OPERATING SYSTEM (23CY403)

UNIT-I

Introduction to OS

A program that acts as an intermediary between a user of a computer and
the computer hardware

Operating system goals:
o Execute user programs and make solving user problems easier

o Make the computer system convenient to use

o Use the computer hardware in an efficient manner
e Computer System Structure
e Computer system can be divided into four components
o Hardware - provides basic computing resources
= CPU, memory, I/O devices
o Operating system

= Controls and coordinates use of hardware among
various applications and users

o Application programs - define the ways in which the system resources
are used to solve the computing problems of the users

» Word processors, compilers, web browsers, database
systems, video games

o Users

» People, machines, other computers

Department of Computer Science & Engineering (Cyber Security), NRCM

OPERATING SYSTEM (23CY403)

compiler assembler text editor o5 database
system

system and application programs

operating system

computer hardware

OS Definition

e OSis a resource allocator

o Manages all resources

o Decides between conflicting requests for efficient and fair resource use
e OS is a control program

o Controls execution of programs to prevent errors and improper use of the
computer

Computer Startup
e bootstrap program is loaded at power-up or reboot

o Typically stored in ROM or EPROM, generally known as firmware
o Initializes all aspects of system

o Loads operating system kernel and starts execution

Department of Computer Science & Engineering (Cyber Security), NRCM

OPERATING SYSTEM (23CY403)

Computer System Organization

mouse keyboard printer monitor
disks i = on-ine M\

—

/|

disk USB controller graphics
controller adapter

memory

One or more CPUs, device controllers connect through common bus providing
access to shared memory

Concurrent execution of CPUs and devices competing for memory cycles
I/O devices and the CPU can execute concurrently

Each device controller is in charge of a particular device type

Each device controller has a local buffer

CPU moves data from/to main memory to/from local buffers

I/0 is from the device to local buffer of controller

Device controller informs CPU that it has finished its operation by causing an
interrupt

Interrupt transfers control to the interrupt service routine generally, through the
interrupt vector, which contains the addresses of all the service routines

Interrupt architecture must save the address of the interrupted instruction

Incoming interrupts are disabled while another interrupt is being processed to
prevent a lost interrupt

Department of Computer Science & Engineering (Cyber Security), NRCM

OPERATING SYSTEM (23CY403)

A trap is a software-generated interrupt caused either by an error or a user
request

An operating system is interrupt driven

The operating system preserves the state of the CPU by storing registers and the
program counter

Determines which type of interrupt has occurred:
polling
vectored interrupt system

Separate segments of code determine what action should be taken for each type
of interrupt

I/O Structure
e After I/O starts, control returns to user program only upon I/O completion

o Wait instruction idles the CPU until the next interrupt
o Wait loop (contention for memory access)

o At most one I/O request is outstanding at a time, no simultaneous /O
processing

e After I/O starts, control returns to user program without waiting for /O completion

o System call - request to the operating system to allow user to wait for /O
completion

Device-status table contains entry for each I/O device indicating its type,
address, and state

Operating system indexes into I/O device table to determine device status
and to modify table entry to include interrupt

Storage Structure
e Main memory - only large storage media that the CPU can access directly

e Secondary storage - extension of main memory that provides large
nonvolatile storage capacity

Department of Computer Science & Engineering (Cyber Security), NRCM

OPERATING SYSTEM (23CY403)

e Magnetic disks - rigid metal or glass platters covered with magnetic recording
material

Direct Memory Access Structure

e Used for high-speed I/O devices able to transmit information at close to
memory speeds

Device controller transfers blocks of data from buffer storage directly to main
memory without CPU intervention

Only one interrupt is generated per block, rather than the one interrupt per
byte

Storage Hierarchy
e Storage systems organized in hierarchy

o Speed
o Cost

o Volatility

-

registers {)
 ——
cache
e

.

| v

main memory

A =

i v

electronic disk

|| "2
maanetic disk

A
e

optical disk

e

magnetic tapes

Department of Computer Science & Engineering (Cyber Security), NRCM

OPERATING SYSTEM (23CY403)

Caching

e Important principle, performed at many levels in a computer (in hardware,
operating system, software)

Information in use copied from slower to faster storage temporarily
Faster storage (cache) checked first to determine if information is there
o Ifitis, information used directly from the cache (fast)
o If not, data copied to cache and used there
Cache smaller than storage being cached
o Cache management important design problem

o Cache size and replacement policy

Disk surface is logically divided into tracks, which are subdivided into
sectors

The disk controller determines the logical interaction between the device
and the computer

Computer System Architecture

e Most systems use a single general-purpose processor (PDAs through
mainframes)

o Most systems have special-purpose processors as well
e Multiprocessors systems growing in use and importance

o Also known as parallel systems, tightly-coupled systems
o Advantages include

= [ncreased throughput
= Economy of scale
» Increased reliability - graceful degradation or fault tolerance

o Two types

= Asymmetric Multiprocessing

Department of Computer Science & Engineering (Cyber Security), NRCM

OPERATING SYSTEM (23CY403)

= Symmetric Multiprocessing

2

2 — instruction execution —
cycle

instructions
and
data

thread of execution
e ata movement e

CPU (*N)

dnuisiu) ——

CPUy CPU; CPU»

registers registers registers

cache cache cache

memory

Fig: Symmetric multiprocessing architecture
Operating System Structure
e Multiprogramming needed for efficiency

o Single user cannot keep CPU and I/O devices busy at all times

o Multiprogramming organizes jobs (code and data) so CPU always has one
to execute

Department of Computer Science & Engineering (Cyber Security), NRCM

OPERATING SYSTEM (23CY403)

o A subset of total jobs in system is kept in memory

(@]

(@]

One job selected and run via job scheduling

When it has to wait (for I/O for example), OS switches to another job

e Timesharing (multitasking) is logical extension in which CPU switches jobs so
frequently that users can interact with each job while it is running, creating
interactive computing

(@]

©)

o

o

o

Response time should be < 1 second

Each user has at least one program executing in memory process

If several jobs ready to run at the same time | CPU scheduling

If processes don'’t fitin memory, swapping moves them in and out to run

Virtual memory allows execution of processes not completely in memory

Operating System Operation

Interrupt driven by hardware

Software error or request creates exception or trap

o

Division by zero, request for operating system service

Other process problems include infinite loop, processes modifying each other or
the operating system

Dual-mode operation allows OS to protect itself and other system components

o

o

User mode and kernel mode
Mode bit provided by hardware

= Provides ability to distinguish when system is running user code or
kernel code

Some instructions designated as privileged, only executable in
kernel mode

System call changes mode to kernel, return from call resets it to
user

e Timer to prevent infinite loop / process hogging resources

Department of Computer Science & Engineering (Cyber Security), NRCM

OPERATING SYSTEM (23CY403)

Set interrupt after specific period
Operating system decrements counter
When counter zero generate an interrupt

Set up before scheduling process to regain control or terminate program
that exceeds allotted time

user process
user mode

. . . e o { : i (mode bit= 1)
user process executing + calls system cail return from system call

\ /

Y ré
\ /
trap return

kernel mode bit = 0 mode bit = 1
/ kernel mode

(mode bit = 0)

execute system call

OS Services

¢ One set of operating-system services provides functions that are helpful to the user:

o User interface - Almost all operating systems have a user interface (Ul)

= Varies between Command-Line (CLI), Graphics User Interface (GUI),
Batch

Program execution - The system must be able to load a program into memory
and to run that program, end execution, either normally or abnormally
(indicating error)

I/O operations - A running program may require 1/O, which may involve a file
or an I/O device

File-system manipulation - The file system is of particular interest. Obviously,
programs need to read and write files and directories, create and delete them,
search them, list file Information, permission management.

¢ One set of operating-system services provides functions that are helpful to the user
(Cont):

o Communications - Processes may exchange information, on the same
computer or between computers over a network

Department of Computer Science & Engineering (Cyber Security), NRCM

OPERATING SYSTEM (23CY403)

= Communications may be via shared memory or through message
passing (packets moved by the OS)

o Error detection - OS needs to be constantly aware of possible errors

= May occur in the CPU and memory hardware, in /O devices, in user
program

For each type of error, OS should take the appropriate action to ensure
correct and consistent computing

Debugging facilities can greatly enhance the user’s and programmer’s
abilities to efficiently use the system

Another set of OS functions exists for ensuring the efficient operation of the system
itself via resource sharing

o Resource allocation - When multiple users or multiple jobs running
concurrently, resources must be allocated to each of them

= Many types of resources - Some (such as CPU cycles, main memory,
and file storage) may have special allocation code, others (such as I/O
devices) may have general request and release code

Accounting - To keep track of which users use how much and what kinds of
computer resources

Protection and security - The owners of information stored in a multiuser or
networked computer system may want to control use of that information,
concurrent processes should not interfere with each other

= Protection involves ensuring that all access to system resources is
controlled

Security of the system from outsiders requires user authentication,
extends to defending external I/O devices from invalid access attempts

If a system is to be protected and secure, precautions must be
instituted throughout it. A chain is only as strong as its weakest link.

