, and weight of the

knapsack is 7; therefore, we can fill the knapsack with an item of weight equal to 3. We put profit

corresponding to the weight 3, i.e., 2 at M[1][7] shown as below:

 0 1 2 3 4 5 6 7 8

0 0 0 0 0 0 0 0 0 0

1 0 0 0 2 2 2 2 2

2 0

3 0

4 0

WHEN I =1, W =8

W1 = 3; Since we have only one item in the set having weight equal to 3, and weight of the

knapsack is 8; therefore, we can fill the knapsack with an item of weight equal to 3. We put profit
corresponding to the weight 3, i.e., 2 at M[1][8] shown as below:

 0 1 2 3 4 5 6 7 8

0 0 0 0 0 0 0 0 0 0

1 0 0 0 2 2 2 2 2 2

2 0

3 0

4 0

DESIGN AND ANALYSIS OF ALGORITHM [CS3102PC]

DEPT OF CSE , NRCM 46 DHANANJAY Asst. Prof

NOW THE VALUE OF 'I' GETS INCREMENTED, AND

BECOMES 2.

WHEN I =2, W = 1

The weight corresponding to the value 2 is 4, i.e., w2 = 4. Since we have only one item in the set

having weight equal to 4, and the weight of the knapsack is 1. We cannot put the item of weight4

in a knapsack, so we add 0 at M[2][1] shown as below:

 0 1 2 3 4 5 6 7 8

0 0 0 0 0 0 0 0 0 0

1 0 0 0 2 2 2 2 2 2

2 0 0

3 0

4 0

WHEN I =2, W = 2

The weight corresponding to the value 2 is 4, i.e., w2 = 4. Since we have only one item in the set

having weight equal to 4, and the weight of the knapsack is 2. We cannot put the item of weight4
in a knapsack, so we add 0 at M[2][2] shown as below:

 0 1 2 3 4 5 6 7 8

0 0 0 0 0 0 0 0 0 0

1 0 0 0 2 2 2 2 2 2

2 0 0 0

3 0

WHEN I =2, W = 3

DESIGN AND ANALYSIS OF ALGORITHM [CS3102PC]

DEPT OF CSE , NRCM 47 DHANANJAY Asst. Prof

The weight corresponding to the value 2 is 4, i.e., w2 = 4. Since we have two items in the set

having weights 3 and 4, and the weight of the knapsack is 3. We can put the item of weight 3 in a
knapsack, so we add 2 at M[2][3] shown as below:

 0 1 2 3 4 5 6 7 8

0 0 0 0 0 0 0 0 0 0

1 0 0 0 2 2 2 2 2 2

2 0 0 0 2

3 0

4 0

WHEN I =2, W = 4

The weight corresponding to the value 2 is 4, i.e., w2 = 4. Since we have two items in the set

having weights 3 and 4, and the weight of the knapsack is 4. We can put item of weight 4 in a

knapsack as the profit corresponding to weight 4 is more than the item having weight 3, so we add
3 at M[2][4] shown as below:

 0 1 2 3 4 5 6 7 8

0 0 0 0 0 0 0 0 0 0

1 0 0 0 2 2 2 2 2 2

2 0 0 0 2 3

3 0

4 0

WHEN I = 2, W = 5

The weight corresponding to the value 2 is 4, i.e., w2 = 4. Since we have two items in the set

having weights 3 and 4, and the weight of the knapsack is 5. We can put item of weight 4 in a

knapsack and the profit corresponding to weight is 3, so we add 3 at M[2][5] shown as below:

 0 1 2 3 4 5 6 7 8

0 0 0 0 0 0 0 0 0 0

DESIGN AND ANALYSIS OF ALGORITHM [CS3102PC]

DEPT OF CSE , NRCM 48 DHANANJAY Asst. Prof

1 0 0 0 2 2 2 2 2 2

2 0 0 0 2 3 3

3 0

4 0

WHEN I = 2, W = 6

The weight corresponding to the value 2 is 4, i.e., w2 = 4. Since we have two items in the set

having weights 3 and 4, and the weight of the knapsack is 6. We can put item of weight 4 in a

knapsack and the profit corresponding to weight is 3, so we add 3 at M[2][6] shown as below:

 0 1 2 3 4 5 6 7 8

0 0 0 0 0 0 0 0 0 0

1 0 0 0 2 2 2 2 2 2

2 0 0 0 2 3 3 3

3 0

4 0

WHEN I = 2, W = 7

The weight corresponding to the value 2 is 4, i.e., w2 = 4. Since we have two items in the set

having weights 3 and 4, and the weight of the knapsack is 7. We can put item of weight 4 and 3

in a knapsack and the profits corresponding to weights are 2 and 3; therefore, the total profit is 5,

so we add 5 at M[2][7] shown as below:

 0 1 2 3 4 5 6 7 8

0 0 0 0 0 0 0 0 0 0

1 0 0 0 2 2 2 2 2 2

2 0 0 0 0 3 3 3 5

3 0

4 0

DESIGN AND ANALYSIS OF ALGORITHM [CS3102PC]

DEPT OF CSE , NRCM 49 DHANANJAY Asst. Prof

WHEN I = 2, W = 8

The weight corresponding to the value 2 is 4, i.e., w2 = 4. Since we have two items in the set

having weights 3 and 4, and the weight of the knapsack is 7. We can put item of weight 4 and 3

in a knapsack and the profits corresponding to weights are 2 and 3; therefore, the total profit is 5,
so we add 5 at M[2][7] shown as below:

 0 1 2 3 4 5 6 7 8

0 0 0 0 0 0 0 0 0 0

1 0 0 0 2 2 2 2 2 2

2 0 0 0 2 3 3 3 5 5

3 0

4 0

NOW THE VALUE OF 'I' GETS INCREMENTED, AND

BECOMES 3.

WHEN I = 3, W = 1

The weight corresponding to the value 3 is 5, i.e., w3 = 5. Since we have three items in the set

having weights 3, 4, and 5, and the weight of the knapsack is 1. We cannot put neither of the

items in a knapsack, so we add 0 at M[3][1] shown as below:

 0 1 2 3 4 5 6 7 8

0 0 0 0 0 0 0 0 0 0

1 0 0 0 2 2 2 2 2 2

2 0 0 0 2 3 3 3 5 5

3 0 0

DESIGN AND ANALYSIS OF ALGORITHM [CS3102PC]

DEPT OF CSE , NRCM 50 DHANANJAY Asst. Prof

4 0

WHEN I = 3, W = 2

The weight corresponding to the value 3 is 5, i.e., w3 = 5. Since we have three items in the set

having weight 3, 4, and 5, and the weight of the knapsack is 1. We cannot put neither of the items

in a knapsack, so we add 0 at M[3][2] shown as below:

 0 1 2 3 4 5 6 7 8

0 0 0 0 0 0 0 0 0 0

1 0 0 0 2 2 2 2 2 2

2 0 0 0 2 3 3 3 5 5

3 0 0 0

4 0

WHEN I = 3, W = 3

The weight corresponding to the value 3 is 5, i.e., w3 = 5. Since we have three items in the set of

weight 3, 4, and 5 respectively and weight of the knapsack is 3. The item with a weight 3 can be

put in the knapsack and the profit corresponding to the item is 2, so we add 2 at M[3][3] shown
as below:

 0 1 2 3 4 5 6 7 8

0 0 0 0 0 0 0 0 0 0

1 0 0 0 2 2 2 2 2 2

2 0 0 0 2 3 3 3 5 5

3 0 0 0 2

4 0

WHEN I = 3, W = 4

The weight corresponding to the value 3 is 5, i.e., w3 = 5. Since we have three items in the set of

weight 3, 4, and 5 respectively, and weight of the knapsack is 4. We can keep the item of either

weight 3 or 4; the profit (3) corresponding to the weight 4 is more than the profit corresponding
to the weight 3 so we add 3 at M[3][4] shown as below:

0 1 2 3 4 5 6 7 8

DESIGN AND ANALYSIS OF ALGORITHM [CS3102PC]

DEPT OF CSE , NRCM 51 DHANANJAY Asst. Prof

0 0 0 0 0 0 0 0 0 0

1 0 0 0 2 2 2 2 2 2

2 0 0 0 2 3 3 3 5 5

3 0 0 0 1 3

4 0

WHEN I = 3, W = 5

The weight corresponding to the value 3 is 5, i.e., w3 = 5. Since we have three items in the set of

weight 3, 4, and 5 respectively, and weight of the knapsack is 5. We can keep the item of either

weight 3, 4 or 5; the profit (3) corresponding to the weight 4 is more than the profits

corresponding to the weight 3 and 5 so we add 3 at M[3][5] shown as below:

 0 1 2 3 4 5 6 7 8

0 0 0 0 0 0 0 0 0 0

1 0 0 0 2 2 2 2 2 2

2 0 0 0 2 3 3 3 5 5

3 0 0 0 1 3 3

4 0

WHEN I =3, W = 6

The weight corresponding to the value 3 is 5, i.e., w3 = 5. Since we have three items in the set of

weight 3, 4, and 5 respectively, and weight of the knapsack is 6. We can keep the item of either

weight 3, 4 or 5; the profit (3) corresponding to the weight 4 is more than the profits

corresponding to the weight 3 and 5 so we add 3 at M[3][6] shown as below:

0 1 2 3 4 5 6 7 8

0 0 0 0 0 0 0 0 0 0

1 0 0 0 2 2 2 2 2 2

2 0 0 0 2 3 3 3 5 5

DESIGN AND ANALYSIS OF ALGORITHM [CS3102PC]

DEPT OF CSE , NRCM 52 DHANANJAY Asst. Prof

3 0 0 0 1 3 3 3

4 0

WHEN I =3, W = 7

The weight corresponding to the value 3 is 5, i.e., w3 = 5. Since we have three items in the set of

weight 3, 4, and 5 respectively, and weight of the knapsack is 7. In this case, we can keep both the

items of weight 3 and 4, the sum of the profit would be equal to (2 + 3), i.e., 5, so we add 5 at
M[3][7] shown as below:

 0 1 2 3 4 5 6 7 8

0 0 0 0 0 0 0 0 0 0

1 0 0 0 2 2 2 2 2 2

2 0 0 0 2 3 3 3 5 5

3 0 0 0 1 3 3 3 5

4 0

WHEN I = 3, W = 8

The weight corresponding to the value 3 is 5, i.e., w3 = 5. Since we have three items in the set of

weight 3, 4, and 5 respectively, and the weight of the knapsack is 8. In this case, we can keep both

the items of weight 3 and 4, the sum of the profit would be equal to (2 + 3), i.e., 5, so we add 5 at

M[3][8] shown as below:

 0 1 2 3 4 5 6 7 8

0 0 0 0 0 0 0 0 0 0

1 0 0 0 2 2 2 2 2 2

2 0 0 0 2 3 3 3 5 5

3 0 0 0 1 3 3 3 5 5

4 0

NOW THE VALUE OF 'I' GETS INCREMENTED AND BECOMES

4.

