211z NARSIMHA REDDY
i ENGINEERING COLLEGE

An Autonomous Institution] Affilicted to INTUH | Approved by AICTE

~;_;;~- Accredited by NBA & NAAC with ‘A’ Grode

CYBER SECURITY

SOFTWARE ENGINEERING (23CY405)
II-YEAR |1 SEM

PRAVEEN

v ALI DATION

=" AND VERIFICATION

d '-;_-jj'—g_-s__.-—vﬂ-"fféi '
~PROGRAMMING D

e
=

d M GH~LEVEL~TEST
ETR———

CONTENTS

Software Engineering Definition

Nature of Software Engineering

Software Myths

Layered Technology

Process Framework

CMMI (Capability Maturity Model Integration)
Process Patterns, Assessments

Personal and team Process models

Waterfgll :Vlodel, Incremental Process Model, Evolutionary Process
Mode

Unified Process

1. SOFTWARE ENGINEERING

Software engineering is defined as a process of analyzing
user requirements and then designing, building, and
testing software application which will satisfy those
reguirements.

It is an engineering stream dedicated to software
development. Software programs can be developed
without S/E principles and methodologies but they are

Indispensable if we want to achieve good quality software

In a cost effective manner

IEEE DEFINITION

IEEE, In its standard 610.12-1990, defines software
engineering as the application of a systematic,
disciplined, which is a computable approach for the
development, operation, and maintenance of
software.

FRITZ BAUER DEFINITION

The establishment and used standard engineering
principles. It helps you to obtain, economically,
software which is reliable and works efficiently on the
real machines.

BOEHM DEFINITION

The practical application of scientific knowledge to the
creative design and building of computer programs. It
also includes associated documentation needed for
developing, operating, and maintaining them.

2. CHANGING NATURE OF SOFTWARE
ENGINEERING

Now-a-days, the software landscape has been
completely changed . There are 7 various software
each for a specific use

= System Software

= Application Software

= Engineering and Scientific Software

* Embedded Software

" Product Line Software

= Web Application

= Al Software

SYSTEM SOFTWARE

System software is a collection of programs which are
written to service other programs. Some system
software processes complex but determinate,
Information structures.

Example : Operating Systems

om Windows 11

APPLICATION SOFTWARE

Application software is defined as programs that
solve a specific business need. Application in
this area process business or technical data in
a way that facilitates business operation or
management technical decision making.

Example: MS Office Suite

] Office
T

ENGINEERING AND SCIENTIFIC SOFTWARE

This software is used to facilitate the engineering
function and task.

Computer-aided design, system simulation, and other
Interactive applications have begun to take a real-time
and even system software characteristic.

Example: MATLAB, Stellarium, ORCAD

EMBEDDED SOFTWARE

Embedded software resides within the system or product
and iIs used to implement and control feature and
function for the end-user and for the system itself.

Fly-by-wire control systems found in aircraft.

Motion detection systems in security cameras.

PRODUCT LINE SOFTWARE

Designed to provide a specific capability for use by many different customers,

Frravdared and Liny

utd Bavezapes
. ¢

Nutzition and Haestth Bowecy

. iluma
Fetlate

© <
Mk ity i | m

T and los GTRO

WEB APPLICATION

It IS a client-server computer program which the client
runs on the web browser. In their simplest form, Web
apps can be little more than a set of linked hypertext
files that present information using text and limited
graphics.

Al SOFTWARE

Artificial intelligence software makes use of a
non-numerical algorithm to solve a complex
problem that is not amenable to computation
or straightforward analysis.

Intelligence

3. SOFTWARE MYTHS

v Computers provide greater reliability than
replace.

v Testing software or ‘proving’ software correct can remove all
the errors.

v Reusing software increases safety.
v Software can work right the first time.

v Software can be designed thoroughly enough to avoid most
integration problems.

v Software with more features is better software.
v Aim is to develop working programs.

SOFTWARE MYTHS (CONTD..)

We have all the standards and procedures available for software development i.e. the
software developer has all the reqd.

The addition of the latest hardware programs will improve the software development.

Managers think that, with the addition of more people and program planners to
Software development can help meet project deadlines (If lagging behind).

4. LAYERED TECHNOLOGY

Software engineering is a fully layered technology.

To develop a software, we need to go from one layer to
another.

All these layers are related to each other and each layer
demands the fulfillment of the previous layer.

Fig. - Software Engineering Layers

5. PROCESS FRAMEWORK

Framework is a Standard way to build and deploy applications.

Software Process Framework is a foundation of complete
software engineering process. Software process framework
Includes all set of umbrella activities.

Contains 5 activities
= Communication

= Planning

= Modelling

= Construction

= Deployment.

5. PROCESS FRAMEWORHK CONTD.

Under Process framework the umbrella activities include:
= Risk Management

= Software Quality Assurance

= Software Configuration Management

= Measurement

= Format Technical Reviews

6.CMMI

The Capability Maturity Model Integration (CMMI) is a process and
behavioral model that helps organizations streamline process
improvement and encourage productive, efficient behaviors that
decrease risks in software, product, and service development.

was developed by the Software Engineering Institute at Carnegie
Mellon University as a process improvement tool for projects,
divisions, or organizations.

£ cmmr

CMMI LEVELS

Characteristics of the Maturity levels

Focus on process
improvement

_| Processes measured
\ged and controlled

- Processes characterized for the
Lévera .. | organization and is proactive.

Defined | (orc o s "

Processes characterized for projects

7.PROCESS PATTERNS

At any level of abstraction, patterns can be defined. They can be used to
describe a problem and solution associated with framework activity
in some situations. While in other situations patterns can be used to
desgritl)e a problem and solution associated with a complete process
model.

There are 3 types of patterns :
= Stage Pattern:
= Establishing Communication might be an example of a staged pattern
= Task Pattern:

= Problems associated with a software engineering action or work task and relevant to
successful software engineering practice

= Phase Pattern:

= Even when the overall flow of activities is iterative in nature, it defines sequence of
framework activities that occurs within process.

PROCESS ASSESSMENT

A software process assessment is a disciplined examination of the
software processes used by an organization, based on a process
model.

The assessment includes the identification and characterization of
current practices, identifying areas of strengths and weaknesses,
and the ability of current practices to control or avoid significant
causes of poor (software) quality, cost, and schedule.

There are 3 types of assessment:
= Self-assessment: Performed Internally by a company’s own personnel
= Second Party Assessment: Performed by an external assessment team
= Third Party ; Performed by a third party

8.PERSONAL PROCESS MODELS

Personal Software Process (PSP) is the skeleton or the
structure that assist the engineers in finding a way to
measure and improve the way of working to a great extend.

The aim of PSP is to give software engineers with the regulated

methods for the betterment of personal software development
processes.

PSP has 4 levels;

= Level O : Personal Measurement, Basic Size measures, Coding standards

= Level 1: Includes Planning of time and scheduling

= Level 2: Introduces Personal Quality Management design and code reviews.
= Level 3: Personal Process Evolution.

TEAM PROCESS MODELS

The goal of TSP s to build a “self directed” project team that organizes itself to
produce high quality software.

TSP defines the following framework activities: project launch, high level design,
implementation, personal and team process model, integration and test, and
postmortem.

SDLC

THE
SOFTWARE
DEVELOPMENT
CYCLE

WATERFALL MODEL

-

Waterfall
Development MOdeI

Testing

Deployment

Maintenance

INCREMENTAL PROCESS MODEL

Analysis Design test Increment-1
|Analy5|s HDemgn H I-.I test I Incrementz
|Ana|ysis HDemgn H H test I | Increment-3

| Incremental Model| I

EVOLUTIONARY PROCESS MODEL

Software
Concept

Preliminary
Requirement
Analysis

Design of
Architecture
snd system core

Deflver Final
Vemion

Develcp a
version

Incorparate
Customer
feedback

Elicit Customer
Feedback

v

Deliver the
version

UNIFIED PROCESS

Resources

Time

Inception Elaboration Construction Transition

" AND VERIFICATION

ﬁawme 2

Contents-PART-I

Software Requirements:
*Functional Requirements
*Non-Functional Requirements
=User Requirements

=System Requirements

*Interface Specification

=Software Requirements Document

CONTENTS-PARTH-I

Requirements Engineering Process:
“Feasibility Studies

*Requirements elicitation and Analysis
*Requirements validation
*Requirements Management

CONTENTS-PARTHIII

System Models :
=Context Models
“Behavioral Models
=Data Models
“Object Models
=Structured Models

Bad Good
Requirements Requirements

PART -1 : SOFTWARE ENGINEERING
REQUIREMENT ENGINEERING.

