SOFTWARE ENGINEERING (23CY405)

Software Engineering

UNIT -1

INTRODUCTION:

Software Engineering is a framework for building software and is an engineering approach to
software development. Software programs can be developed without S/E principles and methodologies
but they are indispensable if we want to achieve good quality software in a cost effective manner.
Software is defined as: Instructions + Data Structures + Documents

Engineering is the branch of science and technology concerned with the design, building, and use of
engines, machines, and structures. It is the application of science, tools and methods to find cost effective
solution to simple and complex problems.

SOFTWARE ENGINEERING is defined as a systematic, disciplined and quantifiable approach for
the development, operation and maintenance of software.

The Evolving role of software
The dual role of Software is as follows:
1. AProduct- Information transformer producing, managing and displaying information.
2. A Vehicle for delivering a product- Control of computer(operating system),the
communication of information(networks) and the creation of other programs.
Software is developed or engineered, but it is not manufactured in the classical sense.
Software does not wear out, but it deteriorates due to change.
Software is custom built rather than assembling existing components.
System software. System software is a collection of programs written to service other programs
Embedded software-- resides in read-only memory and is used to control products and systems

%&ﬁﬁﬁﬂ&?&%ﬂ&dﬁﬁéﬁ&ﬁmﬁaﬁ&%ﬁam rioted igeatdd fol eofiputatonadestusibffoonacianatysis

8. Engineering and scientific software. Engineering and scientific software have been characterized
by "number crunching" algorithms.

Nooakw

THE CHANGING NATURE OFSOFTWARE
The various categories of software are

System software

Application software

Engineering and scientific software
Embedded software

Product-line software

Web-applications

Artificial intelligence software

NogakrowdE

e ——
CSE(CS), NRCM Page|l

SOFTWARE ENGINEERING (23CY405)

CSE(CS), NRCM Page|2

SOFTWARE ENGINEERING — 23CS5405

LEGACY SOFTWARE

Legacy software are older programs that are developed decades ago. The quality of legacy software
is poor because it has inextensible design, convoluted code, poor and nonexistent documentation,
test cases and results that are not achieved.

As time passes legacy systems evolve due to following reasons:

1. The software must be adapted to meet the needs of new computing environment or technology.
2. The software must be enhanced to implement new business requirements.

3. The software must be extended to make it interoperable with more modern systems or database
4. The software must be rearchitected to make it viable within a network environment.

SOFTWARE MYTHS

Myths are widely held but false beliefs and views which propagate misinformation and confusion.
Three types of myth are associated with software:

a) Management myth

b) Customer myth

€) Practitioner’s myth

MANAGEMENT MYTHS

a) Myth(1)-The available standards and procedures for software are enough.

b) Myth(2)-Each organization feel that they have state-of-art software development tools since
they have latest computer.

c) Myth(3)-Adding more programmers when the work is behind schedule can catch up.

d) Myth(4)-Outsourcing the software project to third party, we can relax and let that party build it.

CUSTOMER MYTHS
a) Myth(1)- General statement of objective is enough to begin writing programs, the details
can be filled in later.
b) Myth(2)-Software is easy to change because software is flexible

PRACTITIONER’S MYTH

a) Myth(1)-Once the program is written, the job has been done.

b) Myth(2)-Until the program is running, there is no way of assessing the quality.

c) Myth(3)-The only deliverable work product is the working program

d) Myth(4)-Software Engineering creates voluminous and unnecessary documentation and
invariably slows down software development.

SOFTWARE ENGINEERING-A LAYERED TECHNOLOGY

Fig: Software Engineering-A layered technology

SOFTWARE ENGINEERING - A LAYERED TECHNOLOGY

SOFTWARE ENGINEERING - 23CS405

A PROCESS FRAMEWORK

A PROCESS FRAMEWORK comprises of :

Common process framework Umbrella activities Framework
activities Tasks, Milestones, deliverables SQA points

1. Establishes the foundation for a complete software process

2. ldentifies a number of framework activities applicable to all software projects

3. Alsoinclude a set of umbrella activities that are applicable across the entire software process.
4. Quality focus - Bedrock that supports Software Engineering.

5. Process - Foundation for software Engineering

6. Methods - Provide technical How-to’s for building software

7. Tools - Provide semi-automatic and automatic support to methods

8. Communication
9. Planning

10. Modeling

11. Construction
12. Deployment

CSE - NRCM Page 4

SOFTWARE ENGINEERING - 23CS405

Software process

Process framework

Umbrella activities

framework activity & 1
software enginoerrg acton =11

ok O OCucts
(Pt y BTN RO € O
PrOPRCT AR O

Task sets

sOftware engineersmg acton =1 _ &

e Camnkon

Tk O DehC TR

PRy DR I EICE
PO CT MMAEeET ONe S

Task sets

framework activity & n

software engineanng action &mn. 1

Task sets

-
sOoOftware engineenring acton &n.om

o D OeRAC TS
LBy ISR STCE RO S
PrOPeC T rriest Or e

Tashk seus

A PROCESS FRAMEWORK

Used as a basis for the description of process models Generic process activities

A PROCESS FRAMEWORK

Generic view of engineering complimented by a number of umbrella activities
Software project tracking and control
Formal technical reviews
Software quality assurance
Software configuration management
Document preparation and production
Reusability management
Measurement
Risk management

e IR A i e

CAPABILITY MATURITY MODEL INTEGRATION(CMMI)
1. Developed by SEI(Software Engineering institute)
2. Assess the process model followed by an organization and rate the organization with different levels

3. A set of software engineering capabilities should be present as organizations reach different

levels of process capability and maturity.

CSE - NRCM

Page 5

SOFTWARE ENGINEERING — 23CS5405

CMMI process meta model can be represented in different
ways 1.A continuous model
2.A staged model

Continuous model:

-Lets organization select specific improvement that best meet its business objectives and minimize risk-
Levels are called capability levels.

-Describes a process in 2 dimensions

-Each process area is assessed against specific goals and practices and is rated according to

the following capability levels.

CMMI

5. Six levels of CMMI

— Level O:Incomplete

— Level 1:Performed

— Level 2:Managed

— Level 3:Defined

— Level 4:Quantitatively managed
— Level 5:0Optimized

Characteristics of the Maturity levels

Focus on process
improvement

Level 4 Processes measured
Quantitatively Managed and controlled

Processes characterized for the

organization and is proactive.
(Projects tailor their processes from
organzation’s standards)

Processes characterized for projects
and is often reactive.

Processes unpredictable,
poorly controlled and reactive

CMMI

6. Incomplete -Process is adhoc . Objective and goal of process areas are not known

7. Performed -Goal, objective, work tasks, work products and other activities of software process
are carried out

8. Managed -Activities are monitored, reviewed, evaluated and controlled

9. Defined -Activities are standardized, integrated and documented

10. Quantitatively Managed -Metrics and indicators are available to measure the process and quality
11. Optimized - Continuous process improvement based on quantitative feed back from the user
-Use of innovative ideas and techniques, statistical quality control and other methods for

process improvement.

CSE - NRCM Page 6

SOFTWARE ENGINEERING — 23CS5405

CMMI - Staged model

- This model is used if you have no clue of how to improve the process for quality software.
- It gives a suggestion of what things other organizations have found helpful to work first

- Levels are called maturity levels

PROCESS PATTERNS
Software Process is defined as collection of Patterns.Process pattern provides a template. It comprises of
* Process Template
-Pattern Name -Intent
-Types

-Task pattern -

Stage pattern -

Phase Pattern

+ Initial Context

* Problem

« Solution

* Resulting Context

* Related Patterns

PROCESS ASSESSMENT
Does not specify the quality of the software or whether the software will be
delivered on time or will it stand up to the user requirements. It attempts to keep a check on the
current state of the software process with the intention of improving it.
PROCESS ASSESSMENT
Software Process
Software Process Assessment Software Process improvement Motivates Capability determination
APPROACHES TO SOFTWARE ASSESSMENT
» Standard CMMI assessment (SCAMPI)
» CMM based appraisal for internal process improvement
« SPICE(ISO/IEC 15504)
« 1SO 9001:2000 for software
Personal and Team Software Process
Qersonal software process
PLANNING

z HIGH LEVEL DESIGN

. HIGHLEVEL DESIGN REVIEW

> DEVELOPMENT
POSTMORTEM

Personal and Team Software Process

Team software process Goal of TSP

- Build self-directed teams

- Motivate the teams

- Acceptance of CMM level 5 behavior as normal to accelerate software process improvement
- Provide improvement guidance to high maturity organization

CSE - NRCM Page 7

SOFTWARE ENGINEERING - 23CS5405

PROCESS MODELS

* Help in the software development
» Guide the software team through a set of framework activities
» Process Models may be linear, incremental or evolutionary

THE WATERFALL MODEL

» Used when requirements are well understood in the beginning

» Also called classic life cycle

» Asystematic, sequential approach to Software development

» Begins with customer specification of Requirements and progresses through planning,
modeling, construction and deployment.

Communication

Planning

A4

Modeling

Y

Construction |

Deployment

This Model suggests a systematic, sequential approach to SW development that begins at the
system level and progresses through analysis, design, code and testing

PROBLEMS IN WATERFALLMODEL

» Real projects rarely follow the sequential flow since they are always iterative

» The model requires requirements to be explicitly spelled out in the beginning, which is
often difficult

» A working model is not available until late in the project time plan

THE INCREMENTAL PROCESS MODEL

» Linear sequential model is not suited for projects which are iterative in nature

» Incremental model suits such projects

» Used when initial requirements are reasonably well-defined and compelling need to provide
limited functionality quickly

» Functionality expanded further in later releases

Software is developed in increments

Communication
Planning

Modeling
Construction

vVVYYVY Yy*

Deployment

CSE - NRCM Page 8

SOFTWARE ENGINEERING - 23CS5405

INCREMENT 1

Communicatio)
n Planning

.4

Modeling

A4

Construction

Deployment

INCREMENT 2

Communication

Planning .

Modelin .
g Construction [~

Deployment

INCREMENT N

Communication

Planning

h 4

Modeling

Construction

v

Deployment

THE INCREMENTAL MODEL

« Software releases in increments

« 1st increment constitutes Core product

» Basic requirements are addressed

» Core product undergoes detailed evaluation by the customer
« Asaresult, plan is developed for the next increment. Plan addresses the modification of
core product to better meet the needs of customer

» Process is repeated until the complete product is produced

THE RAD (Rapid Application Development) MODEL

* Anincremental software process model

» Having a short development cycle

« High-speed adoption of the waterfall model using a component based construction approach
» Creates a fully functional system within a very short span time of 60 to 90 days

CSE - NRCM Page

SOFTWARE ENGINEERING - 23CS5405

The RAD Model consists of the following phases:
Communication Planning Construction
Component reuses automatic code generation testing
Modeling

Business modeling Data modeling Process modeling
Deployment integration delivery feedback

Module 3

Module 2 =
Business

Module 1 Modelling
Business
Modelling
Business
Modelling
> Data
“| Modelling
> Data
"] Modelling
Data
Modelling
5| Process
5| Process "| Modelling
”| Modelling
5 Process
| Modelling
o 5] Application
(i > serrsion
Application
generation
J| Testing &
> .‘Il.e;:\i:ee % 7| Turnover
Testing &
Turnover

THE RAD MODEL
» Multiple software teams work in parallel on different functions

» Modeling encompasses three major phases: Business modeling, Data modeling and
process modeling

» Construction uses reusable components, automatic code generation and testing

Problems in RAD
» Requires a number of RAD teams

» Requires commitment from both developer and customer for rapid-fire completion of activities
» Requires modularity
» Not suited when technical risks are high

EVOLUTIONARY PROCESSMODEL

« Software evolves over a period of time

» Business and product requirements often change as development proceeds making a straight-
line path to an end product unrealistic

» Evolutionary models are iterative and as such are applicable to modern day applications

CSE - NRCM Page 10

Types of evolutionary models

— Prototyping

— Spiral model

— Concurrent development model

PROTOTYPING

* Mock up or model(throw away version) of a software product

» Used when customer defines a set of objective but does not identify input, output, or
processing requirements

» Developer is not sure of:

— efficiency of an algorithm

adaptability of an operating system

— human/machine interaction

Communication Quick Plan

Quick Design

Build Prototype Deployment & Delive

STEPS IN PROTOTYPING
Begins with requirement gathering
Identify whatever requirements are known
Outline areas where further definition is mandatory
A quick design occur
Quick design leads to the construction of prototype
Prototype is evaluated by the customer

CSE - NRCM Page 11

SOFTWARE ENGINEERING — 23CS5405

» Requirements are refined
» Prototype is turned to satisfy the needs of customer

LIMITATIONS OF PROTOTYPING

» Inarush to get it working, overall software quality or long term maintainability are
generally overlooked

» Use of inappropriate OS or PL

» Use of inefficient algorithm

THE SPIRAL MODEL

An evolutionary model which combines the best feature of the classical life cycle and
the iterative nature of prototype model. Include new element : Risk element. Starts in middle and
continually visits the basic tasks of communication, planning, modeling, construction and deployment

2. |dentify stakeholders'

win conditions

‘

3a. Reconcile win conditions

1. Identify
nextJevel
stakeholders

3b. Establish nextdevel objectives,
constraints and altematives

| 4. Evaluate process and
product alternatives and
resolve risks

7. Review and comment

6. Validate product and
process definifions

5. Define next level of
product and process,
including partitions

THE SPIRAL MODEL

» Realistic approach to the development of large scale system and software
+ Software evolves as process progresses

» Better understanding between developer and customer

» Thefirst circuit might result in the development of a product specification

CSE - NRCM Page 12

SOFTWARE ENGINEERING — 23CS5405

» Subsequent circuits develop a prototype
» And sophisticated version of software

THE CONCURRENT DEVELOPMENT MODEL

» Also called concurrent engineering

» Constitutes a series of framework activities, software engineering action, tasks and their
associated states

» Allactivities exist concurrently but reside in different states

» Applicable to all types of software development

» Event generated at one point in the process trigger transitions among the states

A FINAL COMMENT ON EVOLUTIONARY PROCESS

 Difficult in project planning

» Speed of evolution is not known

Does not focus on flexibility and extensibility (more emphasis on high quality)

» Requirement is balance between high quality and flexibility and extensibility

THE UNIFIED PROCESS

Evolved by Rumbaugh, Booch, Jacobson. Combines the best features their OO models. Adopts
additional features proposed by other experts. Resulted in Unified Modeling Language (UML).
Unified process developed Rumbaugh and Booch. A framework for Object-Oriented Software
Engineering using UML

PHASES OF UNIFIED PROCESS
* INCEPTION PHASE

+ ELABORATION PHASE

» CONSTRUCTION PHASE

« TRANSITION PHASE

Eloboration

Inception

\
Consfruction

Release — — Transition

software increment I

Production The Unified Process (UP)

CSE - NRCM Page 13

SOFTWARE ENGINEERING - 23CS5405

UNIFIED PROCESS WORK PRODUCTS

Tasks which are required to be completed during different phases
1. Inception Phase

*Vision document

*Initial Use-Case model

*Initial Risk assessment

*Project Plan

2. Elaboration Phase
*Use-Case model

*Analysis model

*Software Architecture
description *Preliminary design
model *Preliminary model

3. Construction Phase
*Design model

*System components
*Test plan and procedure
*Test cases

*Manual

4. Transition Phase
*Delivered software
increment *Beta test results
*General user feedback

CSE - NRCM Page 14

SOFTWARE ENGINEERING - 23CS5405

Software Engineering
Unit 11

System Requirements

» Requirements analysis is very critical process that enables the success of a system or
software project to be assessed.

» Requirements are generally split into two types:
Functional and

Non-functional requirements.

Functional Requirements:

» These are the requirements that the end user specifically demands as basic facilities that
the system should offer. All these functionalities need to be necessarily incorporated into
the system as a part of the contract.

» These are represented or stated in the form of input to be given to the system, the
operation performed and the output expected.

» They are basically the requirements stated by the user which one can see directly in the
final product, unlike the non-functional requirements.

NON- FUNCTIONAL REQUIREMENTS:

* NON- FUNCTIONAL REQUIREMENTS, As the name suggests, are requirements that
are not directly concerned with the specific functions delivered by the system.