DESIGN AND ANALYSIS OF ALGORITHM [CS3102PC]

DEPT OF CSE , NRCM 53 DHANANJAY Asst. Prof

WHEN I = 4, W = 1

The weight corresponding to the value 4 is 6, i.e., w4 = 6. Since we have four items in the set of

weights 3, 4, 5, and 6 respectively, and the weight of the knapsack is 1. The weight of all the items

is more than the weight of the knapsack, so we cannot add any item in the knapsack; Therefore,
we add 0 at M[4][1] shown as below:

0 1 2 3 4 5 6 7 8

0 0 0 0 0 0 0 0 0 0

1 0 0 0 2 2 2 2 2 2

2 0 0 0 2 3 3 3 5 5

3 0 0 0 1 3 3 3 5 5

4 0 0

WHEN I = 4, W = 2

The weight corresponding to the value 4 is 6, i.e., w4 = 6. Since we have four items in the set of

weights 3, 4, 5, and 6 respectively, and the weight of the knapsack is 2. The weight of all the items

is more than the weight of the knapsack, so we cannot add any item in the knapsack; Therefore,
we add 0 at M[4][2] shown as below:

 0 1 2 3 4 5 6 7 8

0 0 0 0 0 0 0 0 0 0

1 0 0 0 2 2 2 2 2 2

2 0 0 0 2 3 3 3 5 5

3 0 0 0 1 3 3 3 5 5

4 0 0 0

WHEN I = 4, W = 3

The weight corresponding to the value 4 is 6, i.e., w4 = 6. Since we have four items in the set of

weights 3, 4, 5, and 6 respectively, and the weight of the knapsack is 3. The item with a weight 3

can be put in the knapsack and the profit corresponding to the weight 4 is 2, so we will add 2 at

M[4][3] shown as below:

0 1 2 3 4 5 6 7 8

DESIGN AND ANALYSIS OF ALGORITHM [CS3102PC]

DEPT OF CSE , NRCM 54 DHANANJAY Asst. Prof

0 0 0 0 0 0 0 0 0 0

1 0 0 0 2 2 2 2 2 2

2 0 0 0 2 3 3 3 5 5

3 0 0 0 1 3 3 3 5 5

4 0 0 0 2

WHEN I = 4, W = 4

The weight corresponding to the value 4 is 6, i.e., w4 = 6. Since we have four items in the set of

weights 3, 4, 5, and 6 respectively, and the weight of the knapsack is 4. The item with a weight 4

can be put in the knapsack and the profit corresponding to the weight 4 is 3, so we will add 3 at
M[4][4] shown as below:

 0 1 2 3 4 5 6 7 8

0 0 0 0 0 0 0 0 0 0

1 0 0 0 2 2 2 2 2 2

2 0 0 0 2 3 3 3 5 5

3 0 0 0 1 3 3 3 5 5

4 0 0 0 2 3

WHEN I = 4, W = 5

The weight corresponding to the value 4 is 6, i.e., w4 = 6. Since we have four items in the set of

weights 3, 4, 5, and 6 respectively, and the weight of the knapsack is 5. The item with a weight 4

can be put in the knapsack and the profit corresponding to the weight 4 is 3, so we will add 3 at

M[4][5] shown as below:

 0 1 2 3 4 5 6 7 8

0 0 0 0 0 0 0 0 0 0

1 0 0 0 2 2 2 2 2 2

2 0 0 0 2 3 3 3 5 5

DESIGN AND ANALYSIS OF ALGORITHM [CS3102PC]

DEPT OF CSE , NRCM 55 DHANANJAY Asst. Prof

3 0 0 0 1 3 3 3 5 5

4 0 0 0 2 3 3

WHEN I = 4, W = 6

The weight corresponding to the value 4 is 6, i.e., w4 = 6. Since we have four items in the set of

weights 3, 4, 5, and 6 respectively, and the weight of the knapsack is 6. In this case, we can put
the items in the knapsack either of weight 3, 4, 5 or 6 but the profit, i.e., 4 corresponding to the

weight 6 is highest among all the items; therefore, we add 4 at M[4][6] shown as below:

0 1 2 3 4 5 6 7 8

0 0 0 0 0 0 0 0 0 0

1 0 0 0 2 2 2 2 2 2

2 0 0 0 2 3 3 3 5 5

3 0 0 0 1 3 3 3 5 5

4 0 0 0 2 3 3 4

WHEN I = 4, W = 7

The weight corresponding to the value 4 is 6, i.e., w4 = 6. Since we have four items in the set of

weights 3, 4, 5, and 6 respectively, and the weight of the knapsack is 7. Here, if we add two items

of weights 3 and 4 then it will produce the maximum profit, i.e., (2 + 3) equals to 5, so we add 5 at

M[4][7] shown as below:

 0 1 2 3 4 5 6 7 8

0 0 0 0 0 0 0 0 0 0

1 0 0 0 2 2 2 2 2 2

2 0 0 0 2 3 3 3 5 5

3 0 0 0 2 3 3 3 5 5

4 0 0 0 2 3 3 4 5

WHEN I = 4, W = 8

The weight corresponding to the value 4 is 6, i.e., w4 = 6. Since we have four items in the set of

weights 3, 4, 5, and 6 respectively, and the weight of the knapsack is 8. Here, if we add two items

of weights 3 and 4 then it will produce the maximum profit, i.e., (2 + 3) equals to 5, so we add 5 at

DESIGN AND ANALYSIS OF ALGORITHM [CS3102PC]

DEPT OF CSE , NRCM 56 DHANANJAY Asst. Prof

M[4][8] shown as below:

 0 1 2 3 4 5 6 7 8

0 0 0 0 0 0 0 0 0 0

1 0 0 0 2 2 2 2 2 2

2 0 0 0 2 3 3 3 5 5

3 0 0 0 2 3 3 3 5 5

4 0 0 0 2 3 3 4 5 5

As we can observe in the above table that 5 is the maximum profit among all the entries. The

pointer points to the last row and the last column having 5 value. Now we will compare 5 value
with the previous row; if the previous row, i.e., i = 3 contains the same value 5 then the pointer

will shift upwards. Since the previous row contains the value 5 so the pointer will be shifted

upwards as shown in the below table:

 0 1 2 3 4 5 6 7 8

0 0 0 0 0 0 0 0 0 0

1 0 0 0 2 2 2 2 2 2

2 0 0 0 2 3 3 3 5 5

3 0 0 0 2 3 3 3 5 5

4 0 0 0 2 3 3 4 5 5

Again, we will compare the value 5 from the above row, i.e., i = 2. Since the above row contains

the value 5 so the pointer will again be shifted upwards as shown in the below table:

0 1 2 3 4 5 6 7 8

0 0 0 0 0 0 0 0 0 0

1 0 0 0 2 2 2 2 2 2

2 0 0 0 2 3 3 3 5 5

3 0 0 0 2 3 3 3 5 5

4 0 0 0 2 3 3 4 5 5

Again, we will compare the value 5 from the above row, i.e., i = 1. Since the above row does not

contain the same value so we will consider the row i=1, and the weight corresponding to the row

DESIGN AND ANALYSIS OF ALGORITHM [CS3102PC]

DEPT OF CSE , NRCM 57 DHANANJAY Asst. Prof

is 4. Therefore, we have selected the weight 4 and we have rejected the weights 5 and 6 shown
below:

X = { 1, 0, 0}

The profit corresponding to the weight is 3. Therefore, the remaining profit is (5 - 3) equals to 2.

Now we will compare this value 2 with the row i = 2. Since the row (i = 1) contains the value 2;

therefore, the pointer shifted upwards shown below:

0 1 2 3 4 5 6 7 8

0 0 0 0 0 0 0 0 0 0

1 0 0 0 2 2 2 2 2 2

2 0 0 0 2 3 3 3 5 5

3 0 0 0 2 3 3 3 5 5

4 0 0 0 2 3 3 4 5 5

Again we compare the value 2 with a above row, i.e., i = 1. Since the row i =0 does not contain

the value 2, so row i = 1 will be selected and the weight corresponding to the i = 1 is 3 shown
below:

X = {1, 1, 0, 0}

The profit corresponding to the weight is 2. Therefore, the remaining profit is 0. We compare 0

value with the above row. Since the above row contains a 0 value but the profit corresponding to

this row is 0. In this problem, two weights are selected, i.e., 3 and 4 to maximize the profit.

ALGORITHM:

Algorithm KNAPSACK (V, W, M)

// Description: Solve binary knapsack problem using dynamic programming

// Input: Set of items X, set of weight W, profit of items V and knapsack capacity M

// Output: Array V, which holds the solution of problem

for i ← 1 to n do

V[i, 0] ← 0

END

for i ← 1 to M do

DESIGN AND ANALYSIS OF ALGORITHM [CS3102PC]

DEPT OF CSE , NRCM 58 DHANANJAY Asst. Prof

V[0, i] ← 0

END

for V[0, i] ← 0 do

for j ← 0 to M do

if w[i] ≤ j then V[i, j] ← max{V[i-1, j], v[i] + V[i – 1, j – w[i]]}

ELSE
V[i, j] ← V[i – 1, j] // w[i]>j

E

ND

END

END

Complexity analysis

Dynamic programming finds an optimal solution by constructing a table of size n ́M, where n isa

number of items and M is the capacity of the knapsack. This table can be filled up in O(n*m)

time, same is the space complexity.

All Pairs Shortest Path (Floyd-Warshall) Algorithm

ALL PAIRS SHORTEST PATH ALGORITHM – INTRODUCTION
All Pairs Shortest Path Algorithm is also known as the Floyd-Warshall algorithm. And this is an

optimization problem that can be solved using dynamic programming.

Let G = <V, E> be a directed graph, where V is a set of vertices and E is a set of edges with

nonnegative length. Find the shortest path between each pair of nodes.

L = Matrix, which gives the length of each edge

L[i, j] = 0, if i == j // Distance of node from itself is zero

L[i, j] = ∞ , if i ≠ j and (i, j) ∉ E

L[i, j] = w (i, j), if i ≠ j and (i, j) ∈ E // w(i, j) is the weight of the edge (i, j)

PRINCIPLE OF OPTIMALITY :
If k is the node on the shortest path from i to j, then the path from i to k and k to j, must also be

shortest.

In the following figure, the optimal path from i to j is either p or summation of p1 and p2.While

considering kth vertex as intermediate vertex, there are two possibilities :

 If k is not part of shortest path from i to j, we keep the distance D[i, j] as it is.

https://codecrucks.com/dynamic-programming/

DESIGN AND ANALYSIS OF ALGORITHM [CS3102PC]

DEPT OF CSE , NRCM 59 DHANANJAY Asst. Prof

 If k is part of shortest path from i to j, update distance
D[i, j] asD[i, k] + D[k, j].

Optimal sub structure of the problem is given as :

Dk [i, j] = min{ Dk – 1 [i, j], Dk – 1 [i, k] + Dk – 1 [k, j] }
Dk = Distance matrix after kth iteration

ALGORITHM FOR ALL PAIRS SHORTEST PATH

This approach is also known as the Floyd-warshall shortest path algorithm. The algorithm for
all pair shortest path (APSP) problem is described below

COMPLEXITY ANALYSIS OF ALL PAIRS SHORTEST PATH ALGORITHM
It is very simple to derive the complexity of all pairs’ shortest path problem from the above

algorithm. It uses three nested loops. The innermost loop has only one statement. The complexity
of that statement is Q(1).

The running time of the algorithm is computed as :

A recursive definition is given by

Algorithm FLOYD_APSP (L)

// L is the matrix of size n  n representing original graph

// D is the distance matrix

D ← L

for k ← 1 to n do
for i ← 1 to n do

for j ← 1 to n do

D[i, j]k ← min (D[i, j]k-1, D[i, k]k-1 + D[k, j]k-1)

end
end

DESIGN AND ANALYSIS OF ALGORITHM [CS3102PC]

DEPT OF CSE , NRCM 60 DHANANJAY Asst. Prof

Example: Apply Floyd-Warshall algorithm for constructing the shortest path. Show thatmatrices
D(k) and π(k) computed by the Floyd-Warshall algorithm for the graph.

SOLUTION:

Step (i) When k = 0

(ii) When k =1

DESIGN AND ANALYSIS OF ALGORITHM [CS3102PC]

DEPT OF CSE , NRCM 61 DHANANJAY Asst. Prof

DESIGN AND ANALYSIS OF ALGORITHM [CS3102PC]

DEPT OF CSE , NRCM 62 DHANANJAY Asst. Prof

Step (iii) When k = 2

Step (iv) When k = 3

DESIGN AND ANALYSIS OF ALGORITHM [CS3102PC]

DEPT OF CSE , NRCM 63 DHANANJAY Asst. Prof

Step (v) When k = 4

DESIGN AND ANALYSIS OF ALGORITHM [CS3102PC]

DEPT OF CSE , NRCM 64 DHANANJAY Asst. Prof

Step (vi) When k = 5

Traveling Salesman Problem – Solve it using Dynamic Programming

BY CODECRUCKS · 09/12/2021

Traveling salesman problem (TSP) is the well studied and well-explored problem of computer

science. Due to its application in diverse fields, TSP has been one of the most interesting

problems for researchers and mathematicians.