Department of Computer Science & Engineering (Cyber Security), NRCM

OPERATING SYSTEM (23CY403)

usar and other system programs

Gul batch command line ‘

user interfaces ‘

syslem calls

program [{e] e communication resource

accounting
exacullan operations 3% allocation RECR J

protection
and
sacurty

ernor
gatection
savices

cperating system

hardware
System Call
Programming interface to the services provided by the OS
Typically written in a high-level language (C or C++)

Mostly accessed by programs via a high-level Application Program Interface
(API) rather than direct system call use

Three most common APls are Win32 API for Windows, POSIX API for POSIX-
based systems (including virtually all versions of UNIX, Linux, and Mac OS X),
and Java API for the Java virtual machine (JVM)

Example

System call sequence to copy the contents of one file to another file

source file »| destination file

(« Example System Call Sequence)

Acquire input file name
Write prompt to screen
Accept input

Acquire output file name
Write prompt to screen
Accept input

Open the input lile
if file doesn't exist, abort

Create output file
If file exists, abon

Loop
Read from input file
Write to output fila

Until read fails

Close output file

Write completion message to screen

Terminate normally

o g

Department of Computer Science & Engineering (Cyber Security), NRCM

OPERATING SYSTEM (23CY403)

Typically, a number associated with each system call

o System-call interface maintains a table indexed according to these
numbers

The system call interface invokes intended system call in OS kernel and returns
status of the system call and any return values

The caller need know nothing about how the system call is implemented

o Just needs to obey API and understand what OS will do as a result call
o Most details of OS interface hidden from programmer by API

» Managed by run-time support library (set of functions built into
libraries included with compiler)

user application

user
mode

system call interface

kernel
mode

open ()

Implementation

» of open ()
system call

return
Types of system call
¢ Process control
¢ File management
e Device management

e Information maintenance

Department of Computer Science & Engineering (Cyber Security), NRCM

OPERATING SYSTEM (23CY403)

e Communications

e Protection

Process
Control

File
Manipulation

Device
Manipulation

Information
Maintenance

Communication

Protection

OS Structure

Windows

CreateProcess{()
ExitProcess()
WaitForSinglelObject()

CreateFile()
ReadFile()
WriteFile()
CloseHandle()

SetConsoleMode()
ReadConsole()
WriteConsole()

GetCurrentProcessID()
SetTimer()
Sleep()

CreatePipe()
CreateFileMapping()
MapViewOfFile()

SetFileSecurity()

InitlializeSecurityDescriptor()
SetSecurityDescriptorGroup()

Unix

fork()
exit()
wait()

open()
read()
write()
close()

ioctl()
read()
write()

getpid()
alarm()
sleep()

pipe()
shmget ()
mmap ()

chmod ()
umask ()
chown()

n MS-DOS - written to provide the most functionality in the least space

I Not divided into modules

I Although MS-DOS has some structure, its interfaces and levels of
functionality are not well separated

Department of Computer Science & Engineering (Cyber Security), NRCM

OPERATING SYSTEM (23CY403)

application program

P

resident system program

_—

MS-DOS device driversb

P

ROM BIOS device drivers

Fig: MS Dos structure

Layered Approach

e The operating system is divided into a number of layers (levels), each built on top
of lower layers. The bottom layer (layer 0), is the hardware; the highest (layer N)
is the user interface.

With modularity, layers are selected such that each uses functions (operations)
and services of only lower-level layers

layer N
user interface

layer 1

| layerQ
hardware

Fig: Layered System

Department of Computer Science & Engineering (Cyber Security), NRCM

OPERATING SYSTEM (23CY403)

(the users)

shells and commands
compilers and interpreters
system libraries

system-call interface to the kernel

signals terminal file system CPU scheduling
handling swapping block I/O page replacement

character 1/O system system demand paging

terminal drivers disk and tape drivers virtual memory

kernel interface to the hardware

terminal controllers device controllers memory controllers
terminals disks and tapes physical memory

Fig: UNIX system structure
Micro Kernel Sructure
Moves as much from the kernel into “user” space
Communication takes place between user modules using message passing
Benefits:

o Easier to extend a microkernel
o Easier to port the operating system to new architectures
o More reliable (less code is running in kernel mode)
o More secure
Detriments:
o Performance overhead of user space to kernel space communication

Virtual Machne

¢ A virtual machine takes the layered approach to its logical conclusion. It treats
hardware and the operating system kernel as though they were all hardware

e Avirtual machine provides an interface identical to the underlying bare hardware

Department of Computer Science & Engineering (Cyber Security), NRCM

OPERATING SYSTEM (23CY403)

e The operating system host creates the illusion that a process has its own processor
and (virtual memory)

e Each guest provided with a (virtual) copy of underlying computer

Process Management
e An operating system executes a variety of programs:

o Batch system - jobs
o Time-shared systems - user programs or tasks

Textbook uses the terms job and process almost interchangeably

Process - a program in execution; process execution must progress in sequential
fashion

A process includes:

o program counter
o stack

o data section

Department of Computer Science & Engineering (Cyber Security), NRCM

OPERATING SYSTEM (23CY403)

Process State
As a process executes, it changes state

o new: The process is being created

o running: Instructions are being executed

o waiting: The process is waiting for some event to occur
ready: The process is waiting to be assigned to a processor

terminated: The process has finished execution

admitted interrupt terminated

scheduler dispatch

IO or event completion I/O or event wait

Fig: Process Transition Diagram
PCB: Process Control Block
Information associated with each process
e Process state
Program counter
CPU registers
CPU scheduling information
Memory-management information
Accounting information

I/0O status information

Department of Computer Science & Engineering (Cyber Security), NRCM

OPERATING SYSTEM (23CY403)

process state

process number

program counter

registers

memory limits

list of open files

Fig: PCB
Context Switching

¢ When CPU switches to another process, the system must save the state of the
old process and load the saved state for the new process via a context switch

Context of a process represented in the PCB
Context-switch time is overhead; the system does no useful work while switching
Time dependent on hardware support
Process Scheduling Queues
e Job queue - set of all processes in the system

Ready queue - set of all processes residing in main memory, ready and waiting
to execute

Device queues - set of processes waiting for an 1/0 device

Processes migrate among the various queues

Department of Computer Science & Engineering (Cyber Security), NRCM

OPERATING SYSTEM (23CY403)

ready queue » CPU 5
11O queue I/O request

time slice
expired

child ‘ fork a

@ child

interrupt | walt for an
occurs interrupt

Fig: Process Scheduling

process Py operaling system process P,

Interrupt or system call
executing I

4 A
3 [save state into PCB, J 1
idie

|reload state from PCB, | 1 ! J

ridle interrupt or system call

| save state into PCB, |

executing

Ireload state from PCB|

executing | ’¥
‘i'

Schedulers

e Long-term scheduler (or job scheduler) - selects which processes should be
brought into the ready queue

Department of Computer Science & Engineering (Cyber Security), NRCM

OPERATING SYSTEM (23CY403)

Short-term scheduler (or CPU scheduler) - selects which process should be
executed next and allocates CPU

Short-term scheduler is invoked very frequently (milliseconds) = (must be fast)

Long-term scheduler is invoked very infrequently (seconds, minutes) = (may be
slow)

The long-term scheduler controls the degree of multiprogramming
Processes can be described as either:

o 1/O-bound process - spends more time doing I/O than computations,
many short CPU bursts

CPU-bound process - spends more time doing computations; few very
long CPU bursts

Process Creation

Parent process create children processes, which, in turn create other
processes, forming a tree of processes

Generally, process identified and managed via a process identifier (pid)

Resource sharing
o Parent and children share all resources
o Children share subset of parent’s resources
o Parent and child share no resources
Execution
o Parent and children execute concurrently
o Parent waits until children terminate
Address space
o Child duplicate of parent
o Child has a program loaded into it
UNIX examples

o fork system call creates new process

Department of Computer Science & Engineering (Cyber Security), NRCM

OPERATING SYSTEM (23CY403)

o exec system call used after a fork to replace the process’ memory space
with a new program

PR—
arent & . resumes
= o walit I

. / b

(.f.or k(;)

%’ < - < .

o

Process Termination
e Process executes last statement and asks the operating system to delete it (exit)
o Output data from child to parent (via wait)
o Process’ resources are deallocated by operating system
e Parent may terminate execution of children processes (abort)
o Child has exceeded allocated resources
o Task assigned to child is no longer required

o If parentis exiting

= Some operating system do not allow child to continue if its parent
terminates

¢ All children terminated - cascading termination
Inter Process Communication
Processes within a system may be independent or cooperating

Cooperating process can affect or be affected by other processes, including sharing
data

Reasons for cooperating processes:

o Information sharing
o Computation speedup

o Modularity

Department of Computer Science & Engineering (Cyber Security), NRCM

OPERATING SYSTEM (23CY403)

o Convenience
e Cooperating processes need interprocess communication (IPC)
e Two models of IPC

o Shared memory

o Message passing

process A process A

shared

process B process B

kernel kernel

(a) (b)
Fig:a- Message Passing, b- Shared Memory

Cooperating Process

Independent process cannot affect or be affected by the execution of another
process

Cooperating process can affect or be affected by the execution of another process

Advantages of process cooperation

o Information sharing
o Computation speed-up

o Modularity

Department of Computer Science & Engineering (Cyber Security), NRCM

OPERATING SYSTEM (23CY403)

o Convenience

Producer Consumer Problem

e Paradigm for cooperating processes, producer process produces information that is
consumed by a consumer process

o unbounded-buffer places no practical limit on the size of the buffer

o bounded-buffer assumes that there is a fixed buffer size

while (true) {
/* Produce an item */

while (((in = (in + 1) % BUFFER SIZE count) == out)
; /* do nothing -- no free buffers */
buffer[in] = item;

in=(in + 1) % BUFFER SIZE;

Fig: Producer Process

while (true) {
while (in == out)
; // do nothing -- nothing to consume
// remove an item from the buffer
item = buffer[out];

out = (out + 1) % BUFFER SIZE;

IPC-Message Passing

e Mechanism for processes to communicate and to synchronize their actions

Message system - processes communicate with each other without resorting to
shared variables

IPC facility provides two operations:

Department of Computer Science & Engineering (Cyber Security), NRCM

OPERATING SYSTEM (23CY403)

o send(message) - message size fixed or variable
o receive(message)
e |f P and Q wish to communicate, they need to:
o establish a communication link between them
o exchange messages via send/receive
e |Implementation of communication link
o physical (e.g., shared memory, hardware bus)
o logical (e.g., logical properties)
Direct Communication
¢ Processes must name each other explicitly:
o send (P, message) - send a message to process P
o receive(Q, message) - receive a message from process Q
e Properties of communication link
o Links are established automatically
o Alink is associated with exactly one pair of communicating processes
o Between each pair there exists exactly one link
e The link may be unidirectional, but is usually bi-directional

Indirect Communication

e Messages are directed and received from mailboxes (also referred to as ports)
o Each mailbox has a unique id
o Processes can communicate only if they share a mailbox
e Properties of communication link
o Link established only if processes share a common mailbox
o Alink may be associated with many processes

o Each pair of processes may share several communication links

Department of Computer Science & Engineering (Cyber Security), NRCM

OPERATING SYSTEM (23CY403)

Link may be unidirectional or bi-directional
Operations

= create a new mailbox
» send and receive messages through mailbox
= destroy a mailbox

Primitives are defined as:

" send(A, message) - send a message to mailbox A
receive(A, message) - receive a message from mailbox A
Allow a link to be associated with at most two processes

Allow only one process at a time to execute a receive operation

Allow the system to select arbitrarily the receiver. Sender is notified who
the receiver was.