PART |

The Software requirements are a description of features and functionalities of the
target system.

Characteristics:
= Clear

= Concise

= Correct

= Coherent

= Modifiable

= Verifiable

= Prioritized.

Functional Requirements

Functional Requirements usually define if/fthen behaviors and include calculations,
data input and business processes.

The Features Which allow the system to function as it was intended.

Examples:

= Business Rules

= Transaction Corrections
= Authentication

= Audit Tracking

= External Interfaces.

Non-Functional Requirements

Non-Functional Requirements are the constraints or the requirements imposed on the
system.

They Specify the quality attribute of the software.

Non-Functional Issues like Security, Reliability, maintenance, performance etc. are
monitored

Types:
= Performance Constraints :
= Reliability, Security, Response Time etc.
Operating Constraints : Physical Constraints
Interface Constraints : How the system is to interface with its environment.
Economic Constraints: Long term and Immediate Costs
Lifecycle Requirements : Quality of Design.

Advantages and Disadvantages of Non-
Functional Requirements.

Advantages

They ensure the software system
follows legal and adherence rules

They specify the quality attribute
of the software.

Disadvantages

The nonfunctional requirement
may affect the various high-level
software subsystem.

They generally increase the cost
as they require special
consideration during the
software architecture/high-level
design phase.

Functional vs Non-Functional.

Parametars

Requirement

Capturing type

End-result

Capturing

Objective

Area of focus

Documentation

Product Info

Jelvix

Functional Requirement

It is mandatory

It is captured in use case

Product feature

Easy to capture

Helps you verify the
functionality of the software

Focuses on user requirement

Describe what the product
does

Praduct featurss

Hon-Functional Requirements

It is non-mandatory

It is captured as a guality attribute

Product properties

Hard to capture

Helps you to verify the
performance of the software

Concentrates on the user's
mipectation and exporience

Describes how the product works

Praduct propertias

pelvis.cam

User requirements

The User Requirement Specification describes the business needs for what user is
expecting from the system.

It is written early in the validation process, before system is created.

Many user requirements deal with how a user will interact with a system and what
that user expects

When user requirements such as these are written down, they can often break into
multiple system requirements later due to switching of screens, the maximum
delays in starting the process, and finally what the next screen should look like

System Requirements

A System Requirements Specification (SRS) (also known as a Software Requirements
Specification) is a document or set of documentation that describes the features
and behavior of a system or software application.

In a System Requirements Document we have :
= Business Drivers
= Business Model
= Functional And System Requirement
= Business and System Use Cases
= System Qualities
= Constraints and Assumptions
= Acceptance Criteria

Interface Specification

Interface Specification refers to the document that captures the details of Software
user interface into a written document.

The Specification covers all possible actions that an end user may perform all visual
auditory and other interaction elements.

There are two types of Ul
= GUI (Graphical User Interface)
= CLI(Command Line Interface)

Software Requirements Document

A software requirements is a document that describes the intended use-case
features and challenges of a software application.

These documents are created before the project has started development in order to
get every stakeholder on the same page regarding the software’s functionality.

The Document contains many parts : Introduction, General Description, Functional
Requirements, Interface, Performance requirements, Design Constraints, Non-
Functional Attributes, Appendices etc..

SAMPLE SRS DOCUMENT

Table of Contents for a SRS Document

1. Introduction

1.1 Purpone

1.2 Dotument Conventions

1.3 Intended Audisnce and Reading Suggestions
1.4 Project Scope

1.5 References

2, Overall Description
-2,1 Product Peczpective

2.2 Product Features

2.3 User Classes and Characteristics

7.4 Dpacating Environmant

2.5 Design and implamantation Constraings
26 A Pticos and Depood

1. System Features

3.1 Functional Requirements

4. External Interface Requirements
4.1 acinterfaces

42 Kardwira torfaces

41 Software Interfaces

4.4 Communications Intecfaces

3. Nonfunctions! Regul

5.1 Performance Reguitements

52 Safety Requirements
3.3 Security Requiremants
5.4 Software Quality Attrbutes

Bad Good
Requirements Requirements

M L |
LR
. e]
. :"" ST A e,
A

e

Requirements Engineering Process

The Process of Defining, Documenting and Maintaining the requirements. Process of
gathering and defining service provided by the system,

Consists of the following main activities :
= Requirements Elicitation
= Requirements Specification
= Requirements verification and validation
* Requirements Management.

FEASIBILITY STUDIES

Feasibility Studies in Software Engineering is a study to evaluate the feasibility of
proposed project or system.

It is one of the stage among important 4 stages of Software Project Management
Process.

Carried out based on many purposes to analyze whether software product will be right
in terms of development , implantation , contribution etc..

Types: Technical , Operational , Economic, Legal and Schedule

Technical Feasibility

In Technical Feasibility current resources both hardware software along with required
technology are analyzed/assessed to develop project.

This technical feasibility study gives report whether there exists correct required
resources and technologies which will be used for project development.

Along with this, feasibility study also analyzes technical skills and capabilities of
technical team, existing technology can be used or not, maintenance and up-
gradation is easy or not for chosen technology

Operational Feasibility

Degree of providing service to requirements is
analyzed along with how much easy product will
be to operate and maintenance after deployment.

Determining suggested solution by software
development team is acceptable or not

Operational Feasibility helps in taking advantage of
the opportunities and fulfills the requirements as
identified during the development of the project.

Economic feasibility

Study Cost and Benefit of the Project is analyzed.

Adetall analysis is carried out what will be cost of the
project for development which includes all required
cost for final development like hardware and software

resource required, design and development cost and
operational cost and so on.

After that it is analyzed whether project will be beneficial
In terms of finance for organization or not.

Legal Feasibility

Project is analyzed in legality point of view.

Analyzing barriers of legal implementation of
project, data protection acts or social media
laws, project certificate, license, copyright etc.
are done in this study.

To confirm if proposed project conform legal and
ethical requirements.

Schedule Feasibility

Timelines/ deadlines are analyzed for proposed
project which includes how many teams will take
to complete the Project.

Includes how many times teams will take to
complete final project which has a great impact on
the organization as purpose of project may fail if it
can’t be completed on time.

Feasibility Study Process

Information Assessment
Information Collection

Report Writing

General Information

Requirements elicitation and Analysis

Requirements Elicitation is the practice of researching and discovering the
requirements of a system from users, customers and other stakeholders.

This process is also known as requirement gathering.

It is needed to know what the users really need.

This step defines what the users the need is and how the developers can develop this
project.

The various methods are : Interviews, Brainstorming Sessions, Facilitated Application
Specification Technique, Quality Function Deployment, Use Case Approach.

Requirement Analysis

It is the essential activity after elicitation . We analyze, refine and scrutinize the
gathered requirements to make consistent and un-ambiguous requirements.

After the completion of the analysis, it is expected that the understandability of the
project may improve significantly.

We may also use the interaction with the customer to clarify points of confusion and
to understand which requirements are more important than others.

Requirement Analysis Steps

Steps of Requirements Analysis

3 = TPy
' t
VW UIE LOTICA i
o s Sty
jiac "

Develop Prototypes

(Optional) 'j

Requirements Validation

Process of Checking that requirements defined for development, define the system
that the customer really wants.

To Check issues related to requirements , we perform requirements validation.

Use this validation step to check error at the initial phase of development as the error
may increase excessive rework when detected later.

These checks include: Completeness, Consistency, Validity, Realism, Ambiguity,
Verifiability.

Requirements Validation

1
Un_derstand

2

Diverge

IDATING

Requirements

Prototype

o

Requirements management

Requirement management is the process of analyzing , documenting tracking
prioritizing and agreeing on the requirement and controlling the communication

to relevant stakeholders.

This stake takes care of the changing nature of requirements.

Should be ensured that SRS is as modifiable as possible so as to incorporate
changes in requirements specified in a systematic and controlled manner is an

Important part of the requirements process.

Requirements Management

S M

O " '

'j 0 Simplific.ation

S e Liens totions
L

T L. Constwants
>

E N

owuence,s

SYSTEM MODEL & SYSTEM MODELLING

The interdisciplinary study of the use of models to conceptualize and construct
systems in businesses and IT development.