TRAVELING SALESMAN PROBLEM – DESCRIPTION

 Traveling salesman problem is stated as, “Given a set of n cities and distance

between eachpair of cities, find the minimum length path such that it covers each

city exactly once and terminates the tour at starting city.”

 It is not difficult to show that this problem is NP complete problem. There exists n!

https://codecrucks.com/author/codecrucks/

DESIGN AND ANALYSIS OF ALGORITHM [CS3102PC]

DEPT OF CSE , NRCM 65 DHANANJAY Asst. Prof

paths, asearch of the optimal path becomes very slow when n is considerably large.

 Each edge (u, v) in TSP graph is assigned some non-negative weight, which

representsthe distance
 between city u and v. This problem can be solved by finding the Hamiltonian

cycle of thegraph.

 The distance between cities is best described by the weighted graph, where edge

(u, v) indicates the path from city u to v and w(u, v) represents the distance

between cities u andv.

 Let us formulate the solution of TSP using dynamic programming.

 From following figure, d[i, j] = min(d[i, j], d[i, k] + d[k, j])

 Dynamic programming always selects the path which is minimum.

ALGORITHM FOR TRAVELING SALESMAN PROBLEM:

Complexity Analysis of Traveling salesman problem

Dynamic programming creates n.2n subproblems for n cities. Each sub-problem can be solved in

linear time. Thus the time complexity of TSP using dynamic programming would be O(n22n). It is
much less than n! but still, it is an exponent. Space complexity is also exponential.

EXAMPLE

Problem: Solve the traveling salesman problem with the associated cost adjacency

matrixusing dynamic programming.
– 24 11 10 9

8 – 2 5 11

Step 1:

Let d[i, j] indicates the distance between cities i and j. Function C[x, V – { x }]is the cost of thepath

starting from city x. V is the set of cities/vertices in given graph. The aim of TSP is to minimize the cost
function.

Step 2:

Assume that graph contains n vertices V1, V2, ..., Vn. TSP finds a path covering all verticesexactly

once, and the same time it tries to minimize the overall traveling distance.

Step 3:

Mathematical formula to find minimum distance is stated below:C(i,

V) = min { d[i, j] + C(j, V – { j }) }, j ∈ V and i ∉ V.

TSP problem possesses the principle of optimality, i.e. for d[V1, Vn] to be minimum, any

https://codecrucks.com/dynamic-programming/
https://codecrucks.com/dynamic-programming/
https://codecrucks.com/dynamic-programming/

DESIGN AND ANALYSIS OF ALGORITHM [CS3102PC]

DEPT OF CSE , NRCM 66 DHANANJAY Asst. Prof

26 12 – 8 7

11 23 24 – 6

5 4 8 11 –

SOLUTION:
Let us start our tour from city 1.

Step 1: Initially, we will find the distance between city 1 and city {2, 3, 4, 5} without visiting
any intermediate city.

Cost(x, y, z) represents the distance from x to z and y as an intermediate

city.Cost(2, Φ, 1) = d[2, 1] = 24

Cost(3, Φ, 1) = d[3, 1] = 11

Cost(4, Φ , 1) = d[4, 1] = 10

Cost(5, Φ , 1) = d[5, 1] = 9

Step 2: In this step, we will find the minimum distance by visiting 1 city as intermediate city.

Cost{2, {3}, 1} = d[2, 3] + Cost(3, f, 1)

= 2 + 11 = 13

Cost{2, {4}, 1} = d[2, 4] + Cost(4, f, 1)

= 5 + 10 = 15

Cost{2, {5}, 1} = d[2, 5] + Cost(5, f, 1)

= 11 + 9 = 20

Cost{3, {2}, 1} = d[3, 2] + Cost(2, f, 1)

= 12 + 24 = 36

Cost{3, {4}, 1} = d[3, 4] + Cost(4, f, 1)

= 8 + 10 = 18

Cost{3, {5}, 1} = d[3, 5] + Cost(5, f, 1)

DESIGN AND ANALYSIS OF ALGORITHM [CS3102PC]

DEPT OF CSE , NRCM 67 DHANANJAY Asst. Prof

= 7 + 9 = 16

Cost{4, {2}, 1} = d[4, 2] + Cost(2, f,

1)

= 23 + 24 = 47

Cost{4, {3}, 1} = d[4, 3] + Cost(3, f,

1)

= 24 + 11 = 35

Cost{4, {5}, 1} = d[4, 5] + Cost(5, f,

1)

= 6 + 9 = 15

Cost{5, {2}, 1} = d[5, 2] + Cost(2, f,

1)

= 4 + 24 = 28

Cost{5, {3}, 1} = d[5, 3] + Cost(3, f,

1)

= 8 + 11 = 19

Cost{5, {4}, 1} = d[5, 4] + Cost(4, f,

1)

= 11 + 10 = 21

Step 3: In this step, we will find the minimum distance by visiting 2 cities as intermediate city.Cost(2,

{3, 4}, 1) = min { d[2, 3] + Cost(3, {4}, 1), d[2, 4] + Cost(4, {3}, 1)]}

= min { [2 + 18], [5 + 35] }

= min{20, 40} = 20

Cost(2, {4, 5}, 1) = min { d[2, 4] + Cost(4, {5}, 1), d[2, 5] + Cost(5, {4}, 1)]}

= min { [5 + 15], [11 + 21] }

= min{20, 32} = 20

Cost(2, {3, 5}, 1) = min { d[2, 3] + Cost(3, {4}, 1), d[2, 4] + Cost(4, {3}, 1)]}

= min { [2 + 18], [5 + 35] }

= min{20, 40} = 20

Cost(3, {2, 4}, 1) = min { d[3, 2] + Cost(2, {4}, 1), d[3, 4] + Cost(4, {2}, 1)]}

= min { [12 + 15], [8 + 47] }

= min{27, 55} = 27

DESIGN AND ANALYSIS OF ALGORITHM [CS3102PC]

DEPT OF CSE , NRCM 68 DHANANJAY Asst. Prof

Cost(3, {4, 5}, 1) = min { d[3, 4] + Cost(4, {5}, 1), d[3, 5] + Cost(5, {4}, 1)]}

= min { [8 + 15], [7 + 21] }

= min{23, 28} = 23

Cost(3, {2, 5}, 1) = min { d[3, 2] + Cost(2, {5}, 1), d[3, 5] + Cost(5, {2}, 1)]}

= min { [12 + 20], [7 + 28] }

= min{32, 35} = 32

Cost(4, {2, 3}, 1) = min{ d[4, 2] + Cost(2, {3}, 1), d[4, 3] + Cost(3, {2}, 1)]}

= min { [23 + 13], [24 + 36] }

= min{36, 60} = 36

Cost(4, {3, 5}, 1) = min{ d[4, 3] + Cost(3, {5}, 1), d[4, 5] + Cost(5, {3}, 1)]}

= min { [24 + 16], [6 + 19] }

= min{40, 25} = 25

Cost(4, {2, 5}, 1) = min{ d[4, 2] + Cost(2, {5}, 1), d[4, 5] + Cost(5, {2}, 1)]}

= min { [23 + 20], [6 + 28] }

= min{43, 34} = 34

Cost(5, {2, 3}, 1) = min{ d[5, 2] + Cost(2, {3}, 1), d[5, 3] + Cost(3, {2}, 1)]}

= min { [4 + 13], [8 + 36] }

= min{17, 44} = 17

Cost(5, {3, 4}, 1) = min{ d[5, 3] + Cost(3, {4}, 1), d[5, 4] + Cost(4, {3}, 1)]}

= min { [8 + 18], [11 + 35] }

= min{26, 46} = 26

Cost(5, {2, 4}, 1) = min{ d[5, 2] + Cost(2, {4}, 1), d[5, 4] + Cost(4, {2}, 1)]}

= min { [4 + 15], [11 + 47] }

= min{19, 58} = 19

Step 4 : In this step, we will find the minimum distance by visiting 3 cities as

intermediatecity.

Cost(2, {3, 4, 5}, 1) = min { d[2, 3] + Cost(3, {4, 5}, 1), d[2, 4] + Cost(4, {3, 5}, 1), d[2, 5] +

Cost(5, {3, 4}, 1)}

DESIGN AND ANALYSIS OF ALGORITHM [CS3102PC]

DEPT OF CSE , NRCM 69 DHANANJAY Asst. Prof

= min { 2 + 23, 5 + 25, 11 + 36}
= min{25, 30, 47} = 25

Cost(3, {2, 4, 5}, 1) = min { d[3, 2] + Cost(2, {4, 5}, 1), d[3, 4] + Cost(4, {2, 5}, 1), d[3, 5] +

Cost(5, {2, 4}, 1)}

= min { 12 + 20, 8 + 34, 7 + 19}

= min{32, 42, 26} = 26

Cost(4, {2, 3, 5}, 1) = min { d[4, 2] + Cost(2, {3, 5}, 1), d[4, 3] + Cost(3, {2, 5}, 1), d[4, 5] +

Cost(5, {2, 3}, 1)}

= min {23 + 30, 24 + 32, 6 + 17}

= min{53, 56, 23} = 23

Cost(5, {2, 3, 4}, 1) = min { d[5, 2] + Cost(2, {3, 4}, 1), d[5, 3] + Cost(3, {2, 4}, 1), d[5, 4] +

Cost(4, {2, 3}, 1)}

= min {4 + 30, 8 + 27, 11 + 36}

= min{34, 35, 47} = 34

Step 5 : In this step, we will find the minimum distance by visiting 4 cities as an intermediate

city.

Cost(1, {2, 3, 4, 5}, 1) = min { d[1, 2] + Cost(2, {3, 4, 5}, 1), d[1, 3] + Cost(3, {2, 4, 5}, 1),

d[1, 4] + Cost(4, {2, 3, 5}, 1) , d[1, 5] + Cost(5, {2, 3, 4}, 1)}

= min { 24 + 25, 11 + 26, 10 + 23, 9 + 34 }

= min{49, 37, 33, 43} = 33

Thus, minimum length tour would be of 33.

TRACE THE PATH:
 Let us find the path that gives the distance of 33.
 Cost(1, {2, 3, 4, 5}, 1) is minimum due to d[1, 4], so move from 1 to 4. Path = {1, 4}.

 Cost(4, {2, 3, 5}, 1) is minimum due to d[4, 5], so move from 4 to 5. Path = {1, 4, 5}.
 Cost(5, {2, 3}, 1) is minimum due to d[5, 2], so move from 5 to 2. Path = {1, 4, 5, 2}.
 Cost(2, {3}, 1) is minimum due to d[2, 3], so move from 2 to 3. Path = {1, 4, 5, 2,

3}. All cities are visited so come back to 1. Hence the optimum tour would be 1 – 4 – 5
– 2 – 3 – 1.

RELIABILITY DESIGN:

Reliability means the ability of an apparatus, machine, or system to consistently perform its

http://www.businessdictionary.com/definition/ability.html
http://www.businessdictionary.com/definition/machine.html
http://www.businessdictionary.com/definition/system.html

DESIGN AND ANALYSIS OF ALGORITHM [CS3102PC]

DEPT OF CSE , NRCM 70 DHANANJAY Asst. Prof

intendedor required function or mission, on demand and without degradation or failure.

Reliability design using dynamic programming is used to solve a problem with a multiplicative
optimization function. The problem is to design a system which is composed of several devices
connected in series (below Fig-3.3(b)). Let r; be the reliability of device D; (i.e. r; is the
probability that device i will function properly). Then, the reliability of the entire system is πri.

Even if the individual devices are very reliable (the ri's are very close to one), the reliability of

the system may not be very good.

Fig-3.3(a) Devices connected in series

Fig-3.3(b) Multiple Devices Connected in Parallel in each
stage

Multiple copies of the same device type are connected in parallel (Fig-3.3(b)) through the use of
switching circuits. The switching circuits determine which devices in any given group are

functioning properly. They then make use of one such device at each stage.

