
II B.Tech II Semester (NR23)

Prepared By

Mrs. V V LAKSHMI SWATHI,
Assistant Professor,

Department of Cyber Security

UNIT-1

Introduction of Operating
System

Department of Computer Science and Engineering, NRCM 2

Department of Computer Science and Engineering, NRCM 3

 An OS act as an interface between user and system

hardware.

 Computer consists of the hardware, Operating System,

system programs, application programs.

 The hardware consists of memory, CPU, ALU, I/O device,

storage device and peripheral device.

 System program consists of compilers, loaders, editors, OS

etc.

Department of Computer Science and Engineering, NRCM 4

Department of Computer Science
and Engineering, NRCM 5

This type of operating system does not interact

 with the computer directly.

There is an operator which takes similar jobs

having the same requirement and groups them

into batches.

It is the responsibility of the operator to sort jobs

 with similar needs.

Department of Computer Science
and Engineering, NRCM 6

Department of Computer Science
and Engineering, NRCM 7

Multiprogramming Operating Systems can be
 simply illustrated as more than one program is
 present in the main memory and any one of
 them can be kept in execution.

This is basically used for better execution of

 resources.

Department of Computer Science
and Engineering, NRCM 8

Department of Computer Science
and Engineering, NRCM 9

Each task is given some time to execute so
 that all the tasks work smoothly.

Each user gets the time of the CPU as they use
 a single system.

These systems are also known as Multitasking
 Systems. The task can be from a single user or
 different users also.

The time that each task gets to execute is
called quantum. After this time interval is over
OS switches over to the next task.

Department of Computer Science
and Engineering, NRCM 10

Department of Computer Science
and Engineering, NRCM 11

 A personal computer (PC) is a microcomputer designed
for use by one person at a time.

 Prior to the PC, computers were designed for -- and
only affordable for -- companies that attached
terminals for multiple users to a single large
mainframe computer whose resources were shared
among all users. By the

word processing
 spreadsheets
 email
 instant messaging
 accounting

Department of Computer Science
and Engineering, NRCM 12

These types of operating systems are a recent
advancement in the world of computer
technology and are being widely accepted all
over the world and, that too, at a great pace.

Various autonomous interconnected
computers communicate with each other
using a shared communication network.

Independent systems possess their own
 memory unit and CPU.

Department of Computer Science
and Engineering, NRCM 13

Department of Computer Science
and Engineering, NRCM 14

• These types of OSs serve real-time systems.
The time interval required to process and
respond to inputs is very small. This time
interval is called response time.

• Real-time systems are used when there are
time requirements that are very strict like
missile systems, air traffic control systems,
robots, etc.

• There are 2 types real time os.

Department of Computer Science
and Engineering, NRCM 15

Hard Real-Time Systems

 Hard Real-Time OSs are meant for
applications where time constraints are very
strict and even the shortest possible delay is
not acceptable.

Soft Real-Time Systems

 These OSs are for applications where time-
constraint is less strict.

Department of Computer Science
and Engineering, NRCM 16

Department of Computer Science
and Engineering, NRCM 17

 User Interface - User interface is essential and
all operating systems provide it.

 Users either interface with the operating
system through command-line interface (CUI)
or graphical user interface (GUI). Command
interpreter executes next user-specified
command.

A GUI offers the user a mouse-based window
and menu system as an interface.

Program execution - The system must be able to
 load a program into memory and to run that
 program, end execution, either normally or
 abnormally (indicating error)

I/O operations - A running program may require

 I/O, which may involve a file or an I/O device.

File-system manipulation - The file system is of

 particular interest. Obviously, programs need to
 read and write files and directories, create and
 delete them, search them, list file Information,
 permission management.

Department of Computer Science
and Engineering, NRCM 18

Communications – Processes may exchange
 information, on the same computer or between
 computers over a network. Communications may be
 via shared memory or through message passing
 (packets moved by the OS)

Error detection – OS needs to be constantly aware of
possible errors may occur in the CPU and memory
hardware, in I/O devices, in user program. For each
type of error, OS should take the appropriate action
to ensure correct and consistent computing.
Debugging facilities can greatly enhance the user’s
and programmer’s abilities to efficiently use the
system.

Department of Computer Science
and Engineering, NRCM 19

Department of Computer Science
and Engineering, NRCM 20

Types of System Calls

 There are commonly five types of system calls. These are

 as follows:
 Process Control
 File Management
 Device Management
 Information Maintenance
 Communication Process Control
 Process control is the system call that is used to direct

 the processes. Some process control examples include
 creating, load, abort, end, execute, process, terminate
 the process, etc.

• File Management
• File management is a system call that is used to

handle the files. Some file management examples
include creating files, delete files, open, close,
read, write, etc.

• Device Management
• Device management is a system call that is used

to deal with devices. Some examples of device
management include read, device, write, get
device attributes, release device, etc.

•

•

Department of Computer Science
and Engineering, NRCM 21

 Information Maintenance

 Information maintenance is a system call that is used to

maintain information.
 There are some examples of information maintenance,

including getting system data, set time or date, get time or
date, set system data, etc.

 Communication

 Communication is a system call that is used for

 communication.
 There are some examples of communication, including

 create, delete communication connections, send, receive
 messages, etc.

Department of Computer Science
and Engineering, NRCM 22

Department of Computer Science
and Engineering, NRCM 23

ProcessManagement

 FileManagement

NetworkManagement

MainMemoryManagement

 SecondaryStorageManagement

 I/ODeviceManagement

 SecurityManagement

 CommandInterpreterSystem

Department of Computer Science
and Engineering, NRCM 24

 A process can be thought of as a program in
execution.

A process is the unit of work in most systems.

A process will need certain resources—such as

 CPU time, memory, files, and I/O devices to
 accomplish its task.

Department of Computer Science
and Engineering, NRCM 25

As a process executes, it changes state. The
 state of a process is defined in part by the
 current activity of that process.

A process may be in one of the following
 states:

New: The process is being created.

Running: Instructions are being executed.

Waiting: The process is waiting for some event to
 occur (such as an I/O completion or reception of a
 signal).

Ready: The process is waiting to be assigned to a

 processor.

Terminated: The process has finished execution.

Department of Computer Science
and Engineering, NRCM 26

Department of Computer Science
and Engineering, NRCM 27

Department of Computer Science
and Engineering, NRCM 28

Each process is represented in the operating
system by a Process Control Block (PCB) or Task
Control Block.

 It contains many pieces of information associated
with a specific process, including these:

Process state: The state may be new, ready,
running, and waiting, halted, and so on.

Program counter. The counter indicates the
 address of the next instruction to be executed for
 this process.

CPU registers. The registers vary in number and
type, depending on the computer architecture.
They include accumulators, index registers, stack
pointers, and general- purpose registers, plus any
condition-code information. Along with the
program counter, this state information must be
saved when an interrupt occurs, to allow the
process to be continued correctly afterward.

CPU-scheduling information. This information

includes a process priority, pointers to scheduling
queues, and any other scheduling parameters.

Department of Computer Science
and Engineering, NRCM 29

Memory-management information. This
information may include such items as the value of
the base and limit registers and the page tables, or
the segment tables, depending on the memory
system used by the operating system.

Accounting information. This information includes
the amount of CPU and real time used, time limits,
account numbers, job or process numbers, and so
on.

 I/O status information. This information includes
the list of I/O devices allocated to the process, a list
of open files, and so on.

Department of Computer Science
and Engineering, NRCM 30

Department of Computer Science
and Engineering, NRCM 31

Department of Computer Science
and Engineering, NRCM 32

The objective of multiprogramming is to have
 some process running at all times, to
 maximize CPU utilization.

The objective of time sharing is to switch the

 CPU among processes so frequently that users
 can interact with each program while it is
 running.

Department of Computer Science
and Engineering, NRCM 33

 The processes in most systems can execute
 concurrently, and they may be created and deleted
 dynamically. Thus, these systems must provide a
 mechanism for process creation and termination.

 Process Creation: During the course of execution, a

 process may create several new processes.

 The creating process is called a parent process, and the

new processes are called the children of that process.
Each of these new processes may in turn create other
processes, forming a tree of processes.

• fork():

Most operating systems (including UNIX, Linux,

 and Windows) identify processes according to a
 unique process identifier (or pid), which is
 typically an integer number.

A new process is created by the fork () system call.

 The new process consists of a copy of the address
 space of the original process.

Department of Computer Science
and Engineering, NRCM 34

• exec()

After a fork () system call, one of the two

 processes typically uses the exec () system call to
 replace the process’s memory space with a new
 program.