System Modelling helps the analyst to understand the functionality of the system and
models are used to communicate with customers.

For System Modelling we use the concept of data models to understand.

We have the following models : Context, Behavioral, Data, Object and Structured.

CONTEXT MODEL

Defines how context data are structured and maintained.

Akey role of context model is to simplify and introduce greater structure into the task
of developing context aware applications.

Akey role of developing a context model is to simplify and introduce a greater
structure into the task of developing a context aware applications.

Best Example: Unified Modelling Language as used in systems engineering defines a
context model as the physical scope of the system being designed.

CONTEXT MODEL

bdd [package] System context [with information ﬂnwy

Status
Car management T
ﬁ) Car _ Temperature system
, Vibration Car service employee
Windshiski Configuration

cardM &

user input,

/,EE’F-"’”/- “5'3’5t3m” h___
On-board computer u data

Usage right Billing system
Customer
Engine o Current
Mileage Car Car
commands commands Battery

2 2 XX

Car ignition Car movement Central locking Car drive-away
data system protection

Behavioral Model

Behavioral Model is specially designed to make us understand behavior and factors
that influence behavior of a System. Behavior of a system is explained and
represented with the help of a diagram. This diagram is known as State Transition
Diagram. It is a collection of states and events. It usually describes overall states
that a system can have and events which are responsible for a change in state of
a system.

So, on some occurrence of a particular event, an action is taken and what action
needs to be taken is represented by State Transition Diagram.

Behavioral Model

Enter elevator
door open

.

Press elevator button
Request for floor button illuminated
visit from
elevator
Elevator moving
in desired
Floor button pressed direction

illumination
Done

no illumination

Request for l Reached at idle

elevator destination
from floor . ’

door closed

STATE TRANSITION DIAGRAM

DATA MODEL

Data modeling in software engineering is the process of creating a data model by
applying formal data model descriptions using data modeling techniques. Data
modeling is a technique for defining business requirements for a database.

The goal is to create a visual data map that accurately describes the data structure,
how data will flow through the system whilst highlighting important data
relationships. This can involve the data input itself, the data infrastructure and
output, whether that’s predictive models, ML algorithms, Al or other
products/services.

DATA MODEL

Activity
Maodel

Detailed Data
Requiremeants

Techrical
Ervironment

Performance
Considerations

Business
Data

Create/Update
Logical Data
Model

Create/Update

Physical Data
Model

Create/Update
Data

Conceptual Data Model

Entities/ Subtypes
Attributes
Relationships
Integrity Rules

Physical Data Model

Tables
Columns
Keysiindices
Triggers

OBJECT MODEL

Object Modeling Technique (OMT) is real world based modeling approach for software
modeling and designing.

It was developed basically as a method to develop object-oriented systems and to
support object-oriented programming.

It describes the static structure of the system.
Object Modeling Technique is easy to draw and use

OMT is one of the most popular object oriented development techniques used now-a-
days.

OMT was developed by James Rambaugh.

OBJECT MODEL

/N Generalization / Inheritance List

s (Class opsration / Class attribute s0G(Object) void
italic Abstract class / AbSECT oparation wseri(int, Object) ' void
Asscclabon / Link gelinl Object

——— Multiptaty one

—O Multipkaty | cptional kit R

————@ Nultiphcity many

—O Adcgregation

ﬂna-l LinkedList ArrayList

|| Entry sze . int =0 lements - Array
SMAX ZE int= 100

hegder - add{Object) voxd
next Entry

acd{Chyect) © void nsertlint, Object)” volg
nsartint, Chject) . void getint) Object
getfint) Ctyect getSzel) int
getSizel) int $listTorray|List]) Array

%
Object

STRUCTURED MODEL

Structural models of software display the organization of a system in terms of the
components that make up that system and their relationships.

Structural models may be static models, which show the structure of the system
design, or dynamic models, which show the organization of the system when it is
executing.

Structural models show the organization and architecture of a system.

Class diagrams are used to define the static structure of classes in a system and their
associations.

STRUCTURED MODEL

Confirm
detention
dedsion
Inform
= patient of
rights

Record
| detention
decision

Find secure
ploce Transfer to

[dangerous]

Transfer to

|

[available] | secure hospital

i

l—

S

Inform
social care

Inform next
of kin

CONTENTS

Design Engineering :

= Design Engineering Definition
= Process and Quality

= Design Concepts

= The Design Model.

CONTENTS PARTII

Software Architecture

Data Design
Architectural Styles and Patterns

Architectural Design

Conceptual Model
Basic Structural Modelling

Class Diagrams
Sequence diagrams

Collaboration diagrams
Use case diagrams

Component Diagrams

DESIGN ENGINEERING

The Design Phase of Software Engineering deals with transforming the customer
requirements as described in the SRS.

The Design Process can be divided into 3 parts :
= Interface Design

= Architectural Design

= Detailed Design

INTERFACE DESIGN

1 Interface design is the specification of the interaction between a
system and its environment. this phase proceeds at a high level of
abstraction with respect to the inner workings of the system i.e,
during interface design, the internal of the systems are completely
ignored and the system is treated as a black box.

1 Interface design should include the following details:

. Precise description of events in the environment, or messages from
agents to which the system must respond.

| Precise description of the events or messages that the system must
produce.

. Specification on the data, and the formats of the data coming into and
going out of the system.

INTERFACE DESIGN

GUI Requirement
Specification

GUI
User Analysis

GUI

Task Analysis

GUI
Design &
Impilementation

ARCHITECTURAL DESIGN

1 Architectural design is the specification of the major components of a system,
their responsibilities, properties, interfaces, and the relationships and
interactions between them.

1 In architectural design, the overall structure of the system is chosen, but the
internal details of major components are ignored.

ARCHITECTURAL DESIGN

DETAILED DESIGN

1 Design is the specification of the internal elements of all major system
components, their properties, relationships, processing, and often their
algorithms and the data structures.

1 The detailed design may include: User interfaces, Unit states and state changes,
Data and control interaction between units, Algorithms and data structures etc.

DESIGN ENGINEERING PROCESS

1 The engineering design process is a series of steps that
engineers follow to find a solution to a problem. The steps
include problem solving processes such as, for example,
determining your objectives and constraints, prototyping, testing
and evaluation.

1 While the design process is iterative it follows a predetermined
set of steps, some of these may need to be repeated before
moving to the next one.

DESIGN ENGINEERING PROCESS DIAGRAM

/ Ask:
o~ Identify
s the need & \

constraints

Improve: \
Redesign
as needed

Ressarch
the problem

L ENGINEERING)
i DESIGN PROCESS Imagine:

Develo
gvaluate P

possible
prototype solutions

Create:
Build a Selecta

8 promising
solution

protofype

STEPS OF DESIGN ENGINEERING
STEP-1: DEFINE THE PROBLEM

] What is the problem or need?
] Who has the problem or need?
1 Whyis it important to solve?

STEPS OF DESIGN ENGINEERING
STEP 2: DO BACKGROUND RESEARCH

[Learn from the experiences of others —this can help you find out about existing
solutions to similar problems, and avoid mistakes that were made in the past. So,
for an engineering design project, do background research in two major areas:

] Users or customers

1 Existing solutions

STEPS IN DESIGN ENGINEERING

STEP 3: SPECIFY REQUIREMENTS

Design requirements state the important characteristics that your solution must meet
to succeed. One of the best ways to identify the design requirements for your
solution is to analyze the concrete example of a similar, existing product, noting
each of its key features.

STEPS IN DESIGN ENGINEERING
STEP-4: BRAINSTORM SOLUTIONS

There are always many good possibilities for solving design
problems. If you focus on just one before looking at the
alternatives, it is almost certain that you are overlooking a better
solution. Good designers try to generate as many possible
solutions as they can.

STEPS IN DESIGN ENGINEERING

STEP 5: CHOOSE THE BEST SOLUTION

Look at whether each possible solution meets
your design requirements. Some solutions
probably meet more requirements than

others. Reject solutions that do not meet the
requirements.

STEPS OF DESIGN ENGINEERING
STEP-6: DEVELOP THE SOLUTION

1 Development involves the refinement and improvement of a solution, and it

continues throughout the design process, often even after a product ships to
customers.

QS

g 7
p e

e o
= (D
o pes
’ O
- ru

STEPS OF DESIGN ENGINEERING
STEP-7:BUILD A PROTOTYPE

A prototype is an operating version of a solution.