If stage i contains m copies of device D then the probability that all m have a malfunction
mi i i m i

is (1 - ri) . Hence the reliability of stage i becomes 1 - (1 - ri) i. Thus, if ri = 0.99 and mi =
2
the stage reliability becomes 0.9999. In any practical situation, the stage reliability will be a
little

m
less than 1 - (1 - ri) ibecause the switching circuits themselves are not fully reliable. Also,failures
of copies of the same device may not be fully independent (e.g. if failure is due to design defect).
Let

us assume that the reliability of stage i is actually given by a function Φi(mi), 1<=i<=n. (It is quite

conceivable that Φi(mi) may decrease after a certain value of m ;). The reliability of

thesystem of stages is ∏1<=i<=n Φi(mi).

Our problem is to use device duplication to maximize reliability. This maximization is to be
carried out under a cost constraint.

Let ci be the cost of each unit of device i and let c be the maximum allowable cost of the systembeing

http://www.businessdictionary.com/definition/required.html
http://www.businessdictionary.com/definition/required.html
http://www.businessdictionary.com/definition/mission.html
http://www.businessdictionary.com/definition/mission.html
http://www.businessdictionary.com/definition/failure.html

DESIGN AND ANALYSIS OF ALGORITHM [CS3102PC]

DEPT OF CSE , NRCM 71 DHANANJAY Asst. Prof

designed.

We wish to solve the following maximization problem:

maximize ∏1<=i<=n Φi(mi)

subject to ∑1<=i<=n cimi <=cmi>=1 and integer i, 1<=i<=n

A dynamic programming solution may be obtained in a manner similar to that used for

the knapsackproblem. Since, we may assume each ci; > 0, each mi must be in the range

1<=mi<=ui where

= └(C + CI - ∑1 TO N CJ) / CI┘

The upper bound ui follows from the observation that mj>=1. An optimal solution m 1 , m 2,

••• ,

mn is the result of a sequence of decisions, one decision for each mi.

Letfi(x) represent the maximum value of Φ(mj), 1<=j<=i subject to the constraints
∑1<=j<=i cjmj <=x and 1<=mj<=uj, 1<=j<=i. Then, the value of an optimal solution is

fn(c). Thelast decision made requires one to choose mn from one of { l, 2, 3, ... , un.}.
Once a value for mn has been chosen, the remaining decisions must be such as to use
the remaining funds c - cnmn in anoptimal way. The principal of optimality holds and

fn(c) = max 1<=mn<=un{ Φn(mn) fn-1(c – cnmn) }

For any fi(x),i>=1 this equation generalizes to

FI(X) = MAX 1<=MI<=UI{ ΦI(MI)

FI-1(C – CIMI) }

PROBLEMS BASED ON RELIABILITY

DESIGN:

Q.1 Design a three stage system with device types D1,D2,D3. The costs are Rs. 30, Rs. 15

and Rs.20 respectively. The cost of the system is to be no more than Rs. 105. The reliability of

each device type is 0.9,0.8 and 0.5 respectively.

SOLUTION:
We will first compute u1, u2, u3 using

followingformula.ui = (C + Ci – sigma Cj

)/ Ci

For computing ui

u1 = 2(approx value)

DESIGN AND ANALYSIS OF ALGORITHM [CS3102PC]

DEPT OF CSE , NRCM 72 DHANANJAY Asst. Prof

For computing u2

u2 = 3(approx value)
For computing u3

u3 = 3
Hence (u1 ,u2 ,u3)

Computing
subsequences-

S0 = (1,0)
Let Si consist of tuples of the form (f, x)
=(r,c)S0 = {(1,0)}

For device D1

for 1 D1

r1=0.9,c1=30

1 S
1 = {(0.9, 30)}

For device D1 for 2 D1

m1=2(2 D1 device in

parallel) Reliability of stage
1 = 1-(1- r1) 2
Reliability of stage 1 = 1-(1- 0.9) 2 =
0.99Cost =30*2 = 60

2 S
1 = {(0.99, 60) }

S1 = {(0.9, 30), (0.99, 60) }
S1 = {(0.9, 30), (0.99, 60) }

Fo
2

r one Device D2:-
S 1 = {(0.72, 45), (0.792, 75) }

For two Device D2:-

2 S
2 = {(0.864, 60), (0.9504, 90) }

For three Device D2:-

3 S
2 = {(0.8928, 75), (0.98208, 105) }

S2 = {(0.72, 45), (0.792, 75), (0.864, 60),(0.9504, 90), (0.8928, 75), (0.98208, 105) }

(0.792, 75), (0.9504, 90) is eleminated due to purging or dominance rule and (0.98208, 105)
iseleminated due to access cost 105.

After this we got

S2 = { (0.72, 45), (0.864, 60), (0.8928, 75) }

Fo
3

r one Device D3:-
S 1 = { (0.36, 65), (0.432, 80), (0.4464, 95) }

Fo
3

r Two Device D3:-
S 2 = { (0.54, 85), (0.648, 100)}

FOR THREE DEVICE D3:-

S3 = { (0.63, 105) }3

Now we are going to find S3

DESIGN AND ANALYSIS OF ALGORITHM [CS3102PC]

DEPT OF CSE , NRCM 73 DHANANJAY Asst. Prof

S3 = { (0.36, 65), (0.432, 80), (0.4464, 95), (0.54, 85), (0.648, 100), (0.63, 105) }

Due to purging rule after elimination we get

S3 = { (0.36, 65), (0.432, 80), (0.54, 85), (0.648, 100),}

Now
The best design has a
reliability of0.648 and a cost
of 100.Tracing back through

Si ‘s

WE DETERMINE THAT M1 = 1, M2 = 2, M3 = 2

UNIT-IV
Greedy method: General method, applications-Job sequencing with deadlines, knapsack
problem, Minimum cost spanning trees, Single source shortest path problem.

Greedy Method:

The greedy method is perhaps (maybe or possible) the
most straight forward designtechnique, used to determine

a feasiblesolution that may or may not be optimal.

Feasible solution:- Most problems have n inputs and its solution

contains a subset of inputsthat satisfies a given constraint(condition).
Any subset that satisfies the constraint is called feasible solution.

Optimal solution: To find a feasible solution that either

maximizes or minimizes a givenobjective function. A feasible

solution that does thisis called optimal solution.

Application of Greedy

Method: Job
sequencing with
deadline0/1

knapsack problem
Minimum cost
spanning trees

Single source shortest path problem.

JOB SEQUENCE WITH DEADLINE:

There is set of n-jobs. For any job i, is a integer deadling di≥0 and
profitPi>0, the profit Pi isearned iff the job completed by its deadline.

To complete a job one had to process the job on a machine for one

unitof time. Only onemachine is available for processing jobs.

DESIGN AND ANALYSIS OF ALGORITHM [CS3102PC]

DEPT OF CSE , NRCM 74 DHANANJAY Asst. Prof

A feasible solution for this problem is a subset J of jobs such that
eachjob in this subset canbe completed by its deadline.

The value of a feasible solution J is the sum of the profits of the jobs in J, i.e., ∑i∈jPi

An optimal solution is a feasible solution with maximum value.

The problem involves identification of a subset of jobs which

can be completed by its deadline. Therefore the problem suites

the subset methodology and can be solved by the greedy

method.

Ex: - Obtain the optimal sequence for the following jobs.

j1 j2 j3 j4

(P1, P2, P3, P4) = (100, 10, 15, 27)

(d1, d2, d3, d4) = (2, 1, 2, 1)

n =4

Feasible
solution

Processing
sequence

Value

j1 j2

(1, 2)
(2,1) 100+10=110

(1,3) (1,3) or (3,1) 100+15=115

(1,4) (4,1) 100+27=127

(2,3) (2,3) 10+15=25

(3,4) (4,3) 15+27=42

(1) (1) 100

(2) (2) 10

(3) (3) 15

(4) (4) 27

In the example solution ‘3’ is the optimal. In this solution only jobs

1&4 are processed and the value is 127. These jobs must be processed
in the order j4 followed by j1. the process of job 4 begins at time 0 and

ends at time 1. And the processing of job 1 begins at time 1 and ends at

time2. Therefore both the jobs are completed within their deadlines.
The optimization measure for determining the next job to be selected

in to the solution is according to the profit. The next job to include is

that which increases ∑pi the most, subject to the constraint that the
resulting “j”is the feasible solution. Therefore the greedy strategy is to

consider the jobsin decreasing order of profits.

The greedy algorithm is used to obtain an optimal solution.

We must formulate an optimization measure to determine how the next job is chosen.

DESIGN AND ANALYSIS OF ALGORITHM [CS3102PC]

DEPT OF CSE , NRCM 75 DHANANJAY Asst. Prof

algorithm js(d, j, n)

//d dead line, jsubset of jobs ,n total number of jobs

// d[i]≥1 1 ≤ i ≤ n are the dead lines,

// the jobs are ordered such that p[1]≥p[2]≥---≥p[n]

//j[i] is the ith job in the optimal solution 1 ≤ i ≤ k, k subset range

{

d[0]=j[
0]=0;

j[1]=1;

k=1;

for i=2 ton
do{r=k;

while((d[j[r]]>d[i]) and

[d[j[r]]≠r)) dor=r-1; if((d[j[r]]≤d[i])
and (d[i]> r)) then

{
for q:=k to (r+1) setp-1 do j[q+1]=
j[q];j[r+1]=i;

k=k+1;

}

}

DESIGN AND ANALYSIS OF ALGORITHM [CS3102PC]

DEPT OF CSE , NRCM 76 DHANANJAY Asst. Prof

 SINGLE SOURCE SHORTEST PATHS:

Graphs can be used to represent the highway structure of a state or

country with vertices representing cities and edges representing sections

of highway.

The edges have assigned weights which may be either the distance

between the 2 cities connected by the edge or the average time to drive

along that section ofhighway.
For example if A motorist wishing to drive from city A to B thenwe
must answer the following questions

o Is there a path from A to B
o If there is more than one path from A to B which is the shortest path

The length of a path is defined to be the sum of the weights of the edges on that path.

Given a directed graph G(V,E) with weight edge w(u,v). e have to find a

shortest path fromsource vertex S∈v to every other vertex v1∈ v-s.

To find SSSP for directed graphs G(V,E) there are two different algorithms.

 Bellman-Ford Algorithm
 Dijkstra’s algorithm

Bellman-Ford Algorithm:- allow –ve weight edges in input graph. Thisalgorithm

either finds a shortest path form source vertex S∈V to other vertexv∈V
or detect a –ve weight cycles in G, hence no solution. If there is no
negative weight cycles are

reachable form source vertex S∈V to every other vertex v∈V

Dijkstra’s algorithm:- allows only +ve weight edges in the inputgraph

and finds ashortest path from source vertex S∈V to every other vertex

v∈V.

DESIGN AND ANALYSIS OF ALGORITHM [CS3102PC]

DEPT OF CSE , NRCM 77 DHANANJAY Asst. Prof

Consider the above directed graph, if node 1 is the source vertex,then

shortest pathfrom 1 to 2 is 1,4,5,2. The length is 10+15+20=45.

To formulate a greedy based algorithm to generate the shortest paths, we
mustconceive of a multistage solution to the problem andalso of an

optimization measure.

This is possible by building the shortest paths one by one.

As an optimization measure we can use the sum of the lengthsof all
paths so fargenerated.

If we have already constructed ‘i’ shortest paths, then using this

optimization measure,the next path to be constructed should be thenext
shortest minimum length path.

The greedy way to generate the shortest paths from Vo to the

remaining vertices is togenerate these paths in non-decreasingorder

of path length.

For this 1st, a shortest path of the nearest vertex is generated.

Then a shortest path tothe 2nd nearest vertex is generated and so on.

Algorithm for finding Shortest Path

Algorithm ShortestPath(v, cost, dist, n)

//dist[j], 1≤j≤n, is set to the length of the shortest path from vertex v to vertex j in graph g

with n-vertices.