The exec () system call loads a binary file into

 memory and starts its execution. In this manner,
 the two processes are able to communicate and
 then go their separate ways.

Department of Computer Science
and Engineering, NRCM 35

• wait()

The parent can then create more children; or, if it
 has nothing else to do while the child runs, it can
 issue a wait () system call to move itself off the
 ready queue until the termination of the child.

 Because the call to exec () overlays the process’s
address space with a new program, the call to
exec () does not return control unless an error
occurs.

Department of Computer Science
and Engineering, NRCM 36

Department of Computer Science
and Engineering, NRCM 37

Department of Computer Science
and Engineering, NRCM 38

A process terminates when it
 executing its final statement and

finishes
asks the

operating system to delete it by using the exit
() system call.

At that point, the process may return a status

 value (typically an integer) to its parent
 process (via the wait () system call).

All the resources of the process—including
 physical and virtual memory, open files and
 I/O buffers—are de allocated by the operating
 system.

Termination can occur in other circumstances
 as well. A process can cause the termination
 of another process via an appropriate system
 call (for example, Terminate Process () in
 Windows).

Department of Computer Science
and Engineering, NRCM 39

Department of Computer Science
and Engineering, NRCM 40

– Shared Memory
– Message passing

The following figure shows a basic structure of
 communication between processes via the
 shared memory method and via the message
 passing method.

Shared Memory
Communication between processes using shared

memory requires processes to share some
variable, and it completely depends on how the
programmer will implement it.

Department of Computer Science
and Engineering, NRCM 41

Department of Computer Science
and Engineering, NRCM 42

In this method, processes communicate with
 each other without using any kind of shared
 memory.

If two processes want to communicate with

 each other, they proceed as follows

Department of Computer Science
and Engineering, NRCM 43

Department of Computer Science
and Engineering, NRCM 44

A thread is a Light weight process .Thread is a
 flow of control execution of the program.

A traditional (or heavyweight) process has a

 single thread of control. If a process has multiple
 threads of control, it can perform more than one
 task at a time.

Department of Computer Science
and Engineering, NRCM 45

A process is a program that performs a single
thread of execution.

For example, when a process is running a
 word-processor program, a single thread of
 instructions is being executed.

Department of Computer Science
and Engineering, NRCM 46

Support for threads may be provided either at
 the user level, for user threads, or by the
 kernel, for kernel threads.

 User threads are supported above the kernel

and are managed without kernel support,
whereas kernel threads are supported and
managed directly by the operating system.

Department of Computer Science
and Engineering, NRCM 47

Department of Computer Science
and Engineering, NRCM 48

Many-to-One Model

The many-to-one model maps many user-level
 threads to one kernel thread.

Department of Computer Science
and Engineering, NRCM 49

The one-to-one model maps each user thread to a
 kernel thread.

Department of Computer Science
and Engineering, NRCM 50

It multiplexes many user-level threads to a smaller
 or equal number of kernel threads.

Department of Computer Science
and Engineering, NRCM 51

UNIT-2

 CPU scheduling is the process of deciding
 which process will own the CPU to use while
 another process is suspended.

 The main function of the CPU scheduling is to

ensure that whenever the CPU remains idle,
the OS has at least selected one of the
processes available in the ready-to-use line.

Department of Computer Science
and Engineering, NRCM 52

Department of Computer Science
and Engineering, NRCM 53

• CPU utilization:

• The main purpose of any CPU algorithm is to keep the
CPU as busy as possible. Theoretically, CPU usage can
range from 0 to 100 but in a real-time system, it varies
from 40 to 90 percent depending on the system load.

• Throughput:

• The average CPU performance is the number of
processes performed and completed during each unit.
This is called throughput. The output may vary
depending on the length or duration of the processes.

•

• Turn round Time:
• For a particular process, the important conditions are

how long it takes to perform that process. The time
elapsed from the time of process delivery to the time
of completion is known as the conversion time.
Conversion time is the amount of time spent waiting
for memory access, waiting in line, using CPU, and
waiting for I / O.

• Waiting Time:
• The Scheduling algorithm does not affect the time

required to complete the process once it has started
performing. It only affects the waiting time of the
process i.e. the time spent in the waiting process in the
ready queue.

Department of Computer Science
and Engineering, NRCM 54

Turn round Time:

For a particular process, the important
 conditions are how long it takes to perform
 that process.

The time elapsed from the time of process
delivery to the time of completion is known as
the conversion time.

 Conversion time is the amount of time spent
waiting for memory access, waiting in line,
using CPU, and waiting for I / O.

Department of Computer Science
and Engineering, NRCM 55

Department of Computer Science
and Engineering, NRCM 56

The Scheduling algorithm does not affect the
 time required to complete the process once it has
 started performing.

 It only affects the waiting time of the process i.e.

the time spent in the waiting process in the ready
queue.

Response Time:
 In a collaborative system, turn around time is not

the best option.

The process may produce something early and
 continue to computing the new results while
 the previous results are released to the user.

 Therefore another method is the time taken

in the submission of the application process
until the first response is issued. This measure
is called response time.

Department of Computer Science
and Engineering, NRCM 57

Department of Computer Science
and Engineering, NRCM 58

 There are mainly two types of scheduling methods:

Preemptive Scheduling:

 Preemptive scheduling is used when a process

 switches from running state to ready state or from the
 waiting state to the ready state.

Non-Preemptive Scheduling:

 Non-Preemptive scheduling is used when a process

 terminates , or when a process switches from running
 state to waiting state.

https://www.geeksforgeeks.org/preemptive-and-non-preemptive-scheduling/
https://www.geeksforgeeks.org/preemptive-and-non-preemptive-scheduling/
https://www.geeksforgeeks.org/preemptive-and-non-preemptive-scheduling/
https://www.geeksforgeeks.org/preemptive-and-non-preemptive-scheduling/
https://www.geeksforgeeks.org/preemptive-and-non-preemptive-scheduling/
https://www.geeksforgeeks.org/preemptive-and-non-preemptive-scheduling/
https://www.geeksforgeeks.org/preemptive-and-non-preemptive-scheduling/
https://www.geeksforgeeks.org/preemptive-and-non-preemptive-scheduling/

Department of Computer Science
and Engineering, NRCM 59

FCFS considered to be the simplest of all
 operating system scheduling algorithms.

First come first serve scheduling algorithm

states that the process that requests the CPU
first is allocated the CPU first and is
implemented by using FIFO queue.

https://www.geeksforgeeks.org/queue-data-structure/
https://www.geeksforgeeks.org/queue-data-structure/
https://www.geeksforgeeks.org/queue-data-structure/

Department of Computer Science
and Engineering, NRCM 60

Shortest job first (SJF) is a scheduling process
 that selects the waiting process with the
 smallest execution time to execute next.

This scheduling method may or may not be

 preemptive. Significantly reduces the average
 waiting time for other processes waiting to be
 executed. The full form of SJF is Shortest Job
 First.

Department of Computer Science
and Engineering, NRCM 61

This is just opposite of shortest job first (SJF),
as the name suggests this algorithm is based
upon the fact that the process with the largest
burst time is processed first.

 Longest Job First is non-preemptive in nature.

Department of Computer Science
and Engineering, NRCM 62

Preemptive Priority CPU Scheduling Algorithm is
a pre-emptive method of CPU scheduling
algorithm that works based on the priority of a
process.

 In this algorithm, the editor sets the functions to
be as important, meaning that the most
important process must be done first.

 In the case of any conflict, that is, where there
 are more than one processor with equal value,
 then the most important CPU planning algorithm
 works on the basis of the FCFS Characteristics

Department of Computer Science
and Engineering, NRCM 63

Round Robin is a CPU scheduling algorithm
 where each process is cyclically assigned a
 fixed time slot.

 It is the preemptive version of First come First

Serve CPU Scheduling algorithm. Round Robin
CPU Algorithm generally focuses on Time
Sharing technique.

 A deadlock is a situation where a set of
 processes are blocked because each process is
 holding a resource and waiting for another
 resource acquired by some other process.

 Consider an example when two trains are

coming toward each other on the same track
and there is only one track, none of the trains
can move once they are in front of each other.

Department of Computer Science
and Engineering, NRCM 64

Department of Computer Science
and Engineering, NRCM 65

A system consists of a finite number of
 resources to be distributed among anumber
 of competing processes.

The resources are partitioned into several

 types, each consisting of some number of
 identical instances

REQUEST: The process requests the resource.
 If the request cannot be granted
 immediately(if the resource is being used by
 another process),then the requesting process
 must wait until it can acquire the resource.

USE: The process can operate on the resource.

If the resource is a printer, the process can

print on the printer.