Often it is made with different materials than the final version, and generally it is not
as polished.

Prototypes are a key step in the development of a final solution, allowing the designer
to test how the solution will work.

STEPS OF DESIGN ENGINEERING
STEP-8: TEST AND RE-DESIGN

The design process involves multiple iterations and redesigns of
your final solution.

You will likely test your solution, find new problems, make changes,
and test new solutions before settling on a final design.

STEPS OF DESIGN ENGINEERING
STEP-COMMUNICATE RESULTS

] To complete your project, communicate your results to others in a
final report and/or a display board.

] Professional engineers always do the same, thoroughly
documenting their solutions so that they can be manufactured
and supported.

3 L
shaittarstock com ~ 603611 £32

DESIGN ENGINEERING QUALITY

1 Quality engineering is the discipline of engineering concerned with the principles
and practice of product and service quality assurance and control.

] In software development, it is the management, development, operation and
maintenance of IT systems and enterprise architectures with a high quality
standard.

DESIGN CONCEPTS

A set of the Concepts that go hand in hand along with the design engineering of the
software system are known as Design Concepts

These Concepts are a key factor in analyzing the design of the software.

There are Few Concepts that are categorized as Design Concepts

1. ABSTRACTION

A solution is stated in large terms using the language of the problem environment at
the highest level abstraction.

The lower level of abstraction provides a more detail description of the solution.

A sequence of instruction that contain a specific and limited function refers in a
procedural abstraction.

A collection of data that describes a data object is a data abstraction.

2. ARCHITECTURE

The complete structure of the software is known as software architecture.
Structure provides conceptual integrity for a system in a number of ways.

The architecture is the structure of program modules where they interact with each
other in a specialized way.

The components use the structure of data.

3. PATTERNS

Adesign pattern describes a design
structure and that structure solves a
particular design problem in a specified
content.

4. MODULARITY

A software is separately divided into name and addressable components. Sometime
they are called as modules which integrate to satisfy the problem requirements.

Modularity is the single attribute of a software that permits a program to be managed
easily.

5. INFORMATION HIDING

Modules must be specified and designed so that
the information like algorithm and data
presented in a module is not accessible for
other modules not requiring that information.

6. FUNCTIONAL INDEPENDENCE

1 The functional independence is the concept of separation and related to the
concept of modularity, abstraction and information hiding.

[The functional independence is accessed using two criteria i.e Cohesion and
coupling.

6.1 COHESION

Cohesion is an extension of the information hiding concept.

A cohesive module performs a single task

It requires a small interaction with the other components in other parts of the
program.

6.2 COUPLING

Coupling is an indication of interconnection between modules in a structure of
software.

More precisely it is the interdependence between software modules.

Or it can be a measure of how closely connected two modules are.

7. REFINEMENT

Refinement is a top-down design approach.
It is a process of elaboration.

A program is established for refining levels of procedural details.

0 N A O N

Ahierarchy is established by decomposing a statement of function in a stepwise
manner till the programming language statement are reached.

8. REFACTORING

It is a reorganization technique which simplifies the design of components without
changing its function behavior.

Refactoring is the process of changing the software system in a way that it does not
change the external behavior of the code still improves its internal structure.

9. DESIGN CLASSES

1 The model of software is defined as a set of design classes.

1 Every class describes the elements of problem domain and that focus on features
of the problem which are user visible.

THE DESIGN MODEL

1 Design modeling in software engineering represents the features of the software
that helps engineer to develop it effectively, the architecture, the user interface,
and the component level detail.

1 Different methods like data-driven, pattern-driven, or object-oriented methods are
used for constructing the design model.

1 All these methods use set of design principles for designing a model.

DESIGN MODELLING

1 The design model builds on the analysis model by describing, in greater detail,
the structure of the system and how the system will be implemented.

] In the design model, packages contain the design elements of the system, such
as design classes, interfaces, and design subsystems, that evolve from the
analysis classes each package can contain any number of sub-packages that
further partition the contained design elements.

1 These architectural layers form the basis for a second-level organization of the
elements that describe the specifications

1 Software architecture refers to the fundamental structures of a software

SOFTAW ARECARCHITECTU Rf<tures and systems.

[1 The architecture of the system is a metaphor analogous to the architecture of a
building.

1 Functions as a blueprint for the development of the software.

SOFTWARE ARCHITECTURE TYPES

The most used software architectures are:
= Business Architecture

= Application Architecture

= Information Architecture

= Information Technology Architecture

BUSINESS ARCHITECTURE

Business architecture defines the strategy of business, governance, organization and
key business processes within an enterprise.

This type of architecture focuses on the analysis and design of business processes.

APPLICATION ARCHITECTURE

1 It describes the patterns and techniques used to design and build an
application.

1 Gives a roadmap and best practices to follow when building an application.

INFORMATION ARCHITECTURE

1 It is structural design of shared information environments; the art and science of
organizing and labelling websites, intranets, online communities and software to
support usability and findability.

1 Adiscipline that focuses on the organization of information within digital
products.

INFORMATION TECHNOLOGY ARCHITECTURE

Process of development of methodical information technology specifications, models
and guidelines.

It uses a variety of Information Technology notations for example UML within a
coherent information architecture.

Focuses on three basic tiers within organization.

DATA DESIGN

1 The first design activity resulting in a less complex, modular and efficient
program.

[Theinformation domain model developed during analysis phase is transformed
into data structures needed for implementing the software

The sralysis modal

Transatng the analyss model into a softwore design

ARCHITECTURAL STYLE

Shows how we organize our code or how the system will look like from an aerial view.

The list of style:

= Structure Architecture Style
= Messaging Styles

= Distributed Systems

= Shared memory Styles

= Adaptive System Style.

STRUCTURE ARCHITECTURE STYLE

] It consists of Several Component based Styles such as :
~ Layers
. Pipes
_ Filters

MESSAGING STYLES

Messaging refers to various form s of communication information to users

Some of the forms are : E-Mail , SMS, EMS, MMS , Instant Messaging, HDML
Notifications , WAP Push

Based on the software requirement, developer can design the messaging system.

DISTRIBUTED SYSTEMS

1 Adistributed computer system consists of multiple software
components that are on multiple computers, but run as a single
system.

1 The computers that are in a distributed system can be physically
close together and connected by a local network, or they can be
geographically distant and connected by a wide area network.

DISTRIBUTED SYSTEM

3

Tracker

e Track which nodes are online
» Know what files they provide

/ \
Seeder

Seeder

Transfer

Transfer
Metadata

T il Leecher k',

~

Leecher

SHARED MEMORY STYLES

1 Shared Memory Consists of three types:
Database Centric : Based on a DB

Blackboard: An Al Approach
Rule based: Applicable in most systems where automatic rule inference re executed.

SHARED MEMORY

ADAPTIVE SYSTEM STYLES

These Styles consists of Microkernel Style , reflection , domain Specific language styles

The System that changes its behavior in response to its environment.

/ N\

ARCHITECTURAL PATTERNS

1 Architectural Design Pattern are accumulative best practices and experiences
that software professionals used over the years to solve the general problem by —
trial and error — they faced during software development.

1 Two main principles of object-oriented design:
~ Develop to an interface, not to an implementation.
_ Favor object composition over inheritance.
They are Creational Patterns, Structural Patterns, Behavioral Patterns.

CREATIONAL DESIGN PATTERN

[l Provide a way to create objects while hiding the creation logic. Thus, the object
creation is to be done without instantiating objects directly with the “New”
keyword to gives the flexibility to decide which objects need to be created for a

given use case.
1 Abstract Factory Pattern, Singleton Pattern, Builder Pattern and Prototype Pattern.

STRUCTURAL PATTERN

1 These Patterns are concerned with class and object composition of the system

1 Adapter, Bridge, Filter, Composite, Decorator, Facade, Flyweight and Proxy Come
under these Structural Pattern.

BEHAVIORAL PATTERN

Behavioral Patterns are concerned with communications between objects.

The communication can be of any type.

Responsibility, Command, Interpreter, lterator, Mediator, Memento, Observer, State,
Null, Strategy, Template and Visitor Come under Behavioral Pattern.

J2EE PATTERNS

These Patterns are specifically concerned with presentation tier
It was identified by Sun Java Center at Menlo Park in California USA.

J2EE
Architecture

www.educba.com

ARCHITECTURAL DESIGN

The process of defining a collection of hardware and software components and their
interfaces to establish the framework for the development of a computer system.