// dist[v] is zero
{

for i=1 to n do{

s[i]=false;

dist[i]=cost[v,i];

}

s[v]=true;
dist[v]:=0.0; // put v in s

for num=2 to n do{

// determine n-1 paths from v

choose u form among those vertices not in s such that dist[u] is minimum.

s[u]=true; // put u in s

for (each w adjacent to u with s[w]=false) do

if(dist[w]>(dist[u]+cost[u, w])) then

dist[w]=dist[u]+cost[u, w];

}

}

DESIGN AND ANALYSIS OF ALGORITHM [CS3102PC]

DEPT OF CSE , NRCM 78 DHANANJAY Asst. Prof

MINIMUM COST SPANNING TREE:

SPANNING TREE: - A Sub graph ‘n’ of o graph ‘G’ is called as a spanning tree if

(i) It includes all the vertices of ‘G’
(ii) It is a tree

Minimum cost spanning tree: For a given graph ‘G’ there can be more than one

spanning tree. If weights are assigned to the edges of ‘G’ then the spanning tree
which has the minimum cost of edges is called as minimal spanning tree.

The greedy method suggests that a minimum cost spanning tree can be obtained

by contactingthe tree edge by edge. The next edge to be included in the tree is the
edge that results in a minimum increase in the some of the costs of the edges

included so far.

There are two basic algorithms for finding minimum-cost spanning trees,and
both are greedyalgorithms

Prim’s Algorithm
Kruskal’s Algorithm

Prim’s Algorithm: Start with any one node in the spanning tree, and
repeatedly add thecheapest edge, and the node it leads to, for which the node is

not already in the spanning tree.

DESIGN AND ANALYSIS OF ALGORITHM [CS3102PC]

DEPT OF CSE , NRCM 79 DHANANJAY Asst. Prof

DESIGN AND ANALYSIS OF ALGORITHM [CS3102PC]

DEPT OF CSE , NRCM 80 DHANANJAY Asst. Prof

PRIM’S ALGORITHM: -

i) Select an edge with minimum cost and include in to the
spanningtree.

ii) Among all the edges which are adjacent with
theselected edge, select the onewith minimum
cost.

iii) Repeat step 2 until ‘n’ vertices and (n-1) edges are
been included. And the subgraph obtained does not
contain any cycles.

DESIGN AND ANALYSIS OF ALGORITHM [CS3102PC]

DEPT OF CSE , NRCM 81 DHANANJAY Asst. Prof

Prim's minimum spanning tree algorithm
Algorithm Prim (E, cost, n,t)
// E is the set of edges in G. Cost (1:n, 1:n) is the
// Cost adjacency matrix of an n vertex graph such that
// Cost (i,j) is either a positive real no. or ∞ if no edge (i,j) exists.
//A minimum spanning tree is computed and
//Stored in the array T(1:n-1, 2).
//(t (i, 1), + t(i,2)) is an edge in the minimum cost spanning tree. The final cost is
returned

{
Let (k, l) be an edge with min

cost in EMin cost: = Cost (x,l);

T(1,1):= k; + (1,2):= l;

for i:= 1 to n do//initialize near
if (cost (i,l)<cost (i,k) then n east

(i): l;else near (i): = k;

near (k): = near (l):
= 0;for i: = 2 to n-1

do

{//find n-2 additional edges for t

let j be an index such that near (i) 0 & cost (j, near (i)) is

minimum;t (i,1): = j + (i,2): = near (j);

min cost: = Min cost + cost (j,

near (j)); near (j): = 0;
for k:=1 to n do // update near ()
if ((near (k) 0) and (cost {k, near (k)) >

cost (k,j)))then near Z(k): = ji
}
return mincost;
}

The algorithm takes four arguments E: set of edges, cost is nxn adjacency

matrix cost of (i,j)= +ve integer, if an edge exists between i&j otherwise

infinity. ‘n’ is no/: of vertices. ‘t’ is a (n- 1):2matrix which consists of the

edges of spanning tree.

E = { (1,2), (1,6), (2,3), (3,4), (4,5), (4,7), (5,6), (5,7), (2,7) }

DESIGN AND ANALYSIS OF ALGORITHM [CS3102PC]

DEPT OF CSE , NRCM 82 DHANANJAY Asst. Prof

n = {1,2,3,4,5,6,7)

i) The algorithm will start with a tree that includes only minimum
cost edge of
G. Then edges are added to this tree one by one.

ii) The next edge (i,j) to be added is such that i is a

vertex which is already included in the treed and j is

a vertex not yet included in the tree and cost of i,j is

minimum among all edges adjacent to ‘i’.

iii) With each vertex ‘j’ next yet included in the tree,

we assign a value near ‘j’. The value near ‘j’

represents a vertex in the tree such that cost (j, near

(j)) is minimum among all choices for near (j)
iv) We define near (j):= 0 for all the vertices ‘j’ that are already in the

tree.
v) The next edge to include is defined by the vertex ‘j’

such that (near (j))

minimum.

and cost of (j, near (j)) is

Analysis: -

The time required by the prince algorithm is directly proportional to the

no/: of vertices. If agraph ‘G’ has ‘n’ vertices then the time required by

prim’s algorithm is 0(n2)

KRUSKAL’S ALGORITHM:

Start with no nodes or edges in the spanning tree, and repeatedly add the
cheapest edge that does not create a cycle.

In Kruskals algorithm for determining the spanning tree we arrangethe

edges in the increasing order of cost.

i) All the edges are considered one by one in that order and

deleted from the graph and are included in to the

spanning tree.

0

DESIGN AND ANALYSIS OF ALGORITHM [CS3102PC]

DEPT OF CSE , NRCM 83 DHANANJAY Asst. Prof

ii) At every stage an edge is included; the sub-graph at a

stage need not be a tree. Infect it is a forest.

iii) At the end if we include ‘n’ vertices and n-1 edges

without forming cycles then we get a single connected

component without any cycles i.e. a tree with

minimum cost.
At every stage, as we include an edge in to the spanning tree, we get

disconnected trees represented by various sets. While including an

edge in to the spanning tree we need to check it does not form cycle.

Inclusion of an edge (i,j) will form a cycle if i,j both are in same set.

Otherwise the edge can be included into the spanning tree.

Kruskal minimum spanning tree algorithm
Algorithm Kruskal (E, cost, n,t)
//E is the set of edges in G. ‘G’ has ‘n’ vertices
//Cost {u,v} is the cost of edge (u,v) t is the set
//of edges in the minimum cost spanning tree
//The final cost is returned
{ construct a heap out of the edge costs using heapify;

for i:= 1 to n do parent (i):= -1 // place in different sets

//each vertex is in different set {1} {1}
{3}i: = 0; min cost: = 0.0;
While (i<n-1) and (heap not empty))do

{
Delete a minimum cost edge (u,v) from the heaps; and reheapify

using adjust;j:= find (u); k:=find (v);
if (j k) then
{ i: = 1+1;

+ (i,1)=u; + (i, 2)=v;
mincost: =

mincost+cost(u,v);
Union (j,k);
}

}
if (i n-1) then write (“No

spanning tree”);else return

mincost;
}

DESIGN AND ANALYSIS OF ALGORITHM [CS3102PC]

DEPT OF CSE , NRCM 84 DHANANJAY Asst. Prof

Consider the above graph of , Using Kruskal's method the edges of this graph are

considered for inclusion in the minimum cost spanning tree in the order (1, 2), (3,
6), (4, 6), (2, 6), (1, 4),

(3, 5), (2, 5), (1, 5), (2, 3), and (5, 6). This corresponds to the cost

sequence 10, 15, 20, 25, 30, 35, 40, 45, 50, 55. The first four edges are included in
T. The next edge to be consideredis (I, 4). This edge connects two vertices already

connected in T and so it is rejected. Next, the edge(3, 5) is selected and that

completes the spanning tree.

DESIGN AND ANALYSIS OF ALGORITHM [CS3102PC]

DEPT OF CSE , NRCM 85 DHANANJAY Asst. Prof

Analysis: - If the no/: of edges in the graph is given by /E/then the time

for Kruskalsalgorithm is given by 0 (|E| log

|E|).

0/1 KNAPSACK PROBLEM:

Let there be items, to where has a value and weight . The maximum

weight that we can carry in the bag is W. It is common to assume that all values and weights
are nonnegative. To simplify the representation, we also assume that the items are listed in

increasing order of weight.

Maximize subject to Maximize

the sum of the values of the items in the knapsack so that the sum of the weights must

be less than the knapsack's capacity.

Greedy algorithm for knapsack

Algorithm GreedyKnapsack(m,n)
// p[i:n] and [1:n] contain the profits and weights respectively
// if the n-objects ordered such that p[i]/w[i]>=p[i+1]/w[i+1], m size of knapsack and

x[1:n] the solution vector

{

For i:=1 to n do x[i]:=0.0

U:=m;

For i:=1 to n do

{

if(w[i]>U) then break;

x[i]:=1.0;

U:=U-w[i];

}

If(i<=n) then x[i]:=U/w[i];

}

Ex: - Consider 3 objects whose profits and weights are

defined as(P1, P2, P3) =

(25, 24, 15)

W1, W2, W3) = (18, 15, 10)

n=3 number ofobjects

m=20 Bagcapacity

DESIGN AND ANALYSIS OF ALGORITHM [CS3102PC]

DEPT OF CSE , NRCM 86 DHANANJAY Asst. Prof

Consider a knapsack of capacity 20. Determine the optimum strategy for placing

the objects in to the knapsack. The problem can be solved by the greedy approach

where in the inputs are arranged according to selection process (greedy strategy)

andsolve the problem in stages. The various greedy strategies for the problem could

be as follows.

(x1, x2, x3) ∑ xiwi ∑ xipi

(1, 2/15, 0) 18x1+
2

x15 = 20

15

25x1+
2

x 24 = 28.2

15

(0, 2/3, 1) 2
x15+10x1= 20

3

2
x 24 +15x1 = 31

3

(0, 1, ½) 1x15+
1

x10 = 20

2

1x24+
1

x15 = 31.5

2

(½, ⅓, ¼) ½ x 18+⅓ x15+ ¼ x10 = 16. 5 ½ x 25+⅓ x24+ ¼ x15 =

12.5+8+3.75 = 24.25

Analysis: - If we do not consider the time considered for sorting the

inputs then all of the three greedy strategies complexity will be O(n).

UNIT-V: Branch & Bound

Branch and Bound: General method, applications - Travelling sales person problem, 0/1knapsack problem - LC
Branch and Bound solution, FIFO Branch and Bound solution.

NP-Hard and NP-Complete problems: Basic concepts, non deterministic algorithms, NP -Hard and NP-Complete
classes, Cook’s theorem.

Branch & Bound (B & B) is general algorithm (or Systematic method) for finding optimal solution of
various optimization problems, especially in discrete and combinatorialoptimization.

 The B&B strategy is very similar to backtracking in that a state space tree is used to solve

a problem.

 The differences are that the B&B method

 Does not limit us to any particular way of traversing the tree.

 It is used only for optimization problem

 It is applicable to a wide variety of discrete combinatorial problem.

 B&B is rather general optimization technique that applies where the greedy method

&dynamic programming fail.

 It is much slower, indeed (truly), it often (rapidly) leads to exponential time

complexitiesin the worst case.

 The term B&B refers to all state space search methods in which all children of the “E-

node” are generated before any other “live node” can become the “E-node”

 Live node is a node that has been generated but whose children have not yet

DESIGN AND ANALYSIS OF ALGORITHM [CS3102PC]

DEPT OF CSE , NRCM 87 DHANANJAY Asst. Prof

beengenerated.

 E-nodeis a live node whose children are currently being explored.
Dead node is a generated node that is not to be expanded or explored any further.Allchildren of a

dead node have already been expanded

 We will use 3-types of search strategies in branch and bound

1) FIFO (First In First Out) search

2) LIFO (Last In First Out) search

3) LC (Least Count) search

FIFO B&B:

FIFO Branch & Bound is a BFS.

In this, children of E-Node (or Live nodes) are inserted in a queue.

Implementation of list of live nodes as a queue

 Least() Removes the head of the Queue

 Add() Adds the node to the end of the Queue

 Assume that node ‘12’ is an answer node in FIFO search, 1st we take E-node has ‘1’

DESIGN AND ANALYSIS OF ALGORITHM [CS3102PC]

DEPT OF CSE , NRCM 88 DHANANJAY Asst. Prof

LIFO B&B:
LIFO Brach & Bound is a D-search (or DFS).