» These are basically the quality constraints that the system must satisfy according to the
project contract. The priority or extent to which these factors are implemented varies
from one project to other. They are also called non-behavioral requirements.

CSE - NRCM Page 15

SOFTWARE ENGINEERING —23CS405

Non-functional requirement types

Non-functional
requir ements

Or ganizational
requir ements

Produd
requir ements

Efficiency Reliability Poitability Interoperability Ethical
requir ements requirements requirenments requirements requirements
Delivery Implementation Standards
requirements requir ements requirements

External
requirements

Usability
requirements

Legislative
requirements

Perfommance Space Privacy Safety
requirements requir ements requirements requirements

Software Engineering, COMP201 Slide 14

The type of non-functional requirements are:

Product requirements: These requirements specify product behavior.

Organizational requirements: These requirements are derived from policies and procedures
in the customer’s and developer’s organization.

External requirements: This broad heading covers all requirements that are derived from
factors external to the system and its development process.

USER REQUIREMENTS:

» The user requirements for a system should describe the functional and non-functional
requirements so that they are understandable by system users without detailed technical
knowledge.

» If you are writing user requirements , you should not use software jargons, structured
notations or formal notations or describe the requirements by describing the system
implementation.

CSE - NRCM Page 16

SOFTWARE ENGINEERING - 23CS5405

* You should write user requirements in simple language , with simple tables and forms
and intuitive diagrams.

Various problems can arise when requirements are written in natural language sentences in a text
document:

1. Lack of clarity: It is some times difficult to use language in a precise and unambiguous
way without making the document wordy and difficult to read.

2. Requirements confusion: functional requirements, non- functional requirements, system
goals and design information may not be clarity distinguished.

3. Requirements amalgamation: several different requirements may be expressed together
as a single requirement.

System Requirements:

« System requirements are expanded version of the user requirements that are used by
software engineers as the starting point for the system design.

« Theyadd detail and explain how the user requirements should be provided by the system.

» System requirements should simply describe the external behaviour of the system and its
operational constraints.

Natural language is often used to write system requirements specifications as well as user
requirements. However because system requirements are more detailed than user requirements,
natural language specifications can be confusing and hard to understand:

1. Natural language understanding relies on the specification readers and writers using the
same words for the same concept. This leads to misunderstanding because of the
ambiguity of natural language.

2. A Natural language requirements specification is overflexible. You can say the same
thing in completely different ways.

3. There is no easy way to modularise Natural language requirements. It may be difficult to
find all related requirements.

Structured language specifications:

Structured natural language is a way of writing system requirements where the freedom of the
requirements written is limited and all requirements are written in a standard way.

CSE - NRCM Page 17

SOFTWARE ENGINEERING - 23CS5405

When a standard form is used for specifying functional requirements, the following
information should be included:

>

Description of the function or entry being specified.
Description of its inputs and where these come form
Description of its outputs and where these go to
Indication of what other entities are used

Description of the action to be taken

If a functional approach is used, a pre-condition setting out what must be true before the
function is called and post-condition specifying what Is true after the function is called.

vV WV V YV V V

Description of the of the operation.

Interface requirements:

» Almost all software systems must operate with existing systems that have already been
implemented and installed in an environment.

» Ifthe new system and the existing system must work together, The interfaces of existing
systems have to be precisely specified.

» These specifications should be defined early in the process and included in the
requirements document.

There are three types of interface that may have to be:

> _ - :
Procedural interface: Where existing programs or sub-systems offer a range of services
that accessed by calling interface procedures. These interfaces are sometimes called
Application Programming Interfaces(APIs)

Data structures: That are passed from one sub-system to another. Graphical data models are
the best notations for this type of description.

Representation of data: That have been established for an existing sub-system. These
interfaces are most common in embedded, real-time-system. Some programming
languages such as Ada support this level of specification.

CSE - NRCM Page 18

SOFTWARE ENGINEERING - 23CS5405

SOFTWARE REQUIREMENTS DOCUMENT:

The software requirements document(sometimes called the software requirements specification or
SRS) is the official statement of what the system developers should implement.

It should include both the user requirements for a system and a detailed specification of the
system requirements.

The users of a requirements document:

Characteristics of a good SRS

An SRS should be:

a) Correct

b) Unambiguous

¢) Complete

d) Consistent

e) Ranked for importance and/or stability
f) Verifiable

g) Modifiable

h) Traceable

CSE - NRCM Page 19

SOFTWARE ENGINEERING - 23CS5405

IEEE Standards suggests the following structure for requirements documents:

Introduction

1 Purpose of the requirements document

2 Scope of the product

.3 Definitions, acronyms and abbreviations

4 References

1.5 Owverview of the remainder of the document

2. General description

2.1 Product perspective

2.2 Product functions

2.3 User characteristics

2.4 General constraints

2.5 Assumptions and dependencies

3. Specific requirements, covering functional, non-functional and
interface requirements. This is obviously the most substantial part of the
document but because of the wide variability in organizational practice, it
is not appropriate to define a standard structure for this section. The
requirements may document external interfaces, describe system
functionality and performance, and specify logical database
requirements, design constraints, emergent system properties and quality
characteristics.

4. Appendices

5. Index: Although the IEEE standard is not ideal, it contains a great deal
of good advice on how to write requirements and how to avoid problems.
It is too general to be an organizational standard in its own right. It is a
general framework that can be tailored and adapted to define a standard
geared to the needs of a particular organization (6).

Figure 1. The SRS structure according the IEEE 830-1998 standard

CSE - NRCM Page 20

SOFTWARE ENGINEERING - 23CS5405

REQUIREMENTS ENGINEERING PROCESS

To create and maintain a system requirement document. The overall process includes four
high level requirements engineering sub-processes:

1. Feasibility study--Concerned with assessing whether the system is useful to the business
2. Elicitation and analysis--Discovering requirements
3. Specifications--Converting the requirements into a standard form

4. Validation-- Checking that the requirements actually define the system that the customer
wants

Requirement engineering

Requirements
elicitation and
analysis

Feasibility

Requirements \
specification

Requirements
validation
S

System
mo dels

User andsystem

requirements
Requirements
- document

SPIRAL REPRESENTATION OF REQUIREMENTSENGINEERING PROCESS

Process represented as three stage activity. Activities are organized as an iterative
process around a spiral. Early in the process, most effort will be spent on understanding
high-level business and the use requirement. Later in the outer rings, more effort will be
devoted to system requirements engineering and system modeling
Three level process consists of:

1. Requirements elicitation
2. Requirements specification
3. Requirements validation

CSE - NRCM Page 21

SOFTWARE ENGINEERING —23CS405

Requirements
specification

=" ”System requirements
specification and
modeling

User requirements
specification

/" Business requirements "\
specification

\
\ ‘ |
| | \

\ Start / o | |
\ \ 4 / Feasibility | | |
; \ System) /' study |/ | ‘ i
Requirements | req. > / / | Requirements
elicitation \ gjicitation \ User — validation
\ _ requirements A .
N\ elicitation _~ Prototyping /
Reviews / :
Figure 4.6 A spiral view
of the requirements System requirements ——
engineering process document

The requirement engineering process should starts with a feasibility study.
Starting point of the requirements engineering process

e Input: Set of preliminary business requirements, an outline description of the
system and howthe system is intended to support business processes

e Output: Feasibility report that recommends whether or not it is worth carrying out
further Feasibility report answers a number of questions:

Does the system contribute to the overall objective:

Can the system be implemented using the current technology and within given cost and
schedule

Can the system be integrated with other system which are already in place.

REQUIREMENTS ELICITATION ANALYSIS

Involves a number of people in an organization.
Stakeholder definition-- Refers to any person or group who will be affected by the system directly

or indirectly i.e. End-users, Engineers, business managers, domain experts. Reasons why eliciting is

difficult
1. Stakeholder often don’t know what they want from the computer system

2. Stakeholder expression of requirements in natural language is sometimes difficult to Understand.
3. Different stakeholders express requirements differently

CSE - NRCM Page 22

SOFTWARE ENGINEERING - 23CS5405

4. Influences of political factors Change in requirements due to dynamic environments.
5. the economic and business environment in which the analysis takes place is dynamic

18risremenin Hpr e rremes i
it wot @t i T e
THTE R neeH crhaon
Regursmenis Fejusrormaziits

LT) i bl

REQUIREMENTSELICITATION PROCESS
Process activities

1. Requirement Discovery -- Interaction with stakeholder to collect their
requirements including domain and documentation

2. Requirements classification and organization -- Coherent clustering of
requirements from unstructured collection of requirements

3. Requirements prioritization and negotiation -- Assigning priority to
requirements, Resolves conflicting requirements through negotiation

4. Requirements documentation -- Requirements be documented and placed in the next
round ofspiral

CSE - NRCM Page 23

SOFTWARE ENGINEERING - 23CS5405

REQUIEMENTS DICOVERY TECHNIQUES

1. View points --Based on the viewpoints expressed by the stake holder
Recognizes multiple perspectives and provides a framework for discovering
conflicts in the requirements proposed by different stakeholders

Thr%‘ Generic types of viewpoints

Interactor viewpoint--Represents people or other system that interact directly with the system

> . .] ! i
> Indirect viewpoint--Stakeholders who influence the requirements, but don’t use the system

Domain viewpoint--Requirements domain characteristics and constraints that influence
the requirements.

2. Interviewing--Puts questions to stakeholders about the system that they use
and the system to be developed. Requirements are derived from the answers.

Two types of interview
— Closed interviews where the stakeholders answer a pre-defined set of questions.

— Open interviews discuss a range of issues with the stakeholders for better
understanding their needs.

Effective interviewers
a) Open-minded: no pre-conceived ideas
b) Prompter: prompt the interviewee to start discussion with a question or a
proposal

3. Scenarios --Easier to relate to real life examples than to abstract description. Starts
with an outline of the interaction and during elicitation, details are added to create a
complete description of that interaction

Scenario includes:
1. Description at the start of the scenario

2. Description of normal flow of the event
3. Description of what can go wrong and how this is handled
4. Information about other activities parallel to the scenario

5. Description of the system state when the scenario finishes

CSE - NRCM Page 24

SOFTWARE ENGINEERING - 23CS5405

REQUIREMENTS VALIDATION

Concerned with showing that the requirements define the system that the customer wants.
Important because errors in requirements can lead to extensive rework cost.

During the requirement validation process, checks should be carried out on
the requirements in the requirements document.
These checks include:
Validity checks --Verification that the system performs the intended function by the user
Consistency check --Requirements should not conflict

Completeness checks --Includes requirements which define all functions and
constraints intended by the system user

Realism checks --Ensures that the requirements can be actually implemented
Verifiability -- Testable to avoid disputes between customer and developer.

VALIDATION TECHNIQUES:
* Requirements reviews — the requirements are analysed systematically by a team of reviewers.

Reviewers check the following:

(@) Verifiability: Testable

(b) Comprehensibility

(c) Traceability

(d) Adaptability
* Prototyping- an executable model of the system is demonstrated to end- users and customers.
Test- case generation — Requirements should be testable.

R/
0.0

Requirements management

Requirements are likely to change for large software systems and as such
requirements management process is required to handle changes.
Reasons for requirements changes
a) Diverse Users community where users have different requirements and priorities
b) System customers and end users are different
c) Change in the business and technical environment after installation Two classes
of requirements
d) Enduring requirements: Relatively stable requirements
e) Volatile requirements: Likely to change during system development process or
during operation

CSE - NRCM Page 25

SOFTWARE ENGINEERING — 23CS5405

Requirements management planning

An essential first stage in requirement management process. Planning process consists of the
following
1. Requirements identification -- Each requirement must have unique tag for
cross reference and traceability
2. Change management process -- Set of activities that assess the impact and cost
of changes
3. Traceability policy -- A matrix showing links between requirements and other
elements of software development
4. CASE tool support --Automatic tool to improve efficiency of change management
process. Automated tools are required for requirements storage, change management
and traceability management

Traceability
Maintains three types of traceability information.

Source traceability--Links the requirements to the stakeholders

DS

Requirements traceability--Links dependent requirements within the requirements document

7
L %4

Design traceability-- Links from the requirements to the design module

CASE tools:
o

Requirement storage — should maintained in a secure, managed data store.

Change management — simplified if active tool support is available.

K3
"

0,
o

Traceability management — allows related requirements to be discovered.

Requirements change management:

There are Three principle stages to a change management process:

1. Problem analysis and change specification-- Process starts with a specific
change proposaland analysed to verify that it is valid

2. Change analysis and costing--Impact analysis in terms of cost, time and risks

3. Change implementation--Carrying out the changes in requirements document,
system design and its implementation

CSE - NRCM Page 26

SOFTWARE ENGINEERING - 23CS5405

SYSTEM MODELS

Used in analysis process to develop understanding of the existing system or new system.
Excludes details. An abstraction of the system Types of system models

1. Context models 2. Behavioral models 3.Data models 4.0Object models 5.Structured
models

CONTEXT MODELS

A type of architectural model. Consists of sub-systems that make up an entire system First step:
To identify the subsystem. Represent the high level architectural model as simple block diagram

» Depict each sub system a named rectangle
* Lines between rectangles indicate associations between subsystems Disadvantages

--Concerned with system environment only, doesn't take into account other systems, which
may take data or give data to the model

The context of an ATM system consists of the following Auto-teller system
Security system Maintenance system Account data base Usage database

Branch accounting system Branch counter system

CSE - NRCM Page 27

SOFTWARE ENGINEERING - 23CS5405

Behavioral models

Describes the overall behavior of a system. Two types of behavioral model

1. Data Flow models 2.State machine models
Data flow models --Concentrate on the flow of data and functional transformation on that data.
Show the processing of data and its flow through a sequence of processing steps. Help analyst
understand what is going on.

Advantages
-- Simple and easily understandable

-- Useful during analysis of requirements

State machine models

Describe how a system responds to internal or external events. Shows system states and events
that cause transition from one state to another. Does not show the flow of data within the system.
Used for modeling of real time systems

Exp: Microwave oven

Assumes that at any time, the system is in one of a number of possible states. Stimulus triggers a
transition from on state to another state

Disadvantage

-- Number of possible states increases rapidly for large system models

DATA MODELS

Used to describe the logical structure of data processed by the system. An entity-relation-
attribute

model sets out the entities in the system, the relationships between these entities and the entity
attributes.

Widely used in database design. Can readily be implemented using relational databases. No
specific

notation provided in the UML but objects and associations can be used.

CSE - NRCM Page 28

SOFTWARE ENGINEERING - 23CS5405

Data dictionary entries

Article

S published-in
title
authors

Source
title
publisher

pdffile

fee

fee-payable-to

1

issue
date

Copyright
Agency

name
address

pages

Country

copyright form

tax rate

Name Description Type Date

Article Details nf_‘ the published article that may be ordered by Entity 30.12.2002
people using LIBSYS.

authors The names of the authors of the article who may be due Attribute 30.12.2002
a share of the fee.

Huyer The'. person or organisation that orders aco py of the Entity 30.12.2002
article.

fo L iy b Aile wd e COPTEH taion 2912200

payable-to ’

Address The address of the buyer. This is used to any paper ,.....c 31122002
billing information that is required.

{Buyer)

OBJECT MODELS

An object oriented approach is commonly used for interactive systems development.
Expresses the systems requirements using objects and developing the system in an
object oriented PL such as c++ A object class: An abstraction over a set of objects that
identifies common attributes. Objects are instances of object class. Many objects may be
created from a single class.

CSE - NRCM Page 29

SOFTWARE ENGINEERING — 23CS5405

Analysis process

-- Identifies objects and object classes Object class in UML
--Represented as a vertically oriented rectangle with three sections
The name of the object class in the top section

The class attributes in the middle section

The operations associated with the object class are in lower section.

Object name
Class attribute
Operation()

OBJECT MODELS INHERITANCE MODELS

A type of object oriented model which involves in object classes attributes.

Arranges classes into an inheritance hierarchy with the most general object class at

the top of hierarchy Specialized objects inherit their attributes and services

UML notation

-- Inheritance is shown upward rather than downward

--Single Inheritance: Every object class inherits its attributes and operations from a single
parent class

--Multiple Inheritance : A class of several of several parents.