RELEASE: The process releases the resource.
Department of Computer Science

and Engineering, NRCM 66

Department of Computer Science
and Engineering, NRCM 67

Mutual Exclusion

Two or more resources are non-shareable (Only

one process can use at a time)

Hold and Wait

A process is holding at least one resource and

waiting for resources.

No Pre-emption

A resource cannot be taken from a process

unless the process releases the resource.

Circular Wait

 A set of processes waiting for each other in

circular form.

Department of Computer Science
and Engineering, NRCM 68

Department of Computer Science
and Engineering, NRCM 69

PREVENTION

The idea is to not let the system into a deadlock
state. This system will make sure that above
mentioned four conditions will not arise.

These techniques are very costly so we use this in
cases where our priority is making a system
deadlock-free.

One can zoom into each category individually,
Prevention is done by negating one of the four
necessary conditions for deadlock.

Department of Computer Science
and Engineering, NRCM 70

Allocate all required resources to the process
before the start of its execution, this way hold
and wait condition is eliminated but it will lead to
low device utilization.

 for example, if a process requires a printer at a
 later time and we have allocated a printer before
 the start of its execution printer will remain
 blocked till it has completed its execution.

 The process will make a new request for
resources after releasing the current set of
resources. This solution may lead to starvation.

Department of Computer Science
and Engineering, NRCM 71

Avoidance is kind of futuristic. By using the
strategy of “Avoidance”, we have to make an
assumption.

 We need to ensure that all information about

resources that the process will need is known
to us before the execution of the process.

Department of Computer Science
and Engineering, NRCM 72

The resource allocation graph (RAG) is used to
visualize the system‟s current state as a graph.

 The Graph includes all processes, the resources

that are assigned to them, as well as the
resources that each Process requests.

 Sometimes, if there are fewer processes, we can

quickly spot a deadlock in the system by looking
at the graph rather than the tables we use in
Banker‟s algorithm.

Department of Computer Science
and Engineering, NRCM 73

Department of Computer Science
and Engineering, NRCM 74

Bankers‟s Algorithm is a resource allocation
 and deadlock avoidance algorithm which test
 all the request made by processes for
 resources.

It checks for the safe state, and after granting
 a request system remains in the safe state it
 allows the request, and if there is no safe state
 it doesn‟t allow the request made by the
 process.

When working with a banker's algorithm, it
 requests to know about three things:

How much each process can request for each

resource in the system. It is denoted by the
[MAX] request.

How much each process is currently holding

 each resource in a system. It is denoted by the
 [ALLOCATED] resource.

Department of Computer Science
and Engineering, NRCM 75

 It represents the number of each resource currently
available in the system. It is denoted by the
[AVAILABLE] resource.

 Following are the important data structures terms

 applied in the banker's algorithm as follows:

 Suppose n is the number of processes, and m is the

number of each type of resource used in a computer
system.

Department of Computer Science
and Engineering, NRCM 76

Available: It is an array of length 'm' that
 defines each type of resource available in the
 system. When Available[j] = K, means that 'K'
 instances of Resources type R[j] are available
 in the system.

Max: It is a [n x m] matrix that indicates each
 process P[i] can store the maximum number
 of resources R[j] (each type) in a system.

Department of Computer Science
and Engineering, NRCM 77

 Allocation: It is a matrix of m x n orders that indicates
the type of resources currently allocated to each
process in the system. When Allocation [i, j] = K, it
means that process P[i] is currently allocated K
instances of Resources type R[j] in the system.

 Need: It is an M x N matrix sequence representing the

 number of remaining resources for each process.

When the Need[i] [j] = k, then process P[i] may require

 K more instances of resources type Rj to complete the
 assigned work.

Department of Computer Science
and Engineering, NRCM 78

 Need[i][j] = Max[i][j] - Allocation[i][j].

Finish: It is the vector of the order m. It

includes a Boolean
indicating whether the

value (true/false)
process has been

allocated to the requested resources, and all
resources have been released after finishing
its task.

Department of Computer Science
and Engineering, NRCM 79

Department of Computer Science
and Engineering, NRCM 80

If Deadlock prevention or avoidance is not
applied to the software then we can handle
this by deadlock detection and recovery,
which consist of two phases.

In the first phase, we examine the state of the
process and check whether there is a deadlock
or not in the system.

If found deadlock in the first phase then we
 apply the algorithm for recovery of the
 deadlock.

Department of Computer Science
and Engineering, NRCM 81

If a deadlock is very rare, then let it happen
 and reboot the system. This is the approach
 that both Windows and UNIX take. We use the
 ostrich algorithm for deadlock ignorance.

In Deadlock, ignorance performance is better

 than the above two methods but not the
 correctness of data.

 It is a safety algorithm used to check whether
 or not a system is in a safe state or follows the
 safe sequence in a banker's algorithm:

 Step1: There are two vectors Wok and Finish

 of length m and n in a safety algorithm.

 Initialize: Work = Available

 Finish[i] = false; for I = 0, 1, 2, 3, 4… n - 1.

Department of Computer Science
and Engineering, NRCM 82

Step2:
Check the availability status for each type of
resources [i], such as: Need[i] <= Work
Finish[i] == false
If the i does not exist, go to step 4.

Step3: Work = Work +Allocation(i)

Step4: Finish[i] = true
Go to step2 to check the status of resource
availability for the next process. If Finish[i] ==
true; it means that the system is safe for all
processes.

Department of Computer Science
and Engineering, NRCM 83

Department of Computer Science
and Engineering, NRCM 84

 A deadlock detection algorithm is a technique used by
an operating system to identify deadlocks in the
system.

 This algorithm checks the status of processes and

 resources to determine whether any deadlock has
 occurred and takes appropriate actions to recover from
 the deadlock.
 The algorithm employs several times varying data

 structures:

 Available – A vector of length m indicates the number

of available resources of each type.

Allocation – An n*m matrix defines the
number of resources of each type currently
allocated to a process. The column represents
resource and rows represent a process.

Request – An n*m matrix indicates the

current request of each process. If request[i][j]
equals k then process Pi is requesting k more
instances of resource type Rj.

Department of Computer Science
and Engineering, NRCM 85

 The OS will use various recovery techniques to
 restore the system if it encounters any
 deadlocks.

 When a Deadlock Detection Algorithm
 determines that a deadlock has occurred in
 the system, the system must recover from that
 deadlock.

Department of Computer Science
and Engineering, NRCM 86

Department of Computer Science
and Engineering, NRCM 87

To eliminate the deadlock, we can simply kill one
or more processes. For this, we use two methods:

Abort all the Deadlocked Processes:

Aborting all the processes will certainly break the

deadlock but at a great expense.

The deadlocked processes may have been
 computed for a long time, and the result of those
 partial computations must be discarded and
 there is a probability of recalculating them later.

Abort one process at a time until the deadlock is
eliminated:

Abort one deadlocked process at a time, until
 the deadlock cycle is eliminated from the
 system.

Due to this
considerable

method, there
overhead,

may be
after because,

process, we have to run a aborting each
deadlock detection algorithm to check
whether any processes are still deadlocked.

Department of Computer Science
and Engineering, NRCM 88

Resource Preemption

To eliminate deadlocks
preemption, we preempt

using
some

resource
resources

from processes and give those resources to
other processes.

This method will raise three issues

Selecting a victim:

We must determine which resources and
which processes are to be preempted and also
in order to minimize the cost.

Department of Computer Science
and Engineering, NRCM 89

Department of Computer Science
and Engineering, NRCM 90

We must determine what should be done with
the process from which resources are
preempted. One simple idea is total rollback.

 That means aborting the process and

restarting it.

Department of Computer Science
and Engineering, NRCM 91

In a system, it may happen that the same
 process is always picked as a victim.

As a result, that process will never complete

 its designated task. This situation is called
 Starvation and must be avoided.

One solution is that a process must be picked

 as a victim only a finite number of times.

Department of Computer Science
and Engineering, NRCM 92

UNIT-3

Department of Computer Science
and Engineering, NRCM 93

Process Synchronization is the coordination of
execution of multiple processes in a multi-
process system to ensure that they access
shared resources in a controlled and
predictable manner.

It aims to resolve the problem of race

conditions and other synchronization issues in
a concurrent system.

 Cooperative Process: A process that can affect or
be affected by other processes executing in
the system

 Independent Process: The execution of one
 process does not affect the execution of other
 processes.

Department of Computer Science
and Engineering, NRCM 94

Department of Computer Science
and Engineering, NRCM 95

A critical section is a code segment that can be
 accessed by only one process at a time.

The critical section contains shared variables that

 need to be synchronized to maintain the
 consistency of data variables.