The Various Designs are
= Data centered

= Data Flow

= Call and Return

= Object Oriented

= Layered

DATA CENTERED

A data store will reside at the center of this architecture and is accessed frequently by the
other components that update, add, delete or modify the data present within the store.

This data-centered architecture will promote integrity

Client /W Client 5/W
Client 5/W
7
—
-
./
-
—
~
Data store
' R it -
(Repository or Rm -
blackboard) Client S/W

Client 5/W

Client S/W

Client 5/W

DATA FLOW ARCHITECTURE

1 This kind of architecture is used when input data to be transformed into output
data through a series of computational manipulative components.

[1 Pipes are used to transmit data from one component to the next.

1 Each filter will work independently and is designed to take data input of a certain
form and produces data output to the next filter of a specified form. The filters
don’t require any knowledge of the working of neighboring filters.

DATA FLOW ARCHITECTURE

Matlab/Simulink

Controller
Unity Graphics E; Optitrack
Engine Motive
i DataTurbine
Oculus Display Server
§
Robots

DataTurbine Channels
- Robot position data ~» Grayscale sensor data

- Robot velocity commands -» Position/sensor data

CALL AND RETURN ARCHITECTURES

It is used to create a program that is easy to scale and modify. Many sub-styles exist
within this category

Sub Categories Include: Remote Procedure call and Main program-Sub program
Architectures.

Main
Program

Controller
Subprogram

Controller
Subprogram

Controller
Subprogram

Application Application | Application Application Application Application

Subprogram Subprogram J Subprogram Subprogram Subprogram Subprogram

OBJECT ORIENTED ARCHITECTURE

[J The components of a system encapsulate data and the operations that must be
applied to manipulate the data.

[J The coordination and communication between the components are established via
the message passing.

g . Acdvamages of Objoect Ornsoted Architeciure

LAYERED ARCHITECTURE

7 Anumber of different layers are defined with each layer performing a well-defined set
of operations.

1 Each layer will do some operations that becomes closer to machine instruction set
progressively.

CONCEPTUAL MODEL

1 Itis a representation of a system that uses concepts and ideas to form said

representation.
Used across many fields ranging from sciences to socioeconomics to software

development.
1 These Models try to capture people’s understanding of what is being modeled.

CLASS DIAGRAM

It is a Static diagram representing the static view of an application. It is not only used
for visualizing , describing and documenting aspects but also for constructing
executable code.

Class diagram shows a collection of classes, interfaces, associations, collaborations,
and constraints. It is also known as a structural diagram.

CLASS DIAGRAMS

-pame: string
SUINAME: Sring
-itd: String

LoanSenice

+ioans(): list
+activeBoaking():list

snumberOiLoans: ot
-activeloans: int

+Hasvailable{LibMateral m): bool
+makeLoan(User u, LibMaterial m)

Libnaterial

-id : string
-avallable: bool
-author; stnng

+changeState()

AN

SEQUENCE DIAGRAMS-UML

UML is a modelling Language in the field of software engineering which aims to set
standard ways to visualize the design of a system.

The Sequence Diagram is an Interaction Diagram.

It Simply depicts interaction between objects in a sequential order.

SEQUENCE DIAGRAMS

We also use the terms event diagrams or event scenarios to refer to the diagram.
Describe how and in what order the objects in a system function.

The Parts are : Actors, Lifelines, Messages, Guards,

SEQUENCE DIAGRAM

:Cormputer :Server

c he ckErmail
> >

5 endl rs ertEmail

newE rmail :

[ES POTE E

.::.- -------------------------

[newEmail] downloadEmail i

deleteOl dE rmail !

ADVANTAGE OF SEQUENCE DIAGRAM

Used to model and visualize the logic behind a sophisticated function, operation or
procedure.

They are also used to show details of UML use case diagrams.

Used to understand the detailed functionality of current or future systems.

Visualize how messages and tasks move between objects or components in a system

COLLABORATION DIAGRAMS

1 Acollaboration diagram, also known as a communication diagram, is an
illustration of the relationships and interactions among software objects in the
Unified Modeling Language (UML). These diagrams can be used to portray the
dynamic behavior of a particular use case and define the role of each object.

COLLABORATION DIAGRAM

Components of a collaboration diagram

l 1. MESSAGE

Object:

Class name ~ Object:
Class name

l 2. MESSAGE

Object: Object:
Class name Class name

Object:

Class name

ADVANTAGES OF COLLABORATION DIAGRAM

[1 The collaboration diagram is also known as Communication Diagram.

1 It mainly puts emphasis on the structural aspect of an interaction
diagram, i.e., how lifelines are connected.

1 The syntax of a collaboration diagram is similar to the sequence
diagram; just the difference is that the lifeline does not consist of tails.

[The special case of a collaboration diagram is the object diagram.

] It focuses on the elements and not the message flow, like sequence
diagrams.

DISADVANTAGE OF COLLABORATION DIAGRAM

Multiple objects residing in the system can make a complex collaboration diagram, as
it becomes quite hard to explore the objects.

It is a time-consuming diagram.
After the program terminates, the object is destroyed.

As the object state changes momentarily, it becomes difficult to keep an eye on every
single that has occurred inside the object of a system.

UML USE CASE DIAGRAM

[1 Ause case diagram is used to represent the dynamic behavior of a system.

1 It encapsulates the system's functionality by incorporating use cases, actors, and
their relationships.

[1 It models the tasks, services, and functions required by a system/subsystem of
an application.

] It depicts the highdevel functionality of a system and also tells how the user
handles a system.

1 Accumulates system’s requirement.

UML USE CASE DIAGRAM

uc Use Cases J

% receive order

Wait er\

Food

place/Order

ood

Order

S erve
F

= <=ext end>>

System Boundary

é =exte: endz= Order
Wine

co

C ook
Food

{if wine was ordered}

- <ext end=#
{lf wine
was

UML USE CASE DIAGRAM BENEFITS

It gathers the system's needs.

It depicts the external view of the system.
It recognizes the internal as well as external factors that influence the system.

It represents the interaction between the actors.

COMPONENT DIAGRAM

Component diagrams are different in terms of nature and behavior.
Component diagrams are used to model the physical aspects of a system.

Physical aspects are the elements such as executables, libraries, files, documents,
etc. which reside in a node.

Component diagrams are used to visualize the organization and relationships among
components in a system.

COMPONENT DIAGRAM

id Component View /
s] OrderProcessing 3]
Aibias read writeQ > MailQueue
NewOrders 1
readb
validate L : Q !
write
/ g]
1 1 SendEmail
CustomerSystem OrderQueuegj 1
send
reaIIdQ 1

g]

OrderSystem

UML COMPONENT DIAGRAM
ADVANTAGES

Component diagrams are very simple, standardized, and very easy to understand.
It is also useful in representing implementation of system.

These are very useful when you want to make a design of some device that contains
an input-output socket.

Use of reusable components also helps in reducing overall development cost.

It is very easy to modify and update implementation without any causing any other
side effects.

2.
a8 n
L IR

)
L
ne

L

'.t
L
U

s

B
"
n

“amumn
e
"B Aw
BR O
® 0N

LN “
Hasae
"B ue
"z eans

4
AEBE Ran»

UL B

LE N
s e as

“

L W

LN B R BN
L)

LWL
&
c
B
)
»
2R A
.

ahab
By
L
= o n

O
CnC
U

3
8

-3
3

o
2

CONTENTS PART-l

A strategic approach to software testing

Testing Strategies
Black Box and White Box Testing

Validation Testing
System Testing

Art of Debugging

SOFTWARE TESTING

Software Testing is a method to check whether the actual software product matches
expected requirements and to ensure that software product is defect free.

It involves execution of software/system components using manual or automated
tools to evaluate one or more properties of interest.

A STRATEGIC APPROACH TO TESTING

According to Glenn Myers, The objectives are :

The process of investigating and checking a program to find whether there is an
error or not and does it fulfill the requirements or not is called testing.

When the number of errors found during the testing is high, it indicates that the
testing was good and is a sign of good test case.

Finding an unknown error that’s wasn'’t discovered yet is a sign of a successful and a
good test case.