OBJECT MODELS OBJECT AGGREGATION

Some objects are grouping of other objects. An aggregate of a set of other objects. The
classes representing these objects may be modeled using an object aggregation model
A diamond shape on the source of the link represents the composition.

OBJECT-BEHAVIORAL MODEL
-- Shows the operations provided by the objects
-- Sequence diagram of UML can be used for behavioral modeling

CSE - NRCM Page 30

SOFTWARE ENGINEERING - 23CS5405

UNIT I
DESIGN ENGINEERING

DESIGN PROCESS

« Software design is an iterative process through which requirements are translated into a
“blueprint” for constructing the software.

» The blueprint depicts a holistic view of software. That is, the design represented at a high level
of abstraction- a level that can directly traced to the specific system objective and more detailed
data, functional, and behavioral requirements.

McGlaughlin suggests three characteristics that serve as a guide for the evaluation of a good design:

1. The design must implement all of the explicit requirements contained in the analysis model, and
it must accommodate all of the implicit requirements desired by the customer.

2. The design must be readable, understandable guide for those who generate code and for those
who test and sequentially support the software.

3. The design should provide a complete picture of the software, addressing the data, functional,
and behavioral domains from an implementation perspective.

DESIGN QUALITY

QUALITY GUIDELINES

« Uses recognizable architectural styles or patterns

» Modular; that is logically partitioned into elements or subsystems

« Distinct representation of data, architecture, interfaces and components
* Appropriate data structures for the classes to be implemented

« Independent functional characteristics for components

« Interfaces that reduces complexity of connection

* Repeatable method

QUALITY ATTRIBUTES
J/

.0

" FURPS quality attributes

CSE - NRCM Page 31

SOFTWARE ENGINEERING - 23CS5405

1. Functionality

Feature set and capabilities of programs
Security of the overall system
2. Usability
user-friendliness
Aesthetics
Consistency
Documentation
3. Reliability
Evaluated by measuring the frequency and severity of failure
Mean-time-to-failure(MTTF)
Recover from failure
4. Performance

Speed, response time, resource consumption, throughput, efficiency.

o

Supportability
Extensibility
Adaptability
Serviceability

maintainability

DESIGN CONCEPTS

» Aset of fundamental software design concepts has evolved over the history of software
engineering.

+ Although the degree of interest in each concept has varied over the years, each has stood the
test of time.

» Each provides the software designer with a foundation from which more sophisticated design
methods can be applied.

Design concepts are:

1. Abstractions

CSE - NRCM Page 32

SOFTWARE ENGINEERING — 23CS5405

2. Architecture
3. Patterns
4. Modularity
5. Information Hiding
6. Functional Independence
7. Refinement
8. Re-factoring
9. Design Classes
1. ABSTRACTION
Many levels of abstraction.

» Highest level of abstraction: Solution is slated in broad terms using the language of the
problem environment

» Lower levels of abstraction: More detailed description of the solution is provided

* Procedural abstraction: Refers to a sequence of instructions that a specific and limited
function

« Data abstraction: Named collection of data that describe a data object

2, ARCHITECTURE

Structure organization of program components (modules) and their interconnection Architecture
Models

» Structural Models-- An organized collection of program components
* Framework Models-- Represents the design in more abstract way

« Dynamic Models-- Represents the behavioral aspects indicating changes as a function of
external events

* Process Models-- Focus on the design of the business or technical process
3. PATTERNS
Provides a description to enables a designer to determine the followings:

a) whether the pattern is applicable to the current work

CSE - NRCM Page 33

SOFTWARE ENGINEERING - 23CS405

b) Whether the pattern can be reused

CSE - NRCM Page 34

SOFTWARE ENGINEERING — 23CS5405

c) Whether the pattern can serve as a guide for developing a similar but functionally or structurally
different pattern

4. MODULARITY

* Divides software into separately named and addressable components, sometimes called
modules. Modules are integrated to satisfy problem requirements. Consider two problems pl
and p2. If the complexity of pl is cpl and of p2 is cp2 then effort to solve pl=cpl and effort to
solve p2=cp2 If cp1>cp2 then epl>ep2

* The complexity of two problems when they are combined is often greater than the sum of the
perceived complexity when each is taken separately.

« Based on Divide and Conquer strategy: it is easier to solve a complex problem when broken
into sub-modules

S. INFORMATION HIDING

Information contained within a module is inaccessible to other modules who do not need
such information. Achieved by defining a set of Independent modules that communicate with one
another only that information necessary to achieve S/W function. Provides the greatest benefits when
modifications are required during testing and later. Errors introduced during modification are less likely
to propagate to other location within the S/W.

6. FUNCTIONAL INDEPENDENCE

A direct outgrowth of Modularity. abstraction and information hiding. Achieved by
developing a module with single minded function and an aversion to excessive interaction with other
modules. Easier to develop and have simple interface. Easier to maintain because secondary effects
caused b design or code modification are limited, error propagation is reduced and reusable modules are
possible. Independence is assessed by two quantitative criteria:

Cohesion

Coupling

CSE - NRCM Page 35

SOFTWARE ENGINEERING - 23CS405

Cohesion -- Performs a single task requiring little interaction with other components

CSE - NRCM Page 36

SOFTWARE ENGINEERING - 23CS5405

Coupling--Measure of interconnection among modules. Coupling should be low and cohesion
should be high for good design.

7. REFINEMENT

Process of elaboration from high level abstraction to the lowest level abstraction. High
level abstraction begins with a statement of functions. Refinement causes the designer to elaborate
providing more and more details at successive level of abstractions Abstraction and refinement are
complementary concepts.

8. REFACTORING

Organization technique that simplifies the design of a component without changing its
function or behavior. Examines for redundancy, unused design elements and inefficient or unnecessary
algorithms.

9. DESIGN CLASSES
Class represents a different layer of design architecture. Five types of Design Classes

» User interface class -- Defines all abstractions that are necessary for human computer
interaction

» Business domain class -- Refinement of the analysis classes that identity attributes and
services to implement some of business domain

» Process class -- implements lower level business abstractions required to fully manage the
business domain classes

» Persistent class -- Represent data stores that will persist beyond the execution of the software

System class -- Implements management and control functions to operate and communicate within the
computer environment and with the outside world.

THE DESIGN MODEL

Introduction of Design Model
* The design model can be viewed in two different dimensions.
— (Horizontally) The process dimension

» Itindicates the evolution of the parts of the design model as each design task
is executed.

— (Vertically) The abstraction dimension

CSE - NRCM Page 37

SOFTWARE ENGINEERING - 23CS5405

* It represents the level of detail as each element of the analysis model is transformed into the
design model and then iteratively refined.

» The elements of the design model use many of the same UML diagrams that were used in the
analysis model.

« The difference is that these diagrams are

Refined and elaborated as part of design;
— More implementation-specific detail is provided,

— Architectural structure and style, components that reside within the architecture,

Interfaces between the components and with the outside world are all emphasized.

Dimensions of the design model

High
Analysis model I
Closs diagrams
Class diogrems éEE:IYSiS pﬁckoges .
i mocels virements:
- Anclyr:ncs,\c%?:kcges Use coses - text Collaberation diagrams ecq , -e,
0 : Use-cose diagrams flow di onsirainis
2 Colloboration Aclivity diagrams 8070 ?‘é" gicgrams Interoperability
i . : ntrol-How dicgrom T
& D;chﬁ;c\.xvm;c rems Swimlane diograms Proocesosin% ngrfc?ti\?ess :crgels_onc ,
gre Collcberation Stote di configuration
Control-flow diegroms diogroms tate dicgroms
- . ; ram nce ai Y
o Processing norratives Stote digrams Sequence dicgrams
E i L LT l _____ Seguence diogroms
1.
¥ 1. v | Tt e e),
4 Designclass | | | | TTTCTTeeespeeeaillllll
w . rgclizctions S PSRN U U R it
£ ubsystems chnicol interfoce Component dicgroms : —
q Colleboration design Design closses 2:;’5;:!_?:5 realizations
diograms Navigation design Activity ciagrems ian d:
ge g
GUI design Sl gy e Collcboration diagrams
Design model I ' v Component diograms
Design classes
Refinements fo: % Activity diagroms
D ¢ > | Rafinements fo! Sequence giagrams
oHgn cons Component dicgroms
reclizations Paslci disces l
Low ?:ulﬁsygtem{f) Activity dicgrams .
olloberation Sequence diagrams Deployment diagrams
dicgroms g
Architecture Interfoce Componentevel Deplorment-level
elements dements dements elements

Process dimension

1. Data Design Elements
* Customer’s/ User’s View:

— Data Architecting (Creates a model of data that is represented at a high level of
abstraction). (Build Architecture of Data)

* Program Component Level: The design of Data structure & algorithms.

CSE - NRCM Page 37

SOFTWARE ENGINEERING - 23CS5405

2

Application Level: Translate Data Model into a database.
Business Level: Data warehouse(Reporting & Analysis of DB) & Data mining(Analysis).
At last it means creation of Data Dictionary.

Architectural Design Elements:

Provides an overall view of the software product(Similar like Floor Plan of house)

The architectural model [Sha96] is derived from three sources:
(1) Information about the application domain for the software to be built;

(2) Specific requirements model elements such as data flow diagrams or analysis
classes, their relationships and collaborations for the problem at hand,;

(3) The availability of architectural styles and patterns

Difference: An architectural style is a conceptual way of how the system will be created / will
work.

An architectural pattern describes a solution for implementing a style at the level of subsystems
or modules and their relationships.

Interface Design Elements
The interface design elements for software represent information flows into and out of the

system and how it is communicated among the components defined as part of the architecture.

For example : A set of detailed drawings (and specifications) for the doors, windows, and
external utilities of a house. These drawings describe the size and shape of doors and windows,
the manner in which they operate, the way in which utility connections (e.g., water, electrical,
gas, telephone) come into the house and are distributed among the rooms depicted in the floor
plan.

There are three important elements of interface design:
— (1) The user interface (Ul);

— (2) External interfaces to other systems, devices, networks, or other producers or
consumers of information;

— (3) Internal interfaces between various design components.
Ul design (increasingly called usability design) is a major software engineering action
Usability design incorporates

— Visual elements (e.g., layout, color, graphics, interaction mechanisms),

— Ergonomic elements (e.g., information layout and placement, metaphors, Ul navigation),

CSE - NRCM Page 38

SOFTWARE ENGINEERING - 23CS5405

— Technical elements (e.g., Ul patterns, reusable components).

— In general, the Ul is a unique subsystem within the overall application architecture.

MobilePhone
WirelessPDA
I
I
So |
S I
~ I
Wi |
ControlPanel NS
(.
LCDdisplay X 2
LEDindicators 5 KeyPad
keyPadCharacterisfics
speaker
wirelessInterface
readKeyStroke|)
decodeKey] |
displayStatus|) i <<Interface>>
lighttEDs() : KeyPad
sendControlMs §
gl * 1 readKeystroke(
decodeKey()

4. Component-Level Design Elements
* The component-level design for software fully describes the internal detail of each software
component.

« Component elements (detailed drawing of each room, wiring, place of switches...)
— Internal details of each software component
» Data structures,
 algorithmic details,

 interface to access component operation (behavior).

SensorManagementy - - - - - - Sensor I

2R

CSE - NRCM Page 39

SOFTWARE ENGINEERING - 23CS5405

5. Deployment-Level Design Elements
» Deployment-level design elements indicate how software functionality and subsystems will

be allocated within the physical computing environment that will support the software.

» For example, the elements of the SafeHome product are configured to operate within three
primary computing environments

— A home-based PC,
— The SafeHome control panel,

— Server housed at CPI Corp. (providing Internet-based access to the system).

Control panel CPI server

Security HomeownerAccess

Personal computer

o
<IExrern alAccess

- -

Security Surveillance I

HomeManagement I Communication

Software architecture:

The architecture of a system describes its major components, their relationships (structures), and
how they interact with each other. Software architecture and design includes several contributory
factors such as Business strategy, quality attributes, human dynamics, design, and IT environment.

Architecture serves as a blueprint for a system. It provides an abstraction to manage the system
complexity and establish a communication and coordination mechanism among components.

e It defines a structured solution to meet all the technical and operational requirements, while
optimizing the common quality attributes like performance and security.

e Further, it involves a set of significant decisions about the organization related to software
development and each of these decisions can have a considerable impact on quality,
maintainability, performance, and the overall success of the final product. These decisions
comprise of —

Selection of structural elements and their interfaces by which the system is composed.

Behavior as specified in collaborations among those elements.

Composition of these structural and behavioral elements into large subsystem.

Y V V V¥V

Architectural decisions align with business objectives.

CSE - NRCM Page 40

SOFTWARE ENGINEERING - 23CS5405

Architectural styles guide the organization.

Data design

Here data design is described at both the architectural and component levels. At the architecture level,
data design is the process of creating a model of the information represented at a high level of
abstraction (using the customer's view of data)

1.Data Design at the Architectural Level

The challenge is extract useful information from the data environment, particularly when the
information desired is cross-functional.

To solve this challenge, the business IT community has developed data mining techniques, also
called knowledge discovery in databases (KDD), that navigate through existing databases in an
attempt to extract appropriate business-level information

However, the existence of multiple databases, their different structures, and the degree of detail
contained with the databases, and many other factors make data mining difficult within an
existing database environment

An alternative solution, called a data warehouse, adds on additional layer to the data

architecture

A data warehouse is a separate data environment that is not directly integrated with day-to-day
applications that encompasses all data used by a business

2.Data Design at the Component Level

At the component level, data design focuses on specific data structures required to realize the data
objects to be manipulated by a component.

orwn

o

Refine data objects and develop a set of data abstractions

Implement data object attributes as one or more data structures

Review data structures to ensure that appropriate relationships have been established Set of
principles for data specification:

The systematic analysis principles applied to function and behavior should also be applied to
data

All data structures and the operations to be performed on each should be identified

A data dictionary should be established and used to define both data and program design
Low level data design decisions should be deferred until late in the design process

The representation of data structure should be known only to those modules that must make
direct use of the data contained within the structure

A library of useful data structures and the operations that may be applied to them should be
developed

. A software design and programming language should support the specification and

realization of abstract data types

CSE - NRCM Page 41

SOFTWARE ENGINEERING - 23CS5405

Architectural styles and patterns

Architectural styles:

1. Data-centered architecture

D
° The data store in the file or database is occupying at the center of the architecture.

Store data is access continuously by the other components like an update, delete, add, modify from
the data store.

Data-centered architecture helps integrity.

Pass data between clients using the blackboard mechanism.

The processes are independently executed by the client components.

0‘0

L)

o,
x4

*,

9
o

3
”Q

Client
software

Client
software

Data store
[repesitory or
blackboard)

Client Client
software software

Client
software

Client
software

1

2. Data-flow architecture

B
This architecture is applied when the input data is converted into a series of manipulative components
into output data.

A pipe and filter pattern is a set of components called as filters.
Filters are connected through pipes and transfer data from one component to the next component.

The flow of data degenerates into a single line of transform then it is known as batch sequential.

O %
* 08 %

0

L)

Filter

Filter
Filter | " Filter t 4 Filter

Filter

Filter

Pipes

CSE - NRCM Page 42

SOFTWARE ENGINEERING - 23CS5405

3. Call and return architectures

This architecture style allows to achieve a program structure which is easy to modify.
Following are the sub styles exist in this category:

a) Main program or subprogram architecture
The program is divided into smaller pieces hierarchically.

The main program invokes many of program components in the hierarchy that program components
are divided into subprogram.

b) Remote procedure call architecture
The main program or subprogram components are distributed in network of multiple computers.

The main aim is to increase the performance.

Call and Return Architecture

Main grogram

e

Confreller
subprogram

Controller

subprogram

Controller
subprogram

pd

AN

i

Aoplication
suoprogram

Application

subprogram

Application
subprogram

Apolication
suborogram

Application
subprogram

Application
subprogram

Application
subprogram

4. Object-oriented architectures

0

This architecture is the latest version of call-and-return architecture.

It consist of the bundling of data and methods.

K3
”

5. Layered architectures
0‘0

The different layers are defined in the architecture. It consists of outer and inner layer.

The components of outer layer manage the user interface operations.

X3

8

X3

o

Components execute the operating system interfacing at the inner layer.

g

)
*

The inner layers are application layer, utility layer and the core layer.