So the critical section problem means designing a

way for cooperative processes to access shared
resources without creating data inconsistencies.

In the entry section, the process requests for
 entry in the Critical Section.

Any solution to the critical section problem

 must satisfy three requirements:

Mutual Exclusion: If a process is executing in

 its critical section, then no other process is
 allowed to execute in the critical section.

Department of Computer Science
and Engineering, NRCM 96

• Progress: If no process is executing in the
 critical section and other processes are
 waiting outside the critical section.

• Then only those processes that are not

 executing in their remainder section can
 participate in deciding which will enter in the
 critical section next, and the selection can‟t
 be postponed indefinitely.

Department of Computer Science
and Engineering, NRCM 97

Bounded Waiting:

A bound must exist on the number of times
 that other processes are allowed to enter their
 critical sections after a process has made a
 request to enter its critical section and before
 that request is granted.

Department of Computer Science
and Engineering, NRCM 98

Department of Computer Science
and Engineering, NRCM 99

 Peterson‟s Solution is a classical software-based solution to
 the critical section problem.

 In Peterson‟s solution, we have two shared variables:
 boolean flag[i]: Initialized to FALSE, initially no one is

 interested in entering the critical section
 int turn: The process whose turn is to enter the critical

 section.

// code for producer i
do
{

flag[i] = true; turn = j;
while (flag[j] == true && turn == j);

 critical section
flag[i] = false;
reminder section

}while(TRUE);

// code for consumer j
do
{
flag[j] = true; turn = i;
while (flag[i] == true && turn == i);

critical section
flag[i] = false;
reminder section
}while(TRUE);

Department of Computer Science
and Engineering, NRCM

10
0

Department of Computer Science
and Engineering, NRCM

10
1

Semaphore is a Hardware Solution. This
Hardware solution is written or given to critical
section problem. The Semaphore is just a normal
integer.

The Semaphore cannot be negative. The least
 value for a Semaphore is zero (0). The Maximum
 value of a Semaphore can be anything.



The Semaphores usually have two operations.
 The two operations have the capability to decide
 the values of the semaphores.

The two Semaphore Operations are:

1.Wait ()

The Wait operation works on the basis of

 Semaphore or Mutex Value.

If the Semaphore value is greater than zero,

then the Process can enter the Critical Section
Area.

Department of Computer Science
and Engineering, NRCM

10
2

Definition of wait()

wait(Semaphore S)

{

while (S<=0) ; //no operation S--;

}

Department of Computer Science
and Engineering, NRCM

10
3

2. Signal ()

 The most important part is that this Signal Operation or
 V Function is executed only when the process comes
 out of the critical section.

 The value of semaphore cannot be incremented

before the exit of process from the critical section.
Definition of signal()

signal(S)

{

S++;

}

Department of Computer Science
and Engineering, NRCM

10
4

Department of Computer Science
and Engineering, NRCM

10
5

Binary Semaphores:

They can only be either 0 or 1. They are also
known as mutex locks, as the locks can provide
mutual exclusion. All the processes can share the
same mutex semaphore that is initialized to 1.

Then, a process has to wait until the lock
becomes 0. Then, the process can make the
mutex semaphore 1 and start its critical section.
When it completes its critical section, it can reset
the value of the mutex semaphore to 0 and some
other process can enter its critical section.

Department of Computer Science
and Engineering, NRCM

10
6

They can have any value and are not restricted
over a certain domain. They can be used to
control access to a resource that has a limitation
on the number of simultaneous accesses.

The semaphore can be initialized to the number

of instances of the resource. Whenever a process
wants to use that resource, it checks if the
number of remaining instances is more than zero,
i.e., the process has an instance available.

Then, the process can enter its critical section
 thereby decreasing the value of the counting
 semaphore by 1.

After the process is over with the use of the
instance of the resource, it can leave the
critical section thereby adding 1 to the
number of available instances of the resource.

Department of Computer Science
and Engineering, NRCM

10
7

Department of Computer Science
and Engineering, NRCM

10
8

• The following problems of synchronization are
considered as classical problems:

1.Bounded-buffer (or Producer-Consumer) Problem,

2.Dining-Philosophers Problem,

3.Readers and Writers Problem,

• Bounded-buffer (or Producer-Consumer) Problem

•

• Bounded Buffer problem is also called producer
consumer problem and it is one of the classic
problems of synchronization. This problem is
generalized in terms of the producer consumer
problems.

https://www.geeksforgeeks.org/producer-consumer-solution-using-semaphores-java/
https://www.geeksforgeeks.org/producer-consumer-solution-using-semaphores-java/
https://www.geeksforgeeks.org/producer-consumer-solution-using-semaphores-java/
https://www.geeksforgeeks.org/producer-consumer-solution-using-semaphores-java/
https://www.geeksforgeeks.org/producer-consumer-solution-using-semaphores-java/
https://www.geeksforgeeks.org/producer-consumer-solution-using-semaphores-java/
https://www.geeksforgeeks.org/producer-consumer-solution-using-semaphores-java/
https://www.geeksforgeeks.org/producer-consumer-solution-using-semaphores-java/
https://www.geeksforgeeks.org/producer-consumer-solution-using-semaphores-java/
https://www.geeksforgeeks.org/producer-consumer-solution-using-semaphores-java/
https://www.geeksforgeeks.org/producer-consumer-solution-using-semaphores-java/

Solution to this problem is, creating two
 counting semaphores “full” and “empty” to
 keep track of the current number of full and
 empty buffers respectively.

 Producers produce a product and consumers
consume the product, but both use of one of
the containers each time.

Department of Computer Science
and Engineering, NRCM

10
9

Department of Computer Science
and Engineering, NRCM

11
0

The Producer Operation
do

{

wait(empty); // wait until empty > 0 and
then decrement 'empty' wait(mutex); // acquire
lock
/* perform the insert operation in a slot */
signal(mutex); // release lock
signal(full); // increment 'full'

} while(TRUE);

Department of Computer Science
and Engineering, NRCM

11
1

do
{
wait(full); // wait until full > 0 and then decrement
'full' wait(mutex); // acquire the lock

/* perform the remove operation in a slot */

signal(mutex); // release the lock signal(empty); //
increment 'empty'

} while(TRUE);

Department of Computer Science
and Engineering, NRCM

11
2

The Dining Philosopher Problem states that K
 philosophers seated around a circular table
 with one chopstick between each pair of
 philosophers.

 There is one chopstick between each

philosopher. A philosopher may eat if he can
pickup the two chopsticks adjacent to him.

One chopstick may be picked up by any one of
its adjacent followers but not both.

This problem involves the allocation of limited
 resources to a group of processes in a
 deadlock-free and starvation-free manner.

Department of Computer Science
and Engineering, NRCM

11
3

Department of Computer Science
and Engineering, NRCM

11
4

Reader requests the entry to critical section.

If allowed:

it increments the count of number of readers

inside the critical section. If this reader is
the first reader entering, it locks the wrt
semaphore to restrict the entry of writers if
any reader is inside.

• do
• {
• wait(mutex); // Reader wants to enter the critical section readcnt++;

// The number of readers has now increased by 1
•
• if (readcnt==1) // there is atleast one reader in the critical section

wait(wrt); // no writer can enter if there is even one reader
•
• signal(mutex); // other readers can enter where otherer is inside
•
• ….. perform READING
•
• wait(mutex); // a reader wants to leave readcnt--;
•
• if (readcnt == 0) // no reader is left in the critical section,

signal(wrt); // writers can enter

• signal(mutex); // reader leaves
•
• } while(true);
•

Department of Computer Science
and Engineering, NRCM

11
5

Department of Computer Science
and Engineering, NRCM

11
6

• Writer process

Writer requests the entry to critical section.

If allowed i.e. wait() gives a true value, it enters

 and performs the write. If not allowed, it keeps on
 waiting.

It exits the critical section.

do

• {

• wait(wrt);
section

// writer requests for critical

• …perform WRITING

• signal(wrt); // leaves the critical section

• } while(true);

Department of Computer Science
and Engineering, NRCM

11
7

Department of Computer Science
and Engineering, NRCM

11
8

It is a synchronization technique that enables
 threads to mutual exclusion and the wait() for
 a given condition to become true.

It is an abstract data type. It has a shared

 variable and a collection of procedures
 executing on the shared variable

A process may not directly access the shared
data variables, and procedures are required to
allow several processes to access the shared
data variables simultaneously.

At any particular time, only one process may

 be active in a monitor. Other processes that
 require access to the shared variables must
 queue and are only granted access after the
 previous process releases the shared
 variables.