Synchronisation
e Message passing may be either blocking or non-blocking
e Blocking is considered synchronous
o Blocking send has the sender block until the message is received
o Blocking receive has the receiver block until a message is available
e Non-blocking is considered asynchronous
o Non-blocking send has the sender send the message and continue
o Non-blocking receive has the receiver receive a valid message or null
Buffering
Queue of messages attached to the link; implemented in one of three ways

1. Zero capacity - 0 messages
Sender must wait for receiver (rendezvous)

Bounded capacity - finite length of n messages
Sender must wait if link full

Department of Computer Science & Engineering (Cyber Security), NRCM

OPERATING SYSTEM (23CY403)

Unbounded capacity - infinite length
Sender never waits

Thread

e A thread is a flow of execution through the process code, with its own
program counter, system registers and stack.

e A thread is also called a light weight process. Threads provide a way to
improve application performance through parallelism.

e Threads represent a software approach to improving performance of
operating system by reducing the overhead thread is equivalent to a classical
process.

code code data files

registers registers |[| registers ||| registers

stack stack stack

thread —> ; ; ;4—- thread

single-threaded process multithreaded process
Fig: Single threaded vs multithreaded process
Benefits
Responsiveness
Resource Sharing
Economy

Scalability

Department of Computer Science & Engineering (Cyber Security), NRCM

OPERATING SYSTEM (23CY403)

User Threads
e Thread management done by user-level threads library
e Three primary thread libraries:
o POSIX Pthreads
o Win32 threads

o Java threads

Kernel Thread
e Supported by the Kernel
e Examples
o Windows XP/2000
o Solaris
o Linux
o Tru64 UNIX
o MacOSX
Multithreading Models
e Many-to-One
o Many user-level threads mapped to single kernel thread
o Examples:
Solaris Green Threads

GNU Portable Threads

Department of Computer Science & Engineering (Cyber Security), NRCM

OPERATING SYSTEM (23CY403)

o— user thread

P
4 \
\ k | «—kemel thread
"/

¢ One-to-One
Each user-level thread maps to kernel thread
Examples
Windows NT/XP/2000
Linux
Solaris 9 and later
é ; <«— user thread

C

B
\k/ é 6 <«—kernel thread

e Many-to-Many

o Allows many user level threads to be mapped to many kernel threads

o Allows the operating system to create a sufficient number of kernel
threads

Solaris prior to version 9

Windows NT/2000 with the ThreadFiber package

Department of Computer Science & Engineering (Cyber Security), NRCM

OPERATING SYSTEM (23CY403)

¢ +=—user thread

v S
| k] | k) <«—kernelthread
X / \ _/'

S

Thread Library

e Thread library provides programmer with API for creating and managing threads
e Two primary ways of implementing
o Library entirely in user space
o Kernel-level library supported by the OS
Pthreads
e May be provided either as user-level or kernel-level
A POSIX standard (IEEE 1003.1c) API for thread creation and synchronization

API specifies behavior of the thread library, implementation is up to development
of the library

Common in UNIX operating systems (Solaris, Linux, Mac OS X)
Java Threads
e Java threads are managed by the JVM
e Typically implemented using the threads model provided by underlying OS
e Java threads may be created by:

o Extending Thread class

o Implementing the Runnable interface

Department of Computer Science & Engineering (Cyber Security), NRCM

OPERATING SYSTEM (23CY403)

Threading Issues
Semantics of fork() and exec() system calls
Thread cancellation of target thread
o Asynchronous or deferred
Signal handling
Thread pools
Thread-specific data
Scheduler activations
Thread Cancellation
e Terminating a thread before it has finished
e Two general approaches:

o Asynchronous cancellation terminates the target thread immediately

o Deferred cancellation allows the target thread to periodically check if it
should be cancelled

Thread Pools

e Create a number of threads in a pool where they await work

¢ Advantages:

o Usually slightly faster to service a request with an existing thread than
create a new thread

Allows the number of threads in the application(s) to be bound to the size
of the pool

Thread Scheduling
e Distinction between user-level and kernel-level threads

e Many-to-one and many-to-many models, thread library schedules user-level
threads to run on LWP

o Known as process-contention scope (PCS) since scheduling
competition is within the process

Department of Computer Science & Engineering (Cyber Security), NRCM

OPERATING SYSTEM (23CY403)

e Kernel thread scheduled onto available CPU is system-contention scope
(SCS) - competition among all threads in system

Difference between Process and Thread

Process

Process is heavy weight or resource
intensive.

Process switching needs interaction with
operating system.

In multiple processing environments each
process executes the same code but has its
own memory and file resources.

If one process is blocked then no other
process can execute until the first process is
unblocked.

Multiple processes without using threads use
more resources.

In multiple processes each process operates
independently of the others.

Process Scheduling

Thread

Thread is light weight taking lesser
resources than a process.

Thread switching does not need to
interact with operating system.

All threads can share same set of
open files, child processes.

While one thread is blocked and
waiting, second thread in the same
task can run.

Multiple threaded processes use
fewer resources.

One thread can read, write or change

another thread's data.

Maximum CPU utilization obtained with multiprogramming

CPU-I/O Burst Cycle - Process execution consists of a cycle of CPU execution

and I/0 wait

CPU burst distribution

Department of Computer Science & Engineering (Cyber Security), NRCM

OPERATING SYSTEM (23CY403)

load store
add store CPU burst
read from file

l wait for I/O ’ /O burst

store increment
index CPU burst
write to file

l wait for I/O ‘ 1/0O burst

load store
add store CPU burst

read from file

I wait for /O ’ 1/0O burst

Fig: CPU burst and I/0O burst
CPU Scheduler

Selects from among the processes in memory that are ready to execute, and
allocates the CPU to one of them

CPU scheduling decisions may take place when a process:
1. Switches from running to waiting state

2. Switches from running to ready state

3. Switches from waiting to ready

4. Terminates

Scheduling under 1 and 4 is nonpreemptive

e All other scheduling is preemptive

Dispatcher

Department of Computer Science & Engineering (Cyber Security), NRCM

OPERATING SYSTEM (23CY403)

e Dispatcher module gives control of the CPU to the process selected by the short-
term scheduler; this involves:

o switching context
o switching to user mode
o jumping to the proper location in the user program to restart that program

e Dispatch latency - time it takes for the dispatcher to stop one process and start
another running

CPU Scheduling Criteria
Max CPU utilization
Max throughput
Min turnaround time
Min waiting time
Min response time

CPU Scheduling Algorithms

A. First Come First Serve Scheduling
e Schedule the task first which arrives first
¢ Non preemptive In nature

B. Shortest Job First Scheduling

e Associate with each process the length of its next CPU burst. Use these
lengths to schedule the process with the shortest time

SJF is optimal - gives minimum average waiting time for a given set of
processes

The difficulty is knowing the length of the next CPU request
Priority Scheduling

e A priority number (integer) is associated with each process

Department of Computer Science & Engineering (Cyber Security), NRCM

OPERATING SYSTEM (23CY403)

The CPU is allocated to the process with the highest priority (smallest integer
= highest priority)

o Preemptive
o honpreemptive

SJF is a priority scheduling where priority is the predicted next CPU burst
time

Problem = Starvation - low priority processes may never execute
e Solution = Aging - as time progresses increase the priority of the process
Round Robin Scheduling

e Each process gets a small unit of CPU time (time quantum), usually 10-100
milliseconds. After this time has elapsed, the process is preempted and
added to the end of the ready queue.

If there are n processes in the ready queue and the time quantum is g, then
each process gets 1/n of the CPU time in chunks of at most g time units at
once. No process waits more than (n-1)g time units.

e Performance
o (large = FIFO

o @ small = q must be large with respect to context switch, otherwise
overhead is too high

Multilevel Queue Scheduling

¢ Ready queue is partitioned into separate queues:
foreground (interactive)
background (batch)

Each queue has its own scheduling algorithm

o foreground-RR

o background - FCFS

Department of Computer Science & Engineering (Cyber Security), NRCM

OPERATING SYSTEM (23CY403)

e Scheduling must be done between the queues

o Fixed priority scheduling; (i.e., serve all from foreground then from
background). Possibility of starvation.

Time slice - each queue gets a certain amount of CPU time which it
can schedule amongst its processes; i.e., 80% to foreground in RR

o 20% to background in FCFS
highest priority

— system processes

interactive processes

interactive editing processes

batch processes

) student processes

lowest priority

Multilevel Feedback Queue Scheduling

e A process can move between the various queues; aging can be implemented
this way

e Multilevel-feedback-queue scheduler defined by the following parameters:

o humber of queues

o scheduling algorithms for each queue
method used to determine when to upgrade a process
method used to determine when to demote a process

method used to determine which queue a process will enter when that
process needs service

Department of Computer Science & Engineering (Cyber Security), NRCM

OPERATING SYSTEM (23CY403)

MODULE-II

Process Synchronization
e Concurrent access to shared data may result in data inconsistency

e Maintaining data consistency requires mechanisms to ensure the orderly
execution of cooperating processes
Suppose that we wanted to provide a solution to the consumer-producer problem
that fills all the buffers. We can do so by having an integer count that keeps track
of the number of full buffers. Initially, count is set to 0. It is incremented by the
producer after it produces a new buffer and is decremented by the consumer
after it consumes a buffer.

Pseudocode for Producer Process Pseudocode for Consumer Process
while (true) { while (true) {

/* produce an item and put in while (count == 0)

nextProduced */ .
; /1 do nothing

while (count == BUFFER_SIZE)
nextConsumed = buffer[out];

; // do nothing out = (out + 1) %

buffer [in] = nextProduced; BUFFER_SIZE;
in = (in + 1) % BUFFER_SIZE; count--;

count++; /* consume the item in
nextConsumed

}

data concurrently and the outcome of the execution depends on the particular

order in which the access takes place, is called a race condition.

e count++ could be implemented as

register1 = count

Department of Computer Science & Engineering (Cyber Security), NRCM

OPERATING SYSTEM (23CY403)

register1 = register1 + 1

count = register1

e count-- could be implemented as

register2 = count
register2 = register2 - 1

count = register2
e Consider this execution interleaving with “count = 5” initially:

SO0: producer execute register1 = count {register1 = 5}

S1: producer execute register1 = register1 + 1 {register1 =6}
S2: consumer execute register2 = count {register2 = 5}

S3: consumer execute register2 = register2 - 1 {register2 =4}
S4: producer execute count = register1 {count =6}

S5: consumer execute count = register2 {count = 4}

Critical Section Problem
A section of code, common to n cooperating processes, in which the processes may be
accessing common variables.
A Critical Section Environment contains:
e Entry Section Code requesting entry into the critical section.
e Critical Section Code in which only one process can execute at any one time.
e EXxit Section The end of the critical section, releasing or allowing others in.