In many cases, It is possible that more than one pattern is suitable and the alternate architectural style
can be designed and evaluated.

3

hS

CSE - NRCM Page 43

SOFTWARE ENGINEERING — 23CS5405

Components

User Interface Layer

Fig.- Layered Architecture

Architectural patterns:

Different Software Architecture Patterns :
1. Layered Pattern
2. Client-Server Pattern
3. Event-Driven Pattern
4. Microkernel Pattern
5. Microservices Pattern
Let’s see one by one in detail.

1. LayeredPattern

As the name suggests, components(code) in this pattern are separated into layers of subtasks and they
are arranged one above another.

Each layer has unique tasks to do and all the layers are independent of one another. Since each layer
is independent, one can modify the code inside a layer without affecting others.

It is the most commonly used pattern for designing the majority of software. This layer is also known
as ‘N-tier architecture’. Basically, this pattern has 4 layers.

1. Presentation layer (The user interface layer where we see and enter data into an application.)
2. Business layer (this layer is responsible for executing business logic as per the request.)
3. Application layer (this layer acts as a medium for communication between the ‘presentation
layer’ and ‘data layer’.
4. Data layer (this layer has a database for managing data.)
Ideal for:

E-commerce web applications development like Amazon.

2. Client-ServerPattern

The client-server pattern has two major entities. They are a server and multiple clients.

Here the server has resources(data, files or services) and a client requests the server for a particular
resource. Then the server processes the request and responds back accordingly.

Examples of software developed in this pattern:

e Email.

- WWW.

e File sharing apps.
e Banking, etc...

CSE - NRCM Page 44

http://www/

SOFTWARE ENGINEERING - 23CS405

So this pattern is suitable for developing the kind of software listed in the examples.

CSE - NRCM Page 45

SOFTWARE ENGINEERING - 23CS5405

3. Event-DrivenPattern

Event-Driven Architecture is an agile approach in which services (operations) of the software are
triggered by events.

Well, what does an event mean?

When a user takes action in the application built using the EDA approach, a state change happens and
a reaction is generated that is called an event.

Eg: A new user fills the signup form and clicks the signup button on Facebook and then a FB account
is created for him, which is an event.
Ideal for:

Building websites with JavaScript and e-commerce websites in general.

4. MicrokernelPattern
Microkernel pattern has two major components. They are a core system and plug-in modules.
e The core system handles the fundamental and minimal operations of the application.
e The plug-in modules handle the extended functionalities (like extra features) and customized
processing.
5. MicroservicesPattern :
The collection of small services that are combined to form the actual application is the concept of
microservices pattern. Instead of building a bigger application, small programs are built for every
service (function) of an application independently. And those small programs are bundled together to
be a full-fledged application.
So adding new features and modifying existing microservices without affecting other microservices are
no longer a challenge when an application is built in a microservices pattern.

Modules in the application of microservices patterns are loosely coupled. So they are easily
understandable, modifiable and scalable.

Architectural design

e Asarchitectural design begins, the software to be developed must be put into context

e That is, the design should define the external entities (other systems, devices, people) that
the software interacts with and the nature of the interaction.

Representing the System in Context
« At the architectural design level, a software architect uses an architectural context diagram
(ACD) to model the manner in which software interacts with entities external to its boundaries.
e The generic structure of the architectural context diagram is illustrated in Figure.

CSE - NRCM Page 46

SOFTWARE ENGINEERING - 23CS5405

Safehome Internet-based
Product system
A/ A
— —
control
panel target system: surveillance
Security Function function
uses
homeowner s peers

[

4 4

uses
A v

Sensors SEensors

In figure, systems that interoperate with the target system (the system for which an architectural
design is to be developed) are represented as

e Super ordinate systems : those systems that use the target system as part of some higher-level
processing scheme.

e Subordinate systems—those systems that are used by the target system and provide data or
processing that are necessary to complete target system functionality.

Peer-level systems—those systems that interact on a peer-to- peer basis (i.e.,

information is either produced or consumed by the peers and the target system.

Actors—entities (people, devices) that interact with the target system by producing or

consuming information.

Each of these external entities communicates with the target system through an interface (the

small shaded rectangles).

Defining Archetypes

An archetype is a class or pattern that represents a core abstraction that is critical to the
design of an architecture for the target system.

In general, a relatively small set of archetypes is required to design even relatively complex
systems.

Archetypes are the abstract building blocks of an architectural design.

In many cases, archetypes can be derived by examining the analysis classes defined as part of
the requirements model.

An archetype is a generic, idealized model of a person, object, or concept from which similar
instances are derived, copied, patterned, or emulated.

The SafeHome home security function, you might define the following archetypes :

o Node : Represents a cohesive collection of input and output elements of the home
security function.

o For example a node might be included of (1) various sensors and (2) a variety of
alarm (output) indicators.

o Detector : An abstraction that covers all sensing equipment that feeds information
into the target system.

o Indicator. An abstraction that represents all mechanisms (e.g., alarm siren, flashing
lights, bell) for indicating that an alarm condition is occurring.

CSE - NRCM Page 47

SOFTWARE ENGINEERING - 23CS5405

o Controller. An abstraction that describes the mechanism that allows the arming
(Supporting) or disarming of a node. If controllers reside on a network, they have the
ability to communicate with one another.

Refining the Architecture into Components

e As the software architecture is refined into components.

e Analysis classes represent entities within the application (business) domain that must be
addressed within the software architecture.

e Insome cases (e.g., a graphical user interface), a complete subsystem architecture with many
components must be designed.

e For Example : The SafeHome home security function example, you might define the set of top-
level components that address the following functionality:

e External communication management — coordinates communication of the security
function with external entities such as other Internet-based systems and external alarm
notification.

e Control panel processing— manages all control panel functionality.

e Detector management — coordinates access to all detectors attached to the system.

e Alarm processing — verifies and acts on all alarm conditions

e The overall architectural structure (represented as a UML component diagram) is in the

following Figure.

|__| SafeHome
[1 executive
Function

. o T~ _ selection

Security Surveillance | s oe Home
management
Internet
interface
Conirol pcmel Detector Alarm
processing management processing

Describing Instantiations of the System

e The architectural design that has been modeled to this point is still relatively high level.

e The context of the system has been represented

e Archetypes that indicate the important abstractions within the problem domain have been
defined,

e The overall structure of the system is apparent, and the major software components have
been identified.

e However, further refinement is still necessary.

e To accomplish this, an actual instantiation of the architecture is developed.It means, again it
simplify by more details.

e The figure demonstrates this concept.

CSE - NRCM Page 48

SOFTWARE ENGINEERING —23CS405

Externcl S L S
g ~ S S
communicction 5 T Sago
~ -
monogement .~
- ~
- 2 b
- b ‘
2% . Security wie»
Internat
Gul . o
% e interfoce g . e
. . N
’ -
’ N e
P -
Control
Detector Alarm
ponel " g
processing cnogemen processing

_______ st 4 - - [y

- * > -] = - .

Keypcd i '

: éi processing | . % Scheduler % Phone ¥
¥ S communication .

CP disploy ¢
functions ' Al
:% Sensor

Conceptual model of UML

The Unified Modeling Language (UML) is a standard visual language for describing and modelling
software blueprints. The UML is more than just a graphical language. Stated formally, the UML is
for: Visualizing, Specifying, Constructing, and Documenting. The artifacts of a software-intensive
system (particularly systems built using the object-oriented style).

Three Aspects of UML.:

|

-

|
THE THREE ASPECTS OF UML

LANGUAGE

enables us to communicate about a subject which includes the

requirements and the system

it is difficult to communicate and collaborate for a team to successfully
develop a system without a language

UNIFIED

itis a representation of a subject

it captures a set of ideas (known as abstractions) about its subject

_ to bring together the information systems and technology industry's
best engineering practices

these practices involve applying techniques that allow us to successfully
develop systems

e Figure — Three Aspects of UML
e Note — Language, Model, and Unified are the important aspect of UML as described in the
map above.

CSE - NRCM Page 49

https://www.geeksforgeeks.org/unified-modeling-language-uml-introduction/

SOFTWARE ENGINEERING - 23CS5405

1. Language:

e Itenables us to communicate about a subject which includes the requirements and the system.
o Itisdifficult to communicate and collaborate for a team to successfully develop a system without a
language.
2. Model:
e ltisarepresentation of a subject.
e It captures a set of ideas (known as abstractions) about its subject.
3. Unified:

e Itisto bring together the information systems and technology industry’s best engineering
practices.

e These practices involve applying techniques that allow us to successfully develop systems.
A Conceptual Model:

A conceptual model of the language underlines the three major elements:

e The Building Blocks
e The Rules
e Some Common Mechanisms

CONCEPTUAL MODEL OF UML

[

| BUILDING BLOCKS ‘ | RULES ‘ ‘ COMMON MECHANISMS |
Relationships Names | Specifications
. — Scope | Adornments |
Structural Things Association I H Class]
. Visibility Common Divisions |
- — Dependency | H Objects I
T Integrity Extensibility Mechanism |
| P — Generalization I H Use Casew
H Collaborations | Realization | H Sequence | M] Stereotypes
Use Case H Collaboration I Tagged Values
H Components H state Chart | Constraints
4 Node
H Activity I
Behavioral Things
4 Deployment |
H Interaction
State Machines
-I Grouping Things
[rocoee]
Annotational Things

BASIC STRUCTURAL MODELING

Contents:
1. Classes
2. Relationships
3. Common Mechanisms
4. Diagrams

CSE - NRCM Page 50

SOFTWARE ENGINEERING - 23CS5405

1.Classes:

¢ Names
o Attributes

e Operations

2.Relationships:

e Dependencies

e Generalizations
e Associations

e Aggregation

3.Common Mechanisms:
¢ Notes

e Other Adornments

o Stereotypes
e Tagged Values
o Constraints

4. Diagrams:

Structural Diagrams

The UML's structural diagrams exist to visualize, specify, construct, and document the static aspects
of a system. You can think of the static aspects of a system as representing its relatively stable
skeleton and scaffolding. Just as the static aspects of a house encompass the existence and
placement of such things as walls, doors, windows, pipes, wires, and vents, so too do the static
aspects of a software system encompass the existence and placement of such things as classes,
interfaces, collaborations, components, and nodes.

The UML's structural diagrams are roughly organized around the major groups of things

you'll find when modeling a system.

1.Class diagram Classes, interfaces, and collaborations

2.Component diagram Components

3.0bject diagram Objects

4.Deployment diagram Nodes

Behavioral Diagrams

The UML's behavioral diagrams are used to visualize, specify, construct, and document the
dynamic aspects of a system. You can think of the dynamic aspects of a system as representing
its changing parts. Just as the dynamic aspects of a house encompass airflow and traffic through
the rooms of a house, so too do the dynamic aspects of a software system encompass such things
as the flow of messages over time and the physical movement of components across a network.

CSE - NRCM Page 51

SOFTWARE ENGINEERING — 23CS5405

The UML's behavioral diagrams are roughly organized around the major ways you can
modelthe dynamics of a system.

1.Use case diagram
2.Sequence diagram

3.Collaboration

diagram

4. State diagram
5. Activity diagram

Organizes the behaviors of the system
Focuses on the time ordering of messages

Focuses on the structural organization of objects that send and
receive messages

Focuses on the changing state of a system driven by events

Focuses on the flow of control from activity to activity

Class diagram:

The purpose of class diagram is to model the static view of an application. Class diagrams are the
only diagrams which can be directly mapped with object-oriented languages and thus widely
used at the time of construction.

UML diagrams like activity diagram, sequence diagram can only give the sequence flow of the
application, however class diagram is a bit different. It is the most popular UML diagram in the

coder community.

The purpose of the class diagram can be summarized as —

Analysis and design of the static view of an application.
Describe responsibilities of a system.

Base for component and deployment diagrams.
Forward and reverse engineering.

Sample Class Diagram

Customer Order
name:String date:Date Super
location:String numberSting | * giass
sendCOrder() confirm{)
receiveQrdert) close()
4'\ Generaliza
- .
tion
SpecialOrder NormalQrder
daleDate date:Date
numbrer:String number.String
confirm() confirm{)
closed) _r;lnse{)
dispatch() dispatch()
receivel)
Sub class
CSE - NRCM Page 52

SOFTWARE ENGINEERING — 23CS5405

Sequence Diagram:
1. To model high-level interaction among active objects within a system.
2. To model interaction among objects inside a collaboration realizing a use case.
3. It either models generic interactions or some certain instances of interaction.

Example of a Sequence Diagram
An example of a high-level sequence diagram for online bookshop is given below.

Any online customer can search for a book catalog, view a description of a particular book, add
a book to its shopping cart, and do checkout.

sd Online_Bookshop

‘Web Customer

:Online
Bookshop

search inventory

search results X

view book description)‘

add to shopping cart i

Checkout X

Collaboration diagram:

Notations of a Collaboration Diagram
e Objects: The representation of an object is done by an object symbol with its name
and class underlined, separated by a colon.

CSE - NRCM Page 53

SOFTWARE ENGINEERING — 23CS5405

e Actors: In the collaboration diagram, the actor plays the main role as it invokes the
interaction. Each actor has its respective role and name. In this, one actor initiates the use
case.

e Links: The link is an instance of association, which associates the objects and actors. It
portrays a relationship between the objects through which the messages are sent. It is
represented by a solid line. The link helps an object to connect with or navigate to
another object, such that the message flows are attached to links.

e Message: It is a communication between objects which carries information and includes
a sequence number, so that the activity may take place. It is represented by a labeled
arrow, which is placed near a link. The messages are sent from the sender to the
receiver, and the direction must be navigable in that particular direction. The receiver
must understand the message.

Components of a collaboration diagram

l 1. MESSAGE
Object: .
Class name Object:
Class name

12. MESSAGE

Object:
Class name

/ Class name
o

X

A

Class name

Use Case Diagrams

The purpose of use case diagram is to capture the dynamic aspect of a system. However, this
definition is too generic to describe the purpose, as other four diagrams (activity, sequence,
collaboration, and Statechart) also have the same purpose. We will look into some specific
purpose, which will distinguish it from other four diagrams.

Use case diagrams are used to gather the requirements of a system including internal and external
influences. These requirements are mostly design requirements. Hence, when a system is
analyzed to gather its functionalities, use cases are prepared and actors are identified.

When the initial task is complete, use case diagrams are modelled to present the outside view.
In brief, the purposes of use case diagrams can be said to be as follows —

e Used to gather the requirements of a system.

CSE - NRCM Page 54

SOFTWARE ENGINEERING — 23CS5405

e Used to get an outside view of a system.
o ldentify the external and internal factors influencing the system.
e Show the interaction among the requirements are actors.

Use case diagram of an order management system

Usea cases

—_—

<<pxtends>> _E““"\

I|I e —— . _.< SpecialOrder |

L , * .
o \ —

» Ad
| Extands
{ Order :'ll relationship

- i —
s : <<pxtends>> P
C“ﬁt(‘mer et e ™ & .(\ Nﬂ.rmalnrdﬂr
Extand{/ “m____---"'".
relationship

—

System __——
boundary

Figure: Sample Use Case diagram

Component Diagrams:

Component diagram is a special kind of diagram in UML. The purpose is also different from all
other diagrams discussed so far. It does not describe the functionality of the system but it
describes the components used to make those functionalities.

Thus from that point of view, component diagrams are used to visualize the physical
components in a system. These components are libraries, packages, files, etc.

Component diagrams can also be described as a static implementation view of a system.
Static implementation represents the organization of the components at a particular moment.

A single component diagram cannot represent the entire system but a collection of diagrams
is used to represent the whole.

The purpose of the component diagram can be summarized as —

e Visualize the components of a system.
o Construct executables by using forward and reverse engineering.
e Describe the organization and relationships of the components.

CSE - NRCM Page 55

SOFTWARE ENGINEERING —23CS405

Component diagram of an order management system

Java files

o SpecialOrder.java

Components

NormalOrder.java

CSE - NRCM Page 56

SOFTWARE ENGINEERING — 23CS5405

UNIT-4
TESTING STRATEGIES

Strateqgic Approach to software testing:

Testing is a set of activities that can be planned in advance and conducted systematically. For
this reason a template for software testing—a set of steps into which we can place specific test
case design techniques and testing methods—should be defined for the software process.