VARIOUS TESTING STRATEGIES

Developing
continuous
development
Specifying the approach
product
requiements

Conduting formal
technical reviews

Software
Testing
Strategies

Specifying the
Objectives
of testing

Using effective
formal reviews

Identifying and
developing
user's profile

Build
Robust Software

Developing a
test plan

CHARACTERISTICS OF TESTING

The developer should conduct the successful technical reviews.
Testing starts with the component level and work from outside toward the integration.

Different testing techniques are suitable at different point in time.

Testing is organized by the developer of the software and by an independent test
group.

Debugging and testing are different activities, then also the debugging should be
accommodated in any strategy of testing.

SPIRAL TESTING STRATEGY

System testing

Validation testing

Integration testing™-

Unit testing

- e - - - PRy S R R R R R B R R B R

s :r:.-s).‘ - Y :—{U-"&-‘ -

Fig. - Testing Strategy

BLACK BOX TESTING

Atype of Software Testing where the functionality of software is not known.

The Testing is done without internal knowledge of products.

Requirements &
Specification

Input

Values L

Test Cases

Black Box Testing

SYNTAX DRIVEN TESTING

1. Syntax Driven : This type of testing is applied to systems that can be
syntactically represented by some language.

Example: Compilers, Language that can be represented by context free grammar

Each grammar rule is used once.

EQUIVALENCE PARTITIONING

The idea is to partition the input domain of the system into a number of equivalence
classes such that each member of class works in a similar way, i.e.,

If a test case in one class results in some error, other members of class would also
result into same error.

Has Two Steps: Identification of equivalence classes and generating test cases. For
each class.

BOUNDARY VALUE ANALYSIS

Boundaries are very good places for errors to occur. Hence if test cases are
designed for boundary values of input domain then the efficiency of testing
improves and probability of finding errors also increase.

For example — If valid range is 10 to 100 then test for 10,100 also apart from valid
and invalid inputs.

CAUSE EFFECT GRAPHING

This technique establishes relationship between logical input called causes with corresponding
actions called effect.

The causes and effects are represented using Boolean graphs.

(C1 Ve2)A el

REQUIREMENT BASED TESTING

This Testing Includes Validating the requirements given in the Software Requirement
Specification Document for a particular software system.

Testing must be carried out in a timely manner.

Testing process should add value to the software life cycle, hence it needs to be
effective.

Testing must provide the overall status of the project, hence it should be manageable.

COMPATIBILITY TESTING

The test case result not only depend on product but also infrastructure for delivering
functionality. When the infrastructure parameters are changed it is still expected
to work properly.

Some of them include processor, architecture, back-end components and OS.

WHITE BOX TESTING

White box testing techniques analyze the internal structures the used data structures,
internal design, code structure and the working of the software rather than just
the functionality as in black box testing.

It is also called glass box testing or clear box testing or structural testing.

The Process Steps Include: Input, Processing , Proper Test Planning and Output.

WHITE BOX TESTING

WHITE BOX TESTING APPROACH

. Whitebox
T

Pr— TESY vl
NW% |
TESTER B bR w | RESULT
1248 Souce
J. ¢ Cede L.

WHITE BOX TESTING TECHNIQUES

Statement Coverage: In this technique, the aim is to traverse all statement at least
once. Hence, each line of code is tested. In case of a flowchart, every node must
be traversed at least once

Branch Coverage In this technique, test cases are designed so that each branch
from all decision points are traversed at least once.

Condition Coverage: In this technique, all individual conditions must be covered.

WHITE BOX TESTING TECHNIQUES

Multiple Condition Coverage: In this technique, all the possible combinations of the
possible outcomes of conditions are tested at least once.

Basis Path Testing: In this technique, control flow graphs are made from code or
flowchart and then Cyclomatic complexity is calculated which defines the number
of independent paths so that the minimal number of test cases can be designed
for each independent path.

WHITE BOX TESTING TECHNIQUES

How graph notation: It is a directed graph consisting of nodes and edges. Each
node represents a sequence of statements, or a decision point.

Apredicate node is the one that represents a decision point that contains a
condition after which the graph splits.

Regions are bounded by nodes and edges.

ADVANTAGES OF WHITE BOX TESTING

White box testing is very thorough as the entire code and structures are tested.

It results in the optimization of code removing error and helps in removing extra
lines of code.

It can start at an earlier stage as it doesn’t require any interface as in case of black
box testing.

Easy to automate.

DISADVANTAGES OF WHITE BOX TESTING

Main disadvantage is that it is very expensive.
Redesign of code and rewriting code needs test cases to be written again.

Testers are required to have in-depth knowledge of the code and programming
language as opposed to black box testing.

Missing functionalities cannot be detected as the code that exists is tested.

Very complex and at times not realistic.

DIFFERENCES BETWEEN WHITE BOX AND BLACK
BOX

Black Box Testing White Box Testing
1. Black box testing techruques are alzo called 1. White box testng techruques are alzo called
functonal testmg techriques. structural testng techniques.
2Black Box Testing 15 a software testing method 2. White Box Testing 15 a software testing
m which the mternal structure, desien, method m which the mtemal structore/
mplementaton of the item bemg tested 1s desien,/ mmplementaton of the stemm bemge
NOT known to the tester tested 1z known to the tester.
3. It 15 mamly apphcable to higher levels of 3. Mamlv apphcable to lower levels of testing
testing such as Acceptance Testme and such as Unit Testing and Integration Testng
Svztem Testing

4. Black box testing 1= generally done by 4 White box testing 15 generally done by
Software Testers Software Developers

3. Programmung knowledge 15 not requured 3. Programmme knowledoe 15 requured

6. Implementation knowledge 1= not requered. 0. Implementation knowledge 1= requered

VALIDATION TESTING

The process of evaluating software during the development process or at the end of
the development process to determine whether it satisfies specified business
regquirements.

It answers to the question, Are we building the right product?

Validation Testing ensures that the product actually meets the client's needs.

VALIDATION TESTING V-MODEL

Reqguirement User Acceptance
Specifications | Testing

High Level System
Design Testing | &
3
&
Detail Integration Xz

Design Testing

/

Program Unit
Specification | Testing

VALIDATION TESTING TYPES

Unit Testing
Integration Testing
System Testing

User Accepting Testing

UNIT TESTING

It is an important type of validation testing. The point of the unit testing is to search for bugs in the
product segment. Simultaneously, it additionally confirms crafted by modules and articles which can
be tried independently.

«Blackbox»
tests

«Whitebox» _ _____ DEVELOPMENT
tests
it Unit/component tests

INTEGRATION TESTING

This is a significant piece of the validation model wherein the interaction between, where the
association between the various interfaces of the pertaining componentis tried.

Integration testing

Incremental Integration MNon-Incremental
Testing Integration Testing

Top-Down Bottom-up
Integration Testing Integration Testing

SYSTEM TESTING

System testing is done when the whole programming framework is prepared. The principal worry of
framework testing is to confirm the framework against the predefined necessities.

Functionality
inter-Operability

Performance

Scalability
System Test- Types Stress

Load and Stability

Reliability

Regression

Regulatory & Compliance

USER ACCEPTANCE TESTING

During this testing, the tester actually needs to think like the customer and test the product
concerning client needs, prerequisites, business forms and decide if the product can be given
over to the customer or not.

{

— User Acceptance Testing —
@

|

»
. ser
l lity :
Development Qua Acceptance Production
Assurance Testing

" 2

*

DEBUGGING

In the context of software engineering, debugging is the process of fixing a bug in the
software. In other words, it refers to identifying, analyzing and removing errors.

This activity begins after the software fails to execute properly and concludes by
solving the problem and successfully testing the software

. It is considered to be an extremely complex and tedious task because errors need to
be resolved at all stages of debugging.

DEBUGGING PROCESS

Problem identification and report preparation.
Assigning the report to software engineer to the defect to verify that it is genuine.

Defect Analysis using modeling, documentations, finding and testing candidate flaws,
etc.

Defect Resolution by making required changes to the system.

Validation of corrections.

DEBUGGING TOOLS

Debugging tool is a computer program that is used to test and debug other
programs. Alot of public domain software like gdb and dbx are available for

debugging.
Some of the widely used debuggers are:

Radare?

Win Dbg
Valgrind

DEBUGGING VS TESTING

MRISA | Differentiation Between Testing and Debugging

CONTENTS

Software Quality
Metrics for Analysis Model

Metrics for Design Model
Metrics for Source Code

Metrics for Testing

Metrics for Maintenance.

SOFTWARE QUALITY

Software quality is defined as a field of study and practice that describes the
desirable attributes of software products. There are two main approaches to
software quality: defect management and quality attributes.