In this children of E-node (live nodes) are inserted in a stackImplementation of
List of live nodes as a stack

 Least() Removes the top of the stack

 ADD()Adds the node to the top of the stack.

Least Cost (LC) Search:
The selection rule for the next E-node in FIFO or LIFO branch and bound is sometimes “blind”. i.e.,
the selection rule does not give any preference to a node that has a very good chance of getting the

search to an answer node quickly.

The search for an answer node can often be speeded by using an “intelligent” ranking function. It is
also called an approximate cost function “Ĉ”.

Expended node (E-node) is the live node with the best Ĉ value.

Branching: A set of solutions, which is represented by a node, can be partitioned into mutually

(jointly or commonly) exclusive (special) sets. Each subset in the partition is represented by a child of

the original node.
Lower bounding: An algorithm is available for calculating a lower bound on the cost of any solution
in a given subset.

Each node X in the search tree is associated with a cost: Ĉ(X)

C=cost of reaching the current node, X(E-node) form the root + The cost of reaching an answer node

form X.

Ĉ=g(X)+H(X).

Example:

8-puzzle

Cost function: Ĉ = g(x) +h(x)

where h(x) = the number of misplaced tiles

and g(x) = the number of moves so farAssumption: move one tile in any

DESIGN AND ANALYSIS OF ALGORITHM [CS3102PC]

DEPT OF CSE , NRCM 89 DHANANJAY Asst. Prof

DESIGN AND ANALYSIS OF ALGORITHM [CS3102PC]

DEPT OF CSE , NRCM 90 DHANANJAY Asst. Prof

Travelling Salesman Problem:
Def:- Find a tour of minimum cost starting from a node S going through other nodes only once

and returning to the starting point S.

Time Conmlexity of TSP for Dynamic Programming algorithm is O(n22n)
B&B algorithms for this problem, the worest case complexity will not be any better than O(n22n)
but good bunding functions will enables these B&B algorithms to solve some problem instances in
much less time than required by the dynamic programming alogrithm.

Let G=(V,E) be a directed graph defining an instances of TSP.Let

Cij cost of edge <i, j>

Cij =∞ if <i, j> ∉ E

|V|=n total number of vertices.

Assume that every tour starts & ends at vertex 1.

Solution Space S= {1, Π , 1 / Π is a permutation of (2, 3. 4 n) } then |S|=(n-1)!

The size of S reduced by restricting S

Sothat (1, i1,i2,-----in-1, 1}∈ S iff <ij, ij+1>∈ E. O≤j≤n-1, i0-in=1

DESIGN AND ANALYSIS OF ALGORITHM [CS3102PC]

DEPT OF CSE , NRCM 91 DHANANJAY Asst. Prof

S can be organized into “State space tree”.
Consider the following Example

The above diagram shows tree organization of a complete graph with

|V|=4.

Each leaf node ‘L’ is a solution node and represents the tour defined by the path from the rootto L.

Node 12 represents the tour.

i0=1, i1=2, i2=4, i3=3, i4=1

Node 14 represents the tour.

i0=1, i1=3, i2=4, i3=2, i4=1.

TSP is solved by using LC Branch & Bound:

To use LCBB to search the travelling salesperson “State space tree” first define a costfunction

C(.) and other 2 functions Ĉ(.) & u(.)

Such that Ĉ(r) ≤ C(r) ≤ u(r)  for all nodes r.

Cost C(.) is the solution node1 with least C(.) corresponds to a shortest tour in G.

C(A)={Length of tour defined by the path from root to A if A is leaf Cost of a
minimum-cost leaf in the sub-tree A, if A is not leaf }

From1 Ĉ(r) ≤ C(r) then Ĉ(r)  is the length of the path defined at node A.
From previous example the path defined at node 6 is i0, i1, i2=1, 2, 4 & it consists edge of

<1,2> & <2,4>

Abetter Ĉ(r) can be obtained by using the reduced cost matrix corresponding to G.

 A row (column) is said to be reduced iff it contains at least one zero & remaining

entriesare non negative.

A matrix is reduced iff every row & column is reduced.

DESIGN AND ANALYSIS OF ALGORITHM [CS3102PC]

DEPT OF CSE , NRCM 92 DHANANJAY Asst. Prof

Given the following cost matrix:

𝖥I𝖥Ƒ 20 30 10 11 1

 15 i𝑛ƒ 16 4 2

 3 5 i𝑛ƒ 2 4

I 19 6 18 i𝑛ƒ 3 I
L 16 4 7 16 i𝑛

ƒ

 The TSP starts from node 1: Node 1

 Reduced Matrix: To get the lower bound of the path starting at node 1
Row # 1: reduce by 10

𝖥i𝑛ƒ 10 20
15 i𝑛ƒ 16

3 5 i𝑛ƒ

I 19 6 18 i
L 16 4 7 16

Row #2: reduce 2

𝖥i𝑛ƒ 10 20
13 i𝑛ƒ 14

3 5 i𝑛ƒ

I 19 6 18 i
L 16 4 7 16

Row #3: reduce by 2

𝖥i𝑛ƒ 10 20
13 i𝑛ƒ 14

1 3 i𝑛ƒ

I 19 6 18 i
L 16 4 7 16

Row # 4: Reduce by 3: Row # 5: Reduce by 4 Column 1: Reduce by 1

DESIGN AND ANALYSIS OF ALGORITHM [CS3102PC]

DEPT OF CSE , NRCM 93 DHANANJAY Asst. Prof

- The matrix is reduced:
- RCL = 0

- The cost of node 2 (Considering vertex 2 from vertex 1) is:

Cost(2) = cost(1) + A(1,2) = 25 + 10 = 35

𝖥i𝑛ƒ 10 20
13 i𝑛ƒ 14

1 3 i𝑛ƒ

I 16 3 15 i
L 16 4 7 16

𝖥i𝑛ƒ 10 20
13 i𝑛ƒ 14

1 3 i𝑛ƒ 0

I 16 3 15 i
L 12 0 3 12

𝖥i𝑛ƒ 10 20
12 i𝑛ƒ 14

0 3 i𝑛ƒ

I 15 3 15 i
L 11 0 3 12

Column 2: It is reduced. Column 3: Reduce by 3

Column 4: It is reduced.
Column 5: It is reduced.

The reduced cost is: RCL = 25

So the cost of node 1 is: Cost (1) = 25
The reduced matrix is:

 Choose to go to vertex 2: Node 2

- Cost of edge <1,2> is: A(1,2) = 10

- Set row #1 = inf since we are choosing edge <1,2>

- Set column # 2 = inf since we are choosing edge <1,2>

- Set A(2,1) = inf

- The resulting cost matrix is:

𝖥i𝑛ƒ

i𝑛ƒ

i𝑛ƒ

i𝑛ƒ

i𝑛ƒ i𝑛ƒ

11 2

i𝑛ƒ 1

0

I
L

15

11

i𝑛ƒ
i𝑛ƒ

i𝑛ƒ
12

0 0 I

DESIGN AND ANALYSIS OF ALGORITHM [CS3102PC]

DEPT OF CSE , NRCM 94 DHANANJAY Asst. Prof

The lower bound is: RCL = 11

The cost of going through node 3 is:

Reduce the matrix: Rows are reduced

The columns are reduced except for column #

12 i𝑛ƒ
I 0 0 3 15 I

L

i𝑛ƒ 1

0

i𝑛ƒ

2

i𝑛ƒ

i𝑛ƒ
i𝑛ƒ i𝑛ƒ 3

- Cost of edge <1,3> is: A(1,3) = 17 (In the reduced matrix
- Set row #1 = inf since we are starting from node 1

- Set column # 3 = inf since we are choosing edge <1,3>

- Set A(3,1) = inf

- The resulting cost matrix is:

𝖥i𝑛ƒ i𝑛ƒ

Choose to go to vertex 3: Node 3:

 Choose to go to vertex 4: Node 4

Remember that the cost matrix is the one that was reduced at the starting vertex 1Cost of edge <1,4> is: A(1,4) =0

Set row #1 = inf since we are starting from node 1

Set column # 4 = inf since we are choosing edge <1,4>Set A(4,1) = infThe

resulting cost matrix is:

𝖥i𝑛ƒ i𝑛ƒ i𝑛ƒ i𝑛ƒ i𝑛ƒ 1
 12 i𝑛ƒ 11 i𝑛ƒ 0

 0 3 i𝑛ƒ i𝑛ƒ 2

I i𝑛ƒ 3 12 i𝑛ƒ 0 I
L 11 0 0 i𝑛ƒ i𝑛ƒ

DESIGN AND ANALYSIS OF ALGORITHM [CS3102PC]

DEPT OF CSE , NRCM 95 DHANANJAY Asst. Prof

Reduce the matrix: Rows are reduced

 Choose to go to vertex 5: Node 5

- Remember that the cost matrix is the one that was reduced at starting vertex 1

- Cost of edge <1,5> is: A(1,5) = 1

- Set row #1 = inf since we are starting from node 1

- Set column # 5 = inf since we are choosing edge <1,5>

- Set A(5,1) = inf

- The resulting cost matrix is:

1

i𝑛ƒ

I

L i𝑛ƒ

Reduce the matrix:

Reduce rows:

Reduce row #2: Reduce by 2

𝖥i𝖥ƒ i𝖥ƒ i𝖥ƒ i𝖥ƒ i𝖥ƒ 1

10 i𝑛ƒ 9 0 i𝑛ƒ

I𝖥Ƒ

I i𝑛ƒ I

L i◻ƒ

𝖥i𝑛ƒ i𝑛ƒ i𝑛ƒ i𝑛ƒ i𝑛ƒ
12 i𝑛ƒ 11 2 i𝑛ƒ

0 3 i𝑛ƒ 0
15 3 12 i𝑛ƒ

i◻i𝑛ƒƒ I0 0 12

0 3 i𝑛ƒ 0

15 3 12 i𝑛ƒ
i𝑛ƒ 0 0 12

The lower bound is: RCL = 0

The cost of going through node 4 is:

cost(4) = cost(1) + RCL + A(1,4) = 25 + 0 + 0 = 25

DESIGN AND ANALYSIS OF ALGORITHM [CS3102PC]

DEPT OF CSE , NRCM 96 DHANANJAY Asst. Prof

Reduce row #4: Reduce by 3

𝖥i𝖥ƒ i𝖥ƒ i𝖥ƒ i𝖥ƒ i𝖥ƒ 1

10 i𝑛ƒ 9 0 i𝑛ƒ

0 3 i𝑛ƒ 0 i𝑛ƒ
12 0 9 i𝑛ƒ i𝑛ƒ

i𝑛ƒ I 0 0 12 i𝑛ƒ

Columns are reduced
The lower bound is: RCL = 2 + 3 = 5
The cost of going through node 5 is:

cost(5) = cost(1) + RCL + A(1,5) = 25 + 5 + 1 = 31

In summary:

So the live nodes we have so far are:

 2: cost(2) = 35, path: 1->2

 3: cost(3) = 53, path: 1->3

 4: cost(4) = 25, path: 1->4

 5: cost(5) = 31, path: 1->5
Explore the node with the lowest cost: Node 4 has a cost of 25Vertices to

be explored from node 4: 2, 3, and 5

Now we are starting from the cost matrix at node 4 is:

DESIGN AND ANALYSIS OF ALGORITHM [CS3102PC]

DEPT OF CSE , NRCM 97 DHANANJAY Asst. Prof

 Choose to go to vertex 2: Node 6 (path is 1->4->2)

Reduce the matrix: Rows are reduced

Columns are

reducedThe lower bound is: RCL = 0

The cost of going through node 2 is:

i𝑛ƒ L 11

i𝑛ƒ I 0 i𝑛ƒ

2

i𝑛ƒ 1

0

i𝑛ƒ

i𝑛ƒ
i𝑛ƒ
i𝑛ƒ

i𝑛ƒ

i𝑛ƒ

i𝑛ƒ

11

i𝑛ƒ

i𝑛ƒ
i𝑛ƒ

i𝑛ƒ

𝖥i𝑛ƒ

i𝑛ƒ

0

i𝑛ƒ

Set column # 2 = inf since we are considering edge <4,2>

Set A(2,1) = inf

Cost of edge <4,2> is: A(4,2) = 3

Set row #4 = inf since we are considering edge <4,2>

DESIGN AND ANALYSIS OF ALGORITHM [CS3102PC]