A number of software testing strategies have been proposed in the literature. All provide the
software developer with a template for testing and all have the following generic characteristics:
« Testing begins at the component level2 and works "outward" toward the integration of

the entire computer-based system.

« Different testing techniques are appropriate at different points in time.

» Testing is conducted by the developer of the software and (for large projects) an
independent test group.

« Testing and debugging are different activities, but debugging must be accommodated in
any testing strategy.

e Verification and Validation

Software testing is one element of a broader topic that is often referred to as verification and
validation (V&V). Verification refers to the set of activities that ensure that software
correctly implements a specific function. Validation refers to a different set of activities that
ensure that the software that has been built is traceable to customer requirements. Boehm
states this another way:

Verification:" Are we building the product right?*
Validation: "*Are we building the right product?*

e Organizing for Software Testing

For every software project, there is an inherent conflict of interest that occurs as testing
begins. The people who have built the software are now asked to test the software. This
seems harmless in itself; after all, who knows the program better than its developers?
Unfortunately, these same developers have a vested interest in demonstrating that the
program is error free, that it works according to customer requirements, and that it will be
completed on schedule and within budget. Each of these interests mitigate against thorough
testing.
There are often a number of misconceptions that can be erroneously inferred from the preceeding
discussion: (1) that the developer of software should do no testing at all, (2) that the software
should be "tossed over the wall" to strangers who will test it mercilessly, (3) that testers get
involved with the project only when the testing steps are about to begin. Each of these statements
IS incorrect.

CSE - NRCM Page 57

SOFTWARE ENGINEERING — 23CS5405

Test strategies for Conventional Software

e There are many strategies that can be used to test software.

e At one extreme, you can wait until the system is fully constructed and then conduct tests
on the overall system in hopes of finding errors.

e This approach simply does not work. It will result in buggy software.

e At the other extreme, you could conduct tests on a daily basis, whenever any part of

the system is constructed.

This approach, although less appealing to many, can be very effective.

A testing strategy that is chosen by most software teams falls between the two extremes.

It takes an incremental view of testing,

Beginning with the testing of individual program units,

Moving to tests designed to facilitate the integration of the units,

Culminating with tests that exercise the constructed system.

Unit Test :

Unit testing focuses verification effort on the smallest unit of software design—
the software component or module.

The unit test focuses on the internal processing logic and data structures within the boundaries
of a component.

This type of testing can be conducted in parallel for multiple components.

module
to be
tested

interface

local data structures
boundary conditions
independent paths
error handling paths

| test cases
. Unit tests are illustrated schematically in previous Figure.
o The module interface is tested to ensure that information properly flows into and out
of the program unit under test.
. Local data structures are examined to ensure that data stored temporarily maintains
its integrity during all steps in an algorithm’s execution.
. All independent paths through the control structure are exercised to ensure that all

statements in a module have been executed at least once.

CSE - NRCM Page 58

SOFTWARE ENGINEERING — 23CS5405

. Boundary conditions are tested to ensure that the module operates properly at
boundaries established to limit or restrict processing.

. Finally, all error-handling paths are tested

. Good design anticipates error conditions and establishes error-handling paths to reroute

or cleanly terminate processing when an error does occur.

Unit Test Environment

driver

interface
local data structures
Module boundary conditions

independent paths

error handling paths

. test cases
V el

RESULTS

driver is nothing more than a “main program 20

Integration Testing:

Integration testing is a systematic technique for constructing the software architecture while
at the same time conducting tests to uncover errors associated with interfacing.
Different Integration Testing Strategies :

Top-down testing
Bottom-up testing
Regression Testing
Smoke Testing

Top-down testing

. Top-down integration testing is an incremental approach to construction of the
software architecture.

. Modules are integrated by moving downward through the control hierarchy,
beginning with the main control module (main program).

. Modules subordinate (and ultimately subordinate) to the main control module
are incorporated into the structure in either a depth-first or breadth-first manner.

CSE - NRCM Page 59

SOFTWARE ENGINEERING — 23CS5405

|
Mcl :M7
I

BOTTOM-UP INTEGRATION TESTING:

Bottom-up integration testing, It begins construction and testing with atomic modules
(i.e., components at the lowest levels in the program structure).

Because components are integrated from the bottom up, the functionality provided by components

subordinate to a given level is always available and the need for stubs is eliminated.

A bottom-up integration strategy may be implemented with the following steps...

1. Low-level components are combined into clusters (sometimes called builds) that perform
a specific software subfunction.

2. A driver (a control program for testing) is written to coordinate test case input and output.

3. The cluster is tested.
4. Drivers are removed and clusters are combined moving upward in the program structure.

ao

drivers are replaced one at a
time, "depth first"

worker modules are grouped into
builds and integrated

cluster

REGRESSION TESTING:

Regression testing is the re-execution of some subset of tests that have already been conducted

to ensure that changes have not propagated unintended side effects.

CSE - NRCM

Page 60

SOFTWARE ENGINEERING — 23CS5405

Whenever software is corrected, some aspect of the software configuration (the program,
its documentation, or the data that support it) is changed.

Regression testing helps to ensure that changes (due to testing or for other reasons) do
not introduce unintended behavior or additional errors.

Regression testing may be conducted manually, by re-executing a subset of all test cases or
using automated capture/playback tools.

It is impractical and inefficient to reexecute every test for every program function once a
change has occurred....

Regression testing is a type of software testing that seeks to uncover new software bugs, OR

Regression testing is the process of testing, changes to computer programs to make sure that
the older programming still works with the new changes. Here changes such as enhancements,
patches or configuration changes, have been made to them.

SMOKE TESTING:

Smoke testing is an integration testing approach that is commonly used when product software
is developed

Smoke testing is performed by developers before releasing the build to the testing team
and after releasing the build to the testing team it is performed by testers whether to
accept the build for further testing or not.

It is designed as a pacing (Speedy) mechanism for time-critical projects, allowing the

software team to assess the project on a frequent basis.

Smoke testing provides a number of benefits when it is applied on complex, time
critical software projects.

Integration risk is minimized. Because smoke tests are conducted daily,
> incompatibilities and other show-stopper errors are uncovered early.

The quality of the end product is improved. Because the approach is construction
(integration) oriented, smoke testing is likely to uncover functional errors as well as
architectural and component-level design errors. If these errors are corrected early,
better product quality will result.

Error diagnosis and correction are simplified.
Progress is easier to assess

Black — box and white — box testing

Black — box testing:

Black Box Testing is a software testing method in which the functionalities of software
applications are tested without having knowledge of internal code structure, implementation
details and internal paths. Black Box Testing mainly focuses on input and output of software
applications and it is entirely based on software requirements and specifications. It is also known
as Behavioral Testing.

CSE - NRCM Page 61

SOFTWARE ENGINEERING — 23CS5405

Types of Black Box Testing
There are many types of Black Box Testing but the following are the prominent ones —

e Functional testing — This black box testing type is related to the functional requirements
of a system; it is done by software testers.

e Non-functional testing — This type of black box testing is not related to testing of
specific functionality, but non-functional requirements such as performance, scalability,
usability.

Regression testing — Regression Testing is done after code fixes, upgrades or any other
= system maintenance to check the new code has not affected the existing code.

Black Box Testing Techniques
Following are the prominent Test Strategy amongst the many used in Black box Testing

e Equivalence Class Testing: It is used to minimize the number of possible test cases to
an optimum level while maintains reasonable test coverage.

e Boundary Value Testing: Boundary value testing is focused on the values at boundaries.
This technique determines whether a certain range of values are acceptable by the system
or not. It is very useful in reducing the number of test cases. It is most suitable for the
systems where an input is within certain ranges.

e Decision Table Testing: A decision table puts causes and their effects in a matrix. There
IS a unique combination in each column.

White — box testing:

The box testing approach of software testing consists of black box testing and white box
testing. We are discussing here white box testing which also known as glass box is testing,
structural testing, clear box testing, open box testing and transparent box testing.

It tests internal coding and infrastructure of a software focus on checking of predefined
inputs against expected and desired outputs. It is based on inner workings of an application and
revolves around internal structure testing.

In this type of testing programming skills are required to design test cases. The primary
goal of white box testing is to focus on the flow of inputs and outputs through the software and
strengthening the security of the software.

The white box testing contains various tests, which are as follows:

o Path testing

CSE - NRCM Page 62

https://www.guru99.com/regression-testing.html
https://www.guru99.com/how-to-create-test-strategy-document.html

SOFTWARE ENGINEERING — 23CS5405

o Loop testing

o Condition testing

o Testing based on the memory perspective
o Test performance of the program

Path testing---

In the path testing, we will write the flow graphs and test all independent paths. Here writing the
flow graph implies that flow graphs are representing the flow of the program and also show how
every program is added with one another as we can see in the below image:

!
Function B

! l |

Function C Function D Function G
[
I Function E ‘ Function F ‘
1

v ¥

Function H Function |

Loop testing---

In the loop testing, we will test the loops such as while, for, and do-while, etc. and also check for
ending condition if working correctly and if the size of the conditions is enough.

Condition testing---

In this, we will test all logical conditions for both true and false values; that is, we will verify for
both if and else condition.

Testing based on the memory (size) perspective---

The size of the code is increasing for the following reasons:

o The reuse of code is not there: let us take one example, where we have four programs of
the same application, and the first ten lines of the program are similar. We can write these
ten lines as a discrete function, and it should be accessible by the above four programs as
well. And also, if any bug is there, we can modify the line of code in the function rather
than the entire code.

CSE - NRCM Page 63

SOFTWARE ENGINEERING — 23CS5405

o The developers use the logic that might be modified. If one programmer writes code and
the file size is up to 250kb, then another programmer could write a similar code using the
different logic, and the file size is up to 100kb.

o The developer declares so many functions and variables that might never be used in
any portion of the code. Therefore, the size of the program will increase.

Test the performance (Speed, response time) of the program---
The application could be slow for the following reasons:

o When logic is used.
o For the conditional cases, we will use or & and adequately.
o Switch case, which means we cannot use nested if, instead of using a switch case.

Differences between Black Box Testing vs White Box Testing:

Black Box Testing White Box Testing
» Itisaway of software testing In | » Itis a way of testing the software
which In
the internal structure or the program or which the tester has knowledge about
the code is hidden and nothing is the internal structure or the code or
known about it. the program of the software.
» Implementation of code is not » Code implementation is necessary
needed for
for black box testing. white box testing.
| > Itis mostly done by
» It is mostly done by software software
festers. developers.
> No knowledge of implementation| » Knowledge of implementation
IS 1S
needed. required.
» It can be referred as outer or » ltisthe inner or the internal
external software
software testing. testing.
» It is functional test of the » ltis structural test of the
software. software.
» This testing can be initiated on _ _
the » This type of testing of software
basis of requirement specifications IS

CSE - NRCM Page 64

SOFTWARE ENGINEERING — 23CS5405

document. started after detail design document.
» No knowledge of » It is mandatory to have knowledge
programming is of
required. programming.
» It1s the benavior testing or > Itisthe logic testing of the
the software.

CSE - NRCM Page 65

SOFTWARE ENGINEERING — 23CS5405

Black Box Testing

White Box Testing

software.
» Itisapplicable to the higher » ltisgenerally applicable to the
testing of software. levels of software testing.
» Itis also called closed > ltisalso called as clear box
» |tis least time » Itis most time
> Itis not suitable or preferred B |
" algorithm testing. » It is suitable for algorithm
» Data domains along with inner
» Can be done by trial and error ways internal boundaries can be better
methods. tested.
> Example search something on google g Example by input to check and
by using keywords verify loops

» Types of Black Box
» A. Functional
» B. Non-functional

> C. Regression Testing

» Types of White Box
» A. Path Testing
> B. Loop Testing
» C. Condition testing

Difference between Alpha and Beta Testing:

Alpha Testing Beta Testing
» Alpha testing Involves both | » Beta testing commonly uses black-
the box
white box and black box testing. testing.
> Alpna testing I performed w |
by » Beta testing is performed by clients who
testers who are usually internal are
employees of the organization. not part of the organization.
> Alpha testing Is > Beta testing is performed at the end-user
performed at of
the developer’s site. the product.

CSE - NRCM

Page 66

SOFTWARE ENGINEERING — 23CS5405

> Relianility and security
testing

»

Reliability, security and robustness
are

CSE - NRCM

Page 67

SOFTWARE ENGINEERING — 23CS5405

Alpha Testing

Beta Testing

are not checked in alpha testing.

checked during beta testing.

» Alphatesting ensures
the

quality of the product before
forwarding to beta testing.

» Betatesting also concentrates on the
quality

of the product but collects users input on the
product and ensures that the product is ready
for real time users.

» Alpha testing requires a
testing

environment or a lab.

» Beta testing doesn’t require a
testing

environment or lab.

» Alpha testing may

Beta testing requires only a few weeks

address the critical issues or
fixes in alpha testing.

require a of
long execution cycle. execution.

>_ De_/elopers can » Most of the issues or feedback collected

Immediately from

the beta testing will be implemented in future
versions of the product.

> Murfiple test cycles
are

organized in alpha testing.

»

Only one or two test cycles are there in
beta

testing.

Validation Testing

The definition of validation testing in software engineering is in place to determine if the

existing system complies with the system requirements and performs the dedicated functions for
which it is designed along with meeting the goals and needs of the organization.

This mode of testing is extremely important especially if you want to be one of the best

To ensure customer satisfaction
To be confident about the product

Types of Validation Testing

Validation testing types a V-shaped testing pattern, which includes its variations and all the
activities that it consists of are:

software testers. The software verification and validation testing is the process after the
validation testing stage is secondary to verification testing.

The Advantages of Validation Testing :

To fulfill the client’s requirement until the optimum capacity
Software acceptance from the end-user

CSE - NRCM

Page 68

https://www.testrigtechnologies.com/hire-tester/
https://www.testrigtechnologies.com/hire-tester/

SOFTWARE ENGINEERING — 23CS5405

Unit Testing — It is an important type of validation testing. The point of the unit testing is to
search for bugs in the product segment. Simultaneously, it additionally confirms crafted modules

and articles which can be tried independently.

Page 69

CSE - NRCM

SOFTWARE ENGINEERING — 23CS5405

Integration testing -This is a significant piece of the validation model wherein the interaction
between, where the association between the various interfaces of the pertaining component is
tried. Alongside the communication between the various pieces of the framework, the connection
of the framework with the PC working framework, document framework, equipment, and some
other programming framework it may cooperate with, is likewise tried.

System testing — System testing is done when the whole programming framework is prepared.
The principal worry of framework testing is to confirm the framework against the predefined
necessities. While doing the tests, the tester isn’t worried about the internals of the framework
however checks if the framewaork acts according to desires.

User acceptance testing — During this testing, the tester actually needs to think like the
customer and test the product concerning client needs, prerequisites, and business forms and
decide if the product can be given over to the customer or not.

System Testing
System Testing includes testing of a fully integrated software system. Generally, a
computer system is made with the integration of software (any software is only a single element
of a computer system).

The software is developed in units and then interfaced with other software and hardware
to create a complete computer system. In other words, a computer system consists of a group of
software to perform the various tasks, but only software cannot perform the task; for that
software must be interfaced with compatible hardware.

System testing is a series of different type of tests with the purpose to exercise and
examine the full working of an integrated software computer system against requirements.
Types of system test:

> Recovery testing

Security testing
Stress testing

Performance testing
Recovery testing:

It is a system test that forces the software to fail in a variety of ways and verifies that recovery
is properly performed.

If recovery is automatic, reinitialization, check pointing, mechanisms, data recovery, and
restart and evaluated for correctness.

Security testing:

Verifies the protection mechanisms built into a system will.

Stress testing:

It executes a system in a manner that demands resources in abnormal quality, frequency, or
volume.

Performance testing:

It designed to test the run — time performance of software with in the context of an integrated
system.

CSE - NRCM Page 70

SOFTWARE ENGINEERING — 23CS5405

The art of debugging

In the context of software engineering, debugging is the process of fixing a bug in the
software. In other words, it refers to identifying, analyzing, and removing errors. This activity
begins after the software fails to execute properly and concludes by solving the problem and
successfully testing the software. It is considered to be an extremely complex and tedious task
because errors need to be resolved at all stages of debugging.