Software Quality refers to both functional quality and structural quality.

SOFTWARE FUNCTIONAL QUALITY

It reflects how well it satisfies a given design, based on the functional requirements or
specifications.

SFQ is pertaining to conformance to the functional requirements.

The SFQis measured by the level of end user satisfaction.

SOFTWARE STRUCTURAL QUALITY

It deals with the handling of non-functional requirements that support the delivery of
the functional requirements, such as robustness or maintainability, and the
degree to which the software was produced correctly

Attributes are : Code testability, Maintainability, understandability, efficiency , security.

SOFTWARE QUALITY ASSURANCE

Is simply a way to assure quality in the software. It is the set of activities which ensure
processes, procedures as well as standards suitable for the project and
implemented correctly.

Software Quality Assurance is a process which works parallel to development of a
software

Software Quality Assurance is a kind of an Umbrella activity that is applied throughout
the software process.

SOFTWARE QUALITY CONTROL

Software Quality Control (SQC) is a set of activities to ensure the quality in software
products.

These activities focus on determining the defects in the actual products produced.

It involves product-focused action.

Software Quality Control is commonly referred to as Testing.

SOFTWARE QUALITY CHALLENGE

In the software industry, the developers will never declare that the software is free
of defects, unlike other industrial product manufacturers usually do.

The Key Reasons are :

- Product Complexity
—> Product Visibility
—> Product Development and Production Process.

METRICS FOR ANALYSIS MODEL

Technical work in software engineering begins with the creation of the analysis
model. It is at this stage that requirements are derived and that a foundation for

design is established.

Therefore, technical metrics that provide insight into the quality of the analysis model
are desirable.

These Metrics are used to analyze the analysis model with the objective of increased
coding, integration and testing effort.

Ex: Function Point(FP) and Lines of Code(LOC)

METRICS FOR DESIGN MODEL

The success of a software project depends largely on the quality and effectiveness
of the software design.

Hence, it is important to develop software metrics from which meaningful indicators
can be derived.

Various design metrics such as architectural design metrics, component-level
design metrics, user-interface design metrics, and metrics for object-oriented
design are used to indicate the complexity, quality, and so on of the software
design.

METRICS FOR SOURCE CODE

Halstead proposed the first analytic laws for Computer science by using a set of
primitive measures, which can be derived once the design phase is
complete and code is generated. These measures are listed below.

n,= number of distinct operators in a program

n, = number of distinct operands in a program

N, = total number of operators

N,= total number of operands.

The Halstead Equation denotes the Coding metric for software quality.
N = njlog,n,+ n, log,n,. [Program Length]

V= Nlog, (n;+n,). [Program Volume]

METRICS FOR TESTING

Majority of the metrics used for testing focus on testing
process rather than the technical characteristics of test.
Generally, testers use metrics for analysis, design, and
coding to guide them in design and execution of test cases.

Halstead measures can be used to derive metrics for testing
effort. By using program volume (V) and program level
(PL),Halstead effort (e)can be calculated by the following
equations.

e=V/PL
Percentage of testing effort (z) = e(z)/> e(i)

METRICS FOR MAINTENANCE

For the maintenance activities, metrics have been designed explicitly. IEEE have
proposed Software Maturity Index (SMI), which provides indications relating to
the stability of software product. For calculating SMI, following parameters are
considered.

Number of modules in current release (M)
Number of modules that have been changed in the current release (F,)

Number of modules that have been added in the current release (F,)

Number of modules that have been deleted from the current release (F,)

Once all the parameters are known, SMI can be calculated by using the following
equation.

SMI = [M= (F.+ F. + Fy)]/My.

PROCESS METRICS

To improve any process, it is necessary to measure its specified attributes,
develop a set of meaningful metrics based on these attributes, and then use
these metrics to obtain indicators in order to derive a strategy for process
Improvement.

Using software process metrics, software engineers are able to assess the
efficiency of the software process that is performed using the process as a

framework
Product

AN

Customer Business
characteristics conditions

Process

Technology

Development
environment

PRODUCT METRICS

Product metrics are software product measures at any stage of their development,
from requirements to established systems. Product metrics are related to
software features only.

Metrics are of 2 types :
= Dynamic metrics that are collected by measurements made from a program in
execution.

= Static metrics that are collected by measurements made from system
representations such as design, programs, or documentation.

DYNAMIC PRODUCT METRICS

Dynamic metrics are usually quite closely related to software quality attributes. It is
relatively easy to measure the execution time required for particular tasks and to
estimate the time required to start the system. These are directly related to the
efficiency of the system failures and the type of failure can be logged and directly
related to the reliability of the software.

STATIC PRODUCT METRICS

Static metrics have an indirect relationship with quality attributes. A large number of
these matrices have been proposed to try to derive and validate the relationship
between the complexity, understandability, and maintainability.

CONTENTS

Software Measurement

Metrics for Software quality
Reactive vs Proactive Risk Management

Software Risks
Risk Identification
Risk Projection
Risk Refinement
RMMM

RMMM Plan

CONTENTS

Quality Concepts

Software Quality assurance

Software Reviews

Formal Technical Reviews

Statistical Software Quality Assurance

Software Reliability
ISO 9000 Quality Standards

SOFTWARE MEASUREMENT

« Software Measurement: A measurement is an manifestation of the size, quantity,
amount or dimension of a particular attributes of a product or process.

« Software measurement is a titrate impute of a characteristic of a software
product or the software process.

It is an authority within software engineering. Software measurement process is
defined and governed by ISO Standard.

« Software Measurement is used as a parameter for the manifestation of software.

NEEDS OF SOFTWARE MEASUREMENT

 Create the quality of the current product or
process.

« Anticipate future qualities of the product or
process.

* Enhance the quality of a product or process.

* Regulate the state of the project in relation to
budget and schedule.

These are the 4 basic needs of software
measurement.

TYPES OF SOFTWARE MEASUREMENT

« There are 2 types of Software Measurement

—> Direct Measurement: In direct
measurement the product, process or thing is
measured directly using standard scale.

—>Indirect measurement: In indirect

measurement the quantity or quality to be measured
IS measured using related parameter i.e. by use of
reference.

METRICS

A metrics Is a measurement of the level that

any impute belongs to a system product or
Process

The 4 Metrics are
-~ Planning

-~ Organizing

> Controlling
—~Improving

CHARACTERISTICS OF METRICS

Quantitative
Understandable
Applicabllity
Repeatable
Economical

Language Independent

CLASSIFICATION OF SOFTWARE METRIC

There are 2 types of Software Metrics

Product Metric : Product metrics are used to evaluate the state of the product, tracing
risks and under covering prospective problem areas. The ability of team to control
quality is evaluated.

Process Metric: Process metrics pay particular attention on enhancing the long term
process of the team or organization.

Project Metrics: Project matrix is describes the project characteristic and execution
process.
Number of Developers, Staffing Pattern, Cost and Schedule and Productivity.

SOFTWARE RISK

Software risk encompasses the probability of occurrence for uncertain events and
their potential for loss within an organization

Risk management has become an important component of software development
as organizations continue to implement more applications across a multiple
technology, multi-tiered environment.

Typically, software risk is viewed as a combination of robustness, performance
efficiency, security and transactional risk propagated throughout the system.

REACTIVE RISK MANAGEMENT

Reactive risk management tries to reduce the damage of potential threats and
speed an organization's recovery from them, but assumes that those threats will

happen eventually.

0SS R pronaily e DENTRICATON

ZMANAGENENT

amnnu&n. o _w
S e

PROACTIVE RISK MANAGEMENT

« Asthe name suggests, proactive risk management means that you identify risks
before they happen and figure out ways to avoid or alleviate the risk. It seeks to
reduce the hazard's risk potential or, even better, prevent the threat altogether. A
good example here is vulnerability testing and remediation

- ,,_.-’m-«.:
maor, WRJOs

s EDIT MAY =
t\m mcuzcr '--«-

- !("’S) =S Pmmm a e (XKW

-?"*:--MANAGEME T

* FLAS At 14.&14.; cnn.-:an OO s —

REACTIVE VS PROACTIVE

PROACTIVE

Are prepared for most

What Type of Company Are You?

eventualities

- Know exactly what steps to
‘take during emergencies

- Recover from disasters faster
‘and easier

Are better able to satlsfy
customers during a crisis

Are less likely to experience

employee turnover

 Experience less legal distress

REACTIVE

» Are unprepared for sudden

events

- Are unsure what to do when

emergencies happen

‘= Recover slowly, if at all

Are less equipped to
continue serving customers

Are more likely to experience
employee turnover

. Are left open to more legal
complications

RISK IDENTIFICATION

* Risk identification is the process of determining risks that could potentially prevent
the program, enterprise, or investment from achieving its objectives. It includes
documenting and communicating the concern.