Remainder Section Rest of the code AFTER the critical se

Department of Computer Science & Engineering (Cyber Security), NRCM

OPERATING SYSTEM (23CY403)

do {

entry section

critical section
remainder section
} while (true);

General structure of a typical process A.
[

Consider a system consisting of n processes {P0O, P1, ..., Pn—-1}. Each process
has a segment of code, called a critical section, in which the process may be
changing common variables, updating a table, writing a file, and so on.

The important feature of the system is that, when one process is executing in its
critical section, no other process is allowed to execute in its critical section. That
is, no two processes are executing in their critical sections at the same time.

The critical-section problem is to design a protocol that the processes can use
to cooperate. Each process must request permission to enter its critical section.
The section of code implementing this

request is the entry section. The critical section may be followed by an exit
section. The remaining code is the remainder section.

Solution to Critical Section Problem

1. Mutual Exclusion - If process Piis executing in its critical section, then no other
processes can be executing in their critical sections

Progress - If no process is executing in its critical section and there exist some
processes that wish to enter their critical section, then the selection of the
processes that will enter the critical section next cannot be postponed indefinitely

Bounded Waiting - A bound must exist on the number of times that other
processes are allowed to enter their critical sections after a process has made a
request to enter its critical section and before that request is granted

¢ Assume that each process executes at a nonzero speed

¢ No assumption concerning relative speed of the N processes

Department of Computer Science & Engineering (Cyber Security), NRCM

OPERATING SYSTEM (23CY403)

Peterson’s Solution
Two process solution

Assume that the LOAD and STORE instructions are atomic; that is, cannot be
interrupted.

The two processes share two variables:

o intturn;
o Boolean flag[2]

The variable turn indicates whose turn it is to enter the critical section.

The flag array is used to indicate if a process is ready to enter the critical section.
flag[i] = true implies that process Pi is ready!

do {

flaglil = true;
turn = j;
while (flagljl && turn == j);

critical section

flag[i] = false;

remainder section

} while (true);

Hardware Synchronization
e Many systems provide hardware support for critical section code

e Uniprocessors - could disable interrupts

o Currently running code would execute without preemption
o Generally too inefficient on multiprocessor systems

= Operating systems using this not broadly scalable
e Modern machines provide special atomic hardware instructions

= Atomic = non-interruptable

Department of Computer Science & Engineering (Cyber Security), NRCM

OPERATING SYSTEM (23CY403)

o Either test memory word and set value
o Or swap contents of two memory words

Solution to Critical Section Problem using Lock

do{
acquire lock
critical section
release lock
remainder section
} while (TRUE);

TestAndndSet Instruction
boolean TestAndSet (boolean *target)
{
boolean rv = *target;
*target = TRUE;
return rv:
}
Solution using TestAndSet
e Shared boolean variable lock., initialized to false.
e Solution:
do{
while (TestAndSet (&lock))
; /1 do nothing
Il critical section
lock = FALSE;
/I remainder section

} while (TRUE);

Department of Computer Science & Engineering (Cyber Security), NRCM

OPERATING SYSTEM (23CY403)

Sawp Instruction
void Swap (boolean *a, boolean *b)
{
boolean temp = *a;
'ka = *b;
*b = temp:
}
Solution using Swap

e Shared Boolean variable lock initialized to FALSE; Each process has a local
Boolean variable key

e Solution:
do {
key = TRUE;
while (key == TRUE)

Swap (&lock, &key);

/I critical section
lock = FALSE;
/I remainder section
} while (TRUE);
Bounded-waiting Mutual Exclusion with TestandSet()
do{
waiting[i] = TRUE;
key = TRUE;

while (waiting[i] && key)

Department of Computer Science & Engineering (Cyber Security), NRCM

OPERATING SYSTEM (23CY403)

key = TestAndSet(&lock);
waiting[i] = FALSE;
// critical section
j=@+1)%n;
while ((j = i) && lwaiting[j])
j=G+1)%n;
if (j ==1)
lock = FALSE;

waiting[j] = FALSE;
/I remainder section
} while (TRUE);
Semaphore
Synchronization tool that does not require busy waiting
Semaphore S - integer variable
Two standard operations modify S: wait() and signal()
= Originally called P() and V()
Less complicated

Can only be accessed via two indivisible (atomic) operations

wait (S) { signal (S) {
while S<=0 St+;

;// no-op

e Counting semaphore - integer value can range over an unrestricted domain

Department of Computer Science & Engineering (Cyber Security), NRCM

OPERATING SYSTEM (23CY403)

Binary semaphore - integer value can range only between 0
and 1; can be simpler to implement

o Also known as mutex locks
Can implement a counting semaphore S as a binary semaphore
Provides mutual exclusion
Semaphore mutex; //initialized to 1
do {

wait (mutex);
/I Critical Section

signal (mutex);

/I remainder section
} while (TRUE);
Semaphore Implementation

e Must guarantee that no two processes can execute wait () and signal () on the
same semaphore at the same time

Thus, implementation becomes the critical section problem where the wait and
signal code are placed in the crtical section.

o Could now have busy waiting in critical section implementation
= But implementation code is short

= Little busy waiting if critical section rarely occupied

Note that applications may spend lots of time in critical sections and therefore
this is not a good solution.

With each semaphore there is an associated waiting queue. Each entry in a
waiting queue has two data items:

o value (of type integer)
o pointer to next record in the list

Two operations:

Department of Computer Science & Engineering (Cyber Security), NRCM

OPERATING SYSTEM (23CY403)

block - place the process invoking the operation on the appropriate
waiting queue.

wakeup - remove one of processes in the waiting queue and place it in
the ready queue.

e Implementation of wait:
wait(semaphore *S) {
S->value--;
if (S->value <0) {
add this process to S->list;

block();

}
e |Implementation of signal:
signal(semaphore *S){
S->value++;
if (S->value <=0) {
remove a process P from S->list;

wakeup(P);

}

Classical Problems of Synchronization
e Bounded-Buffer Problem
e Readers and Writers Problem

Dining-Philosophers Problem

Department of Computer Science & Engineering (Cyber Security), NRCM

OPERATING SYSTEM (23CY403)

Bounded-Buffer Problem

The pool consists of n buffers, each capable of holding one item. The mutex semaphore
provides mutual exclusion for accesses to the buffer pool and is initialized to the value
1. The empty and full semaphores count the number of empty and full buffers. The
semaphore empty is initialized to the value n; the semaphore full is initialized to the
value O.

e N buffers, each can hold one item
Semaphore mutex initialized to the value 1
Semaphore full initialized to the value 0
Semaphore empty initialized to the value N.
The structure of the producer process
do {

/l produce an item in nextp
wait (empty);
wait (mutex);
// add the item to the buffer
signal (mutex);
signal (full);
} while (TRUE);
e The structure of the consumer process
do {
wait (full);
wait (mutex);
/I remove an item from buffer to nextc
signal (mutex);

signal (empty);

Department of Computer Science & Engineering (Cyber Security), NRCM

OPERATING SYSTEM (23CY403)

// consume the item in nextc
} while (TRUE);
Readers-Writers Problem

Suppose that a database is to be shared among several concurrent processes. Some of
these processes may want only to read the database, whereas others may want to
update (that is, to read and write) the database. We distinguish between these two
types of processes by referring to the former as readers and to the latter as writers.
Obviously, if two readers access the shared data simultaneously, no adverse effects will
result. However, if a writer and some other process (either a reader or a writer) access
the database simultaneously,

chaos may ensue.

e A data setis shared among a number of concurrent processes
o Readers - only read the data set; they do not perform any updates
o Writers -can both read and write

Problem - allow multiple readers to read at the same time. Only one single
writer can access the shared data at the same time

Shared Data
o Data set
o Semaphore mutex initialized to 1
o Semaphore wrt initialized to 1
o Integer readcount initialized to 0
The structure of a writer process
do {

wait (wrt) ;

Department of Computer Science & Engineering (Cyber Security), NRCM

OPERATING SYSTEM (23CY403)

/I writing is performed
signal (wrt) ;
} while (TRUE);
The structure of a reader process
do {
wait (mutex) ;
readcount ++ ;
if (readcount == 1)
wait (wrt) ;

signal (mutex)

/I reading is performed
wait (mutex) ;
readcount - - ;
if (readcount == 0)
signal (wrt) ;
signal (mutex) ;

} while (TRUE);

Dining-Philosophers Problem
Consider five philosophers who spend their lives thinking and eating. The philosophers

share a circular table surrounded by five chairs, each belonging to one philosopher. In
the center of the table is a bowl of rice, and the table is laid with five single chopsticks).
When a philosopher thinks, she does not interact with her colleagues. From time to
time, a philosopher gets hungry and tries to pick up the two chopsticks that are closest
to her (the chopsticks that are between her and her left and right neighbors). A

philosopher may pick up only one chopstick at a time. Obviously, she cannot pick up a

Department of Computer Science & Engineering (Cyber Security), NRCM

OPERATING SYSTEM (23CY403)

chopstick that is already in the hand of a neighbor. When a hungry philosopher has both
her chopsticks at the same time, she eats without releasing the chopsticks. When she is
finished eating, she puts down both chopsticks and starts thinking again.

e Shared data

o Bowl of rice (data set)
o Semaphore chopstick [5] initialized to 1
e The structure of Philosopher i:
do {
wait (chopstick(i]);
wait (chopStick[(i + 1) % 5]);

I eat
signal (chopstick]i]);
signal (chopstick[(i + 1) % 5]);

/1 think
} while (TRUE);

Monitors
e A high-level abstraction that provides a convenient and effective mechanism for

process synchronization

e Only one process may be active within the monitor at a time
monitor monitor-name

{

/! shared variable declarations

procedure P1 (..) { ... }

procedure Pn (...) {....}

Initialization code (....) { .. }

Department of Computer Science & Engineering (Cyber Security), NRCM

OPERATING SYSTEM (23CY403)

}

Schematic view of a Monitor

entry quaue /\/Q/’
T =

/
l/]
|
lI }
|\\ : -] '

Initialization
coda

e Two operations on a condition variable:

Condition Variables
e condition x, y;

o Xx.wait () - a process that invokes the operation is suspended.
= Xx.signal () - resumes one of processes (if any) that invoked x.wait ()
Monitor with Condition Variables

entry queue /3/’
o K

a2 . PR

y i, %

/ shareddata ™\ .(

X-sfloflsfl. ;
X, y conditions \. /¥ LA \

queues associated with |

operations

N_ initialization //

\\‘fodem o -

Department of Computer Science & Engineering (Cyber Security), NRCM

OPERATING SYSTEM (23CY403)

Monitor Implementation Using Semaphores

e Variables
semaphore mutex; // (initially
semaphore next; // (initially
int next-count = 0;

e Each procedure F will be replaced by

wait(mutex);

body of F;

if (next_count > 0)
signal(next)
else
signal(mutex);
e Mutual exclusion within a monitor is ensured.
Monitor Implementation
For each condition variable x, we have:
semaphore x_sem; // (initially = 0)
int x-count = 0;

The operation x.wait can be implemented as:

X-count++;
if (next_count > 0)
signal(next);
else
signal(mutex);
wait(x_sem);
x-count--;

The operation x.signal can be implemented as:

if (x-count > 0) {

Department of Computer Science & Engineering (Cyber Security), NRCM

OPERATING SYSTEM (23CY403)

next_count++;
signal(x_sem);
wait(next);

next_count--;

Deadlock

e A set of blocked processes each holding a resource and waiting to acquire a
resource held by another process in the set

e Example
o System has 2 disk drives
o P1and P2 each hold one disk drive and each needs another one
e Example
o semaphores A and B, initialized to 1
Po P4
wait (A); wait(B)
wait (B); wait(A)
System Model

e Resource types R1, R, . . ., Rm (CPU cycles, memory space, I/O devices)
e Each resource type Ri has Wi instances.
e Each process utilizes a resource as follows:

o request
o use

o release

Department of Computer Science & Engineering (Cyber Security), NRCM

OPERATING SYSTEM (23CY403)

Deadlock Characterization

e Mutual exclusion: only one process at a time can use a resource

e Hold and wait: a process holding at least one resource is waiting to acquire

additional resources held by other processes

No preemption: a resource can be released only voluntarily by the process

holding it, after that process has completed its task

Circular wait: there exists a set {Po, P1, .., Po} of waiting processes such that
Pois waiting for a resource that is held by P41, P1is waiting for a resource that is
held by P2, ..., Pn1 is waiting for a resource that is held by Pn, and Po is waiting

for a resource that is held by Po.
Resource Allocation Graph

A set of vertices V and a set of edges E.

V is partitioned into two types:

o P={P1, P2, .., Pn}, the set consisting of all the processes in the system
o R={R1, Rz, .., Rm}, the set consisting of all resource types in the system

request edge - directed edge P1— R;

assignment edge - directed edge Rj — P;

Process .
Resource Type with 4 instances-

Pi requests instance of R;

Department of Computer Science & Engineering (Cyber Security), NRCM

OPERATING SYSTEM (23CY403)

R;

e Pjis holding an instance of R;

R, R,

Fig: RAG Fig: RAG with a deadlock
e If graph contains no cycles = no deadlock

e If graph contains a cycle =

o if only one instance per resource type, then deadlock
o if several instances per resource type, possibility of deadlock

Methods for Handling Deadlock
e Ensure that the system will never enter a deadlock state
e Allow the system to enter a deadlock state and then recover

¢ Ignore the problem and pretend that deadlocks never occur in the system; used
by most operating systems, including UNIX

Deadlock Prevention

e Mutual Exclusion - not required for sharable resources; must hold for
nonsharable resources

Department of Computer Science & Engineering (Cyber Security), NRCM

OPERATING SYSTEM (23CY403)

e Hold and Wait - must guarantee that whenever a process requests a resource,
it does not hold any other resources

o Require process to request and be allocated all its resources before it
begins execution, or allow process to request resources only when the
process has none

o Low resource utilization; starvation possible
e No Preemption -

o If a process that is holding some resources requests another resource that
cannot be immediately allocated to it, then all resources currently being
held are released

Preempted resources are added to the list of resources for which the
process is waiting

Process will be restarted only when it can regain its old resources, as well
as the new ones that it is requesting

e Circular Wait - impose a total ordering of all resource types, and require that
each process requests resources in an increasing order of enumeration

Deadlock Avoidance
Requires that the system has some additional a priori information available

Simplest and most useful model requires that each process declare the
maximum number of resources of each type that it may need

The deadlock-avoidance algorithm dynamically examines the resource-allocation
state to ensure that there can never be a circular-wait condition.

Resource-allocation state is defined by the number of available and allocated
resources, and the maximum demands of the processes

Safe state

e When a process requests an available resource, system must decide if
immediate allocation leaves the system in a safe state

e System is in safe state if there exists a sequence <P1, P2, ..., P> of ALL the
processes is the systems such that for each Pi, the resources that Pi can still

Department of Computer Science & Engineering (Cyber Security), NRCM

OPERATING SYSTEM (23CY403)

request can be satisfied by currently available resources + resources held by all
the Pj, with j <i
e Thatis:

o If Piresource needs are not immediately available, then P; can wait until all
Pj have finished

When P; is finished, Pican obtain needed resources, execute, return
allocated resources, and terminate

When Pjterminates, P;+1 can obtain its needed resources, and so on

n If asystem is in safe state = no deadlocks
n If asystem is in unsafe state = possibility of deadlock

n Avoidance = ensure that a system will never enter an unsafe
state.

deadlock

Deadlock Avoidance Algorithm

e Single instance of a resource type
o Use aresource-allocation graph
e Multiple instances of a resource type

o Use the banker’s algorithm

Department of Computer Science & Engineering (Cyber Security), NRCM

OPERATING SYSTEM (23CY403)

RAG Scheme

o Claim edge Pi— Rjindicated that process P;may request resource R;;
represented by a dashed line

Claim edge converts to request edge when a process requests a resource

Request edge converted to an assignment edge when the resource is allocated
to the process

When a resource is released by a process, assignment edge reconverts to a
claim edge

Resources must be claimed a priori in the system

R

Banker’s Algorithm
Assumptions
e Multiple instances
e Each process must a priori claim maximum use
e When a process requests a resource it may have to wait

e When a process gets all its resources it must return them in a finite amount of
time

Data Structure for Bankers’ Algorithm
Let n = number of processes, and m = number of resources types.

e Available: Vector of length m. If available [j] = k, there are k instances of
resource type Rj available

e Max: n x m matrix. If Max [i,j] = k, then process P;may request at most k
instances of resource type R;

Department of Computer Science & Engineering (Cyber Security), NRCM

OPERATING SYSTEM (23CY403)

Allocation: n x m matrix. If Allocation][i,j] = k then Piis currently allocated k
instances of R;

Need: n x m matrix. If Need[i,j] =k, then Pi may need k more instances of R;to
complete its task

Need [i,j] = Max]i,j] - Allocation [i,j]
Safety Algorithm
1. Let Work and Finish be vectors of length m and n, respectively. Initialize:
Work = Available
Finish [i] = false fori=0, 1, .., n- 1
2. Find and i such that both:
(a) Finish [i] = false
(b) Need; < Work
If no such i exists, go to step 4

3. Work =Work + Allocation;
Finish[i] = true
go to step 2

4. If Finish [i] == true for all i, then the system is in a safe state
Resource Request Algorithm

Request = request vector for process Pi. If Request;[j] = k then process P; wants k
instances of resource type R;

1. If Requesti < Needi go to step 2. Otherwise, raise error condition, since process
has exceeded its maximum claim

2. If Request; < Available, go to step 3. Otherwise Pimust wait, since resources
are not available

3. Pretend to allocate requested resources to Pi by modifying the state as follows:
Available = Available - Request;
Allocation; = Allocation; + Request;;
Need; = Need; - Request;;
e |If safe = the resources are allocated to Pi

e |f unsafe = Pi must wait, and the old resource-allocation state is
restored

Department of Computer Science & Engineering (Cyber Security), NRCM

OPERATING SYSTEM (23CY403)

Deadlock Detection
e Allow system to enter deadlock state
e Detection algorithm
e Recovery scheme
Recovery from Deadlock
A. Process Termination
e Abort all deadlocked processes
e Abort one process at a time until the deadlock cycle is eliminated
¢ In which order should we choose to abort?

o Priority of the process
o How long process has computed, and how much longer to completion
o Resources the process has used
o Resources process needs to complete
o How many processes will need to be terminated
B. Resource Preemption

e Selecting a victim - minimize cost
¢ Rollback - return to some safe state, restart process for that state

e Starvation - same process may always be picked as victim, include
number of rollback in cost factor

Memory Management

e Program must be brought (from disk) into memory and placed within a process
for it to be run

Main memory and registers are only storage CPU can access directly
Register access in one CPU clock (or less)

Main memory can take many cycles

Cache sits between main memory and CPU registers

Protection of memory required to ensure correct operation

A pair of base and limit registers define the logical address space

Department of Computer Science & Engineering (Cyber Security), NRCM

OPERATING SYSTEM (23CY403)

Logical vs Physical Address Space

e The concept of a logical address space that is bound to a separate physical
address space is central to proper memory management

o Logical address - generated by the CPU; also referred to as virtual
address

o Physical address - address seen by the memory unit

Logical and physical addresses are the same in compile-time and load-time
address-binding schemes; logical (virtual) and physical addresses differ in
execution-time address-binding scheme

Address Binding

e Address binding of instructions and data to memory addresses can happen at
three different stages

o Compile time: If memory location known a priori, absolute code can be
generated; must recompile code if starting location changes

Load time: Must generate relocatable code if memory location is not
known at compile time

Execution time: Binding delayed until run time if the process can be
moved during its execution from one memory segment to another. Need
hardware support for address maps (e.g., base and limit registers)

Memory Management Unit
e Hardware device that maps virtual to physical address

In MMU scheme, the value in the relocation register is added to every address
generated by a user process at the time it is sent to memory

The user program deals with logical addresses; it never sees the real physical
addresses

Dynamic Loading
¢ Routine is not loaded until it is called

e Better memory-space utilization; unused routine is never loaded

Department of Computer Science & Engineering (Cyber Security), NRCM

OPERATING SYSTEM (23CY403)

Useful when large amounts of code are needed to handle infrequently occurring
cases