The debugging process will always have one of two outcomes :

1. The cause will be found and corrected.
2. The cause will not be found.

/ _3@5\

Test
c Result
ases

¥~ Additional)
tests ¥— Suspected

'\
Regression canes Debugging
tests

- causes

Fig. - Debugging process

Debugging Approaches/Strategies:

1. Brute Force: Study the system for a larger duration in order to understand the system. It
helps the debugger to construct different representations of systems to be debugging
depending on the need. A study of the system is also done actively to find recent changes
made to the software.

2. Backtracking: Backward analysis of the problem which involves tracing the program
backward from the location of the failure message in order to identify the region of faulty
code. A detailed study of the region is conducted to find the cause of defects.

3. Forward analysis of the program involves tracing the program forwards using breakpoints or
print statements at different points in the program and studying the results. The region where
the wrong outputs are obtained is the region that needs to be focused on to find the defect.

4. Using the past experience of the software debug the software with similar problems in
nature. The success of this approach depends on the expertise of the debugger.

5. Cause elimination: it introduces the concept of binary partitioning. Data related to the error
occurrence are organized to isolate potential causes.

CSE - NRCM Page 71

SOFTWARE ENGINEERING — 23CS5405

4.2. Product metrics

Software quality

Software quality is conformance to explicitly stated functional and performance requirements,
explicitly documented development standards, and implicit characteristics that are expected of all
professionally developed software.

McCall’s quality Factors

According to McCall’s model, product operation category includes five software quality factors,
which deal with the requirements that directly affect the daily operation of the software. They are
as follows —

Correctness:

These requirements deal with the correctness of the output of the software system. They include

e Output mission

e The required accuracy of output that can be negatively affected by inaccurate data or
inaccurate calculations.

e The completeness of the output information, which can be affected by incomplete data.

Reliability:

Reliability requirements deal with service failure. They determine the maximum allowed failure
rate of the software system, and can refer to the entire system or to one or more of its separate
functions.

Efficiency: It deals with the hardware resources needed to perform the different functions of the
software system.

Integrity: This factor deals with the software system security, that is, to prevent access to
unauthorized persons, also to distinguish between the group of people to be given read as well as
write permit.

Usability: Usability requirements deal with the staff resources needed to train a new employee
and to operate the software system.

Maintainability: This factor considers the efforts that will be needed by users and maintenance
personnel to identify the reasons for software failures, to correct the failures, and to verify the
success of the corrections.

Flexibility: This factor deals with the capabilities and efforts required to support adaptive
maintenance activities of the software.

CSE - NRCM Page 72

SOFTWARE ENGINEERING — 23CS5405

Testability: Testability requirements deal with the testing of the software system as well as
with its operation.

Portability: Portability requirements tend to the adaptation of a software system to other
environments consisting of different hardware, different operating systems, and so forth.
Reusability: This factor deals with the use of software modules originally designed for one
project in a new software project currently being developed.

Interoperability: Interoperability requirements focus on creating interfaces with other software
systems or with other equipment firmware.

1ISO 9126 QUALITY FACTORS:

1. Functionality: The functions are those that will satisfy implied needs.

e Suitability

e Accuracy

e Interoperability

e Security

e Functionality Compliance

2. Reliability: A set of attributes that will bear on the capability of software to maintain

the level of performance.
Maturity
Fault Tolerance
Recoverability
Reliability Compliance

3. Usability: A set of attributes that bear on the effort needed for use by a implied set of users.
e Understandability
e Learn ability

e Operability

Attractiveness
Usability Compliance
4. Efficiency: A set of attributes that bear on the relationship between the level of
performance of the software under stated conditions.
e Time Behavior
e Resource Utilization
o Efficiency Compliance
5. Maintainability: A set of attributes that bear on the effort needed to make
specified modifications.
Analyzability
Changeability
Stability
Testability
Maintainability Compliance
6. Portability: A set of attributes that bear on the ability of software to be transferred from
one environment to another.
e Adaptability
e Installability

CSE - NRCM Page 73

SOFTWARE ENGINEERING — 23CS5405

o Co-existence
e Replace ability
e Portability Compliance
Metrics for Analysis model
Technical work in software engineering begins with the creation of the analysis model. It is at

this stage that requirements are derived and that a foundation for design is established. Therefore,
technical metrics that provide insight into the quality of the analysis model are desirable.

Function-Based Metrics:

The function point metric an be used effectively as a means for predicting the size of a system
that will be derived from the analysis model.

Sensors
Test sensor

i

Password
Zone inqui Zone sefting
| Y +/ SafeHome
User Sensor inquiry user Messages
Panic button interaction User
> funetion s]
] . ensor status
Activate/deactivate
S Activate /deactivate
Alarm o
Password, sensors . . . alert Menitoring
& response
subsystem

System configuration data I

The data flow diagram is evaluated to determine the key measures required for computation
of the function point metric :

« number of user inputs

 number of user outputs

» number of user inquiries

» number of files

« number of external interfaces

CSE - NRCM Page 74

SOFTWARE ENGINEERING —23CS5405

Weighting Factor

Measurement parameter Count Simple Average Complex

Number of user inputs
Number of user outputs
Number of user inquiries
Number of files

Number of external interfaces

LULEIL
e
ULILIL

Count total -

i

The count total FP = count total [0.65 + 0.01 (Fi)]

where count total is the sum of all FP entries obtained from the first figure and Fi (i = 1 to 14)
are "complexity adjustment values."

Metrics for Specification Quality

Davis and his colleagues propose a list of characteristics that can be used to assess the quality
of the analysis model and the corresponding requirements specification: specificity (lack of
ambiguity), completeness, correctness, understandability, verifiability, internal and external
cons)istency, achievability, concision, traceability, modifiability, precision, and reusability.

‘ v¥e assume that there are nr requirements in a specification, such that nr =
nf +nn

where nf is the number of functional requirements and nnf is the number of nonfunctional
(e.g. performance) requirements.

To determine the specificity (lack of ambiguity) of requirements, Davis et al. suggest
a metric that is based on the consistency of the reviewers’ interpretation of each
requirement:

Q1 = nui/nr

where nui is the number of requirements for which all reviewers had identical interpretations.
The closer the value of Q to 1, the lower is the ambiguity of the specification.
The completeness of functional requirements can be determined by computing the ratio

Q2 = nu/[ni x ns]

where nu is the number of unique function requirements, ni is the number of inputs (stimuli)
defined or implied by the specification, and ns is the number of states specified. The Q2 ratio
measures the percentage of necessary functions that have been specified for a system.

Q3 =nc/[nc + nnv]

where nc is the number of requirements that have been validated as correct and nnv is the
number of requirements that have not yet been validate

CSE - NRCM Page 75

SOFTWARE ENGINEERING — 23CS5405

Metrics for design model
Design metrics for computer software, like all other software metrics, are not perfect.
Debate continues over their efficacy and the manner in which they should be applied. Many
experts argue that further experimentation is required before design measures can be used.
And yet, design without measurement is an unacceptable alternative .

1. Architectural Design Metrics

Architectural design metrics focus on characteristics of the program architecture with an
emphasis on the architectural structure and the effectiveness of modules. These metrics are black
box in the sense that they do not require any knowledge of the inner workings of a particular
software component.

Card and Glass define three software design complexity measures: structural complexity, data
complexity, and system complexity.

Structural complexity of a module i is defined in the following manner:

S(i) =f 2 out(i)
where fout(i) is the fan-out7 of module i.

Data complexity provides an indication of the complexity in the internal interface for a module i
and is defined as

D(i) = v(i)/[fout(i) +1]
where v(i) is the number of input and output variables that are passed to and from module i.

Finally, system complexity is defined as the sum of structural and data complexity, specified as

C(i) = S(i) + D(i)

- Node

. I oA

e

Depth J

|
- Ifl)
|

~

|
i
|
p

size=n+a
where n is the number of nodes and a is the number of arcs. For the architecture shown in figure,

size=17+18=35

CSE - NRCM Page 76

SOFTWARE ENGINEERING — 23CS5405

depth = the longest path from the root (top) node to a leaf node. For the architecture

shown infigure, depth = 4.

width = maximum number of nodes at any one level of the architecture. For the architecture
shown in figure, width = 6.

arc-to-node ratio, r = a/n,

the Air Force uses information obtained from data and architectural design to derive a design
structure quality index (DSQI) that ranges from 0 to 1. The following values must be ascertained
to compute the DSQI :

S1 = the total number of modules defined in the program architecture.

S2 = the number of modules whose correct function depends on the source of data input or
that produce data to be used elsewhere (in general, control modules, among others, would not
be counted as part of S2).

S3 =the number of modules whose correct function depends on prior processing.

S4 =the number of database items (includes data objects and all attributes that define objects).
S5 =the total number of unique database items.

S6 = the number of database segments (different records or individual objects).

S7 = the number of modules with a single entry and exit (exception processing is not
considered to be a multiple exit).

Once values S1 through S7 are determined for a computer program, the following intermediate
values can be computed:

Program structure: D1, where D1 is defined as follows: If the architectural design was
developed using a distinct method (e.g., data flow-oriented design or object-oriented
design), then D1 = 1, otherwise D1 = 0.

Module independence: D2 = 1 (S2/S1)

Modules not dependent on prior processing: D3 = 1 (S3/S1)

Database size: D4 =1 (S5/S4)

Database compartmentalization: D5 =1 (S6/S4)

Module entrance/exit characteristic: D6 = 1 (S7/S1)

With these intermediate values determined, the DSQI is computed in the following manner:

DSQI = wiDi
where i = 1 to 6, wi is the relative weighting of the importance of each of the intermediate
values, and wi = 1 (if all Di are weighted equally, then wi = 0.167).

2. Metrics for object — oriented design

Size
Complexity
Coupling
Sufficiency
Completeness

YV V VY

CSE - NRCM Page 77

SOFTWARE ENGINEERING — 23CS5405

Cohesion
Primitiveness
Similarity
Volatility

YV V VY \74

HSS(Halstead Software science) Metrics for source code

Primitive measure that may be derived after the code is generated or estimated once design is
Complete.

nl = the number of distinct operators that appear in a program

n2 = the number of distinct operands that appear in a program

N1 = the total number of operator occurrences.

N2 = the total number of operand occurrence.

Overall program length N can be computed:

N =nllog2 nl +n2 log2 n2

V =N log2(nl+ n2)

V will vary with programming language and represent the volume of information required to
specify a program.

Halstead defines a volume ratio L as the ratio of volume of the most compact from of a program
to the volume of the actual program. In actuality, L must be less than 1.

In terms of primitive measures, the volume ratio may be expressed

as L=2/n1 * n2/N2

METRIC FOR TESTING

Halstead metrics applied to testing:
nl = the number of distinct operators that appear in a program
n2 = the number of distinct operands that appear in a program
N1 = the total number of operator occurrences.

N2 = the total number of operand occurrence.

CSE - NRCM Page 78

SOFTWARE ENGINEERING — 23CS5405

Program Level and Effort
PL=1/[(n1/2)x(N2/n21)]

e =V/PL

> _ _ _ j
Metrics for object oriented testing
Lack of cohesion in method(LCOM)
Percent public and protected(PAP)
public access to data members(PAD)
Number of root classes(NOR)
Fan-in (FIN)

YV VVYYV

METRICS FOR MAINTENANCE

Mt = the number of modules in the current release

Fc = the number of modules in the current release that have been changed

Fa = the number of modules in the current release that have been added.

Fd = the number of modules from the preceding release that were deleted in the current
release

The Software Maturity Index, SMI, is defined as:

SMI = [Mt—(Fc + Fa +Fd)/ Mt]

CSE - NRCM Page 79

SOFTWARE ENGINEERING — 23CS5405

UNIT-V
METRICS FOR PROCESS

Software measurement:

It can be categorized in two ways:

Direct measures of the software process — cost and effort applied

Indirect measures of the product — include functionality, quality, complexity, efficiency,
reliability, maintainability.

Size oriented metrics:

LOC Metrics

It is one of the earliest and simpler metrics for calculating the size of the computer program. It is
generally used in calculating and comparing the productivity of programmers. These metrics are
derived by normalizing the quality and productivity measures by considering the size of the
product as a metric.

Following are the points regarding LOC measures:

In size-oriented metrics, LOC is considered to be the normalization value.

2. Itis an older method that was developed when FORTRAN and COBOL programming
were very popular.

3. Productivity is defined as KLOC / EFFORT, where effort is measured in person-months.

4. Size-oriented metrics depend on the programming language used.

5. As productivity depends on KLOC, so assembly language code will have more
productivity.
LOC measure requires a level of detail which may not be practically achievable.

7. The more expressive is the programming language, the lower is the productivity.

LOC method of measurement does not apply to projects that deal with visual (GUI-
based) programming. As already explained, Graphical User Interfaces (GUIs) use forms
basically. LOC metric is not applicable here.

9. It requires that all organizations must use the same method for counting LOC. This is so
because some organizations use only executable statements, some useful comments, and
some do not. Thus, the standard needs to be established.

10. These metrics are not universally accepted.

Based on the LOC/KLOC count of software, many other metrics can be computed:

CSE - NRCM Page 80

SOFTWARE ENGINEERING — 23CS5405

a. Errors/KLOC.

b. $/ KLOC.
c. Defects/KLOC.
d. Pages of documentation/KLOC.
e. Errors/PM.
f. Productivity = KLOC/PM (effort is measured in person-months).
g. $/ Page of documentation.
Project LoC Effort | $(000) | Pp. doc. | Errors | Defects | People
alpha 12,100 24 168 365 134 29 3
beta 27,200 62 440 1224 321 86 5
gamma 20,200 43 314 1050 256 64 6
‘\
‘\

Function — oriented metrics:

Function-Oriented Metrics are also known as Function Point Model. This model
generally focuses on the functionality of the software application being delivered.

These methods are actually independent of the programming language that is being used
in software applications and based on calculating the Function Point (FP). A function point is a
unit of measurement that measures the business functionality provided by the business product.

Calculating Function Point :

Function Point (FP)= Count total * [0.65 + (0.01 * Sum(Fj))]

CSE - NRCM Page 81

SOFTWARE ENGINEERING — 23CS5405

Reconciling LOC and FP metrics:

Reconciling LOC and FP Metrics

Programming
Language LOC per Function point

Avg. Median Low High
Access 35 38 15 47
Ada 154 — 104 205
APS 86 83 20 184
ASP 69 62 - 32 127
Assembler 337 315 Q1 694
C 162 109 33 704
G+ 66 53 29 178
Clipp=r 38 39 27 70
COBOL 77 77 14 400
Cool:Gen/IEF 38 31 10 180
Culprit 51 — - S
DBose IV 52 — — —
Eosytieve+ 33 34 25 4]
Exceld” 46 - 31 63
Focus 43 42 32 56
FORTRAN - — — —_
FoxPro 32 35 25 35
Ideal 66 52 34 203
IEF/Cool:Gen 38 31 10 180
Informix 42 31 24 57 15
Jova 63 53 77 —_

Object — oriented metrics:

Lines of code and functional point metrics can be used for estimating object-oriented software
projects.

object-oriented projects, different sets of metrics have been proposed. These are listed below.

e Number of scenario scripts: Scenario scripts are a sequence of steps, which depict the
interaction between the user and the application. A number of scenarios is directly related to
application size and number of test cases that are developed to test the software, once it is
developed. Note that scenario scripts are analogous to use-cases.

e Number of key classes: Key classes are independent components, which are defined in
object -oriented analysis. As key classes form the core of the problem domain, they indicate
the effort required to develop software and the amount of ‘reuse’ feature to be applied
during the development process.

¢ Number of support classes: Classes, which are required to implement the system but are
indirectly related to the problem domain, are known as support classes. For example, user
interface classes and computation class are support classes. It is possible to develop a
support class for each key class. Like key classes, support classes indicate the effort
required to develop software and the amount of ‘reuse’ feature to be applied during the

development process.

CSE - NRCM Page 82

SOFTWARE ENGINEERING — 23CS5405

e Average number of support classes per key class: Key classes are defined early in the
software project while support classes are defined throughout the project. The estimation
process is simplified if the average number of support classes per key class is already
known.

e Number of subsystems: A collection of classes that supports a function visible to the user
is known as a subsystem. Identifying subsystems makes it easier to prepare a reasonable
schedule in which work on subsystems is divided among project members.