* Risk identification is the critical first step of the risk management process

LESSON SUMMARY . L

RISK PROJECTION

« Risk projection, also called risk estimation, attempts to rate each risk in two ways—
the likelihood or probability that the risk is real and the consequences of the
problems associated with the risk, should it occur.

« The project planner, along with other managers and technical staff, performs four
risk projection activities:
* (1) establish a scale that reflects the perceived likelihood of a risk
* (2) delineate the consequences of the risk,
* (3) estimate the impact of the risk on the project and the product,
* (4)note the overall accuracy of the risk projection so that there will be no
misunderstandings.

RISK REFINEMENT

Process of restating the risks as a set of more detailed risks that will be easier to
mitigate, monitor, and manage.

In this step we actually understand the risk on a much more deeper detail and try
to look at a broader perspective on how to handle the risk.

These Steps are actually the basis for the RMMM Model
It stands for Risk Mitigation, Monitoring and Management Plan.

RMMM

« RMMM Stands for Risk Mitigation, Monitoring and Management Plan.

» Arisk management technique is usually seen in the software project plan.
* In this plan all works are done as a part of risk analysis

* Risk is documented with the help of a Risk Information Sheet (RIS).

« This RIS is controlled by using a database system for easier management of
information i.e creation, priority ordering, searching, and other analysis.

« After documentation of RMMM and start of a project, risk mitigation and
monitoring steps will start.

RISK MITIGATION

 Itis an activity used to avoid problems (Risk Avoidance).
Steps for mitigating the risks as follows.

1. Finding out the risk.
2. Removing causes that are the reason for risk creation.
3. Controlling the corresponding documents from time to time.

4. Conducting timely reviews to speed up the work.

RISK MONITORING

 Itis an activity used for project tracking.
It has the following primary objectives as follows.

1) To Check if Predicted risks occur or not.
2) To Ensure proper application of risk aversion steps defined for risk

3 To Collect data for future risk analysis
4) Toallocate what problems are caused by which risks throughout the project.

RISK MANAGEMENT AND PLANNING

It assumes that the mitigation activity failed and the risk is a reality.

This task is done by Project manager when risk becomes reality and causes severe
problems.

If the project manager effectively uses project mitigation to remove risks successfully
then it is easier to manage the risks.

This shows that the response that will be taken for each risk by a manager.

RISK MANAGEMENT LIFECYCLE

Monitor /A Measure
Results ClearRisk Risks
RISK
MANAGEMENT

% PROCESS ‘

Implement '
@

SOFTWARE QUALITY

 Software Quality is defined as a field of study and
practice that describes the desirable attributes of
software products.

 Software Quality Product is defined in terms of it’s
fitness of purpose.

 Quality Product does Precisely what users want it
to do.

* For software products the fitness of use is
generally explained in terms of satisfaction of
requirements.

SOFTWARE QUALITY ASSURANCE

» Software quality assurance (SQA) is a means and practice of monitoring the
software engineering processes and methods used in a project to ensure proper
quality of the software. It may include ensuring conformance to standards or
models, such as ISO/IEC 9126 (now superseded by ISO 25010), SPICE or CMMI.

« Itis simply a way to assure quality in the software.

» Set of Activities which ensure processes, procedures as well as Standards

SOFTWARE REVIEWS

Software Review is systematic inspection of a software by one or more individuals
who work together to find and resolve errors and defects in the software during
the early stages of Software Development Life Cycle (SDLC).

Software review is an essential part of Software Development Life Cycle (SDLC)
that helps software engineers in validating the quality, functionality and other vital
features and components of the software.

It is a whole process that includes testing the software product and it makes sure
that it meets the requirements stated by the client.

OBJECTIVE OF SOFTWARE REVIEWS

» To Improve the productivity of the development team
» Tomake the testing process time and cost effective.
« Tomake the final software and fewer defects

« To Eliminate the inadequacies

To understand the software reviews we need to understand the Process of Software
Review.

The Process contains 5 steps that helps us understands the Software review Process
during Software Engineering.

SOFTWARE REVIEW PROCESS

Entry Evaluation

y

Management Preparation

U

Review Planning

{

Preparation

|

Examination and Exit Evaluation

FORMAL TECHNICAL REVIEW

Formal Technical Review (FTR) is a software quality control activity
performed by software engineers.

Useful to uncover error in logic, function and implementation for any
representation of the software.

The purpose of FTR s to verify that the software meets specified
requirements.

To ensure that software is represented according to predefined
standards.

To makes the project more manageable.

It helps to review the uniformity in software that is development in a
uniform manner.

STATISTICAL SOFTWARE QUALITY ASSURANCE

SQAis used to reduce cost and improve the product time to the market. In this
chapter we will discuss about various aspects of SQA.

« Software Quality Assurance is the set of activities which ensure that the
standards, processes and procedures are suitable for the project and
implemented correctly.

« Quality : Quality of Software is checked to see if it meets the requirements.

« Assurance: It means ensuring the correctness of the results and security of the
product, as it works without any bug and according to the expectations.

SOFTWARE RELIABILITY

Software Reliability means Operational reliability. It is described as the ability of a
system or component to perform its required functions under static conditions for
a specific period.

Software reliability is also defined as the probability that a software system fulfills
its assigned task in a given environment for a predefined number of input cases,
assuming that the hardware and the input are free of error.

Software Reliability is an essential connect of software quality, composed with
functionality, usability, performance, serviceability, capability, install ability,
maintainability, and documentation

ISO 9000 QUALITY STANDARDS

« ThelISO 9000 series was created by the International Organization for
Standardization (ISO) as international requirements and guidelines for quality
management systems.

» It was originally introduced in 1987 and over the years has established itself in the
global economy having been adopted in over 178 countries with over one million
registrations.

e The Current Version is ISO 9001: 2015 of the ISO 9001 Standard.

https://the9000store.com/articles/who-is-iso/
https://the9000store.com/articles/who-is-iso/
https://the9000store.com/articles/who-is-iso/
https://the9000store.com/articles/who-is-iso/
https://the9000store.com/articles/who-is-iso/
https://the9000store.com/articles/who-is-iso/
https://the9000store.com/articles/who-is-iso/
https://the9000store.com/articles/who-is-iso/
https://the9000store.com/articles/who-is-iso/
https://the9000store.com/articles/who-is-iso/
https://the9000store.com/articles/who-is-iso/
https://the9000store.com/articles/who-is-iso/
https://the9000store.com/articles/who-is-iso/
https://the9000store.com/articles/who-is-iso/
https://the9000store.com/articles/who-is-iso/
https://the9000store.com/articles/who-is-iso/
https://the9000store.com/articles/who-is-iso/
https://the9000store.com/articles/who-is-iso/
https://the9000store.com/articles/who-is-iso/
https://the9000store.com/articles/who-is-iso/
https://the9000store.com/articles/who-is-iso/
https://the9000store.com/articles/who-is-iso/
https://the9000store.com/articles/who-is-iso/
https://the9000store.com/articles/who-is-iso/
https://the9000store.com/articles/who-is-iso/
https://the9000store.com/articles/who-is-iso/
https://the9000store.com/articles/who-is-iso/
https://the9000store.com/articles/who-is-iso/
https://the9000store.com/articles/who-is-iso/
https://the9000store.com/iso-9001-2015-requirements/
https://the9000store.com/articles/who-is-iso/
https://the9000store.com/articles/who-is-iso/
https://the9000store.com/articles/who-is-iso/
https://the9000store.com/articles/who-is-iso/
https://the9000store.com/articles/who-is-iso/

WHY ISO

» ISO Standards are essential part of an societal institution.
« They Ensure quality and safety of our products and services in International Trade.

» Business can be seen to benefit from ISO standards as they can help cut costs by
improved systems and procedures put in place.

« 1SO 9001 is among ISO's best-known standards, and it defines the criteria for
meeting a number of quality management principles. It helps businesses and
organizations be more efficient and improve customer satisfaction.