DEPT OF CSE , NRCM 98 DHANANJAY Asst. Prof

 Choose to go to vertex 3: Node 7 (path is 1->4->3)

L 11 0 i𝖥ƒi𝖥ƒi𝖥ƒ

i𝑛ƒ i𝑛ƒ i𝑛ƒ I i𝑛ƒ Ii𝑛ƒ

i𝖥ƒi𝖥ƒ2 i𝖥ƒ3

i𝖥ƒ 1

i𝑛ƒ 0 i𝑛ƒ 12 i𝑛ƒ

i𝖥ƒ i𝖥ƒ i𝖥ƒ 𝖥i𝖥ƒ

Cost of edge <4,3> is: A(4,3) = 12

Set row #4 = inf since we are considering edge <4,3>

Set column # 3 = inf since we are considering edge <4,3>

DESIGN AND ANALYSIS OF ALGORITHM [CS3102PC]

DEPT OF CSE , NRCM 99 DHANANJAY Asst. Prof

Reduce row #3: by 2:

𝖥i𝖥ƒ i𝖥ƒ i𝖥ƒ i𝖥ƒ i𝖥ƒ 1

12 i𝑛ƒ i𝑛ƒ i𝑛ƒ 0

i𝖥ƒ 1 i𝖥ƒ i𝖥ƒ 0

Ii𝑛ƒ i𝑛ƒ i𝑛ƒ i𝑛ƒ i𝑛ƒ I

L 11 0 i𝖥ƒ i𝖥ƒ i𝖥ƒ

Reduce column # 1: by 11

𝖥i𝑛ƒ
1

i𝑛ƒ
i𝑛ƒ

i𝑛ƒ
i𝑛ƒ

i𝑛ƒ
i𝑛ƒ

i𝑛ƒ
1

0
i𝑛ƒ 1 i𝑛ƒ i𝑛ƒ 0

Ii𝑛ƒ i𝑛
ƒ

i𝑛ƒ i𝑛ƒ i𝑛ƒ

L 0 0 i𝖥ƒ i𝖥ƒ i𝖥ƒ

The lower bound is: RCL = 13

So the RCL of node 7 (Considering vertex 3 from vertex 4) is:Cost(7)
= cost(4) + RCL + A(4,3) = 25 + 13 + 12 = 50

DESIGN AND ANALYSIS OF ALGORITHM [CS3102PC]

DEPT OF CSE , NRCM 100 DHANANJAY Asst. Prof

Cost of edge <4,5> is: A(4,5) = 0

Set row #4 = inf since we are considering edge <4,5>

L i𝑛ƒ

i𝑛ƒ

3

0

i𝑛ƒ
𝖥i𝑛ƒ

3 i𝑛ƒ i𝑛ƒ i𝑛ƒ
L i𝑛ƒ

Reduce the matrix:

Reduced row 2: by 11

11 i𝑛ƒ

i𝑛ƒ 1

i𝑛ƒ

Set column # 5 = inf since we air𝑛e cƒon s ideir𝑛inƒg edgei𝑛<4ƒ,5>

 Choose to go to vertex 5: Node 8 (path is 1->4->5)

In summary: So the live nodes we have so far are:

 2: cost(2) = 35, path: 1->2

 3: cost(3) = 53, path: 1->3

 5: cost(5) = 31, path: 1->5

 6: cost(6) = 28, path: 1->4->2

 7: cost(7) = 50, path: 1->4->3

 8: cost(8) = 36, path: 1->4->5

 Explore the node with the lowest cost: Node 6 has a cost of 28

 Vertices to be explored from node 6: 3 and 5

 Now we are starting from the cost matrix at node 6 is:

i𝑛ƒ i𝑛ƒ i𝑛ƒ 1

0 i𝑛ƒ i𝑛ƒ

i𝑛ƒ i𝑛ƒ i𝑛ƒ

0 i𝑛ƒ i𝑛ƒ

𝖥i𝑛ƒ i𝑛ƒ

1

0

DESIGN AND ANALYSIS OF ALGORITHM [CS3102PC]

DEPT OF CSE , NRCM 101 DHANANJAY Asst. Prof

DESIGN AND ANALYSIS OF ALGORITHM [CS3102PC]

DEPT OF CSE , NRCM 102 DHANANJAY Asst. Prof

 Choose to go to vertex 3: Node 9 (path is 1->4->2->3)

Cost of edge <2,3> is: A(2,3) = 11

Set row #2 = inf since we are considering edge <2,3>

Set column # 3 = inf since we are considering edge <2,3>Set

A(3,1) = inf

𝖥i𝑛ƒ i𝑛ƒ i𝑛ƒ I i𝑛ƒ i𝑛ƒ
i𝑛ƒ i𝑛ƒ i𝑛ƒ i𝑛ƒ i𝑛ƒ
i𝑛ƒ i𝑛ƒ i𝑛ƒ i𝑛ƒ 0

Ii𝑛ƒ i𝑛ƒ i𝑛ƒ i𝑛ƒ i𝑛ƒ

L 11
Reduce column # 1: by 11

i𝑛ƒ i𝑛ƒ i𝑛ƒ i𝑛ƒ
1

𝖥i𝑛ƒ i𝑛ƒ i𝑛ƒ i𝑛ƒ i𝑛ƒ

i𝑛ƒ i𝑛ƒ i𝑛ƒ i𝑛ƒ i𝑛ƒ
i𝑛ƒ i𝑛ƒ i𝑛ƒ i𝑛ƒ 0

I

1

𝖥i𝑛ƒ i𝑛ƒ i𝑛ƒ i𝑛ƒ i𝑛ƒ
Thie𝑛reƒsult inig𝑛c

s
oƒt ait r𝑛ixƒis:

i𝑛ƒ i𝑛ƒ
 i𝑛ƒ i𝑛ƒ i𝑛ƒ i𝑛ƒ 2 1

Ii𝑛ƒ i𝑛ƒ i𝑛ƒ i𝑛ƒ i𝑛ƒ

L 11 i𝑛ƒ i𝑛ƒ i𝑛ƒ i𝑛ƒ

Reduce the matrix: Reduce row #3: by 2

DESIGN AND ANALYSIS OF ALGORITHM [CS3102PC]

DEPT OF CSE , NRCM 103 DHANANJAY Asst. Prof

Ii𝑛ƒ i𝑛ƒ i𝑛ƒ i𝑛ƒ i𝑛ƒ IL

0 i𝑛ƒ i𝑛ƒ i𝑛ƒ i𝑛ƒ

The lower bound is: RCL = 2 +11 = 13

So the cost of node 9 (Considering vertex 3 from vertex 2) is:Cost(9) =

cost(6) + RCL + A(2,3) = 28 + 13 + 11 = 52

DESIGN AND ANALYSIS OF ALGORITHM [CS3102PC]

DEPT OF CSE , NRCM 104 DHANANJAY Asst. Prof

Cost of edge <2,5> is: A(2,5) = 0

Set row #2 = inf since we are considering edge <2,3>

 Choose to go to vertex 5: Node 10 (path is 1->4->2->5)

𝖥i𝑛ƒ
i𝑛ƒ

i𝑛ƒ
i𝑛ƒ

i𝑛ƒ
i𝑛ƒ

i𝑛ƒ
i𝑛ƒ

1 i𝑛ƒ
i𝑛ƒ

0 i𝑛ƒ i𝑛ƒ i𝑛ƒ i𝑛ƒ

i𝑛ƒ i𝑛ƒ i𝑛ƒ i𝑛ƒ I𝑛ƒ

i𝑛ƒ i𝑛ƒ i𝑛ƒ i𝑛ƒ I𝑛ƒ

In summary: So the live nodes we have so far are:

 2: cost(2) = 35, path: 1->2

 3: cost(3) = 53, path: 1->3

 5: cost(5) = 31, path: 1->5

 7: cost(7) = 50, path: 1->4->3

 8: cost(8) = 36, path: 1->4->5

 9: cost(9) = 52, path: 1->4->2->3

Set column # 3 = inf since we are considering edge <2,3>

Set A(5,1) = inf

Reduce the matrix: Rows reduced

Columns reduced

The lower bound is: RCL = 0

So the cost of node 10 (Considering vertex 5 from vertex 2) is:

Cost(10) = cost(6) + RCL + A(2,3) = 28 + 0 + 0 = 28

DESIGN AND ANALYSIS OF ALGORITHM [CS3102PC]

DEPT OF CSE , NRCM 105 DHANANJAY Asst. Prof

Cost of edge <5,3> is: A(5,3) = 0

Set row #5 = inf since we are considering edge <5,3>

 10: cost(2) = 28, path: 1->4->2->5

 Explore the node with the lowest cost: Node 10 has a cost of 28

 Vertices to be explored from node 10: 3

 Now we are starting from the cost matrix at node 10 is:

 Choose to go to vertex 3: Node 11 (path is 1->4->2->5->3)

𝖥i𝑛ƒ i𝑛ƒ i𝑛ƒ i𝑛ƒ i𝑛ƒ
i𝑛ƒ i𝑛ƒ i𝑛ƒ i𝑛ƒ i𝑛ƒ
i𝑛ƒ i𝑛ƒ i𝑛ƒ i𝑛ƒ i𝑛ƒ

Ii𝑛ƒ i𝑛ƒ i𝑛ƒ i𝑛ƒ i𝑛ƒ

1

I

Set column # 3 = inf since we are considering edge <5,3>

L i𝑛ƒ i𝑛ƒ i𝑛ƒ i𝑛ƒ i𝑛ƒ

Reduce the matrix: Rows reduced

Columns reduced

The lower bound is: RCL = 0

So the cost of node 11 (Considering vertex 5 from vertex 3) is:

DESIGN AND ANALYSIS OF ALGORITHM [CS3102PC]

DEPT OF CSE , NRCM 106 DHANANJAY Asst. Prof

State Space Tree:

O/1 Knapsack Problem

What is Knapsack Problem: Knapsack problem is a problem in combinatorial

optimization,Given a set of items, each with a mass & a value, determine the

number of each item to include in a collection so thatthe total weight is less than
or equal to a given limit & the total value is aslarge as possible.

O-1 Knapsack Problem can formulate as. Let there be n items, Z1 to Zn where Zi has

value

Pi & weight wi. The maximum weight that can
carry in the bag is m.All values and weights arenon
negative.

Maximize the sum of the values of the items in the knapsack, so that sumof the

weights mustbe less than the knapsack’s capacity m.

The formula can be stated as

DESIGN AND ANALYSIS OF ALGORITHM [CS3102PC]

DEPT OF CSE , NRCM 107 DHANANJAY Asst. Prof

To solve o/1 knapsack problem using B&B:

 Knapsack is a maximization problem

 Replace the objective function by the functionto make it into aminimiza

 The modified knapsack problem is stated as



o

Fixed tuple size solution space:

Every leaf

which
node in state space tree represents an answer for

is an answer node; other leaf nodes are infeasible

o For optimal solution, define

for every answer node x

 For infeasible leaf nodes,

 For non leaf nodes
c(x) = min{c(lchild(x)), c(rchild(x))}

 Define two functions cˆ(x) and u(x)

such that for everynode x,

cˆ(x) ≤ c(x) ≤ u(x)

 Computing cˆ(·) and u(·)

DESIGN AND ANALYSIS OF ALGORITHM [CS3102PC]

DEPT OF CSE , NRCM 108 DHANANJAY Asst. Prof

Algorithm ubound (cp, cw, k, m)

{

// Input: cp: Current profit total

// Input: cw: Current weight total

// Input: k: Index of last removed item

// Input: m: Knapsack capacity

b=cp; c=cw;

for i:=k+1

to n
do{

if(c+

w[i] ≤
m)

then {

}

c:=c+w[i]; b=b-p[i];

}

return b;

}

NP-Hard and NP-Complete problems: Basic concepts, non

deterministic algorithms, NP -Hard and NPComplete

classes, Cook’stheorem.