Web engineering project metrics:

Number of static web pages

Number of static web pages

Number of internal page links
Number of persistent data objects
Number of external systems interfaced
Number of static content objects
Number of dynamic content objects

YV V V V V V VY

Number of executable functions

Metrics for software quality:

Software Measurement is done based on some Software Metrics where these software
metrics are referred to as the measure of various characteristics of a Software.

In Software engineering Software Quality Assurance (SAQ) assures the quality of the
software. Set of activities in SAQ are continuously applied throughout the software process.
Software Quality is measured based on some software quality
1. Code Quality — Code quality metrics measure the quality of code used for the software project
development. Maintaining the software code quality by writing Bug-free and semantically
correct code is very important for good software project development.

2. Reliability — Reliability metrics express the reliability of software in different conditions. The
software is able to provide exact service at the right time or not is checked. Reliability can be
checked using Mean Time Between Failure (MTBF) and Mean Time To Repair (MTTR).

3. Performance — Performance metrics are used to measure the performance of the software.
Each software has been developed for some specific purposes. Performance metrics measure the
performance of the software by determining whether the software is fulfilling the user
requirements or not, by analyzing how much time and resource it is utilizing for providing the
service.

4. Usability — Usability metrics check whether the program is user-friendly or not. Each
software is used by the end-user. So it is important to measure that the end-user is happy or not
by using this software.

CSE - NRCM Page 83

https://www.geeksforgeeks.org/software-measurement-and-metrics/
https://www.geeksforgeeks.org/software-concepts/
https://www.geeksforgeeks.org/software-engineering-software-quality-assurance/
https://www.geeksforgeeks.org/software-engineering-software-quality/

SOFTWARE ENGINEERING — 23CS5405

5. Correctness — Correctness is one of the important software quality metrics as this checks
whether the system or software is working correctly without any error by satisfying the user.
Correctness gives the degree of service each function provides as per developed.

6. Maintainability — Each software product requires maintenance and up-gradation.
Maintenance is an expensive and time-consuming process. So if the software product provides
easy maintainability then we can say software quality is up to mark. Maintainability metrics
include time requires to adapt to new features/functionality, Mean Time to Change (MTTC),
performance in changing environments, etc.

7. Integrity — Software integrity is important in terms of how much it is easy to integrate with
other required software’s which increases software functionality and what is the control on
integration from unauthorized software’s which increases the chances of cyber attacks.

8. Security — Security metrics measure how much secure the software is? In the age of cyber
terrorism, security is the most essential part of every software. Security assures that there are no
unauthorized changes, no fear of cyber attacks, etc when the software product is in use by the
end-user.

RISK MANAGEMENT

A software project can be concerned with a large variety of risks. In order to be adept to
systematically identify the significant risks which might affect a software project, it is essential to
classify risks into different classes. The project manager can then check which risks from each
class are relevant to the project.

There are three main classifications of risks which can affect a software project:

1. Project risks
2. Technical risks
3. Business risks

1. Project risks: Project risks concern differ forms of budgetary, schedule, personnel, resource,
and customer-related problems. A vital project risk is schedule slippage. Since the software is
intangible, it is very tough to monitor and control a software project. It is very tough to control
something which cannot be identified. For any manufacturing program, such as the
manufacturing of cars, the plan executive can recognize the product taking shape.

2. Technical risks: Technical risks concern potential method, implementation, interfacing,
testing, and maintenance issue. It also consists of an ambiguous specification, incomplete
specification, changing specification, technical uncertainty, and technical obsolescence. Most
technical risks appear due to the development team's insufficient knowledge about the project.

3. Business risks: This type of risks contain risks of building an excellent product that no one
need, losing budgetary or personnel commitments, etc.

CSE - NRCM Page 84

SOFTWARE ENGINEERING — 23CS5405

Reactive vs proactive risk strateqgies:

Reactive risk management:

One fundamental point about reactive risk management is that the disaster or threat must occur
before management responds. Proactive risk management is all about taking preventative
measures before the event to decrease its severity, and that’s a good thing to do.

At the same time, however, organizations should develop reactive risk management plans that
can be deployed after the event. Otherwise management is making decisions about how to
respond as the event happens, which can be a costly and stressful ordeal.

Proactive Risk Management

As the name suggests, proactive risk management means that you identify risks before they
happen and figure out ways to avoid or alleviate the risk. It seeks to reduce the hazard’s risk
potential or, even better, prevent the threat altogether.

A good example here is vulnerability testing and remediation. Any organization of appreciable
size is likely to have vulnerabilities in its software, which attackers could find an exploit. So
regular testing (or, even better, continuous testing) can help to repair those vulnerabilities and
eliminate that particular threat.

Software Risks

A software project can be concerned with a large variety of risks. In order to be adept to
systematically identify the significant risks which might affect a software project, it is essential
to classify risks into different classes. The project manager can then check which risks from each
class are relevant to the project.

There are three main classifications of risks which can affect a software project:

1. Project risks
2. Technical risks
3. Business risks

1. Project risks: Project risks concern differ forms of budgetary, schedule, personnel, resource,
and customer-related problems. A vital project risk is schedule slippage. Since the software is
intangible, it is very tough to monitor and control a software project. It is very tough to control

CSE - NRCM Page 85

SOFTWARE ENGINEERING — 23CS5405

something which cannot be identified. For any manufacturing program, such as the
manufacturing of cars, the plan executive can recognize the product taking shape.

2. Technical risks: Technical risks concern potential method, implementation, interfacing,
testing, and maintenance issue. It also consists of an ambiguous specification, incomplete
specification, changing specification, technical uncertainty, and technical obsolescence. Most
technical risks appear due to the development team's insufficient knowledge about the project.

3. Business risks: This type of risks contain risks of building an excellent product that no one
need, losing budgetary or personnel commitments, etc.

Other risk categories

1. Known risks: Those risks that can be uncovered after careful assessment of the project
program, the business and technical environment in which the plan is being developed, and
more reliable data sources (e.g., unrealistic delivery date)

2. Predictable risks: Those risks that are hypothesized from previous project experience
(e.g., past turnover)

3. Unpredictable risks: Those risks that can and do occur, but are extremely tough to
identify in advance.

Risk Identification

Risk identification is a systematic attempt to specify threats to the project plan (estimates,
schedule, resource loading, etc.). By identifying known and predictable risks, the project
manager takes a first step toward avoiding them when possible and controlling them when
necessary.

There are two distinct types of risks : generic risks and product-specific risks.

Generic risks are a potential threat to every software project. Product-specific risks can
be identified only by those with a clear understanding of the technology, the people, and the
environment that is specific to the project at hand.

One method for identifying risks is to create a risk item checklist. The checklist can
beused for risk identification and focuses on some subset of known and predictable risks in the
following generic subcategories:

» Product size—risks associated with the overall size of the software to be built or modified.

» Business impact—risks associated with constraints imposed by management or the
marketplace.

CSE - NRCM Page 86

SOFTWARE ENGINEERING — 23CS5405

 Customer characteristics—risks associated with the sophistication of the customer and the
developer's ability to communicate with the customer in a timely manner.

* Process definition—risks associated with the degree to which the software process has been
defined and is followed by the development organization.

 Development environment—risks associated with the availability and quality of the tools to
be used to build the product.

 Technology to be built—risks associated with the complexity of the system to be built and the
"newness" of the technology that is packaged by the system.

Staff size and experience—risks associated with the overall technical and project experience of
the software engineers who will do the work.

Assessing Overall Project Risk

The following questions have derived from risk data obtained by surveying experienced
software project managers in different part of the world. The questions are ordered by their
relative importance to the success of a project.

. Have top software and customer managers formally committed to support the project?

. Are end-users enthusiastically committed to the project and the system/product to be built?
. Are requirements fully understood by the software engineering team and their customers?
. Have customers been involved fully in the definition of requirements?

. Do end-users have realistic expectations?

. Is project scope stable?

. Does the software engineering team have the right mix of skills?

. Are project requirements stable?

. Does the project team have experience with the technology to be implemented?

10. Is the number of people on the project team adequate to do the job?

11. Do all customer/user constituencies agree on the importance of the project and on

the requirements for the system/product to be built?

O©ooO~NOoO ol WwWwN -

Risk Components and Drivers

software risk components—performance, cost, support, and schedule. In the context of this
discussion, the risk components are defined in the following manner:

« Performance risk—the degree of uncertainty that the product will meet
its requirements and be fit for its intended use.

« Cost risk—the degree of uncertainty that the project budget will
be maintained.

CSE - NRCM Page 87

SOFTWARE ENGINEERING — 23CS5405

« Support risk—the degree of uncertainty that the resultant software will
be easy to correct, adapt, and enhance.

» Schedule risk—the degree of uncertainty that the project schedule will
be maintained and that the product will be delivered on time.

The impact of each risk driver on the risk component is divided into one of four impact
categories—negligible, marginal, critical, or catastrophic.

Risk Projection

Risk projection, also called risk estimation, attempts to rate each risk in two ways—the
likelihood or probability that the risk is real and the consequences of the problems associated
with the risk, should it occur. The project planner, along with other managers and technical staff,
performs four risk projection activities:

(1) establish a scale that reflects the perceived likelihood of a risk,

(2) delineate the consequences of the risk,

(3) estimate the impact of the risk on the project and the product, and

(4) note the overall accuracy of the risk projection so that there will be no misunderstandings.
Developing a Risk Table

A risk table provides a project manager with a simple technique for risk projection .A project
team begins by listing all risks (no matter how remote) in the first column of the table. This can
be accomplished with the help of the risk item checklists Each risk is categorized in the second
column (e.g., PS implies a project size risk, BU implies a business risk).

All risks that lie above the cutoff line must be managed. The column labeled RMMM contains a
pointer into a Risk Mitigation, Monitoring and Management Plan or alternatively, a collection of
risk information sheets developed for all risks that lie above the cutoff.

Risk probability can be determined by making individual estimates and then developing a single

consensus value. Although that approach is workable, more sophisticated techniques for
determining risk probability have been developed.

CSE - NRCM Page 88

SOFTWARE ENGINEERING —23CS405

Risk Table of Projection Risk

Assessing Risk Impact

Risks Category | Probability | Impact
Size estimate may be significantly low PS 60% 2
Larger number of users than planned PS 30% 3
Less reuse than planned PS 70% 2
End-users resist system BU 40% 3
Delivery deadline will be tightened BU 50% 2
Funding will be lost cu 40% 1
Customer will change requirements PS 80% 2
Technology will not meet expectations TE 30% 1
Lack of training on tools DE 80% 3
Staff inexperienced ST 30% 2

ST 60% 2

Staff turnover will be high
.

.
Impact values:
1—catastrophic
2—critical

3—marginal
4—negligible

Three factors affect the consequences that are likely if a risk does occur: its nature, its scope, and

its timing. The nature of the risk indicates the problems that are likely if it occurs.

Returning once more to the risk analysis approach proposed by the U.S. Air Force , the
following steps are recommended to determine the overall consequences of a risk:
1. Determine the average probability of occurrence value for each risk component.

2. Determine the impact for each component based on the criteria .

3. Complete the risk table and analyze the results as described in the preceding
sections. The overall risk exposure, RE, is determined using the following relationship:

RE=PxC

Risk identification. Only 70 percent of the software components scheduled for reuse will, in
fact, be integrated into the application. The remaining functionality will have to be custom

developed.

Risk probability. 80% (likely).
Risk impact. 60 reusable software components were planned. If only 70 percent can be used, 18
components would have to be developed from scratch (in addition to other custom software that
has been scheduled for development). Since the average component is 100 LOC and local data
indicate that the software engineering cost for each LOC is $14.00, the overall cost (impact) to
develop the components would be 18 x 100 x 14 = $25,200.

Risk exposure. RE = 0.80 x 25,200 ~ $20,200.

CSE - NRCM

Page 89

SOFTWARE ENGINEERING —23CS405

Very high Risk and Management Concern

Impact

Disregard :

risk factor High

Management
concern

Probability

of occurrence

[From SEPA 5/e]

RISK REFINEMENT

During early stages of project planning, a risk may be stated quite generally. As time
passes and more is learned about the project and the risk, it may be possible to refine the risk
into a set of more detailed risks, each somewhat easier to mitigate, monitor, and manage.

One way to do this is to represent the risk in condition-transition-consequence (CTC) format .
That is, the risk is stated in the following form: Given that <condition> then there is concern that
(possibly) <consequence>.

Using the CTC format for the reuse risk noted in Section 6.4.2, we can write: Given that all
reusable software components must conform to specific design standards and that some do not
conform, then there is concern that (possibly) only 70 percent of the planned reusable modules
may actually be integrated into the as-built system, resulting in the need to custom engineer the
remaining 30 percent of components.

This general condition can be refined in the following manner:

Subcondition 1. Certain reusable components were developed by a third party with no
knowledge of internal design standards.

Subcondition 2. The design standard for component interfaces has not been solidified and may
not conform to certain existing reusable components.

CSE - NRCM Page 90

SOFTWARE ENGINEERING — 23CS5405

Subcondition 3. Certain reusable components have been implemented in a language that is not
supported on the target environment.

The consequences associated with these refined subconditions remains the same (i.e., 30 percent

of software components must be customer engineered), but the refinement helps to isolate the
underlying risks and might lead to easier analysis and response.

RISK MIGRATION, MONITORING, AND MANAGEMENT

Risk Migration:

It is an activity used to avoid problems (Risk Avoidance).
Steps for mitigating the risks as follows.

1. Finding out the risk.

2. Removing causes that are the reason for risk creation.

3. Controlling the corresponding documents from time to time.
4. Conducting timely reviews to speed up the work.

To mitigate this risk, project management must develop a strategy for reducing turnover. The
possible steps to be taken are:

e Meet the current staff to determine causes for turnover (e.g., poor working conditions, low
pay, competitive job market).

e Mitigate those causes that are under our control before the project starts.

e Once the project commences, assume turnover will occur and develop techniques to ensure
continuity when people leave.

o Organize project teams so that information about each development activity is widely
dispersed.

o Define documentation standards and establish mechanisms to ensure that documents are
developed in a timely manner.

e Assign a backup staff member for every critical technologist.

Risk Monitoring :
It is an activity used for project tracking.
It has the following primary objectives as follows.

To check if predicted risks occur or not.

To ensure proper application of risk aversion steps defined for risk.

To collect data for future risk analysis.

To allocate what problems are caused by which risks throughout the project.

As the project proceeds, risk monitoring activities commence. The project manager
monitors factors that may provide an indication of whether the risk is becoming more or less
likely. In the case of high staff turnover, the following factors can be monitored:

o General attitude of team members based on project pressures.

el N .

CSE - NRCM Page 91

SOFTWARE ENGINEERING — 23CS5405

o Interpersonal relationships among team members.
e Potential problems with compensation and benefits.
e The availability of jobs within the company and outside it.

Risk Management and planning :

e Maintain a worldwide perspective: view software risks within the context of a system
and therefore the business drawback planned to solve.

e Take an advanced view: ink regarding the risk which can occur in the longer term and
make future plans for managing the future events.

e Encourage open communication: Encourage all the stakeholders and users for suggesting
risks at any time.

e Integrate: A thought of risk should be integrated into the software process.

o Emphasize never-ending process: Modify the known risk than a lot of info is understood
and add new risks as higher insight is achieved.

e Develop a shared product vision: If all the stakeholders share a similar vision of the
software then it’s easier for better risk identification.

e Encourage teamwork: whereas conducting risk management activities pool the skills and
knowledge of all stakeholders.

Drawbacks of RMMM:

e Itincurs additional project costs.

e |t takes additional time.

e For larger projects, implementing an RMMM may itself turn out to be another tedious
project.

¢ RMMM does not guarantee a risk-free project, infact, risks may also come up after the
project is delivered.

THE RMMM PLAN

A risk management technique is usually seen in the software Project plan. This can be divided
into Risk Mitigation, Monitoring, and Management Plan (RMMM). In this plan, all works are
done as part of risk analysis. As part of the overall project plan project manager generally uses
this RMMM plan.