Department of Computer Science
and Engineering, NRCM

11
9

Department of Computer Science
and Engineering, NRCM

12
0

• Syntax:
• monitor
• {
• //shared variable declarations data variables;
• Procedure P1() { ... }
• Procedure P2() { ... }
• .
• .
• .
• Procedure Pn() { ... } Initialization Code() { ... }
• }
•

Department of Computer Science
and Engineering, NRCM

12
1

 "Inter-process communication is used for
exchanging useful information between
numerous threads in one or more processes
(or programs).“

 To understand inter process communication,
you can consider the following given diagram
that illustrates the importance of inter-process
communication

Department of Computer Science
and Engineering, NRCM

12
2

Department of Computer Science
and Engineering, NRCM

12
3

Department of Computer Science
and Engineering, NRCM

12
4

• These are the following methods that used to provide the
synchronization:

• Mutual Exclusion
• Semaphore
• Barrier
• Spinlock
•
 Mutual Exclusion:-
 It is generally required that only one process thread can

 enter the critical section at a time. This also helps in
 synchronization and creates a stable state to avoid the race
 condition.

Semaphore:-
 Semaphore is a type of variable that usually controls

 the access to the shared resources by several
 processes.

 Semaphore is further divided into two types which are

as follows:
 Binary Semaphore
 Counting Semaphore

Barrier:-
 A barrier typically not allows an individual process to

proceed unless all the processes does not reach it. It is
used by many parallel languages, and collective
routines impose barriers.

Department of Computer Science
and Engineering, NRCM

12
5

Spinlock:-

Spinlock is a type of lock as its name implies.
The processes are trying to acquire the
spinlock waits or stays in a loop while checking
that the lock is available or not.

It is known as busy waiting because even

though the process active, the process does
not perform any functional operation (or
task).

Department of Computer Science
and Engineering, NRCM

12
6

Department of Computer Science
and Engineering, NRCM

12
7

The pipe is a type of data channel that is
unidirectional in nature. It means that the data in
this type of data channel can be moved in only a
single direction at a time.

 Still, one can use two-channel of this type, so

that he can able to send and receive data in two
processes. Typically, it uses the standard methods
for input and output.
These pipes are used in all types of POSIX systems

 and in different versions of window operating
 systems as well.

 It can be referred to as a type of memory that
 can be used or accessed by multiple processes
 simultaneously.

 It is primarily used so that the processes can
 communicate with each other. Therefore the
 shared memory is used by almost all POSIX
 and Windows operating systems as well.

Department of Computer Science
and Engineering, NRCM

12
8

Department of Computer Science
and Engineering, NRCM

12
9

In general, several different messages are
 allowed to read and write the data to the
 message queue.

In the message queue, the messages are
 stored or stay in the queue unless their
 recipients retrieve them. In short, we can also
 say that the message queue is very helpful in
 inter-process communication and used by all
 operating systems.

To understand the concept of Message queue
 and Shared memory in more detail.

Department of Computer Science
and Engineering, NRCM

13
0

Department of Computer Science
and Engineering, NRCM

13
1

 It is a type of mechanism that allows processes to
synchronize and communicate with each other.

 However, by using the message passing, the processes

can communicate with each other without restoring
the hared variables.

 Usually, the inter-process communication mechanism

 provides two operations that are as follows:

send (message)

received (message)

Department of Computer Science
and Engineering, NRCM

13
2

In this type
 usually, a link

of communication process,
is created or established

between two communicating processes.

 However, in every pair of communicating
processes, only one link can exist.

 Indirect communication can only exist or be
 established when processes share a common
 mailbox, and each pair of these
processes shares multiple communication
links

 . These shared links can be unidirectional or

 bi-directional.

Department of Computer Science
and Engineering, NRCM

13
3

Department of Computer Science
and Engineering, NRCM

13
4

 It is a type of general communication between two
unrelated processes. It can also be considered as full-
duplex, which means that one process can
communicate with another process and vice versa.

 Some other different approaches
Socket

 It acts as a type of endpoint for receiving or sending

 the data in a network. It is correct for data sent
 between processes on the same computer or data sent
 between different computers on the same network.
 Hence, it used by several types of operating systems.

File

A file is a type of data record or a document stored
on the disk and can be acquired on demand by the
file server. Another most important thing is that
several processes can access that file as required or
needed.

Signal

As its name implies, they are a type of signal used in
inter process communication in a minimal way.
Typically, they are the massages of systems that are
sent by one process to another.

Therefore, they are not used for sending data but for
remote commands between multiple processes.

Department of Computer Science
and Engineering, NRCM

13
5

Department of Computer Science
and Engineering, NRCM

13
6

UNIT-4

Department of Computer Science
and Engineering, NRCM

13
7

Memory Management

Memory is central to the operation of a
modern computer system. Memory consists of
a large array of bytes, each with its own
address.

A typical
 example,
 memory.

instruction-execution cycle, for
first fetches an instruction from

Department of Computer Science
and Engineering, NRCM

13
8

An address generated by the CPU is commonly
 referred to as a logical address or virtual address.

An address seen by the memory unit—that is, the

 one loaded into the memory- address register of
 the memory—is commonly referred to as a
 physical address.

The set of all logical addresses generated by a

 program is a logical address space.

The set of all physical addresses corresponding to these
 logical addresses is a physical address space.

Memory-Management Unit (MMU)

The run-time mapping from virtual to physical

 addresses is done by a hardware device called the
 memory-management unit (MMU).

The base register is now called a relocation register.

 The value in the relocation register is added to every
 address generated by a user process at the time the
 address is sent to memory.

Department of Computer Science
and Engineering, NRCM

13
9

Department of Computer Science
and Engineering, NRCM

14
0

Department of Computer Science
and Engineering, NRCM

14
1

A process must be in memory to be executed.
 A process, however, can be swapped
 temporarily out of memory to a backing store
 and then brought back into memory for
 continued execution.

Swapping makes it possible for the total

the real physical memory of
physical
exceed
system, thus increasing the degree

address space of all processes to
the

of
multiprogramming in a system.

 Standard swapping involves moving processes
 between main memory and a backing store.
 The backing store is commonly a fast disk.

 It must be large enough to accommodate
 copies of all memory images for all users, and
 it must provide direct access to these memory
 images.

Department of Computer Science
and Engineering, NRCM

14
2

Department of Computer Science
and Engineering, NRCM

14
3

Department of Computer Science
and Engineering, NRCM

14
4

Mobile systems typically do not support swapping in
 any form.

Reasons

Mobile devices generally use flash memory rather than

 hard disks. The resulting space constraints avoid
 swapping.

 The limited number of writes that flash memory can

tolerate before it becomes unreliable.

The poor throughput between main memory and
flash memory in these devices.

Mechanisms instead of Swapping

Apple’s iOS asks applications to voluntarily

relinquish allocated memory. Any applications
that fail to free up sufficient memory may be
terminated by the operating system.

Android does not support swapping and adopts a

 strategy similar to that used by iOS. It may
 terminate a process if insufficient free memory is
 available.

Department of Computer Science
and Engineering, NRCM

14
5

Department of Computer Science
and Engineering, NRCM

14
6

We usually want several user processes to reside
 in memory at the same time. We therefore need
 to consider how to allocate available memory to
 the processes that are in the input queue waiting
 to be brought into memory.

 In contiguous memory allocation, each process is

contained in a single section of memory that is
contiguous to the section containing the next
process.

Department of Computer Science
and Engineering, NRCM

14
7

We can prevent a process from accessing
 memory it does not own by combining two
 ideas. If we have a system with a relocation
 register, together with a limit register, we
 accomplish our goal.

Department of Computer Science
and Engineering, NRCM

14
8

Fixed-Sized Partitions

One of the simplest methods for allocating
 memory is to divide memory into several fixed-
 sized partitions.

Each partition may contain exactly one process.

In this multiple partition method, when a

 partition is free, a process is selected from the
 input queue and is loaded into the free partition.

Department of Computer Science
and Engineering, NRCM

14
9

 In the variable-partition scheme, the operating system
keeps a table indicating which parts of memory are
available and which are occupied.

 Initially, all memory is available for user processes and is

considered one large block of available memory, a hole.

 When a process arrives and needs memory, the system

searches the set for a hole that is large enough for this
process.

Department of Computer Science
and Engineering, NRCM

15
0

This concerns how to satisfy a request of size n
from a list of free holes.

There are many solutions to this problem.

 The first-fit, best-fit, and worst-fit strategies

are the ones most commonly used to select a
free hole from the set of available holes.

Department of Computer Science
and Engineering, NRCM

15
1

 Allocate the first hole that is big enough.Searching can start
 either at the beginning of the set of holes or at the location
 where the previous first-fit search ended.