No special support from the operating system is required implemented through
program design

Dynamic Linking
¢ Linking postponed until execution time

Small piece of code, stub, used to locate the appropriate memory-resident library
routine

Stub replaces itself with the address of the routine, and executes the routine
Operating system needed to check if routine is in processes’ memory address
Dynamic linking is particularly useful for libraries
e System also known as shared libraries
Swapping

e A process can be swapped temporarily out of memory to a backing store, and
then brought back into memory for continued execution

Backing store - fast disk large enough to accommodate copies of all memory
images for all users; must provide direct access to these memory images

Roll out, roll in - swapping variant used for priority-based scheduling
algorithms; lower-priority process is swapped out so higher-priority process can
be loaded and executed

Major part of swap time is transfer time; total transfer time is directly proportional
to the amount of memory swapped

Modified versions of swapping are found on many systems (i.e., UNIX, Linux,
and Windows)

System maintains a ready queue of ready-to-run processes which have memory
images on disk

Department of Computer Science & Engineering (Cyber Security), NRCM

OPERATING SYSTEM (23CY403)

T e
operating \»—____.-/

system

process P,

process P,

g

user — ,’)

space backing store

main memory
Contiguous Allocation
e Main memory usually into two partitions:

o Resident operating system, usually held in low memory with interrupt
vector

o User processes then held in high memory

e Relocation registers used to protect user processes from each other, and from
changing operating-system code and data

o Base register contains value of smallest physical address

o Limit register contains range of logical addresses - each logical address
must be less than the limit register

o MMU maps logical address dynamically
e Multiple-partition allocation

o Hole - block of available memory; holes of various size are scattered
throughout memory

o When a process arrives, it is allocated memory from a hole large enough
to accommodate it

Operating system maintains information about:
a) allocated partitions b) free partitions (hole)

Department of Computer Science & Engineering (Cyber Security), NRCM

OPERATING SYSTEM (23CY403)

Dynamic Storage Allocation Problem
o First-fit: Allocate the first hole that is big enough

Best-fit: Allocate the smallest hole that is big enough; must search entire list,
unless ordered by size

o Produces the smallest leftover hole

Worst-fit: Allocate the largest hole; must also search entire list

o Produces the largest leftover hole

Fragmentation

e External Fragmentation - total memory space exists to satisfy a request, but it
is not contiguous

Internal Fragmentation - allocated memory may be slightly larger than
requested memory; this size difference is memory internal to a partition, but not
being used

Reduce external fragmentation by compaction

o Shuffle memory contents to place all free memory together in one large
block

Compaction is possible only if relocation is dynamic, and is done at
execution time

I/O problem

= Latch job in memory while it is involved in 1/0O
= Do I/O only into OS buffers
Paging

e Logical address space of a process can be noncontiguous; process is allocated
physical memory whenever the latter is available

Divide physical memory into fixed-sized blocks called frames (size is power of 2,
between 512 bytes and 8,192 bytes)

Divide logical memory into blocks of same size called pages

Keep track of all free frames

Department of Computer Science & Engineering (Cyber Security), NRCM

OPERATING SYSTEM (23CY403)

To run a program of size n pages, need to find n free frames and load program
Set up a page table to translate logical to physical addresses

Internal fragmentation

Address generated by CPU is divided into:

o Page number (p) - used as an index into a page table which contains
base address of each page in physical memory

Page offset (d) - combined with base address to define the physical
memory address that is sent to the memory unit

logical physical
address address 10000 ...

l

_P\d‘

physical
memory

page table
Implementation of Page table
Page table is kept in main memory
Page-table base register (PTBR) points to the page table
Page-table length register (PRLR) indicates size of the page table

In this scheme every data/instruction access requires two memory accesses.
One for the page table and one for the data/instruction.

Department of Computer Science & Engineering (Cyber Security), NRCM

OPERATING SYSTEM (23CY403)

e The two memory access problem can be solved by the use of a special fast-
lookup hardware cache called associative memory or translation look-aside
buffers (TLBS)

e Some TLBs store address-space identifiers (ASIDs) in each TLB entry -
uniquely identifies each process to provide address-space protection for that
process

Paging with TLB
logical

address
—'l p | d l

page frame
number number

TLB hit physical

é i addraess

CrTa—

TLB

TLB miss

’ f

physical
memory

page table
Memory Protection
e Memory protection implemented by associating protection bit with each frame

e Valid-invalid bit attached to each entry in the page table:

o ‘“valid” indicates that the associated page is in the process’ logical address
space, and is thus a legal page

o “invalid” indicates that the page is not in the process’ logical address
space

Shared Pages

e Shared code

Department of Computer Science & Engineering (Cyber Security), NRCM

OPERATING SYSTEM (23CY403)

One copy of read-only (reentrant) code shared among processes (i.e., text
editors, compilers, window systems).

Shared code must appear in same location in the logical address space of
all processes

e Private code and data

o Each process keeps a separate copy of the code and data

o The pages for the private code and data can appear anywhere in the
logical address space

Structure of Page table
Hierarchical Paging
e Break up the logical address space into multiple page tables

e A simple technique is a two-level page table

outer page
table .

L]
.

900

page of
page table

page table
memory

Department of Computer Science & Engineering (Cyber Security), NRCM

OPERATING SYSTEM (23CY403)

Hashed Page Tables

e The virtual page number is hashed into a page table
o This page table contains a chain of elements hashing to the same location
e Virtual page numbers are compared in this chain searching for a match

o If a match is found, the corresponding physical frame is extracted

physical |
logical address I address |

[p [d] [r [d F—

3

;//‘hash\\\ N { B I I | | — physica
\function /™ > |9]8] Pl ’|L_] memory
N

hashtabh
Inverted Page Tables
e One entry for each real page of memory

Entry consists of the virtual address of the page stored in that real memory
location, with information about the process that owns that page

Decreases memory needed to store each page table, but increases time needed
to search the table when a page reference occurs

Use hash table to limit the search to one — or at most a few — page-table
entries

Department of Computer Science & Engineering (Cyber Security), NRCM

OPERATING SYSTEM (23CY403)

logical

physical

address l address
‘ ' hysical
—pid| p [d | | k % — ’ Fr)neymory

search l

page table

Segmentation
e Memory-management scheme that supports user view of memory
e A program is a collection of segments

o A segment is a logical unit such as: main program, procedure, function,
method, object, local variables, global variables, common block, stack,
symbol table, arrays

Logical address consists of a two tuple:
= <segment-number, offset>,

Segment table - maps two-dimensional physical addresses; each table entry
has:

o base - contains the starting physical address where the segments reside
in memory

o limit - specifies the length of the segment

Segment-table base register (STBR) points to the segment table’s location in
memory

Segment-table length register (STLR) indicates number of segments used by a
program;

e segment number s is legal if s < STLR

Protection

Department of Computer Science & Engineering (Cyber Security), NRCM

OPERATING SYSTEM (23CY403)

o With each entry in segment table associate:
= validation bit = 0 = illegal segment
= read/write/execute privileges
Protection bits associated with segments; code sharing occurs at segment level

Since segments vary in length, memory allocation is a dynamic storage-
allocation problem

A segmentation example is shown in the following diagram

-

fimit

segment
table

trap: addressing error physical memory

Virtual Memory Management
e Virtual memory - separation of user logical memory from physical memory.

o Only part of the program needs to be in memory for execution

o Logical address space can therefore be much larger than physical
address space

o Allows address spaces to be shared by several processes
o Allows for more efficient process creation

¢ Virtual memory can be implemented via:
o Demand paging

o Demand segmentation

Department of Computer Science & Engineering (Cyber Security), NRCM

OPERATING SYSTEM (23CY403)

Demand Paging

Bring a page into memory only when it is needed

o Less /O needed
o Less memory needed
o Faster response

o More users
Page is needed = reference to it
o invalid reference = abort
o not-in-memory = bring to memory
Lazy swapper - never swaps a page into memory unless page will be needed
o Swapper that deals with pages is a pager

With each page table entry a valid-invalid bit is associated
(v = in-memory, i = not-in-memory)

Initially valid-invalid bit is set to i on all entries

During address translation, if valid-invalid bit in page table entry is | = page
fault

Page Fault

If there is a reference to a page, first reference to that page will trap to operating
system: page fault

1. Operating system looks at another table to decide:
I Invalid reference = abort
I Just not in memory
. Get empty frame
. Swap page into frame
. Reset tables

. Set validation bit=v

Department of Computer Science & Engineering (Cyber Security), NRCM

OPERATING SYSTEM (23CY403)

6. Restart the instruction that caused the page fault

{",‘}\ page is on
./ backing store

operaling
system
reference

1)
S5

oad M [N—T
® rl]

restart page table Tl
Instruction

free frame r
| Nodctetobeainiell

X | ! A
&) | l st

reset page ‘ bring In
table | missing page

physical
memaory

Page Replacement

e Prevent over-allocation of memory by modifying page-fault service routine to
include page replacement

Use modify (dirty) bit to reduce overhead of page transfers - only modified pages
are written to disk

Page replacement completes separation between logical memory and physical
memory - large virtual memory can be provided on a smaller physical memory

Find the location of the desired page on disk

Find a free frame:
- If there is a free frame, use it
- If there is no free frame, use a page replacement algorithm to select a victim

frame

Bring the desired page into the (newly) free frame; update the page and frame
tables

Department of Computer Science & Engineering (Cyber Security), NRCM

OPERATING SYSTEM (23CY403)

e Restart the process

frame valid—invalid bit

N ¥ N
[E——

swap out

to invalid y{:'
®

victim ﬁ

reset page \

table for -

page table page @ SWaD \D
desired

page in

physical
memory

Page Replacement algorithm

FIFO (First-in-First-Out)
A FIFO replacement algorithm associates with each page the time when that
page was brought into memory.
When a page must be replaced, the oldest page is chosen.

Belady’s Anomaly: more frames — more page faults (for some page-
replacement algorithms, the page-fault rate may increase as the number of
allocated frames increases.)

Ex-

reference string

2 0 3 0 4 2 3 0 3

page frames

Department of Computer Science & Engineering (Cyber Security), NRCM

OPERATING SYSTEM (23CY403)

OPTIMAL PAGE REPLACEMENT
e Replace page that will not be used for longest period of time
o Ex-

reference string

n

3 0 4 2 3032120170

2
0
3

page frames

LRU (LEAST RECENTLY USED)

¢ LRU replacement associates with each page the time of that page’s last use.

When a page must be replaced, LRU chooses the page that has not been used
for the longest period of time.
o Ex-

reference string

7 0 1
7| [7] [7] |2
9! 191 19
1| [

page frames

Allocation of Frames

e Each process needs minimum number of pages

e Two major allocation schemes

o fixed allocation

o priority allocation

Equal allocation - For example, if there are 100 frames and 5 processes, give
each process 20 frames.

e Proportional allocation - Allocate according to the size of process

Department of Computer Science & Engineering (Cyber Security), NRCM

OPERATING SYSTEM (23CY403)

sij=size of process p;

SZZSi

m = totalnumber of frames

: S;
a; =allocation for p; = §X m

Global vs Local Allocation

e Global replacement - process selects a replacement frame from the set of all
frames; one process can take a frame from another

Local replacement - each process selects from only its own set of allocated
frames
Thrashing

e |f a process does not have “enough” pages, the page-fault rate is very high. This
leads to:

o low CPU utilization

o operating system thinks that it needs to increase the degree of
multiprogramming

o another process added to the system

e Thrashing = a process is busy swapping pages in and out

»

I >

| thrashing

CPU utilization

degree of multiprogramming

Department of Computer Science & Engineering (Cyber Security), NRCM

OPERATING SYSTEM (23CY403)

MODULE-III

File System
File

e Contiguous logical address space
e Types:
o Data
= numeric
= character
= binary
o Program
File Structure
None - sequence of words, bytes
Simple record structure
o Lines
o Fixed length
o Variable length
Complex Structures

o Formatted document
o Relocatable load file

Can simulate last two with first method by inserting appropriate control
characters

Who decides:

o Operating system

I Program

Department of Computer Science & Engineering (Cyber Security), NRCM

OPERATING SYSTEM (23CY403)

File Attribute
e Name - only information kept in human-readable form
Identifier - unique tag (number) identifies file within file system
Type - needed for systems that support different types
Location - pointer to file location on device
Size - current file size
Protection - controls who can do reading, writing, executing

Time, date, and user identification - data for protection, security, and usage
monitoring

Information about files are kept in the directory structure, which is maintained on
the disk

File Types

file type usual extension function

executable exe, com, bin ready-to-run machine-
or none language program

object obj, o compiled, machine
language, not linked

source code c, cc, java, pas, | source code in various
asm, a languages

batch bat, sh commands to the command
interpreter

text txt, doc textual data, documents

word processor| wp, tex, rtf, various word-processor
doc formats

library lib, a, so, dll libraries of routines for
programmers

print or view ps, pdf, jpg ASCII or binary file in a
format for printing or
viewing

archive arc, zip, tar related files grouped into
one file, sometimes com-
pressed, for archiving

or storage

multimedia mpeg, mov, rm, | binary file containing
mp3, avi audio or A/V information

Department of Computer Science & Engineering (Cyber Security), NRCM

OPERATING SYSTEM (23CY403)

File Operations

Create, Write, Read, Reposition within file, Delete, Truncate

Open(Fi) - search the directory structure on disk for entry Fi, and move the
content of entry to memory

Close (Fi) - move the content of entry Fi in memory to directory structure on disk

File Access Methods

n Sequential Access n Direct Access

read next read n

write next write n

reset position to n

no read after last write read next

(rewrite) write next

rewrite n

n = relative block number

sequential access implementation for direct access

reset cp =0

read next read cp;
cp=cp+1;

write next write ¢p;
cp=cp+1;

Department of Computer Science & Engineering (Cyber Security), NRCM

OPERATING SYSTEM (23CY403)

Directory Structure
. Single Level Directory
A single directory for all users
Naming problem

Grouping problem

directory | cat¥ bo a fest daE] malt cont

files
B. Two Level Directory
Separate directory for each user
Path name
Can have the same file name for different user
Efficient searching

No grouping capability

master file

directory ’ user 1 ‘ user 2} user 3 | user4

user file
directory

test data test data

bub LR L

Department of Computer Science & Engineering (Cyber Security), NRCM

OPERATING SYSTEM (23CY403)

C. Tree Structure Directory
e Efficient searching

e Grouping Capability

rootl spell I bin Iprogramsl

| stat | mail l dist find oounr hex order

o béooé/

copy reorder

\\O 586 J}J}

list spell

TETEY'

D. Acyclic Graph Directories

N

o .

e

Department of Computer Science & Engineering (Cyber Security), NRCM

OPERATING SYSTEM (23CY403)

e Have shared subdirectories and files

File Sharing

e Sharing of files on multi-user systems is desirable

Sharing may be done through a protection scheme
On distributed systems, files may be shared across a network
Network File System (NFS) is a common distributed file-sharing method
User IDs identify users, allowing permissions and protections to be per-user
Group IDs allow users to be in groups, permitting group access rights
Uses networking to allow file system access between systems

o Manually via programs like FTP
o Automatically, seamlessly using distributed file systems
o Semi automatically via the world wide web
Client-server model allows clients to mount remote file systems from servers
o Server can serve multiple clients
o Client and user-on-client identification is insecure or complicated
o NFS is standard UNIX client-server file sharing protocol
o CIFS is standard Windows protocol
o Standard operating system file calls are translated into remote calls

Distributed Information Systems (distributed naming services) such as LDAP,
DNS, NIS, Active Directory implement unified access to information needed for
remote computing

Remote file systems add new failure modes, due to network failure, server failure

Recovery from failure can involve state information about status of each remote
request

Stateless protocols such as NFS include all information in each request, allowing
easy recovery but less security

Department of Computer Science & Engineering (Cyber Security), NRCM

OPERATING SYSTEM (23CY403)

e Consistency semantics specify how multiple users are to access a shared file
simultaneously

o Similarto Ch 7 process synchronization algorithms

= Tend to be less complex due to disk I/0 and network latency (for
remote file systems

o Andrew File System (AFS) implemented complex remote file sharing
semantics

o Unix file system (UFS) implements:

= Writes to an open file visible immediately to other users of the same
open file

Sharing file pointer to allow multiple users to read and write
concurrently

o AFS has session semantics
= Writes only visible to sessions starting after the file is closed
File System Structure
e File structure

o Logical storage unit
o Collection of related information

n File system resides on secondary storage (disks)

n File system organized into layers

n File control block - storage structure consisting of information about a file

Department of Computer Science & Engineering (Cyber Security), NRCM

OPERATING SYSTEM (23CY403)

Layered File System

application programs

A 4
logical file system

v
file-organization module

!

basic file system

U

I/O control

v

devices

File Control Block

file permissions

file dates (create, access, write)

file owner, group, ACL

file size

file data blocks or pointers to file data blocks

File Allocation Methods
An allocation method refers to how disk blocks are allocated for files:
A. Contiguous Allocation

n Each file occupies a set of contiguous blocks on the disk

Department of Computer Science & Engineering (Cyber Security), NRCM

OPERATING SYSTEM (23CY403)

Simple - only starting location (block #) and length (number of blocks) are
required

Random access
Wasteful of space (dynamic storage-allocation problem)

Files cannot grow

. directory

count file start length

ol sl 2 13| | count 0 2
tr 14

f
41 sL1 el] 7[] mail 19
81 o 1101111 'fiSt 22
tr
12 J13[J14[J15[]

16117118 J19[]
mail
20[J21[J22[J23[]
24 J25[126 127]

list

28[J2o[J30[131[]
N

B. Linked Allocation

Each file is a linked list of disk blocks: blocks may be scattered anywhere on the
disk.

Simple - need only starting address
Free-space management system - no waste of space
No random access

Mapping

Department of Computer Science & Engineering (Cyber Security), NRCM

OPERATING SYSTEM (23CY403)

directory

file
jeep

start end
9 25

16 17[118119]
20 J21[2 123[]

24 Jes[Etee 127]
28[1ee[13o[I31[]

~

C. Indexed Allocation

AT
L.

o1 1=, 2 1 al]
4[] s 7]
8] o[J1o[X11[]
12[_J13[]14

directory

file
jeep

index block
19

20 J21[J22 23[3

24125 Je6[127]

28 J2o[30131 []
<= =

n Brings all pointers together into the index block.

n Need index table

n Random access

Department of Computer Science & Engineering (Cyber Security), NRCM

OPERATING SYSTEM (23CY403)

n Dynamic access without external fragmentation, but have overhead of index
block.

Secondary Storage Structure
Magnetic Disk
e Magnetic disks provide bulk of secondary storage of modern computers

o Drives rotate at 60 to 200 times per second
o Transfer rate is rate at which data flow between drive and computer

o Positioning time (random-access time) is time to move disk arm to
desired cylinder (seek time) and time for desired sector to rotate under

the disk head (rotational latency)
Head crash results from disk head making contact with the disk surface
= That’s bad
e Disks can be removable

e Drive attached to computer via I/O bus
o Busses vary, including EIDE, ATA, SATA, USB, Fibre Channel, SCSI

o Host controller in computer uses bus to talk to disk controller built into
drive or storage array

track t = spindle

— arm assembly

sector s

read-write
head

. |
cylinder ¢ —»
|

Y |

v‘..-—"

platter

)

rotation

Department of Computer Science & Engineering (Cyber Security), NRCM

OPERATING SYSTEM (23CY403)

Magnetic Tap

e Was early secondary-storage medium
Relatively permanent and holds large quantities of data
Access time slow
Random access ~1000 times slower than disk

Mainly used for backup, storage of infrequently-used data, transfer medium
between systems

Kept in spool and wound or rewound past read-write head
Once data under head, transfer rates comparable to disk
e 20-200GB typical storage

Disk Structure

Disk drives are addressed as large 1-dimensional arrays of logical blocks, where the

logical block is the smallest unit of transfer.

The 1-dimensional array of logical blocks is mapped into the sectors of the disk
sequentially.

o Sector 0 is the first sector of the first track on the outermost cylinder.

o Mapping proceeds in order through that track, then the rest of the tracks in
that cylinder, and then through the rest of the cylinders from outermost to
innermost.

Disk Scheduling

e The operating system is responsible for using hardware efficiently — for the disk
drives, this means having a fast access time and disk bandwidth.

e Access time has two major components

o Seek time is the time for the disk are to move the heads to the cylinder
containing the desired sector.

Department of Computer Science & Engineering (Cyber Security), NRCM

OPERATING SYSTEM (23CY403)

o Rotational latency is the additional time waiting for the disk to rotate the
desired sector to the disk head.

Minimize seek time
Seek time =~ seek distance

Disk bandwidth is the total number of bytes transferred, divided by the total time
between the first request for service and the completion of the last transfer.

Disk Scheduling Algorithms
FCFS

e This algorithm is intrinsically fair, but it generally does not provide the fastest

service.

queue = 98, 183, 37, 122, 14, 124, 65, 67
head starts at 53
0 14 37 536567 98 122124 183199
|
|

] | 1 1l ! 1 1 {

SSTF (Shortest Seek Time First)
n Selects the request with the minimum seek time from the current head position.

n SSTF scheduling is a form of SJF scheduling; may cause starvation of some

requests.

Department of Computer Science & Engineering (Cyber Security), NRCM

OPERATING SYSTEM (23CY403)

queue = 98, 183, 37, 122, 14, 124, 65, 67
head starts at 53
0 14 37 536567 08 122124 183199

| | | L1l | 1l | |
f |

The disk arm starts at one end of the disk, and moves toward the other end,
servicing requests until it gets to the other end of the disk, where the head
movement is reversed and servicing continues.

Sometimes called the elevator algorithm.

queue = 98, 183, 37, 122, 14, 124, 65, 67
head starts at 53

0 14 37 536567 98 122124 183199
| \
|

| | 1l I 1 | {

Department of Computer Science & Engineering (Cyber Security), NRCM

OPERATING SYSTEM (23CY403)

C-SCAN
e Provides a more uniform wait time than SCAN.

e The head moves from one end of the disk to the other. servicing requests as it
goes. When it reaches the other end, however, it immediately returns to the

beginning of the disk, without servicing any requests on the return trip.

e Treats the cylinders as a circular list that wraps around from the last cylinder to
the first one

queue = 98, 183, 37, 122, 14, 124, 65, 67
head starts at 53

0 14 37 536567 98 122124 183199
—+ | Ll A —

C-LOOK
e Version of C-SCAN

e Arm only goes as far as the last request in each direction, then reverses direction
immediately, without first going all the way to the end of the disk.

Department of Computer Science & Engineering (Cyber Security), NRCM

OPERATING SYSTEM (23CY403)

queue 98, 183, 37, 122, 14, 124, 65, 67
head starts at 53
0 14 37 536567 98 122124 183199

|

n"

|
o

Disk Management
e Low-level formatting, or physical formatting — Dividing a disk into sectors that

the disk controller can read and write.

To use a disk to hold files, the operating system still needs to record its own data
structures on the disk.

o Partition the disk into one or more groups of cylinders.
o Logical formatting or “making a file system”.
Boot block initializes system.
o The bootstrap is stored in ROM.
o Bootstrap loader program.

Methods such as sector sparing used to handle bad blocks.

The controller can be told to replace each bad sector logically with one of the
spare sectors. This scheme is known as sector sparing or forwarding.

Swap Space Management

e Swap-space — Virtual memory uses disk space as an extension of main
memory.

Department of Computer Science & Engineering (Cyber Security), NRCM

OPERATING SYSTEM (23CY403)

Swap-space can be carved out of the normal file system or, more commonly, it
can be in a separate disk partition.

A swap space can reside in one of two places: it can be carved out of the hormal
file system, or it can be in a separate disk partition.

If the swap space is simply a large file within the file system, normal file-system
routines can be used to create it, name it, and allocate its space.

Alternatively, swap space can be created in a separate raw partition. No file
system or directory structure is placed in this space.

A separate swap-space storage manager is used to allocate and deallocate the
blocks from the raw partition.

I/0 Systems
/O Hardware

¢ A device communicates with a computer system by sending signals over a cable
or even through the air. The device communicates with the machine via a

connection point, or port—for example, a serial port.
If devices share a common set of wires, the connection is called a bus.

A bus is a set of wires and a rigidly defined protocol that specifies a set of
messages that can be sent on the wires.

When device A has a cable that plugs into device B, and device B has a cable
that plugs into device C, and device C plugs into a port on the computer, this

arrangement is called a daisy chain. A daisy chain usually operates as a bus.

A PCI bus (the common PC system bus) connects the processor-memory
subsystem to fast devices, and an expansion bus connects relatively slow
devices, such as the keyboard and serial and USB ports.

Disks are connected together on a Small Computer System Interface (SCSI)

bus plugged into a SCSI controller.

Department of Computer Science & Engineering (Cyber Security), NRCM

OPERATING SYSTEM (23CY403)

e A controller is a collection of electronics that can operate a port, a bus, or a
device.

A serial-port controller is a simple device controller. It is a single chip (or portion
of a chip) in the computer that controls the signals on the wires of a serial port.

But the SCSI protocol is complex, the SCSI bus controller is often implemented
as a separate circuit board (or a host adapter) that plugs into the computer. It
typically contains a processor, microcode, and some private memory to enable it
to process the SCSI protocol messages.

processor

{ | cache |

graphics bridge/memory
controller controller

|

L_PCI bus

memory ‘ SCSI controller

expansion bus ,i]
interface | k9Y§Oa rd
| |

L —expansion bus——

parallel serial
port port

Polling

e Determines state of device
o command-ready
o busy
o Error

e Busy-wait cycle to wait for I/0 from device

Department of Computer Science & Engineering (Cyber Security), NRCM

OPERATING SYSTEM (23CY403)

Interrupt
e CPU Interrupt-request line triggered by 1/0O device
Interrupt handler receives interrupts
Maskable to ignore or delay some interrupts
Interrupt vector to dispatch interrupt to correct handler

Most CPUs have two interrupt request lines. One is the nonmaskable interrupt,

which is reserved for events such as unrecoverable memory errors.

The second interrupt line is maskable: it can be turned off by the CPU before the

execution of critical instruction sequences that must not be interrupted.
The maskable interrupt is used by device controllers to request service.

Interrupt mechanism also used for exceptions

1/0O controller

,
—» device drver initiates VO

initiates 11O

CPU executing checks for
interrupts betwean instructions
|

T

CPU receiving interrupt, 4 input ready, output
transfers contral o | complete, or error
interrupt handler generates interrupt signal

| s

interrupt handier
processes data,
returns from interrupt

I

CPU resumes
procassing of
interrupted task

Department of Computer Science & Engineering (Cyber Security), NRCM

OPERATING SYSTEM (23CY403)

Direct Memory Access
Used to avoid programmed 1/O for large data movement
Requires DMA controller

Bypasses CPU to transfer data directly between 1/O device and memory

1. device driver is told ‘
to transfer disk data
to buffer at address XI

5. DMA controller 2. device driver tells
transfers bytes to disk controller to
buffer X, increasing transfer C bytes
memory address from disk to buffer [ﬁ:he ‘
and decreasing C at address X @EE

untlC =0
DMA/bus/ R

.when C = 0, DMA ; = = Xl
interrupts CPU to signal interrupt 1 CPU memory bus —| memory | buffer |
controller

transfer completion

CPU

T PCl bus

1 3. disk controller initiates
|DE disk DMA transfer

controller 4. disk controller sends
each byte to DMA
controller

Application I/O Interface

e |/O system calls encapsulate device behaviors in generic classes
e Device-driver layer hides differences among 1/O controllers from kernel
e Devices vary in many dimensions

o Character-stream or block
o Sequential or random-access
Sharable or dedicated

Speed of operation

Department of Computer Science & Engineering (Cyber Security), NRCM

o read-write, read only, orwrite only

OPERATING SYSTEM (23CY403)

Kernel I/O Structure

software

hardware

kernel

kernel I/O subsystem

SCSI|
device
driver

SCS|
device
controller

keyboard
device
driver

keyboard
device
controller

mouse
device
driver

device
controller

PCI bus
device
driver

PCI bus
device
controller

floppy
device

driver

floppy
device

controller

ATAPI
device
driver

ATAPI
device
controller

A

A 4

A

&

A

A

y

3

SCS|
devices

i

keyboard

PCl| bus

4
ATAPI
devices

(disks,
tapes,
drives)

Characteristics of I/O Devices

aspect

variation

example

data-transfer mode

access method

transfer schedule

character
block

seqguential
random

synchronous
asynchronous

disk

CD-

terminal

modem

ROM

tape
keyboard

sharing

device speed

dedicated
sharable

latency
seek time
transfer rate

delay between operations

tape
keyboard

|/O direction

read only
write only
read-write

CD-

disk

ROM

graphics controller

Department of Computer Science & Engineering (Cyber Security), NRCM

OPERATING SYSTEM (23CY403)

Block and Character Devices
e Block devices include disk drives
o Commands include read, write, seek
o Raw /O or file-system access
o Memory-mapped file access possible
e Character devices include keyboards, mice, serial ports
o Commands include get, put
o Libraries layered on top allow line editing
Network Devices
e Varying enough from block and character to have own interface
e Unix and Windows NT/9x/2000 include socket interface
o Separates network protocol from network operation
o Includes select functionality
e Approaches vary widely (pipes, FIFOs, streams, queues, mailboxes)
Clock and Timers
e Provide current time, elapsed time, timer
e Programmable interval timer used for timings, periodic interrupts
Blocking and Non-blocking 1/O
e Blocking - process suspended until I/O completed
o Easy to use and understand
o Insufficient for some needs
e Nonblocking - I/0 call returns as much as available

o User interface, data copy (buffered 1/0)

o Implemented via multi-threading

Department of Computer Science & Engineering (Cyber Security), NRCM

OPERATING SYSTEM (23CY403)

o Returns quickly with count of bytes read or written
e Asynchronous - process runs while 1/0 executes
o Difficult to use
o 1/0O subsystem signals process when 1/0O completed
Kernel 1/0O Subsystem
e Scheduling

o Some I/O request ordering via per-device queue
o Some OSs try fairness

Buffering - store data in memory while transferring between devices
o To cope with device speed mismatch
o To cope with device transfer size mismatch
o To maintain “copy semantics”

Caching - fast memory holding copy of data
o Always just a copy
o Key to performance

Spooling - hold output for a device
o If device can serve only one request at a time
o i.e., Printing

Device reservation - provides exclusive access to a device
o System calls for allocation and deallocation

I Watch out for deadlock

Reference

Abraham - Silberschatz, Greg Gagne, and Peter Baer Galvin,

"Operating System Concepts, Ninth Edition ",

Department of Computer Science & Engineering (Cyber Security), NRCM