In some software teams, risk is documented with the help of a Risk Information Sheet (RIS).
This RIS is controlled by using a database system for easier management of information i.e
creation, priority ordering, searching, and other analysis. After documentation of RMMM and
start of a project, risk mitigation and monitoring steps will start.

CSE - NRCM Page 92

SOFTWARE ENGINEERING —23CS405

Risk information sheet
Risk ID: P0O2-4-32 Date: 5/9/02 Prob: 80% Impact: high

Description:
Only 70 percent of the software components scheduled for reuse will, in fact, be
integrated into the application. The remaining functionality will have to be custom

developed.

Refinement/context:

Subcondition 1: Certain reusable components were developed by a third party
with no knowledge of internal design standards.

Subcondition 2: The design standard for component interfaces has not been
solidified and may not conform to certain existing reusable components.
Subcondition 3: Certain reusable components have been implemented in a
language that is not supported on the target environment.

Mitigation/monitoring:

1. Contact third party to determine conformance with design standards.

2. Press for interface standards completion; consider component structure when
deciding on interface protocol.

3. Check to determine number of components in subcondition 3 category; check
1o determine if language support can be acquired.

Management/contingency plan/trigger:

RE computed to be $20,200. Allocate this amount within project contingency cost.
Develop revised schedule assuming that 18 additional components will have 1o be
custom built; allocate staff accordingly.

Trigger: Mitigation steps unproductive as of 7/1/02

Current status:
5/12/02: Mitigation steps initiated.

Originator: D. Gagne Assigned: B. Laster

QUALITY MANAGEMENT

QUALITY CONCEPTS:

QUALITY:

Software quality product is defined in term of its fitness of purpose. That is, a quality product
does precisely what the users want it to do. For software products, the fitness of use is generally
explained in terms of satisfaction of the requirements laid down in the SRS document. Although
"fitness of purpose™ is a satisfactory interpretation of quality for many devices such as a car, a
table fan, a grinding machine, etc.for software products, "fitness of purpose” is not a wholly
satisfactory definition of quality.

Example: Consider a functionally correct software product. That is, it performs all tasks as
specified in the SRS document. But, has an almost unusable user interface. Even though it may
be functionally right, we cannot consider it to be a quality product.

CSE - NRCM Page 93

SOFTWARE ENGINEERING — 23CS5405

User satisfaction= compliant product + good quality + delivery within budget and schedule

Quality Control

It can be compared to having a senior manager walk into a production department and pick a
random car for an examination and test drive. Testing activities, in this case, refer to the process
of checking every joint, every mechanism separately, as well as the whole product, whether
manually or automatically, conducting crash tests, performance tests, and actual or simulated test
drives.

Quality Assurance is a broad term, explained on “the continuous and consistent improvement
and maintenance of process that enables the QC job”. As follows from the definition, QA
focuses more on organizational aspects of quality management, monitoring the consistency of the
production process.

Cost of Quality :

It is the most established, effective measure of quantifying and calculating the business value
of testing. There are four categories to measure cost of quality: Prevention costs, Detection
costs, Internal failure costs, and External failure costs.

These are explained as follows below.

1. Prevention costs include cost of training developers on writing secure and easily
maintainable code

2. Detection costs include the cost of creating test cases, setting up testing environments,
revisiting testing requirements.

3. Internal failure costs include costs incurred in fixing defects just before delivery.

4. External failure costs include product support costs incurred by delivering poor quality
software.

Major parts of total cost are detecting defects and internal failure cost. But, these costs less

than external failure costs. That’s why testing provides good business value.

Software Quality Assurance

Software Quality: Software Quality is defined as the conformance to explicitly state functional
and performance requirements, explicitly documented development standards, and inherent
characteristics that are expected of all professionally developed software.

Quality Control: Quality Control involves a series of inspections, reviews, and tests used
throughout the software process to ensure each work product meets the requirements place upon
it. Quality control includes a feedback loop to the process that created the work product.

Quality Assurance: Quality Assurance is the preventive set of activities that provide greater
confidence that the project will be completed successfully.

CSE - NRCM Page 94

SOFTWARE ENGINEERING — 23CS5405

Quality Assurance focuses on how the engineering and management activity will be done?

As anyone is interested in the quality of the final product, it should be assured that we are
building the right product.

It can be assured only when we do inspection & review of intermediate products, if there are any
bugs, then it is debugged. This quality can be enhanced.

Software Quality Assurance

Software quality assurance is a planned and systematic plan of all actions necessary to provide
adequate confidence that an item or product conforms to establish technical requirements.

A set of activities designed to calculate the process by which the products are developed or
manufactured.

SQA Encompasses

o A quality management approach

o Effective Software engineering technology (methods and tools)
o Formal technical reviews that are tested throughout the software
process o A multitier testing strategy

o Control of software documentation and the changes made to it.

o A procedure to ensure compliances with software development standards
o Measuring and reporting mechanisms.

SQA Activities

Software quality assurance is composed of a variety of functions associated with two different
constituencies? the software engineers who do technical work and an SQA group that has
responsibility for quality assurance planning, record keeping, analysis, and reporting.

Following activities are performed by an independent SQA group:

1. Prepares an SQA plan for a project: The program is developed during project planning
and is reviewed by all stakeholders. The plan governs quality assurance activities
performed by the software engineering team and the SQA group. The plan identifies
calculation to be performed, audits and reviews to be performed, standards that apply to
the project, techniques for error reporting and tracking, documents to be produced by the
SQA team, and amount of feedback provided to the software project team.

2. Participates in the development of the project's software process description: The
software team selects a process for the work to be performed. The SQA group reviews

CSE - NRCM Page 95

SOFTWARE ENGINEERING — 23CS5405

the process description for compliance with organizational policy, internal software
standards, externally imposed standards (e.g. 1ISO-9001), and other parts of the software
project plan.

3. Reviews software engineering activities to verify compliance with the defined
software process: The SQA group identifies, reports, and tracks deviations from the
process and verifies that corrections have been made.

4. Audits designated software work products to verify compliance with those defined
as a part of the software process: The SQA group reviews selected work products,
identifies, documents and tracks deviations, verify that corrections have been made, and
periodically reports the results of its work to the project manager.

5. Ensures that deviations in software work and work products are documented and
handled according to a documented procedure: Deviations may be encountered in the
project method, process description, applicable standards, or technical work products.

6. Records any noncompliance and reports to senior management: Non- compliance
items are tracked until they are resolved.

Software Reviews

Software Review

It is systematic inspection of a software by one or more individuals who work together to find
and resolve errors and defects in the software during the early stages of Software Development
Life Cycle (SDLC).

Software review is an essential part of Software Development Life Cycle (SDLC) that helps
software engineers in validating the quality, functionality and other vital features and
components of the software. It is a whole process that includes testing the software product and it
makes sure that it meets the requirements stated by the client.

Usually performed manually, software review is used to verify various documents like
requirements, system designs, codes, test plans and test cases.

Objectives of Software Review:
The objective of software review is:

1.

2.

3.

4.

To improve the productivity of the development team.
To make the testing process time and cost effective.
To make the final software with fewer defects.

To eliminate the inadequacies.

Cost impact of software defects

The primary objective of formal technical reviews is to find errors during the process so that
they do not become defects after release of the software.

CSE - NRCM Page 96

SOFTWARE ENGINEERING — 23CS5405

Defect amplification and removal

A defect amplification model can be used to illustrate the generation and detection of errors during
the preliminary design, detail design, and coding steps of a software engineering process.

Defect amplification model

Defects Detection
Errors from > Errors passed through
Previous step < Percent Errors passed
~ Amplified errors 1:x Efficiency To next step
Newly generated errors
Development step
Defect amplification — no reviews:
Preliminary design
0 Detail design
10 &
0 0% 6 Code/unit test
10 4 4x135 0% 3710 10
x=15
04 Integration test ’ 25 -
Validation test
0 50% 47 To integration
System fest
24
50% _I_.
0 0 50% 12
0
Latent errors
CSE - NRCM Page 97

SOFTWARE ENGINEERING — 23CS5405

Defect amplification — reviews conducted:

24

Preliminary design

0

0

10

70%

Integration test

50%

Detail design
3 2 :
A
25

12

Validation test

Code/unit test
5
103 | 60% 24
25
To integration
System test
0 |sox|3
0

Latent errors

Formal Technical Reviews

Formal Technical Review (FTR) is a software quality control activity performed by software

engineers.

Objectives of formal technical review (FTR): Some of these are:
e Useful to uncover error in logic, function and implementation for any representation of the

software.
The purpose of FTR is to verify that the software meets specified requirements.
To ensure that software is represented according to predefined standards.
It helps to review the uniformity in software that is development in a uniform manner.
To makes the project more manageable.

In addition, the purpose of FTR is to enable junior engineer to observer the analysis, design,
coding and testing approach more closely. FTR also works to promote back up and continuity
become familiar with parts of software they might not have seen otherwise. Actually, FTR is a
class of reviews that include walkthroughs, inspections, round robin reviews and other small
group technical assessments of software. Each FTR is conducted as meeting and is considered
successful only if it is properly planned, controlled and attended.

The review meeting:

Each review meeting should be held considering the following constraints- Involvement of

people:

CSE - NRCM

Page 98

SOFTWARE ENGINEERING — 23CS5405

=

Between 3, 4 and 5 people should be involve in the review.

2. Advance preparation should occur but it should be very short that is at the most 2 hours of
work for every person.

3. The short duration of the review meeting should be less than two hour. Gives these
constraints, it should be clear that an FTR focuses on specific (and small) part of the overall
software.

At the end of the review, all attendees of FTR must decide what to do.

1. Accept the product without any modification.

2. Reject the project due to serious error (Once corrected, another app need to be reviewed), or

3. Accept the product provisional (minor errors are encountered and are should be corrected,
but no additional review will be required).

The decision was made, with all FTR attendees completing a sign-of indicating their

participation in the review and their agreement with the findings of the review team.

Review reporting and record keeping :-
1. During the FTR, the reviewer actively records all issues that have been raised.
2. At the end of the meeting all these issues raised are consolidated and a review list is
prepared.
3. Finally, a formal technical review summary report is prepared.
It answers three questions :-

1. What was reviewed ?

2. Who reviewed it ?

3. What were the findings and conclusions ?

Review guidelines :-

Guidelines for the conducting of formal technical reviews should be established in advance.
These guidelines must be distributed to all reviewers, agreed upon, and then followed. A review
that is unregistered can often be worse than a review that does not minimum set of guidelines for
FTR.

1. Review the product, not the manufacture (producer).

2. Take written notes (record purpose)

3. Limit the number of participants and insists upon advance preparation.

4. Develop a checklist for each product that is likely to be reviewed.

5. Allocate resources and time schedule for FTRs in order to maintain time schedule.

6. Conduct meaningful training for all reviewers in order to make reviews effective.

7. Reviews earlier reviews which serve as the base for the current review being conducted.

8. Setan agenda and maintain it.

9. Separate the problem areas, but do not attempt to solve every problem notes.

10. Limit debate and rebuttal.

Statistical software quality assurance

e Collect and categorize information (i.e., causes) about software defects that occur

CSE - NRCM Page 99

SOFTWARE ENGINEERING — 23CS5405

e Attempt to trace each defect to its underlying cause (e.g., nonconformance to
specifications, design error, violation of standards, poor communication with the
customer)

e Using the Pareto principle (80% of defects can be traced to 20% of all causes), isolate the
20%

A generic example

e Asample of possible causes for defects:

Incomplete or erroneous specifications
Misinterpretation of customer communication
Intentional deviation from specifications

Violation of programming standards

Errors in data representation

Inconsistent component interface

Errors in design logicY Incomplete or erroneous testing
Inaccurate or incomplete documentation

Errors in programming language translation of design
Ambiguous or inconsistent human/computer interface

Six sigma

e Popularized by Motorola in the 1980s Is the most widely used strategy for statistical
quality assurance

e Uses data and statistical analysis to measure and improve a company's operational
performance ldentifies and eliminates defects in manufacturing and servicerelated
processes

e The "Six Sigma" refers to six standard deviations (3.4 defects per a million
occurrences)

Three core steps

e Define customer requirements, deliverables, and project goals via well-defined

e methods of customer communication

e Measure the existing process and its output to determine current quality
performance (collect defect metrics)

e Analyze defect metrics and determine the vital few causes (the 20%)

e Two additional steps are added for existing processes (and can be done inY
parallel)

e Improve the process by eliminating the root causes of defects

e Control the process to ensure that future work does not reintroduce the causes of
defects

CSE - NRCM Page 100

SOFTWARE ENGINEERING — 23CS5405

Software Reliability

Software Reliability means Operational reliability. It is described as the ability of a system or
component to perform its required functions under static conditions for a specific period.

Software reliability is also defined as the probability that a software system fulfills its assigned
task in a given environment for a predefined number of input cases, assuming that the hardware
and the input are free of error.

Measures of reliability and availability

Two meaningful metrics used in this evaluation are Reliability and Availability. Often
mistakenly used interchangeably, both terms have different meanings, serve different purposes,
and can incur different cost to maintain desired standards of service levels.

Availability refers to the percentage of time that the infrastructure, system, or solution remains
operational under normal circumstances in order to serve its intended purpose. For cloud
infrastructure solutions, availability relates to the time that the data center is accessible or
delivers the intend IT service as a proportion of the duration for which the service is purchased.
The mathematical formula for Availability is :

Percentage of availability = (total elapsed time — sum of downtime)/total elapsed time

Reliability refers to the probability that the system will meet certain performance standards in
yielding correct output for a desired time duration.

Reliability can be used to understand how well the service will be available in context of
different real-world conditions. For instance, a cloud solution may be available with an SLA
commitment of 99.999 percent, but vulnerabilities to sophisticated cyber-attacks may cause IT
outages beyond the control of the vendor. As a result, the service may be compromised for
several days, thereby reducing the effective availability of the IT service.

MTBF = (total elapsed time — sum of downtime)/number of failures

Where MTBF means mean time between failures

Software safety:

As systems and products become more and more dependent on software components it is no
longer realistic to develop a system safety program that does not include the software elements.

Does software fail? We tend to believe that well written, well tested, safety critical software
never fails. Experience proves otherwise with software making headlines when it actually does
fail, sometimes critically. Software does not fail the same way hardware does, and the various
failure behaviors we are accustomed to from the world of hardware are often not applicable to

CSE - NRCM Page 101

https://www.bmc.com/blogs/public-private-hybrid-cloud/
https://www.bmc.com/blogs/public-private-hybrid-cloud/

SOFTWARE ENGINEERING - 23CS405

software. However, software does fail, and when it does, it can be just as catastrophic as
hardware failures.

Safety-critical software
Safety-critical software is a creature very different from both non-critical software and

safety-critical hardware. The difference lies in the massive testing program that such
software undergoes.

The 1SO 9000 QUALITY STANDARDS

A quality assurance system may be defined as the organizational structure, responsibilities,
procedures, processes, and resources for implementing quality management.

Quality assurance systems are created to help organizations ensure their products and
services satisfy customer expectations by meeting their specifications. These systems cover
a wide variety of activities encompassing a product’s entire life cycle including planning,
controlling, measuring, testing and reporting, and improving quality levels throughout the
development and manufacturing process. ISO 9000 describes quality assurance elements in
generic terms that can be applied to any business regardless of the products or services
offered.

The ISO 9000 standards have been adopted by many countries including all members of
the European Community, Canada, Mexico, the United States, Australia, New Zealand, and
the Pacific Rim. Countries in Latin and South America have also shown interest in the
standards.

The ISO Approach to Quality Assurance Systems

The 1SO 9000 quality assurance models treat an enterprise as a network of interconnected
processes. For a quality system to be ISO compliant, these processes must address the areas
identified in the standard and must be documented and practiced as described.

The ISO 9001 Standard

ISO 9001 is the quality assurance standard that applies to software engineering. The
standard contains 20 requirements that must be present for an effective quality assurance
system. Because the 1SO 9001 standard is applicable to all engineering disciplines, a
special set of ISO guidelines (ISO 9000-3) have been developed to help interpret the
standard for use in the software process.

CSE - NRCM

Page 102

CSE - NRCM

SOFTWARE ENGINEERING - 23CS405

Page 103