 We can stop searching as soon as we find a free hole that is

 large enough.

Best fit

 Allocate the smallest hole that is big enough. We must
 search the entire list, unless the list is ordered by size.

 This strategy produces the smallest leftover hole.

Department of Computer Science
and Engineering, NRCM

15
2

Allocate the largest hole. Again, we must
search the entire list, unless it is sorted by
size. This strategy produces the largest
leftover hole.

 which may be more useful than the smaller

leftover hole from a best-fit approach.

 Memory fragmentation can be internal as
well as external.

 Internal Fragmentation

The overhead to keep track of this hole will be

 substantially larger than the hole itself.

The general approach to avoiding this problem is to
 break the physical memory into fixed-sized blocks and
 allocate memory in units based on block size.

Department of Computer Science
and Engineering, NRCM

15
3

 With this approach, the memory allocated to a process may
be slightly larger than the requested memory.

External Fragmentation

 Both the first-fit and best-fit strategies for memory allocation

suffer from external fragmentation.

 As processes are loaded and removed from memory, the free

memory space is broken into little pieces.

Department of Computer Science
and Engineering, NRCM

15
4

Department of Computer Science
and Engineering, NRCM

15
5

Dealing with memory in terms of its physical
properties is inconvenient to both the operating
system and the programmer.

What if the hardware could provide a memory

 mechanism that mapped the programmer’s view
 to the actual physical memory?

The system would have more freedom to manage

memory, while the programmer would have a
more natural programming environment.
Segmentation provides such a mechanism.

Department of Computer Science
and Engineering, NRCM

15
6

 Segmentation is a memory-management scheme that
supports the programmer view of memory.

 A logical address space is a collection of variable sized

segments. Each segment has a name and a length.

 The addresses specify both the segment name and the

offset within the segment.

 The programmer therefore specifies each address by

two quantities: a segment name and an offset.

 Although the programmer can now refer to
 objects in the program by a two- dimensional
 address, the actual physical memory is still, of
 course, a one dimensional sequence of bytes.

 Thus, we must define an implementation to

map two-dimensional user- defined addresses
into one-dimensional physical addresses. This
mapping is affected by a segment table.

Department of Computer Science
and Engineering, NRCM

15
7

Each entry in the segment table has a
segment base and a segment limit.

Segment base: The segment base contains the

 starting physical address where the segment
 resides in memory.

Segment limit: The segment limit specifies the

 length of the segment.

Department of Computer Science
and Engineering, NRCM

15
8

Department of Computer Science
and Engineering, NRCM

15
9

Department of Computer Science
and Engineering, NRCM

16
0

Paging is another memory-management
scheme that offers physical address space of a
process to be non-contiguous.

Paging also avoids external fragmentation and

the need
segmentation

for compaction, whereas
does not. Because of its

advantages, paging in its various forms is used
in most operating systems, from mainframes
to smart phones.

Department of Computer Science
and Engineering, NRCM

16
1

Frames: Paging involves breaking physical memory
 into fixed-sized blocks called

frames

Pages: Breaking logical memory into blocks of the
 same size called pages.

When a process is to be executed, its pages
are loaded into any available memory frames
from their source (a file system or the backing
store).

Department of Computer Science
and Engineering, NRCM

16
2

 Every address generated by the CPU is divided into two
parts: a page number (p) and a page offset (d).

Page Table

 The page number is used as an index into a page table.

 The page table contains the base address of each page

in physical memory.

 This base address is combined with the page offset to

 define the physical memory address that is sent to the
 memory unit.

Department of Computer Science
and Engineering, NRCM

16
3

Frame Table: Since the operating system is
managing physical memory, it must be aware
of the allocation details of physical memory.

which frames are allocated, which frames are

 available, how many total frames there are,
 and so on? This information is generally kept
 in a data structure called a frame table.

Department of Computer Science
and Engineering, NRCM

16
4

Department of Computer Science
and Engineering, NRCM

16
5

The page size (like the frame size) is defined by
 the hardware. The size of a page is a power of
 2, varying between 512 bytes and 1 GB per
 page.

 Depending on the computer architecture. The

selection of a power of 2 as a page size makes
the translation of a logical address into a page
number and page offset particularly easy.

 If the size of the logical address space is 2m, and a
page size is 2n bytes, then the high- order m− n
bits of a logical address designate the page
number, and the n low-order bits designate the
page offset.

 Thus, the logical address is as follows:

page number-P

page offset-d

where p is an index into the page table and d is

the displacement within the page.

Department of Computer Science
and Engineering, NRCM

16
6

Department of Computer Science
and Engineering, NRCM

16
7

Methods for storing page table: Each operating system
 has its own methods for storing page tables.

 Some allocate a page table for each process. A pointer

 to the page table is stored with the other register
 values (like the instruction counter) in the process
 control block.

When the dispatcher is told to start a process, it must

reload the user registers and define the correct
hardware page-table values from the stored user page
table.

Other operating systems provide one or at
most a few page tables, which decreases the
overhead involved when processes are
context-switched.

• Page-Table Base Register (PTBR)

Most contemporary computers, allow the
page table to be very large (for example, 1
million entries). For these machines, the use
of fast registers to implement the page table is
not feasible

Department of Computer Science
and Engineering, NRCM

16
8

 Rather, the page table is kept in main memory, and a
page-table base register (PTBR) points to the page
table. Changing page tables requires changing only this
one register, substantially reducing context-switch
time.

Translation Look-Aside Buffer (TLB).

 The standard solution to this problem is to use a

 special, small, fast lookup hardware cache called a
 translation look-aside buffer (TLB).

 The TLB is associative, high-speed memory. Each entry

in the TLB consists of two parts: a key (or tag) and a
value.

Department of Computer Science
and Engineering, NRCM

16
9

Department of Computer Science
and Engineering, NRCM

17
0

Department of Computer Science
and Engineering, NRCM

17
1

 Memory protection in a paged environment is accomplished
by protection bits associated with each frame. Normally,
these bits are kept in the page table.

Read–Write or Read-Only Bit

 One bit can define a page to be read–write or read-only. Every

reference to memory goes through the page table to find the
correct frame number.

 At the same time that the physical address is being computed,

 the protection bits can be checked to verify that no writes are
 being made to a read-only page.

Department of Computer Science
and Engineering, NRCM

17
2

An advantage of paging is the possibility of
sharing common code. This consideration is
particularly important in a time-sharing
environment.

Consider a system that supports 40 users,
each of whom executes a text editor. If the
text editor consists of 150 KB of code and 50
KB of data space, we need 8,000 KB to support
the 40 users.

Department of Computer Science
and Engineering, NRCM

17
3

Department of Computer Science
and Engineering, NRCM

17
4

• Pure segmentation is not very popular and not
 being used in many of the operating systems.

• However, Segmentation can be combined

with Paging to get the best features out of
both the techniques.

• In Segmented Paging, the main memory is

 divided into variable size segments which are
 further divided into fixed size pages.

• Pages are smaller than segments. Each
Segment has a page table which means every
program has multiple page tables.

Department of Computer Science
and Engineering, NRCM

17
5

Department of Computer Science
and Engineering, NRCM

17
6

• The CPU generates a logical address which is
divided into two parts: Segment Number and
Segment Offset.

• The Segment Offset must be less than the

segment limit. Offset is further divided into Page
number and Page Offset.

• To map the exact page number in the page table,

the page number is added into the page table
base.

Department of Computer Science
and Engineering, NRCM

17
7

Department of Computer Science
and Engineering, NRCM

17
8

Loading the entire program into memory
results in loading the executable code for all
options, regardless of whether or not an
option is ultimately selected by the user.

An alternative strategy is to load pages only as

they are needed. This technique is known as
demand paging and is commonly used in
virtual memory systems.

Department of Computer Science
and Engineering, NRCM

17
9

• A demand-paging system is similar to a paging
 system with swapping where processes reside
 in secondary memory (usually a disk).

• When we want to execute a process, we swap

 it into memory. Rather than swapping the
 entire process into memory, though, we use a
 lazy swapper.

• A lazy swapper never swaps a page into

 memory unless that page will be needed.

Department of Computer Science
and Engineering, NRCM

18
0

Department of Computer Science
and Engineering, NRCM

18
1

• Access to a page marked invalid causes a page
 fault.

• The paging hardware, in translating the
 address through the page table, will notice
 that the invalid bit is set, causing a trap to the
 operating system.

• This trap is the result of the operating system’s

 failure to bring the desired page into memory.

Department of Computer Science
and Engineering, NRCM

18
2

Department of Computer Science
and Engineering, NRCM

18
3

• In the extreme case, we can start executing a process
 with no pages in memory.