Basic concepts:

NP-) Nondeterministic Polynomial time

The problems has best algorithms for their solutions have “Computing

times”, that clusterinto two groups

Group 1 Group 2

DESIGN AND ANALYSIS OF ALGORITHM [CS3102PC]

DEPT OF CSE , NRCM 109 DHANANJAY Asst. Prof

> Problems with solution time bound by

a polynomial of a small degree.
> Problems with solution times not

bound by polynomial (simply non

polynomial)

> It also called “Tractable Algorithms”

>

These are hard orintractable
problems

> Most Searching & Sorting algorithms
are polynomial time algorithms

>

None of the problems in this group

has been solved by any polynomial

> Ex: time algorithm

 Ordered Search (O (log n)),

Polynomial evaluation O(n) >

Ex:

Sorting O(n.log n)

 Traveling Sales Person O(n2 2n)

 Knapsack O(2n/2)

o one has been ableto develop a polynomial time algorithm for

anyproblem in the 2nd group (i.e., group 2)

So, it is compulsory and finding algorithms whose computing times

aregreater than polynomial very quickly because such vast amounts

of timeto execute that even moderatesize problems cannot be solved.

Theoryof NP-Completeness:

Show that may of the problems with no polynomial time algorithms are

computational timealgorithms are computationally related.

There are two classes of non-polynomial time problems

1. NP-Hard

2. NP-Complete

3. NP Complete Problem: A problem that is NP-Complete can

solvedin polynomial time ifand only if (iff) all other NP-

Complete problems can also be solved in polynomial time.

4. NP-Hard: Problem can be solved in polynomial time then

all NP-Complete problems can besolved in polynomial

time.

5. All NP-Complete problemsare NP-Hard but some NP-Hard

problemsarenot know to be NP-Complete.

DESIGN AND ANALYSIS OF ALGORITHM [CS3102PC]

DEPT OF CSE , NRCM 110 DHANANJAY Asst. Prof

Nondeterministic Algorithms:

Algorithms with the property that the result of every operation is

uniquelydefined are termedas deterministic algorithms. Such algorithms

agree withthe way programs are executed on a computer.

Algorithms which contain operations whose outcomes are not

uniquely defined but arelimited to specified set of possibilities.

Such algorithmsare called nondeterministic algorithms.

The machine executing such operations is allowed to choose any

one of these outcomessubject to a termination condition to be

definedlater.

To specify nondeterministic algorithms,

thereare 3 new functions. Choice(S)-)

arbitrarily chooses one of the

elements of sets S Failure ()-) Signals

an Unsuccessful completion

Success ()-) Signals a successful completion.

Example for Non Deterministic algorithms:

Algorithm Search(x){

//Problem is to search an element x

//output J, suchthat A[J]=x; or J=0 if x is not in A

J:=Choice(1,n);

if(A[J]:=x) then {

Write(J);

Success();

}

else{

write(0);

failure();

Whenever there is a set of choices

that leads to a successful completion

then one such set of choices is

always made and the algorithm

terminates.

A Nondeterministic algorithm

terminates unsuccessfully if and

only if (iff) there exists no set of

choices leading to a successful

signal.

}

DESIGN AND ANALYSIS OF ALGORITHM [CS3102PC]

DEPT OF CSE , NRCM 111 DHANANJAY Asst. Prof

Nondeterministic Knapsack algorithm

Algorithm DKP(p, w, n, m, r, x){ p-) given Profits

W:=0; w-) given Weights

P:=0; n-) Number of elements (number of

for i:=1 to n do{ p or w)

x[i]:=choice(0, 1); m -) Weight of bag limit

W:=W+x[i]*w[i]; P-) Final Profit

P:=P+x[i]*p[i]; W-) Final weight

}

if((W>m) or (P<r)) then Failure();

else Success();

}

The Classes NP-Hard & NP-Complete:

For measuring the complexity of an algorithm, we use the input length

asthe parameter. Forexample, An algorithm A is of polynomial

complexityp() such that the computing time of Ais O(p(n)) for every

input of size n.Decision problem/ Decision algorithm: Any problem for

which the answer is either zero orone is decision problem. Any

algorithm for a decision problem is termed a decision algorithm.

Optimization problem/ Optimization algorithm: Any problem

thatinvolves the identification of an optimal (either minimum or

maximum)

value of a given cost function isknown as an optimization

problem.An optimization algorithm is used to solve an

optimization problem.

P-) is the set of all decision problems solvable by deterministic

algorithms in polynomial time.

NP-) is the set of all decision problems solvable by nondeterministic

algorithms in polynomial time.

Since deterministic algorithms are just a special case of nondeterministic,

by this weconcluded that P ⊆ NP

DESIGN AND ANALYSIS OF ALGORITHM [CS3102PC]

DEPT OF CSE , NRCM 112 DHANANJAY Asst. Prof

 Commonly believed relationship between P
& NP

The most famous unsolvable problems in Computer Science is

Whether P=NP or P≠NPIn considering this problem, s.cook

formulated the following question.

If there any single problem in NP, such that if we showed it to be in ‘P’

then that wouldimply that P=NP.

Cook answered this question with

Theorem: Satisfiability is in P if and only if (iff) P=NP

-)Notation of Reducibility

Let L1 and L2 be problems, Problem L1 reduces to L2 (written L1 α

L2) iff there is a way to solve L1 by a deterministic polynomial

time algorithm using a deterministic algorithm thatsolves L2 in

polynomialtime

This implies that, if we have a polynomial time algorithm for L2,

Thenwe can solve L1 inpolynomial time.

Here α-) is a transitive relation i.e., L1 α L2 and L2 α L3 then L1 α L3

A problem L is NP-Hard if and only if (iff) satisfiability reduces to L ie., Statisfiability α

L

A problem L is NP-Complete if and only if (iff) L is NP-Hard and L Є NP

DESIGN AND ANALYSIS OF ALGORITHM [CS3102PC]

DEPT OF CSE , NRCM 113 DHANANJAY Asst. Prof

Commonly believed relationship among P, NP, NP-Completeand NP-

HardMost natural problems in NP are either in P or NP- complete.
Examples of NP-complete problems:

> Packing problems: SET-PACKING, INDEPENDENT-SET.
> Covering problems: SET-COVER, VERTEX-COVER.
> Sequencing problems: HAMILTONIAN-CYCLE, TSP.
> Partitioning problems: 3-COLOR, CLIQUE.

> Constraint satisfaction problems: SAT, 3-SAT.
Numerical problems: SUBSET-SUM, PARTITION, KNAPSACK

Cook’s Theorem: States that satisfiability is in P if and only if

P=NP
IfP=NPthen satisfiability is in P

If satisfiability is
in P, then

P=NPTo do this

> A-) Any polynomial time nondeterministic decision algorithm.

I-)Input of that algorithm

Then formula Q(A, I), Such that Q is satisfiable iff ‘A’ has a successfultermination

with Input I.

> If the length of ‘I’ is ‘n’ and the time complexity of A is p(n) for some polynomial

p() then length of Q is O(p3(n) log n)=O(p4(n))

The time needed to construct Q is also O(p3(n) log n).

> A deterministic algorithm ‘Z’ to determine the outcome of ‘A’ on

any input ‘I’Algorithm Z computes ‘Q’ and then uses a deterministic

algorithm for the satisfiability problem to determine whether ‘Q’ is

satisfiable.If O(q(m)) is the time needed to determine whether a formula

of length ‘m’ issatisfiable then the complexity of ‘Z’ is O(p3(n) log n +

q(p3(n)log n)).

> If satisfiability is ‘p’, then ‘q(m)’ is a polynomial function of ‘m’
and thecomplexity of ‘Z’ becomes ‘O(r(n))’ for some polynomial ‘r()’.

> Hence, if satisfiability is in p, then for every nondeterministic algorithm A in

NP, wecan obtain a deterministic Z in p.

By this we shows that satisfiability is in p then P=NP

	UNIT I:
	History of Algorithm
	What is an Algorithm?
	For example,
	‘’a set of steps to accomplish or complete a task that is described precisely enough thata computer can run it’’.
	Algorithms for Problem Solving
	4 Distinct areas of study of algorithms:
	PSEUDOCODE:
	Pseudocode: High-level description of an algorithm.
	Example of Pseudocode:
	PERFORMANCE ANALYSIS:
	Space Complexity:
	Example 2:
	Time Complexity:
	Algorithm:
	analyse an Algorithm?
	Pseudo code for insertion Algorithm:
	Best case:
	Worst case:
	Order of growth:
	Complexity of Algorithms
	ASYMPTOTIC NOTATION
	Asymptotic Analysis of Algorithms:
	Big-O Notation
	Omega— Ω notation
	Theta- Θ notation
	Little Oh Notation
	Applications of Divide and conquer rule or algorithm:
	Binary search or Half-interval search algorithm:
	Merge Sort:
	Advantages of Merge Sort:
	Tree call of Merge sort
	Tree call of Merge sort (1, 10)
	Computing Time for Merge sort:
	T(n)= a if n=1; 2T(n/2)+ cn f n>1

	Quick Sort
	Strassen’s Matrix Multiplication:
	Data representation of sets:
	P[1:N].
	Weighting rule for Union(i, j):
	N-Queens Problem
	Algorithm:
	Place (k, i)
	RETURN TRUE;

	Subset Sum Problem

	N = 4, -2, 2, 3, 1
	There are two ways of solving the subset problem:
	Method 1: Recursion
	Let's understand that how can we solve the problem using recursion. Consider the array which is given below:

	First element in an array is 3. There are two scenarios:
	o Now we perform the same select and reject operation on element 4 as it is the first element of the array now.
	Now we perform the select and reject operation on element 5.

	Consider R-5. It also has two scenarios:
	Consider R-4. It has two scenarios:
	Consider S-5. It has two scenarios:
	Consider R-5. It has two scenarios:
	Applications of Graph coloring
	Greedy Algorithm
	UNIT-III
	Optimal Binary Search Tree
	First, we will calculate the values where j-i is equal to zero.
	Now we will calculate the values where j-i equal to 1.
	Now we will calculate the values where j-i = 2
	Now we will calculate the values when j-i = 4

	General formula for calculating the minimum cost is:

	DO
	END
	end
	Complexity Analysis of Optimal Binary Search Tree
	0/1 Knapsack problem
	wi = {3, 4, 5, 6}
	PI = {2, 3, 4, 1}
	The first row and the first column would be 0 as there is no item for w=0
	Now the value of 'i' gets incremented, and becomes 2.
	Now the value of 'i' gets incremented, and becomes 3.
	Now the value of 'i' gets incremented and becomes

	X = { 1, 0, 0}
	X = {1, 1, 0, 0}
	ALGORITHM:

	End
	END
	ELSE
	Complexity analysis
	All Pairs Shortest Path Algorithm – Introduction
	Principle of optimality :
	Algorithm for All Pairs Shortest Path
	Complexity analysis of All Pairs Shortest Path Algorithm
	Solution:
	Traveling salesman problem – Description
	Algorithm for Traveling salesman problem:
	Complexity Analysis of Traveling salesman problem

	Example
	Solution: (1)
	Trace the path:
	Reliability Design:
	Problems based on reliability design:
	Solution: (2)
	For Three Device D3:-

	UNIT-IV
	Greedy Method:
	Application of Greedy

	PRIM’S ALGORITHM: -
	Kruskal’s Algorithm:
	UNIT-V: Branch & Bound
	Example:
	The size of S reduced by restricting S

	𝖥I𝖥Ƒ 20 30 10 11 1
	Choose to go to vertex 3: Node 3:

	I
	10 i𝑛ƒ 9 0 i𝑛ƒ
	𝖥i𝖥ƒ i𝖥ƒ i𝖥ƒ i𝖥ƒ i𝖥ƒ 1
	10 i𝑛ƒ 9 0 i𝑛ƒ
	 Choose to go to vertex 3: Node 7 (path is 1->4->3)
	𝖥i𝖥ƒ i𝖥ƒ i𝖥ƒ i𝖥ƒ i𝖥ƒ 1
	i𝖥ƒ 1 i𝖥ƒ i𝖥ƒ 0

	1
	State Space Tree:
	The Classes NP-Hard & NP-Complete:

