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MathematicallLogic

Syllabus

Mathematical Logic: Introduction, Statements and Notation, Connectives, Truthtables, Well-
formed formulas, Tautology, Contradiction, Contingency, Logical equivalence, Normal Forms,
Theoryofinference fortheStatement Calculus, ThePredicateCalculus,InferenceTheoryofthe
Predicate Calculus

IntroductiontoDiscreteMathematics

» Discrete Mathematics is the study of discrete structures which mathematical models

dealing with discrete objects and relationships between them.
» ExamplesofdiscreteobjectsarelikeSets,Permutations,graphsand etc.
Why it is important for computer science

e In the world of computers, all the information is stored in bits,units of information that
can take the value of either 0 or 1.It’s not like in nature, where something can take all the
values in between 0 and 1 as well. Instead, everything is binary.

e Since the bits are the building blocks of everything that happens in computer software,
every thing becomes discrete.Forinstance,the hard drive on the laptop I’m using right
now can store 1 845 074 329 600 bits of information.

e The study of algorithms is also firmly in the discrete world.Analgorithm is a step-by-step
list of instructions to the computer and it’s whatmakes computer programs possible.When
determining how much time analgorithm needs to run,you count the number of operations

it needs to perform. Notice the word count. Again, discrete mathematics.

» In continuous mathematics (the opposite of discrete),the calculation would go like this:
o Prodx=[1/2+x2]} =5%/2—0~12.5
0

* In discrete mathematics,the  equivalent calculation would go likethis:
2a10=0+1+2+3+4=10






Applicationsofdiscretemathematicswithcomputerapplications

» 1)Computernetworks

* 2)Programminglanguages

+ 3)Finite stateautomataor compilers

» 4)Databases
Symbolic logic is used in framing algorithms and their verification and in automatic theorem
proving.Settheory, Graph Theory,treesetc areused in storage and retrieval of information(data
structures), Algorithms and their complexity studies also uses tools from discrete mathematics.
Formal Languages, Automata theory, Turing machines etc. are themselves part of discrete
mathematics and so is Recursive Function Theory. Undecidability of many problems are
established using Turing machines which is the Mathematical model for studying theoretical
limitations of Computation. Lattices and Boolean Algebra are used in Computer Science as well

as in communications and networking.

Mathematical Logic

Logic

It is the study of the principles and methods that distinguishes between valid and invalid argument.
1. Proposition Logic

PropositionorStatement

A proposition or a statementcan definedas adeclarativesentencetowhich we can assign one and
onlyone ofthe truth values either true (or) false but not both is called a proposition.
Thetrueorfalse ofaproposition iscalledtruthvalue ofa proposition

Thesetwovaluestrueandfalsearedenotedby thesymbolsTandFrespectively.Sometimes these are

also denoted by the symbols 1 and 0 respect.



Proposition truth value

Ex:1)IndiacapitalisnewDelhi True
2) 2*3=5 false
3) bisaprimenumber true

Thesearepropositions(orstatements) becausetheyareeither trueorfalse. Next
consider the following sentences:

4) Howbeautifulareyou?

5) Wishyouahappynewyear

6) x+y=z

7) Takeonebook.
Thesearenotpropositionsastheyarenotdeclarativeinnature,thatis,theydonotdeclarea definite truth

value T or F.

TypesofPropositions

1) Atomicproposition
2) CompoundProposition
1) Atomicproposition
« APropositionwhichcannotbedividedfurther iscalledanatomic proposition.

« Examples:
* 1)India’scapitalisNewDelhi
e 2)2*3=5

2) CompoundProposition

« Twoor more atomic propositions can be combined to forma compound proposition with

help of Connectives. Compound Proposition also called as Propositional function.



ExamplesofCompoundstatements
—3+2=-1 andDelhiisthecapitalofIndia.

»  grassisgreenor—itishottoday.

Discretemathematicsisnotdifficulttome.

And, Or ,Not are called connectives.
Notations

» StatementsaresymbolicallyrepresentedasA,B,C,..P,Q,R,S...Thosearecalled propositional
variables or notations.

« Examples:

» P—Delhi isthecapitalofindia.

*  Q—17isdivisibleby3.

LogicalConnectives

01 Thewordsor phrasesor symbolswhichareusedto makeacompound proposition bytwo or
moreatomic propositions are called logical connectives or simply connectives.

71 There are five basic connectives called negation, conjunction, disjunction, conditional
and biconditional.

Connectivity Symbol Word
Negation - Not
Disjunction Vv OR
Conjunction 0 AND
Conditional — IFANDTHEN
Biconditional — Ifandonlyif




Negation(~)or(-)

The negation of a statement is generally formed by writing the word ‘not” at a proper
place in the statement (proposition) orbyprefixingthe statement withthe phrase (=).1t is not
thecasethat. Ifpdenotesastatementthenthenegationofpiswrittenas-pandreadasnot ~ p.  Ifthe
truthvalue ofp isT thenthe truthvalue of-p is F. Also ifthe truthvalue ofp is Fthen the truth

value of -pis T.

TruthtableforNegation

Disjunction(OR)(V)

« IfPandQ areanytwopropositionsthen‘POR Q’symbolicallywrittenasPVQ.

» PVQisapropositionwhosetruthvaluesisfalseonlywhenbothPandQarefalse otherwise True.A

TruthtableforDisjunction

P Q PVQ
F F F
F T T
T F T
T T T

P:Ishallgotothegame.
Q:Ishallwatchthe game ontelevision.

P VQ:lIshallgotothegame ORIshallwatchthe gameon television.



Conjunction(AND(A))

71 IFPandQareanytwo propositionsthenPandQSymbolicallywrittenasPAQ.
1 PAQisapropositionwhosetruthvalueistrueonlywhenbotharePandQaretrue. Whole truth

71 value is false when either P or Q are false and both are false.

TruthtableforConjunction

P Q PAQ
F F F
F T F
T F F
T T T

P:ltisrainingtoday.
Q:Thereare10chairsintheroom.

P 11 Q: Itis raining today AND There are 10 chairs
in the room.
Conditional(or)Implication(—)

[fPandQareanytwostatements(orpropositions)thenthestatementP—Qwhichisread as, If P,
then Q_ is called a conditional statement (or proposition) or implication and the connective is

the conditional connective.



Truthtableforconditional

P Q P—Q
F F T
F T T
T F F
T T T

Inthisconditionalstatement, Piscalledthe hypothesisor premiseor antecedent andQ is
called the consequence or conclusion.

Biconditional(Ifandonly if)
+ IfP andQare anytwopropositionsthenPifandonlyifQWrittenasP«<>Q.

 It‘struthvalueistrueonlywhenbothP&Q have same truthvalues.

[Sma®

P q
T T
T F
F T
F F

—H| m| m -

TAUTOLOGYANDCONTRADICTION

Tautology: Apropositionissaidto be atautologyifitstruthvalue is T for anyassignment of

truth values to itscomponents.

Example: ThepropositionP V-Pisatautology.
Contradiction
Aproposition is said to be a contradiction if its truth value is F for any assignment oftruth

values to its components. Example: The proposition P A =P is a contradiction.



Contingency: Astatement formulawhichisneitheratautologynoracontradictionisknownas a

contingency.
Example:P->Q

Tautology: A statement formula which is true regardless of the truth values of the
statementswhichreplacethevariablesinitiscalledauniversallyvalidformulaoralogical truth

or a tautology.
Howtoprovegivencompoundproposition is tautology
1) ByConstructingtruth table

2) Byusingsubstitution method
1) Constructingtruthtable

Showthat followingfunctionistautology

a)(PVQ)V-P

Solution

P Q =P PVQ (PVQ)V-P
F R T F T

F N T ) T

T F F =] T

T T F T T

Intheabove table(PVQ)V-Pisgivingalltruthvaluesaretruesoitisa tautology.




Showthatgivenpropositionisatautology((P—Q)A(Q—R))—(P—R)

Q R P Q—-R | (P-QANQ—R) P—R | (P-QANMQ—R))—(P—R)
F T T T T T
F T T T T T
T T F F T T
F F T F F T
T T T T T L
F F T F T T
T T F F F T
T T T T T T
Implication:

IfPand QareanytwopropositionsthenP->Qie, IfP thenQ

P->QispropositionwhosetruthvalueisfalseonlywhenP istrueandQisfalse.
HerePisantecedentandQisConsequent..

p Q P—Q
F F T
F T T
T F T
T T T

WheneverP is falseP->Qis true




* le falseantecedentPimpliesanypropositionQ

*  WheneverQistrueP->Qisalsotrue

* le,atrueconsequent Qimpliedbyanypropositional_P*.
fromthe implicationstatement wecanwriteanotherthreestatementswhichare converse,
inverse and contrapositive

Converse, InverseandContrapositive

IfP— Qisaconditionalstatement,then(1).
O—Piscalleditsconverse(2).
—P——Qiscalleditsinverse

(3).~OQ——Piscalleditscontrapositive.
Example:
* P:Todayis Sunday
* Q: Itisaholiday
+ ConverseStatement:Ifitisaholiday,thentodayisSunday.
» InverseStatement:IftodayisnotSunday, thenitisnot aholiday.

« ContrapositiveStatement-Ifitisnot aholiday,thentodayisnotSunday.



Here Implication and Contrapositive are equal.

Converseand inverseareoppositepropositions.

Wellformedformulas(wff):

Notallstringscanrepresent propositionsofthepredicatelogic. Thosewhichproducea

propositionwhentheirsymbolsareinterpretedmustfollowtherulesgivenbelow,andtheyare called

wffs (well-formed formulas) ofthe first order predicate logic.

Rulesforconstructing Wffs

ApredicatenamefollowedbyalistofvariablessuchasP(x,y),wherePispredicatename,andx and yare

variables, is called an atomic formula.

Awellformedformulaofpredicatecalculus isobtainedbyusingthefollowing rules.

1. Anatomicformulaisawff.

2. IfAisawff,then7Aisalsoawff.

3. IfAandBarewffs,then(AVB),(AAB),(A—B)and(ADB).
4. IfAisawffandxisanyvariable,then(x)Aand($x)Aarewffs.
5. Onlythoseformulasobtainedbyusing(1)to(4)arewffs.

Since we will be concerned with only wffs, we shall use the term formulas for wff. We shall

followthesameconventionsregardingtheuseofparenthesesaswasdoneinthecaseofstatement

formulas.

Wifsareconstructed usingthefollowingrules:

1.
2.

TrueandFalsearewffs.
Eachpropositionalconstant(i.e.specificproposition),andeachpropositionalvariable (i.e. a
variable representing propositions) are wffs.
Eachatomicformula(i.e.aspecificpredicatewithvariables)isa wiff.

IfA,B,and Carewffs,thensoare—A,(AAB),(AYB),(A—B),and (A«B).

If x is a variable (representing objects of the universe of discourse), and Ais a wff, thenso
are ¥x A and dx A .For example, "The capital of Virginia is Richmond." is a specific
proposition. Hence it is a wffby Rule 2.



LetBbeapredicatenamerepresenting”beingblue"andletxbeavariable. ThenB(x)isanatomic formula
meaning "X is blue". Thus itis a wff by Rule 3. above. By applying Rule 5. toB(x), xB(x) is a wa{
andsois  xB(x). Then%y applying Rule 4. to them 1?pr(x)xB(x) isseento bea
wiff.Similarly,ifRisapredicatenamerepresenting”beinground”. ThenR(x)isanatomic formula.
Hence it is a wff. By applying Rule 4 to B(x) and R(x), a wff B(x) R(x)is%btained.ln this
manner, larger and more complex wffs can be constructed following the rules given above.
Note,however,thatstringsthatcannotbeconstructedbyusingthoserulesarenotwffs.For example,
1?‘xB(x)R(x), and B(;I) are NOT wffs, NOR are B( R(x) ), and B( E& R(X))

More examples: To express the fact that Tom is taller than John, we can use the atomic formula
taller(Tom, John), which is a wff. This wff can also be part of some compound statement such
astaller(Tom,John)Ataller(John, Tom),whichisalsoawff.Ifx is a variable representing people in
the world, then taller(x,Tom)¥x taller(x,Tom),3x taller(x,Tom), &k ¥ taller(x,y) are all wffs
among others. However, tallerdx,John) and taller(Tom AMary, Jim), for example, are NOT
wifs.

LogicalEquivalence

Two formulas A and B are said to equivalent to each other if and only if A< Bis
a tautology. If 4B is a tautology, we write A < B which is read as A is
equivalent to B.

Note:1.<isonlysymbol,butnot connective.

A < B is a tautology if and only if truth tables of Aand Bare the same.Equivalence relation is

symmetric and transitive.

(or)
LetPandQaretwopropositionalfunctionsPisEquivalenttoQ. Symbolicallywritten

as P& Q or P=Q ifP and Q have same truthtable.



Ex:P->Qe~PVQ.

Method I. Truth Table Method: One method to determine whether any two statementformulasare
equivalent is to construct their truth tables.

Example:Prove(P— Q)= (-PVvQ).

PlQ| P00 |-P| =PvQ
T| T[T F T
T|FF FIF
FITIT T T
FIFT b A

IntheabovetablebothP— Qand—PvQarehavesametruthvalues. So that
(P — Q) &(=P VvQ).
EquivalenceFormulas:
1.1dempotentlaws:
(a)PvP<P (b)PAPEP
2. Associativelaws:
(@)(Pv Q)VR&PV (QVR) O)(PAQAREPA (QAR)

3. Commutative laws:

(@PVQ<QVP (b)PAQERQAP
4. Distributive laws:
PV (QAR)PV Q)A (PVR) PA(QVR)SPAQ)V (PAR)

Identitylaws(or)
5. Domination Law

(@@@)PVF&P (inPvTsT



B)(I))PATSP (ii)PAFSF
6. Componentlaws:
(@)()Pv-PoT (ii)PA-PoF
(b)(i)=—P=P (iiV-TeF-FoT
7. Absorptionlaws:

(aPV(PAQ)& (b)PA(PVQ)=

8.DeMorgan‘sLaws
(@) ~(PVQ)e—PA—Q (b)~(PAQ)=—-PV—

TABLLE 7 Logical Equivalences
Involving Conditional Statements.

P—>q=—"pVvVyg

P ===
PvYqg=—p—>4g
PAG=—(p— —q)

P> qG)=pA—q

(p—= )N (p—r)=p— (gArr)
(p—=>rynlq —=r)=(pvg)—r
(p—>q)Vviip —>r)mp-—(gVvr)

(p—>r)vig —=r)s(pAg)—»r




Tautologicallmplications.

Astatement formula A is said to tautologically imply a statement B ifand onlyifA — B is a

tautology. Inthis case we write A = B, which is read as _A implies B_.
Note:=isnotaconnective,A=Bisnotastatement formula.
A=Bstatesthat4— Bistautology.

Clearly A = B guarantees that B has a truth value T whenever A has the truth value T . One can
determine whether A = B byconstructing the truth tables of A and B in the same manner as was
done in the determination of A & B.

Example:Provethat(P—Q)=(—=Q——P).

P |Q [P |7Q [P0 |70—~P |(PoO)—(~0—"P)
T [TIF [F [T T T
T |[FIF [T |F F T
F (T[T [F T T T
T Y > T

Sincealltheentriesinthelastcolumnaretrue,(P—Q)—(—Q— —P)isa tautology.
Hence(P—Q) isTautologicallmplicationsto (—Q——P). Sothat

P—>0)=>(Q——P).

Inordertoshowanyofthegivenimplications,itissufficienttoshowthatanassignmentofthe

truthvalueTto the antecedentofthecorrespondingconditionalleadstothetruthvalueTforthe



consequent. This procedure guarantees that the conditional becomes tautology, thereby proving
the implication.
Example:Provethat—=QA(P—Q)=-P.

Solution: Assumethattheantecedent—QA(P—Q)hasthetruthvalueT,thenboth—QandP
—QhavethetruthvalueT,whichmeansthatQhasthetruthvalueF, P—Qhasthetruth value T .

HencePmusthavethetruthvalueF.Therefore,theconsequent—-Pmusthavethetruthvalue T.

—~QA(P—Q)—P.
AnothermethodtoshowA= Bistoassumethattheconsequent BhasthetruthvalueFandthen show that
this assumption leads to A having the truth value F. Then 4 — B must have the truth value T.

Example:Showthat—=(P—Q)=P.

Solution:Assume thatP has the truth valueF . When P has F , P — Qhas T, then =(P — Q) has
F.Hence =(P - Q) —>PhasT.

Sothat—(P—Q)=>P.

NormalForms

If a given statement formula A(p1, p2, ...pn) involves n atomic variables, we have 2"possible
combinations of truth values of statements replacing the variables.

The formula A is a tautology if A has the truth value T for all possible assignments of the truth
values to the variables p1, p2, ...pnand A is called a contradiction if A has the truthvalue F for all
possible assignments of the truth values of the n variables. A is said to be satisfiable if A has the

truth value T for at least one combination of truth values assigned to p1, p2, ...pn.

Theproblemofdeterminingwhetheragivenstatement  formulaisaTautology,oraContradiction s

called a decision problem.



The constructionoftruthtable involves a finite number ofsteps, but the construction maynot be
practical. We therefore reduce the given statement formula to normal form and find whether a
givenstatementformulaisaTautologyorContradictionoratleastsatisfiable.ltwillbeconvenient to use

the word product in place of conjunction and sum in place of disjunction .

A product of the variables and their negations in a formula is called an elementary Product.
Similarly, asumofthevariablesandtheir negationsinaformulaiscalledanelementarysum.Let P and Q
be any atomic variables Then P,~PAQ, -QAPA~P,QA~P are some example
ofelementaryproducts.

OntheotherhandP,=PvQ,=QVPV=P,Qv—P.aresomeexamplesofelementarysums. Types of
Normal forms

1) DisjunctiveNormalforms
2) ConjunctiveNormal forms.

DisjunctiveNormalForm(DNF)

Aformulawhichisequivalent to agiven formula andwhichconsistsofasumofelementary products is

called a disjunctive normal form of the given formula.

Example:Obtaindisjunctive normalformsof

()P L(P—Q)
PL(P—Q)=PL(-PVQ) (applydistributivelawPA(QVR)&(PAQ)V(PAR)
-(PL=-P)V(PLIQ)
b) =(PVQ)«>(PAQ)
—(PVQ)~(PAQ)=(=(PVQ)LI(PAQ))V((PVQ)L=(PAQ))[using
RS (R/\S)V(—l R/\—IS)]

S((=PA=Q)I(PAQ))V((PVQ)A (=PV =Q)).
(E)(—lP/\—lQ/\P/\Q)V((PVQ)/\—IP)V((PVQ)/\—IQ).
S (-PA=QAPAQ)V(PA-P)V(QA-P)V(PA-Q)V(QA-Q).
Whichistherequireddisjunctive normalform.Note: TheDNFofagivenformulaisnotunique.



ConjunctiveNormalForm (CNF)

Aformulawhichisequivalent to agiven formula andwhichconsistsofaproductofelementary sums is

called a conjunctive normal form of the given formula.

The methodforobtainingconjunctive normalformofagivenformula is similartotheone given

for disjunctive normal form. Again, the conjunctive normal form is not unique.

(a) PA(P—Q)obtaintheconjunctivenormalform
PA(P—Q)&PA(=PVQ)

(b) =(PvQ)~(PAQ)
{(=(PVQ—(PAQ) LI(PAQ)—~(PVQ))
-(PVQ)V(PAQ)A(=(PAQ)V-(PVQ))
-[(PVvQVP)A(PVQVQ)JAL(=PV-Q)V(=PA=Q)]
-(PVQVP) A (PVQVQ) /\(—|PV—|QV—|P) /\(—lPVﬂQV—lQ)

PrincipalDisjunctiveNormalForm

Inthissection,wewilldiscusstheconceptofprincipaldisjunctive normalform(PDNF).

Minterm: For a given number of variables, the minterm consists of conjunctions in which each

statement variable or its negation, but not both, appears only once.

L etPandQbethetwostatementvariables. Thenthereare2’mintermsgivenby
PAQ,PA-Q,

-PAQ,and=P[1A-Q

MintermsforthreevariablesP ,QandR arePAQAR,PAQA-R,P A=QA
R,PA=QA-R,—PAQAR,-PAQA-R,-PA-QARand—-PA-QA-R.



FromthetruthtablesofthesemintermsofPandQ,itisclearthat.

P Q P /\Q P/\—lQ —|P/\Q —|P/\ﬁQ

T (T[T F F F
T |FF T F F
FITIF F T F
FIFIF F F T

(). Notwomintermsareequivalent

(i). EachmintermhasthetruthvalueTforexactlyonecombinationof the truthvaluesof the variables P
and Q.

PDNF

Definition: For a given formula, an equivalent formula consisting of disjunctions of minterms
only is called the Principal disjunctive normal form of the given formula. The principle

disjunctive normal formula is also called the sum-of-products canonical form.

MethodstoobtainthePDNFofagivenformula.
(@). By Truth table:

(b). withoutconstructingthetruthtable

(a).By Truthtable:

(1). Constructatruthtableofthe givenformula.

(if). For everytruth value T in the truth table of the given formula, select the minterm which

also has the value T for the same combination of the truth values of P and Q.

(iif). Thedisjunctionofthesemintermswillthenbeequivalenttothegivenformula



Example: Obtain the PDNF of P — Q.

Solution:Fromthetruthtable ofP—Q

P | Q [P-QO |Minterm
T | T(T P AQ
T |FF PA-Q
F|TT -PAQ
F|F T —~PA-Q

ThePDNF ofP—Qis(PAQ)V(-PAQ)V(=PA-Q).
ObtainthePDNFfor(PAQ)V(=PAR)V(QAR).

Solution:
P |Q|R Minterm PAQ -PAR | QAR (PAQ)V(=PAR)V(QAR)
T [T|T PAQAR [T F T T
T |T|F PAQA-R [T F F =
T |F|T PA-QAR  |F F F F
T | F|F [PA-QA-R F F F F
F |T|T ~PAQAR  |F N T T
F | T|F [-PAQA-R F F F F
F | F|T|-PA-QAR F T F T
F | F|F |-PA-QA-R F F F F

ThePDNFof(PAQ)V(=PAR)V(QAR)is(PAQAR)V(PAQA-R)V(=PAQAR)V(=PA-QAR).
(b). Withoutconstructingthetruthtable:

Inordertoobtaintheprincipaldisjunctivenormalformofagivenformulaiscon- structed as

follows:



(1). Firstreplace—,bytheirequivalentformulacontainingonly(],vand-.

(2). Next,negationsareappliedtothevariablesbyDeMorgan_slawsfollowedbytheapplication of

distributive laws.

(3). Any elementarily product which is a contradiction is dropped. Minterms are obtained in the
disjunctions by introducing the missing factors. Identical minterms appearing in the disjunctions

are deleted.

Example:Obtaintheprincipaldisjunctivenormalformof
(@) -PvVQ
(b) (PAQ)V(-PAR)V(QAR).
(@) -PvQ
-PVvQ& (=PAT)V(QAT)
- (APAQV-Q))V(QA(PVAP))[PV-P<T]

- (=PAQ)V(=PA=Q)V(QAP)V(QA—-P)
- (ﬁPjQ)V(—lPD—lQ)V(PDQ) [PVP@P]
(b) (PAQ)V(=PAR)V(QAR)

(PAQ)V(=PAR)V(QAR)&(PAQAT)V(=PARAT)V(QARAT)
-(PAQA(RV-R))V(=PARA(QV=Q))V(QARA(PV-P))
-(PAQAR)V(PAQA-R)V(=PARAQ)V(=PARA=Q)V
(QARAP)V (QARA=P)
-(PAQAR)V(PAQA-R)V(=PAQAR)V(=PA-QAR)
PrincipalConjunctiveNormalForm
ThedualofamintermiscalledaMaxterm.Foragivennumberofvariables,the maxtermconsists

ofdisjunctionsinwhicheachvariableor itsnegation,butnotboth,appearsonlyonce. Eachofthe
maxterm has the truth value F for exactly one combination of the truth values of the variables.

Now we define the principal conjunctive normal form.

For a given formula, an equivalent formula consisting of conjunctions of the max-terms only is
known as its principle conjunctive normal form. This normal form is also called the product-of-
sums canonical form.The method for obtaining the PCNF for a given formula is similar to the
one described previously for PDNF.



Example:Obtaintheprincipalconjunctivenormalformoftheformula(~P—R)A (Q—P)

Solution:

(~P=RNQP)=[~(=P)VRIAN[(O—P)NP—Q)]

-[(PVR)A[(=QVP)A(=PVQ)]
-(PVRVF)A[(=QVPVF)A(=PVQVF)]
-[(PVR)V(QA-Q)]L[~QVP)V(RA-R)]L[(=PVQ)V(RA-R)]

e
(PVRVQ)A(PVRV-Q)A(PV=QVR)A(PV-QV-R)A(=PVQVR)A(-PVQV-R)



Rulesofinference:

Thetworulesofinferencearecalled rulesPand T.
RuleP:Apremisemaybeintroducedatanypointinthe derivation.
RuleT:AformulaS maybe introducedinaderivationifs is tautologicallyimpliedby any

one ormore of the preceding formulas in the derivation.

Beforeproceedingtheactualprocessofderivation, some important list

ofimplications and equivalences are given in the following tables.

Implications
11 PAQ=>P } Simplification
12 PQA=>Q
13 P=>PVQ }  Addition
14 Q=>PVQ
I5 7P=>P—Q
16 Q=P—Q

17 7(P—Q)=>P
I8 7(P—Q)=>7Q

19 P,Q=>PAQ

110 7P,PVQ=>Q (disjunctivesyllogism)
111 P,P—Q=>Q (modusponens)

112 7Q,P—Q=>7P (modustollens)

113  P—Q,Q »R=>P—-R (hypotheticalsyllogism)

PVQ,P—Q,Q—R=>R

Equivalences

(dilemma)



El
E2
E3
E4
ES
E6
E7
E8
E9
E10
Ell
E12
E13
El4
E15
El6
E17
E18
E19
E20

E21
E22

17P<=>P

PAQ<=>QAP

PV Q<=>Q VP

(P AQ) AR<=>PA(Q AR)

(PVQ)VR <=>PV(QVR)
PA(QVR)<=>(P AQ)V(PAR)

PV(QR) <=>(PVQ)A(PVR)

7(PAQ)  <=>7PV7Q

7(P VQ)<=>7P A7TQ

PVP<=>P

PAP<=>P

RV(PA7P) <=>R

RA(PV7P)<=>R

RV(PV7P)<=>T

R A(PATP)<=>F

P—Q<=>7PVQ

7(P—Q)<=>P A7Q

P-Q  <=>7Q-7P

P—>Q-R)  <=>(PA\Q)— R

7(PDQ)<=>PD7Q

PDQ  <=>(P>QA(Q—P)
(PDQ) <=>(PAQ)V(7PA7Q)

Commutativelaws

Associative laws

Distributive laws

DeMorgan‘slaws



Examplel.ShowthatRislogicallyderivedfromP— Q, Q— R,andP

Solution. {1} (@) P—Q RuleP
{2} ) P RuleP
{1,2} (3) Q Rule(1),(2)and 111
{4} 4) Q—R  RuleP
{1,24} (5 R Rule(3),(4)and 111.

Example2.ShowthatSV Rtautologicallyimplied by(PV Q)A(P—R)A(Q—S).

Solution. {1} (1) PVQ RuleP
{1} 2) 7P—Q T,(1),ElandE16
{3} @ Q-8 P
{13} (@)  7P->S T,(2),(3),andI13
{13y (B) 7S—-P T,(4),E13andE1
{6} (6) P—R P
{136} (7) 7S—R T,(5),(6),andI13
{136) (8 SVR T,(7),E16andE1

Example3.Showthat7Q,P—Q=>7P

Solution. {1} 1) P-Q RuleP
{1} (2 7P—7Q T,and E18
{3y @B 7 P
{13y @4 7P T,(2),(3),andl11.

Example4.ProvethatR A(PVQ )isavalidconclusionfromthepremisesPVQ,Q

—R,P—Mand7M.
Solution. {1} 1) P—M P
{2} ) ™ P
{12}y @ 7P T,(1),(2),and 112
“4r @ PVQ P
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{124} (5 O T,(3),(4),and110.
{6} 6) Q—R P
{1246K7) R T,(5),(6)and 111
{124648) RAPVQ)  T,(4),(7)and I9.

Thereisathirdinference rule,knownasruleCPorruleofconditionalproof.

Rule CP: Ifwe can derive s fromR and a setofpremises, thenwe canderive R — S fromtheset of

premises alone.

Note. 1.RuleCP followsfromtheequivalenceE10whichstatesthat ( P
AR)— S 6P — (R — ).

2. Let P denote the conjunction of the set of premises and let R be any formula
TheaboveequivalencestatesthatifR isincluded asanadditionalpremiseand S
isderived fromP ARthenR—S canbederived fromthe premisesP alone.

3. Rule CP is also called the deduction theorem and is generally used if the
conclusion isofthe formR—S. Insuchcases, R istakenasanadditional

premise and S is derived from the given premises and R.

Example5.ShowthatR—Scanbederivedfromthepremises P —

(Q—9S),7RV P, and Q.

Solution. {1} 1) 7RVP P
{2} 2 R P,assumedpremise
{1,2} @} P T,(1),(2),andI10
{4} 4) P—(Q-Y) P
{1,2,4} 5) Q-S T,(3),(4),andl11
{6} 6 Q P
{1,246} (7) S T,(5),(6),andl11

{146} (8 R-S CP.



Example 6 Show that P — S can be derived from the premises, 7PV Q, 7Q V R,
and R — S.

Solution.

{1}
{2}

{1.2}

{4}

{1,2,4}

{6}

{1,246}
{27}

Example7.

(1)
@
3)
4)
®)
(6)
(7)
(8)

7PVQ P
P P,assumedpremise
Q T,(1),(2)andl11
7QVR P

R T.(3),(4)and 111
R —S P

S T,(5),(6)and 111
P—S CP

“Iftherewasaballgame, thentravelingwasdifficult.

Iftheyarrivedontime,

thentraveling wasnotdifficult. They arrived on time. Therefore, there wasnoballgame”.

Show that these statements constitute a valid argument.

Solution.LetP: There wasaballgame

Q:Travelingwasdifficult. R:

They arrived on time.

Givenpremisesare:P—Q,R —7Q andRconclusionis: 7P

{1}
{2}
{3}

{23}
{123}

(DP—Q

(2)R -7Q

@GR

(4)7Q
(5) 7P

P
P
P

T,(2),(3),and 111
T,(2),(4)andl12



Consistency ofpremises: _
Consistency
A set of formulas H1, H2, ..., Hm is said to be consistent if their conjunction has the truth

value T for some assignment of the truth values to be atomic appearing in HI, H2, ..., Hm.

Inconsistency

Ifforeveryassignmentofthetruthvaluestotheatomicvariables,atleastoneofthe formulas
H1,H2,.. . Hmisfalse,sothattheirconjunctionisidenticallyfalse,thentheformulasH1,H2,..., Hm are

called inconsistent.

AsetofformulasH1, H2, ..., Hmis inconsistent, iftheir conjunctionimpliesa contradiction,
that isH1 AH2 A... AHm =>R A7R
WhereR isanyformula. Notethat RA7Risacontradictionand it is necessaryand sufficient

thatH1, H2, ...,Hm are inconsistentthe formula.

Indirectmethodof proof

In order to show that a conclusion C follows logically from the premises H1, H2,..., Hm,
weassumethat Cis falseandconsider 7Casanadditionalpremise. Ifthenew setofpremises is
inconsistent, sothat theyimplya contradiction, thenthe assumptionthat 7C is true does not hold
simultaneouslywith H1 AH2 A.....AHmbeing true. Therefore, C is true wheneverH1A

H2A.....AHmistrue. Thus,Cfollowslogicallyfromthe premisesH1,H2.....,.Hm.

Example8Showthat7(PAQ)followsfrom7PA7Q.Solution.

We introduce77(PAQ) asanadditionalpremiseandshowthatthisadditional premise leads
to a contradiction.
{1} (D)77(PAQ) Passumedpremise
{1} (2)PAQ T,(1)andE1
{1} (3P T,(2)and I1



{1}
{4}
114}

{4)7PATQ P
(5) 7P T,(4)and 11
(6)PATP T,(3),(5) and 19

Here(6)PA7Pisacontradiction. Thus{1,4}viz.77(PAQ)and7PA7Qleadsto a

contradiction P A7P.

Example9Showthatthefollowingpremisesareinconsistent.

1.
2
3.
4

Solution.

IfJackmissesmanyclassesthroughillness,thenhefailshighschool.
IfJackfails highschool,thenheisuneducated.
IfJackreadsalotofbooks,thenheisnotuneducated.

Jackmissesmanyclassesthroughillnessandreadsalotofbooks.

P:Jackmissesmanyclasses. Q:

Jack fails high school.

R:Jackreadsalotofbooks. S:

Jack is uneducated.

ThepremisesareP— Q,Q— S,R—7SandPAR

{1} 1 P-Q P

{2} 2 QS P

{12} (3 P-S T,(1),(2)and 113
{4} 4 R—7S P

{4} (5) S—7R T,(4),and E18
{124} (6) P—7R T,(3),(5)and 113
{124} (1) TPVIR T,(6)andE16
{124} (©®) 7(PAR) T,(7)andES8

{9} @ PAR P

{12,4,9)10) (P AR)AT(PAR) T,(8),(9)and 19

Therulesabovecanbesummedup inthe followingtable. The"Tautology"columnshowshow to
interpret the notation of a given rule.



Ruleof inference

p—4q

—q
pP—q

pP—4q
qgq—7T

P —T

Tautology

Name

Addition

Simplification

Conjunction

Modusponens

Modustollens

Hypothetical
syllogism

Disjunctivesyllogism

Resolution



Predicativelogic:

A predicate or propositional function is a statement containing variables. For instance —x + 2 =
7l,—XisAmericanl,—x<yl,—pisaprimenumberlarepredicates. Thetruthvalueofthe
predicatedependsonthevalueassignedtoitsvariables.  For instance ifwereplace xwithl inthe
predicate—x-+2=7lweobtain—1+2=7l,whichisfalse,butifwereplaceitwithSweget—5

+ 2 =7I, which is true. We represent a predicate by a letter followed by the variables enclosed
between parenthesis: P (x), Q(X, y), etc. An example for P (x) is a value of x for which P (x) is
true. A counterexample is a value ofx for which P (x) is false. So, 5 is anexample for —x + 2 =
71, while 1 is acounterexample. Eachvariable in apredicate is assumed to belongto auniverse (or
domain) of discourse, for instance in the predicate —n is an odd integerl ‘n‘ represents an
integer,sotheuniverseofdiscourseofnisthesetofallintegers.In—Xis Americanl we may assume that X
is a human being, so in this case the universe of discourse is the set of all human beings.

Free&Boundvariables:

Let's now turn to a rather important topic: the distinction between free variables and bound
variables.

Havealookatthefollowingformula:

={THERAPLST{x) ¥V Vx{moOROM(x) AVyPERS oM (V)]

The first occurrence of x is free, whereas the second and third occurrences of x are bound,
namelybythefirstoccurrenceofthequantifier. Thefirstandsecondoccurrencesofthe variable y are

also bound, namely by the second occurrence of the quantifier . v

Informally,theconceptofaboundvariablecanbeexplainedasfollows:Recallthatquantifications are
generally of the form:

oo
or
deep

wheremay be any variable. Generally, all occurrences of this variable within the quantification
are bound. But we have to distinguish two cases. Look at the following formula to see why:

e{man{x) A (Vrwarks(x) ) AHarey(x))



1. mayoccurwithinanother,embedded,quantification¥x\¥or3xy suchasthexin in our
WaLKS (xJexample. Then we say thatitis bound by the quantifier of this
embeddedquantification(andsoon,ifthere'sanotherembeddedquantificationover x
withinV).

2. Otherwise, wesaythat it is boundbythetop-levelquantifier (likeallotheroccurrencesof in

xour example).

Here'sa fullformalsimultaneousdefinitionoffreeand bound:

1. Anyoccurrenceofanyvariableisfreeinanyatomicformula.

2. Nooccurrenceofanyvariableisboundinanyatomicformula.

3. If an occurrence of any variableis freeingor in W, then that same occurrenceis freein —,
(@ = W), (@ VW), and (¢ AW),

4. If an occurrence of any variable is bound ingor in W, then that same occurrence is
bound in —¢ (® =W (@ VW) (@AW Moreover, that same occurrence is bound in ¥y
and Fvaas well, for anychoice of variable y.

5.In any formula of the forn¥»@r {where y can be any variable at all in this case) the
occurrence of ythat immediately follows the initial quantifier symbol is bound.

6. Ifanoccurrenceofavariablexisfreeing, thenthatsameoccurrenceisfreein¥»and
v, for any variable y distinct from x. On the other hand, all occurrences of x that are

free in ¢, are bound in ¥w@and in Jrg

Ifaformulacontainsnooccurrencesoffreevariableswecallitasentence



Quantifiers

Thevariableofpredicatesisquantifiedbyquantifiers. Therearetwotypesofquantifierin predicate logic

— Universal Quantifier and Existential Quantifier.

Universal Quantifier

Universalquantifierstatesthatthestatementswithinitsscopearetrueforevery valueofthe specific

variable. It is denoted by the symbol ¥

vxP(x)isread asforeveryvalueofx,P(x)is true..
Example— "Man is mortal® can be transformed into the propositionalform

VXP(X)VxP(x)whereP(x)isthepredicatewhichdenotesxismortalandtheuniverseofdiscourse is all
men.

ExistentialQuantifier

Existential quantifier states that the statements within its scope are true for some values of the
specific variable. It is denoted by the symbol 3.

3IxP(x)isreadasforsomevaluesofx, P(x)istrue.

Example —"Somepeoplearedishonest"canbetransformedintothepropositionalform

3IxP(x) where P(x) is the predicate whichdenotesx is dishonest and the universe ofdiscourse is
some people.



UNIT-II

Relations
Syllabus

Introduction, Basic ConceptsofSet Theory, RepresentationofDiscrete Structures, Relations, Types of
relations, Partial order relation, POSET, External elements in POSET, Lattices, Functions, Types of
functions,inverseoffunctions,invertiblefunctionsandCompositionoffunctions

Introduction

The elements of a set may be related to one another. For example, in the set of natural numbers
thereisthe‘lessthanorequalto’relationbetweentheelements. Theelementsofoneset mayalso be

related to the elements another set.

Binary Relation

Abinaryrelationbetweentwo setsAand B isaruleRwhichdecides, for anyelements, whether a is in
relation R to b. If so, we writea R b.

IfaisnotinrelationRtob,thenwe shallwrite aRb.

Wecanalso consider aRbastheorderedpair (a,b) inwhichcasewecandefinea binary relation from
A to B as a subset of A X B. This subset is denoted bythe relation R.

Ingeneral,anysetoforderedpairsdefinesabinaryrelation.

Forexample,the relationoffatherto hischildisF={(a,b) /aisthe fatherofb}
InthisrelationF, thefirst member isthenameofthe fatherandthesecond isthenameofthe child.
Thedefinitionofrelationpermitsanysetoforderedpairstodefinearelation.

Forexample,the setS given by

S ={(1,2),(3,a),(b,a),(b,Joe)}
Definition

Thedomain Dofa binaryrelationsS isthe set ofallfirst elementsoftheordered pairs inthe
relation. (i.e) D(S)={a/ 3 b for which (a, b) € S}



The rangeRofabinaryrelationS isthe set ofall second elementsofthe ordered pairs
in the relation.(i.e) R(S) = {b /3a for which (a, b) €S}.

Forexample
FortherelationS={(1,2),(3,a),(b,a),(b,Joe)} D(S)=

{1, 3, b, b} and

R(S)={2,a,a,Joe}
Let X and Y be anytwo sets. Asubset ofthe Cartesianproduct X * Y definesa relation, sayC. For
anysuchrelationC, wehave D( C)i X and R( C)I Y, andthe relation C is saidto fromX to Y. IfY
= X,thenC is said to be arelation formXto X. Insuchcase, c is called a relation in
X. ThusanyrelationinX isasubset of X*X.Theset X*Xiscalleda universalrelation inX, while the

emptyset which is also a subset of X * X is called a void relation in X.

Forexample
LetLdenotetherelation—lessthanorequaltolandDdenotetherelation
—divideslwherexDymeans— xdividesyl.BothLandDaredefinedonthe set {1, 2, 3,
4}
L={(1,1),(1,2),(1,3),(1,4),(2.2),(2,3).(2/4).(3,3),(3,4).(4.4)}
D={(1,1).(1,2),(1,3),(14).(2,2).(2,4).(3,3).(4.4)}
LCD ={(1,1),(1,2),(1,3),(1,4), (2.2),(2,4),(3,3).(4.4)}
=D

PropertiesofBinaryRelations:
1. reflexive
Definition: AbinaryrelationR inaset Xis reflexive if, foreveryx€X,xR x, That is (X,
x) €R.
Forexample
o Therelation£isreflexiveinthesetofrealnumbers.
o Thesetinclusionisreflexiveinthefamilyofallsubsetsofauniversalset.
o Therelationequalityofsetisalsoreflexive.

o Therelationisparallelinthesetlines inaplane.



o Therelationofsimilarityinthe setoftrianglesin aplaneis reflexive.
Examples:(i).1fR1={(1,1),(1,2),(2,2),(2,3),(3,3)}bearelationonA={1,2,3},thenR1 is
« areflexiverelation,sinceforeveryxeA,(x,x)ERL.

(i). IfR2={(1, 1),(1,2),(2,3),(3,3)}bearelationonA={1,2,3},thenR2isnota reflexive
relation, since for every 2 € A, (2, 2) JR2.

Symmetric

Definition:ArelationRinasetXissymmetricifforeveryxandyinX,wheneverx Ry,theny Rx.

Forexample

o Therelationequalityofsetis symmetric.
o Therelationofsimilarityinthe setoftrianglesin aplaneis symmetric.
« Therelationofbeingasisterisnotsymmetricinthe setofallpeople.

o However,inthesetfemalesitissymmetric.

Example.IfR3 ={(1,1),(1,2),(1,3),(2,2),(2,1),(3,1) }bearelationonA={1,2,3},then
R3isasymmetricrelation.

Transitive

Definition: ArelationRinaset Xistransitive if,foreveryx, y,andzare inX, whenever x Ry
andyR z,thenxR z.

Forexample

o Therelations<and >aretransitivein set ofrealnumbers
« Therelationofsimilarityintheset oftrianglesinaplaneis transitive.

« Definition:ArelationRinasetxis antisymmetricifforeveryxandyinX, whenever

y and y R X, then X = y.

X



Example: IfR4={(1,2),(2,2),(2,3)}onA={1,2,3}isanantisymmetricrelation.

EquivalenceRelation:

DefinitionTypeequationhere.: ArelationRinasetAiscalledanequivalencerelationif
= aRaforeveryi.e.Ris reflexive
= aRb=>bRaforeverya,b€A i.e.Ris symmetric

= aRbandbRc=>aRc foreverya,b,c€A,i.c.Ris transitive.
Forexample

o Therelationequalityofnumbersonsetofrealnumbers.
o Therelation beingparallelonaset oflinesinaplane.
Problem1: Let usconsider thesetToftriangles inaplane. Let usdefinearelation Rin T
as R={(a,b)/ (a, b € T and a is similar to b}
Wehavetoshowthat relationRisanequivalence relation
Solution:
o Atriangleaissimilartoitself.aRa

o Ifthetrianglea issimilar tothetriangle b, thentriangle bissimilartothetriangleathena R b
=>bRa

o Ifaissimilar to bandb issimilar to c,thenaissimilar to c(i.e)aRband bRc=>aR c.

HenceRisanequivalencerelation.

Problem2: Let x={1, 2, 3, ...7}andR={(x, y) /x-yisdivisible by3} Show that

R is an equivalence relation.

Solution: Foranya€X, a- aisdivisible by3, Hence a
R a, R is reflexive

Foranya,b€ X,ifa — b isdivisible by3,thenb— aisalsodivisibleby3,



Rissymmetric.
Foranya,b,c€, ifaRband bRc,thena— bisdivisibleby3and b—
cisdivisible by3. Sothat (a —b) +(b—c) isalso divisible by3, hence a— ¢
is also divisible by 3. Thus R is transitive.

HenceRis equivalence.

Problem3. Let Z be the set of all integers.Letmbeafixedinteger. Twointegersaandbaresaid to be
congruent modulo m if and only if m divides a-b, in which casewe write a=b (mod m).
Thisrelationiscalledtherelationofcongruencemodulomandwecanshowthatisanequivalence relation.

Solution:

o a-a=0 and m divides a — a(i.e)aRa,(a,a)€R Risreflexive.

¢ aR b=mdivides a-b

mdividesh-a
b =a (mod m)
bRa

thatisR issymmetric.

o aRbandbRc =>a=b(modm)andb=c(mod m)
o mdividesa —bandmdividesb-c
o a-b=kmandb—c= Imforsomek,|€z
o (a-bh)+(b—c)=km+Im
o a-c=(k+l)m
o a=c(modm)
o aRc

o Ristransitive

Hencethecongruencerelation isanequivalencerelation.



EquivalenceClasses:

Let Rbeanequivalence relationona set A. Foranya€A, theequivalence classgenerated bya
isthesetofallelementsb€ AsuchaRbandisdenoted[a].ItisalsocalledtheR—equivalence  class and
denoted by a € A.

i.e.,[a]={bCA/bR a}

Let ZbethesetofintegerandRbetherelationcalled —congruencemodulo 3
defined byR = {(x, y)/ X€Z and ye Z , (x-y) is divisible by3}
Thentheequivalenceclassesare
[0]={...-6,-3,0,3,6,...}
[1]={...,-5,-2,1.4,7,...}
[2]1={...,-4,-1,2,58,...}

Composition ofbinaryrelations:

Definition:LetRbe a relationfromX toY andSbe a relationfromYtoZ.Thenthe relationR

o Sis arelation from X toZ given by R oS = {(x, z) /xe [],[1 € [1S)} is called the composite
relation of R and S.

TheoperationofobtainingRo S iscalled the compositionofrelations.

Example:LetR={(1,2),(3,4),(2,2)} and
S ={(4,2).(2,5).(3,1),(1,3)}
ThenRoS={(1,5),(3,2),(2,5)}YandSoR={(4,2),(3,2),(1,4)}
It is to benotedthat Ro S#So R.
AlsoRo(SoT)=(RoS)oT=RoSoT

Note: We write RoRasR?*;RoRoRasR3andso on.

Definition
Let R be a relation fromX to Y, a relation R from Y to X is called the converse ofR,
wheretheorderedpairsofRareobtained byinterchangingthe numbers ineachofthe ordered pairs

ofR. This means for x € X and y €Y, that x R yoyR x.



ThentherelationRisgivenbyR={(x,y) /(y,x)ER}iscalledtheconverseofR

Example:
LetR={(1,2),(3,4),(2,2)}
ThenR={(2,1),(4,3),(2,2)}

Note: IfRisanequivalence relation,thenRisalsoanequivalencerelation.



PartialOrderingRelations:

Definition
AbinaryrelationRinasetPiscalled apartial orderrelation orapartial orderingin
PifRisreflexive,antsymmetric,andtransitive. i.e.,

e aRaforallaeP

e aRbandbRa-a=b

¢ aRbandbRc-aRc
AsetPtogether withapartialordering Riscalledapartialordered setor poset. TherelationR

isoftendenotedbythe symbol<which is different fromtheusualless thanequalto symbol. Thus,
if<is a partialorder in P , thenthe orderedpair (P, <) is called a poset.
Example:Showthattherelationlgreaterthanorequaltolisapartialorderingonthesetof  integers.
Solution: LetZbethesetofallintegersandtherelationR=>
(). Sincea>aforeveryintegera,therelation >isreflexive.
(ii). Letaandbbeanytwointegers. Let
aRbandbRa-a>bandb>a
-a=b
The relation> is antisymmetric.
(iii).Let a,bandcbeanythreeintegers. Let
aRb and bRc =a>b and b >c
—a>C
~TherelationLetaRbandbRc-a>bandb>c
—a>C
~Therelation>istransitive.
Since the relation>is reflexive, antisymmetric and transitive,>is partialorderingonthe setof
integers. Therefore, (Z, >) is a poset.



HasseDiagram:

AHassediagramis a digraphfor aposet whichdoesnot have loopsandarcs implied bythe transitivity.
Example 10: Fortherelation{<a, a>, <a, b>, <a, ¢ >, <b, b>, <b, ¢ >, <c,c>}onset {a, b,c}, the

Hasse diagram has the arcs {< a, b >, < b, ¢ >} as shown below.

Q a a

Digraph for Parth| Order Hasse Dhgram

Ex: Let Abeagivenfiniteset andr(A) itspowerset.Let Ibethesubset relationontheelements of r(A).

Draw Hasse diagram of (r(A), i) for A = {a, b, ¢}

o’
20|
0:0



Qn.From the Hasse diagram, find the maximal, Minimal, Greatest element, Least element, Upper bound,
Least upper bound, Lower bound and Greatest lower bound of {(J,(1,(1}

order to qualify as a function.

The first condition is that everya € Amust be relatedto some b€ B, (i.e) the domainoffmust be
Aand not merelysubset ofA. The second requirement ofuniquenesscanbe expressed as(a, b) € f
Ab,c)€Ef=Db=c
Intuitively.afunctionfromasetAtoasetBisarulewhichassignstoeveryelementofA.a

I} J Maximal :hj
Minimal g |
g 7| Greatest element : None
Least element 55 |
d e .
Upper bound of {a,b,c} y& T
b C Least upper bound of {a,b,c} 4y -
Lower bound of {a,b,c} :a
a Greatest lower bound of {a,b,c} 1 a
Functions:

Introduction
A function is a special type of relation. It may be consred as a relation in which each

elementof the domain belongsto only one ordered pairin the relation. Thus a function from A to
Bis a subset ofAX Bhaving the propertythatfor eacha €A, there is one and onlyone b€ B such
that (a, b) TG.

Definition
LetA and B be any two sets. A relation f from A toB is calleda functionif for everya € A there

is aunique b € B such that (a, b) € f.

Notethatthedefinitionoffunctionrequires thatarelationmustsatisfytwo additional conditions in



unique element ofB. Ifa €A, then the unique element ofB assigned to a under f is denoted by f
(a).The usual notation for a function f from Ato B is f: A® B defined by a ® f(a) where a € A,

f(a) is called the image ofa under fand a is called pre image of f(a).

o LetX=Y=Randf(x) = x* +2.D(f)=RandR(f) cR.
o LetXbethesetofallstatementsinlogicandletY={True,False}.

Amapping f:X®Y isafunction.

o Aprogramwritteninhighlevellanguageismappedintoamachinelanguagebya compiler.
Similarly, the output from a compiler is a function of its input.

o LetX=Y=Randf(x)=x%isafunctionfromX®Y andg(x®)=xisnotafunction from X ® Y.

Amappingf:A®Biscalled one-to-one(injectiveorl-1)ifdistinct elements of A
aremapped into distinct elements of B. (i.e) f is one-to-one if
al=a2 =>f(al)=f(a2)orequivalentlyf(al)f(a2)=>al * a2
Forexample,f:N® Ngivenbyf(x)=x is1-1whereNisthe set ofa naturalnumbers.
Amappingf:A®Biscalledonto(surjective)ifforeveryb€Bthereisana€ Asuchthat f(a) = B.
I.e. if everyelement ofB has a pre-image in A.Otherwise it is called into.

Forexample,f:Z®Zgivenbyf(x)=x+1isanonto mapping.A mapping is

both 1-1 and onto is called bijective

.Forexample f:R®Rgivenbyf(x)=X+1 is bijective

Definition: Amapping f: R® bis called a constant mappingif, foralla € A, f(a)=
b,afixed element.

Forexample f: Z®Zgivenbyf(x)=0,forallx€ Zisaconstantmapping.



Definition
Amapping f: A®Aiscalledthe identitymapping ofAiff(a) =a, for all a
€ A. Usually it is denoted bylA or simply 1.

Composition offunctions:

Iff: A®Band g: B®Caretwofunctions, thenthecompositionoffunctions fand g, denoted byg o
f, is the function is given by g o f: A®C and is given by
go f={(a, c)/ a€AAc€ CAbER": f(a)=bAg(b) = c} and (g
of)(a) = ((f(a))

Examplel:ConsiderthesetsA={1,2,3},B={a,b}andC={x,y}.
Let f: A®Bbedefined byf(1) =a;f(2)=band f(3)=band Let g:
B® C be defined by g(a) =x and g(b) =y
(i.e)f={(1,8).(2,b).(3,b)}andg={(a,x), (b,y)}.