• When the operating system sets the instruction pointer

 to the first instruction of the process, which is on a
 non-memory-resident page, the process immediately
 faults for the page.

• After this page is brought into memory, the process

continues to execute, faulting as necessary until
every page that it needs is in memory.

At that point, it can execute with no more faults.
This scheme is pure demand paging: never bring
a page into memory until it is required.

Hardware to Support Demand Paging

Page table. This table has the ability to mark an

entry invalid through a valid–invalid bit or a
special value of protection bits.

Secondary memory. This memory holds those

 pages that are not present in main memory.

Department of Computer Science
and Engineering, NRCM

18
4

The secondary memory is usually a high-speed
disk. It is known as the swap device, and the
section of disk used for this purpose is known
as swap space.

A crucial requirement for demand paging is

 the ability to restart any instruction after a
 page fault.

Department of Computer Science
and Engineering, NRCM

18
5

 Page replacement takes the following

approach

Find the location of the desired page on the disk.

Find a free frame:

If there is a free frame, use it.

If there is no free frame, use a page-replacement
 algorithm to select a victim frame.

Department of Computer Science
and Engineering, NRCM

18
6

Write the victim frame to the disk; change the
 page and frame tables accordingly.

Read the desired page into the newly freed frame;
 change the page and frame tables.

Continue the user process from where the page

 fault occurred.

Modify Bit (or Dirty Bit).

If no frames are free, two page transfers (one
out and one in) are required.

Department of Computer Science
and Engineering, NRCM

18
7

• This situation effectively doubles the page-
 fault service time and increases the effective
 access time accordingly. We can reduce this
 overhead by using a modify bit (or dirty bit).

Department of Computer Science
and Engineering, NRCM

18
8

Department of Computer Science
and Engineering, NRCM

18
9

The simplest page-replacement algorithm is a
first-in, first-out (FIFO) algorithm.

A FIFO replacement algorithm associates with
 each page the time when that page was
 brought into memory. When a page must be
 replaced, the oldest page is chosen.

We can create a FIFO queue to hold all pages
 in memory. We replace the page at the head
 of the queue. When a page is brought into
 memory, we insert it at the tail of the queue.

• The FIFO page-replacement algorithm is easy
 to understand and program.

• However, its performance is not always good.

 a bad replacement choice increases the page-
 fault rate and slows process execution.

• If we place an active page, some other page

 should be replaced to bring it back.

Department of Computer Science
and Engineering, NRCM

19
0

Department of Computer Science
and Engineering, NRCM

19
1

It says that, Replace the page that will not be
 used for the longest period of time.

It has the lowest page-fault rate of all

 algorithms and will never suffer from Belady’s
 anomaly.

Unfortunately, the optimal page-replacement

 algorithm is difficult to implement, because it
 requires future knowledge of the reference
 string.

Department of Computer Science
and Engineering, NRCM

19
2

 LRU replacement associates with each page the time of
that page’s last use.

When a page must be replaced, LRU chooses the page

that has not been used for the longest period of time.

We can think of this strategy as the optimal page-

 replacement algorithm looking backward in time,
 rather than forward.

 Like optimal replacement, LRU replacement does not

suffer from Belady’s anomaly. Both belong to a class of
page-replacement algorithms, called stack algorithms.

Department of Computer Science
and Engineering, NRCM

19
3

UNIT-5

Department of Computer Science
and Engineering, NRCM

19
4

a named collection of related
that is recorded on secondary

A file is
information
storage.

(or)A file is the smallest allotment of logical
 secondary storage.

(or)A file is a sequence of bits, bytes, lines, or
records, the meaning of which is defined by
the file’s creator and user. Many different
types of information may be stored in a file.

Department of Computer Science
and Engineering, NRCM

19
5

Files store information. When it is used, this
 information must be accessed and read into
 computer memory. The information in the file
 can be accessed in the following ways,

Sequential Access

The simplest access method is sequential
 access. Information in the file is processed in
 order, one record after the other. It is based
 on a tape model of a file and works as well on
 sequential-access devices.

Department of Computer Science
and Engineering, NRCM

19
6

Another method is direct access (or relative
 access).

Here, a file is made up of fixed- length logical

 records that allow programs to read and write
 records rapidly in no particular order.

The direct-access method is based on a disk

 model of a file, since disks allow random access to
 any file block.

 For direct access, the file is viewed as a numbered
sequence of blocks or records.

 Thus, we may read block 14, then read block 53, and

then write block 7. There are no restrictions on the order
of reading or writing for a direct-access file.

Indexed Access
It involves the construction of an index for the file.

 The index, like an index in the back of a book, contains
 pointers to the various blocks.

To find a record in the file, we first search the index

 and then use the pointer to access the file directly and
 to find the desired record.

Department of Computer Science
and Engineering, NRCM

19
7

Department of Computer Science
and Engineering, NRCM

19
8

• The most common schemes for defining the
logical structure of a directory are

•
Single-Level Directory
– The simplest directory structure is the single-level

directory. All files are contained in the same
directory, which is easy to support and
understand.

–

Department of Computer Science
and Engineering, NRCM

19
9

All files are in the same directory, they must
have unique names. If two users call their data
file test.txt, then the unique-name rule is
violated.

Even a single user on a single-level directory

 may find it difficult to remember the names of
 all the files as the number of files increases.
 Keeping track of so many files is a problem.

Department of Computer Science
and Engineering, NRCM

20
0

Department of Computer Science
and Engineering, NRCM

20
1

The standard solution to eliminate confusion of
 file names among different users is to create a
 separate directory for each user.

So the two level directory structure contains 2
 directories

• Master File Directory (MFD) at the top level.

• User File Directory (UFD) at the second level
and

• Actual files are at the third level.

Each user has his own user file directory (UFD).
 When a user job starts or a user logs in, the
 system’s master file directory (MFD) is searched.

The MFD is indexed by user name or account

 number, and each entry points to the UFD for that
 user

When a user refers to a particular file, only his
 own UFD is searched.

To create a file for a user, the operating system
 searches only that user’s UFD to ascertain
 whether another file of that name exists.

Department of Computer Science
and Engineering, NRCM

20
2

 To delete a file, the operating system confines its
 search to the local UFD; thus, it cannot accidentally
 delete another user’s file that has the same name.

Department of Computer Science
and Engineering, NRCM

20
3

Department of Computer Science
and Engineering, NRCM

20
4

A tree is the most common directory structure.
 The tree has a root directory, and every file in the
 system has a unique path name.

A directory (or subdirectory) contains a set of files
 or subdirectories.

A directory is simply another file, but it is treated
 in a special way. All directories have the same
 internal format.

 One bit in each directory entry defines the entry
as a file (0) or as a subdirectory (1). Special system
calls are used to create and delete directories.

Department of Computer Science
and Engineering, NRCM

20
5

Each process has a current directory. The current
 directory should contain most of the files that are
 of current interest to the process.

When reference is made to a file, the current

 directory is searched.

If a file is needed that is not in the current

specify a
directory, then the user

path name or
usually must either
change the current

directory (using change directory () system call) to
be the directory holding that file.

Department of Computer Science
and Engineering, NRCM

20
6

Department of Computer Science
and Engineering, NRCM

20
7

 A tree structure prohibits the sharing of files or directories.

 An acyclic graph i.e., a graph with no cycles which allows

 directories to share subdirectories and files.

 The same file or subdirectory may be in two different

 directories.

 An acyclic-graph directory structure is more flexible than a

 simple tree structure, but it is also more complex.

Department of Computer Science
and Engineering, NRCM

20
8

Department of Computer Science
and Engineering, NRCM

20
9

When information is stored in a computer
 system, we want to keep it safe from physical
 damage (the issue of reliability) and improper
 access (the issue of protection).

Reliability is generally provided by duplicate

copies of files. Many computers have systems
programs that automatically (or through
computer-operator intervention) copy disk
files to tape at regular intervals (once per day
or week or month) to maintain a copy should
a file system be accidentally destroyed.

Department of Computer Science
and Engineering, NRCM

21
0

Protection mechanisms provide controlled access
by limiting the types of file access that can be
made.

Access is permitted or denied depending on

 several factors, one of which is the type of access
 requested. Several different types of operations
 may be controlled:

Read. Read from the file.
Write. Write or rewrite the file.
Execute. Load the file into memory and execute it.

Append. Write new information at the end of the
 file.

Delete. Delete the file and free its space for
 possible reuse.

List. List the name and attributes of the file.

Other operations, such as renaming, copying,
and editing the file, may also be controlled.

Department of Computer Science
and Engineering, NRCM

21
1

Department of Computer Science
and Engineering, NRCM

21
2

The most common approach to the protection
 problem is to make access dependent on the
 identity of the user.

 Different users may need different types of
access to a file or directory.

The most general scheme to implement
 identity dependent access is to associate with
 each file and directory an access-control list
 (ACL) specifying user names and the types of
 access allowed for each user.

Department of Computer Science
and Engineering, NRCM

21
3

• Another approach to the protection problem
 is to associate a password with each file. Just
 as access to the computer system is often
 controlled by a password, access to each file
 can be controlled in the same way.

• If the passwords are chosen randomly and

 changed often, this scheme may be effective
 in limiting access to a file. The use of
 passwords has a few disadvantages, however.

Department of Computer Science
and Engineering, NRCM

21
4

Disks provide most of the secondary storage
 on which file systems are maintained. Two
 characteristics make them convenient for this
 purpose are,

A disk can be rewritten.

A disk can access directly any block of
 information it contains.

File systems provide efficient and convenient
 access to the disk by allowing data to be
 stored, located, and retrieved easily.

Department of Computer Science
and Engineering, NRCM

21
5

The logical file system manages metadata
 information. Metadata includes all of the file-
 system structure except the actual data.

The logical file system manages the directory

 structure to provide the file-organization
 module with this information

Application Programs-It contains user code
that is making a request.

Department of Computer Science
and Engineering, NRCM

21
6

 The file-organization module knows about files and their
logical blocks and physical blocks.

 By knowing the type of file allocation used and the

location of the file, the file organization module can
translate logical block addresses to physical block
addresses for the basic file system to transfer.

Basic File System

 The basic file system needs only to issue generic

 commands to the appropriate device driver to read and
 write physical blocks on the disk. Each physical block is
 identified by its numeric disk address.

Department of Computer Science
and Engineering, NRCM

21
7

 The I/O control level consists of device drivers and
interrupts handlers to transfer information between
the main memory and the disk system.

 It acts like a translator, inputting high-level commands

such as “retrieve block 123.” And outputting low-level,
hardware

 specific instructions that are used by the hardware
controller

 Devices-These are the actual hardware devices like

disk.

Department of Computer Science
and Engineering, NRCM

21
8

Department of Computer Science
and Engineering, NRCM

21
9

Many files can be stored on the same disk. The
main problem is how to allocate space to these
files so that disk space is utilized effectively and
files can be accessed quickly.

The following are the three major methods of

allocating disk space that are in wide use:

Contiguous Allocation

Contiguous allocation requires that each file occupy a

 set of contiguous blocks on the disk. Disk addresses
 define a linear ordering on the disk.

 Contiguous allocation of a file is defined by the disk
 address and length (in block units) of the first block.

 If the file is n blocks long and starts at location b,
then it occupies blocks b, b + 1, b + 2, b + n − 1. The
directory entry for each file indicates the address of
the starting block and the length of the area
allocated for this file.

Department of Computer Science
and Engineering, NRCM

22
0

Department of Computer Science
and Engineering, NRCM

22
1

Linked allocation solves all problems of
contiguous allocation. With linked allocation,
each file is a linked list of disk blocks.

 The disk blocks may be scattered anywhere on

the disk. The directory contains a pointer to the
first and last blocks of the file.

 For example, a file of five blocks might start at

block 9 and continue at block 16, then block 1,
then block 10, and finally block 25.

To create a new file, we simply create a new
 entry in the directory. With linked allocation,
 each directory entry has a pointer to the first
 disk block of the file. This pointer is initialized
 to null (the end-of-list pointer value) to signify
 an empty file. The size field is also set to 0.

Department of Computer Science
and Engineering, NRCM

22
2

Department of Computer Science
and Engineering, NRCM

22
3

Linked allocation solves the external-
fragmentation and size-declaration problems of
contiguous allocation.

 However, in the absence of a FAT, linked
allocation cannot support efficient direct access,
since the pointers to the blocks are scattered with
the blocks themselves all over the disk and must
be retrieved in order.

 Indexed allocation solves
 bringing all the pointers

this problem by
together into one

location: the index block.

Each file has its own index block, which is an
 array of disk-block addresses. The ith entry in
 the index block points to the ith block of the
 file. The directory contains the address of the
 index block.

Department of Computer Science
and Engineering, NRCM

22
4

Department of Computer Science
and Engineering, NRCM

22
5

To keep track of free disk space, the system
maintains a free-space list.

The free- space list records all free disk blocks—

those not allocated to some file or directory.

The following are implementations of free space

list.
Bit Vector
Free-space list is frequently implemented as a bit map

 or bit vector. Each block is represented by 1 bit. If the
 block is free, the bit is 1; if the block is allocated, the
 bit is 0.

For example, consider a disk where blocks 2,
 3, 4, 5, 8, 9, 10, 11, 12, 13, 17, 18, 25, 26, and
27 are free and the rest of the blocks are
allocated. The free-space bit map would be
001111001111110001100000011100000...

Linked List

Another approach to free-space management
is to link together all the free disk blocks,
keeping a pointer to the first free block in a
special location on the disk and caching it in
memory.

Department of Computer Science
and Engineering, NRCM

22
6

This first block contains a pointer to the next
 free disk block, and so on.

Department of Computer Science
and Engineering, NRCM

22
7

Department of Computer Science
and Engineering, NRCM

22
8

A modification of the free-list approach stores the
addresses of n free blocks in the first free block.

 The first n−1 of these blocks are actually free.

The last, block contains the addresses of another
n free block, and so on.

The addresses of a large number of free blocks

can now be found quickly.

Department of Computer Science
and Engineering, NRCM

22
9

Several contiguous blocks may be allocated or
 freed simultaneously, particularly when space
 is allocated with the contiguous-allocation
 algorithm or through clustering.

Thus, rather than keeping a list of n free disk
 addresses, we can keep the address of the first
 free block and the number (n) of free
 contiguous blocks that follow the first block.

Each entry in the free-space list then consists
of a disk address and a count.

Department of Computer Science
and Engineering, NRCM

23
0

Oracle’s ZFS file system was designed to
 encompass huge numbers of files, directories,
 and even file systems.

In its management of free space, ZFS creates

metaslabs to divide the space on the device
into chunks of manageable size.

Each metaslab has an associated space map.

The space map is a log of all block activity
(allocating and freeing), in time order, in counting
format.

 When ZFS decides to allocate or free space from

a metaslab, it loads the associated space map
into memory in a balanced-tree structure (for
very efficient operation), indexed by offset, and
replays the login to that structure.

Department of Computer Science
and Engineering, NRCM

23
1

Department of Computer Science
and Engineering, NRCM

23
2

create ()

 This is used to create a file. Two steps are necessary to
create a file. First, space in the file system must be
found for the file. Second, an entry for the new file
must be made in the directory.

open ()

Many systems require that an open () system call be
made before a file is first used. When a file has been
opened its entry is added in the open file table. It also
contains open count associated with each file to
indicate how many processes have the file open.

read ()

 To read from a file, we use a system call that specifies
 the name of the file and read pointer to the location in
 the file where the next read is to take place. Once the
 read has taken place, the read pointer is updated.

write ()

 To write a file, we make a system call specifying both
 the name of the file and the information to be written
 to the file. Given the name of the file, the system
 searches the directory to find the file’s location.

 The system must keep a write pointer to the location
in the file where the next write is to take place. The
write pointer must be updated whenever a write
occurs.

Department of Computer Science
and Engineering, NRCM

23
3

close ()

This closes a file. Each close () decrements the
 open count and when the count reaches zero,
 the file is no longer in use so it can be closed.

delete ()

To delete a file, we search the directory for the
 named file. Having found the associated
 directory entry, we release all file space, so
 that it can be reused by other files, and erase
 the directory entry.

Department of Computer Science
and Engineering, NRCM

23
4

truncate ()

 The user may want to erase the contents of a file but
keep its attributes. Rather than forcing the user to
delete the file and then recreate it, this function allows
all attributes to remain unchanged—except for file
length—but lets the file be reset to length zero and its
file space released.

seek ()

 It is also called as Reposition. The directory is searched
for the appropriate entry, and the current-file-position
pointer is repositioned to a given value. Repositioning
within a file need not involve any actual I/O.

Department of Computer Science
and Engineering, NRCM

23
5

unlink ()

Deletes a name from the file system. If that
name was the last link to a file and no
processes have the file open the file is deleted
and the space it was using is made available
for reuse.

Department of Computer Science
and Engineering, NRCM

23
6

Department of Computer Science and Engineering,
NRCM

23
7

THANK YOU