Thengof: A®Cisdefinedby

(9of)(1)= g(f(1))= g(a)=x

(90f)(2)=9(f(2))= 9(b)=y

(9o N(3)=g(f(3))=9(b)=y i.e.,go
f={(1. %), (2 y).GC )}

Iff: A®Aand g:A®A , whereA={1,2, 3},aregiven by
f={(1.2), (23),3.1)} and  g={(13),(2,2.,38.1)}
Thengof={(1,2),(2,1),(3,3)},fog={(1,1),(2,3),(3,2)}
fof={(1,3),(2,1),(3, 2)}andgog= {(1,1),(2,2),(3,3)}



Example 2: Let f(x) = x+2, g(X) = x — 2 and h(x) = 3x for x T R, where R is the set of
realnumbers.
Thenf o f = {(x, x+4)/x € R}

0g={(x,x)/x € X}

gof= {(x,x)/x€X}

gog={(x,x-4)/x€X}

ho g={(x,3x-6)/x€X} h o

f={(x, 3x+6)/ x 1 € X}

Inversefunctions:
Let f: A® B be aone-to-one and onto mapping. Then, itsinverse, denotedbyf-1 isgivenbyf- 1 =
{(b, a)/ (a, b) €f} Clearly f': B® A is one-to-one and onto.

Also weobservethat fo f=IBand f'o f=IA.If f *

exists then f is called invertible.

Forexample:Letf:R®Rbedefinedbyf(x)=x+2 Then f -
1: R® R is defined by f * (x) = x - 2



Theorem: Let f:X®Yandg: Y®Zbetwoonetooneandontofunctions. Thengofisalsoone to one and

onto function.

Proof
LetF: X ®YQ:Y ®Zbetwoonetooneandonto functions.Letx1,x2€X

o gof(x1)=gof(x2),

*  9(f(x1))= 9(f(x2)),
o 0g(x1)=g(x2)since[fisl-1]

x1=x2since[gis1-1}
so that gof is 1-1.

Bythe definitionofcomposition,gof: X ®Zisafunction.
We have to prove that everyelement ofz €Z an image element for some x € Xunder
gof.
Sinceg isonto$y€ Y':g(y)= zand fisontofromX toY,
$x€ X:f(x)=y.
Now,gof(x)=g(f(x))
=g(y) [sincef(x)=y]
=z[since g(y)= z]
whichshowsthat gofisonto.

Theorem (gof)™* =fog™

(i.e) theinverseofacomposite functioncanbeexpressed intermsofthe composition of

the inverses in the reverse order.

Proof.
f: A ® B is one to one and onto.
g: B® Cisonetooneand onto.
gof: A® C is also one to one and

onto.b(gof) *:C®Aisonetooneandonto.



Leta€ A, thenthereexistsanelement b€Bsuchthatf(a)=bba=f'(b). Nowb €B
bthere exists anelement ¢ €C suchthat g(b) = cb b=g™ (c). Then (gof)(a) =

g[f(@)] = g(b) =c P a=(gof) (C) ..rvverrrreeeeeeeeeeeereeeeen, Q)
(Flog™)(c)=F"(g™(c))=F"(b)=a Pa=(f"0 g)(c)....2)
Combining(1)and (2),wehave

(gof)™ =f* og™

Theorem:Iff: A®Bisaninvertible mapping,thenfof-
'=IBandflof=1IA
Proof: fis invertible, then f-1 is defined byf(a) = b6 f'(b) =a
wherea€ Aandb € B.
Nowwehavetoprovethatfof =IB.
Let b€ Band f'(b) =a,a TA
thenfof(b) = f(f*(b))
=f(a)=b
therefore fof-1 (b) =b"bTB=>fof* = IB
Nowf o f(a)= f* (f(a))= f* (b)=atherefore f -1 0
flay=a"a€A=>f1of=IA,

LatticeanditsProperties:

Introduction:

A lattice ispartiallyordered set (L, £) inwhicheverypair ofelementsa, bILhasagreatest lower
bound and a least upper bound.
Theglbofasubset,{a,b} [Lwillbedenotedbya*bandthelubbya Ab.

Usually, foranypaira,blL,GLB{a,b}=a*Db, iscalledthe meetorproductandLUB{a, b} = a Ab,

is called the join or sum of aand b.

ExamplelConsideranon-emptysetSandletP(S)beitspowerset. Therelationi—contained inl is a
partialordering onP(S). Foranytwo subsets A, BP(S)
GLB{A,B} and LUB{A B} areevidentlyACBandAEBrespectively.



Example2Let I+bethesetofpositive integers,andDdenotetherelationof*division’in I+ such
that for anya, b € I+, a D b iff a divides b. Then (I+, D) is a lattice in which
thejoinofaandb isgivenbytheleastcommon multiple(LCM)ofaand b,thatis,
a A b=LCM ofaand b, and the meet ofa and b, that is , a * b is the greatest common divisor
(GCD) of aand b.

Alattice can beconvenientlyrepresented byadiagram.
Forexample, let Snbethesetofalldivisorsofn, wherenisapositive integer. Let Ddenotethe

relation—divisionl suchthat foranya, bcdi654p[]

Fda2l  ASn,aDbiffadividesh.

Then(Sn,D)isalatticewitha*b=gcd(a,b)anda Ab=lcm(a,b).

Taken=6. ThenS6 ={1, 2,3,6}.It canberepresentedbyadiagramin Fig(1). Take n=8.
Then S8 = {1, 2, 4, 8}

Twolatticescanhavethesamediagram. For example ifS={1, 2, 3}then(p(s), 1) and(S6,D) have
the same diagram viz. fig(1), but the nodes are differently labeled .

We observe that for any partial ordering relation £ on a set S the
converserelationdisalso partialordering relation onS.If(S, £)isa lattice With
meet a * b and joina A b , then (S, 3) is the also a lattice with meet
aAband joina* bi.e., theGLB and LUBget interchanged. Thus wehave the

principle of duality of lattice as follows.

Anystatement about latticesinvolvingtheoperations ~andVandtherelationst
and3remains true if ~, V, 3 and£ are replaced by V, A £ and? respectively.
Theoperation™and Vare calleddualsofeachotherasaretherelations £and3..
Also,thelattice(L,£)and(L,%)arecalledthedualsofeachother.

Propertiesoflattices:

Let(L,£)bealatticewiththebinaryoperations* andAthen for anya,b,ciL,
. a*a=a ala =a (Idempotent)

. a*b=b*a, aAb =bA a  (Commutative)
. (a*b)*c=a*(b*c),(al)Ac=aA(bAc)



o(Associative)

. a*(alb)=a , aA(a*b)=a (absorption)

ForanyalL ,afa,afLUB{a,b}=>afa*(alb).Ontheotherhand, GLB
{a, aAb}£ ai.e.,(aAb)Aa,hencea* (a Ab)=a

Theoreml
Let (L, £)bea latticewiththe binaryoperations*and Adenotetheoperationsofmeet and join
respectivelyFor any a, b T L,

afbda*b=adaAb=b

Proof

Supposethat aEb. weknowthat afa, aEGLB {a, b}, i.e., aEa*b. But
from the definition ofa * b, we geta*b £ a.

Henceafb=>a*b=a.................ceiinn.n. 1)
Now we assume that a * b = a; but is possible only if a £ b,
thatisa*b=a=>afb ...l )

From (1) and (2), wegeta£ b6a*b=a.

Supposea*b=a.

thenbA (@a*b)=bAa=aAb......................... )
butbA (a*b)=b(byiv).........ceevviiiiini 4)
Hence a A b = b, from (3) => (4)
SupposeaAb=b,i.e.,LUB{a,b}=Db,thisispossibleonlyifa£b,thus(3)=>(1)
(1)=>(2)=>(3)=>(1).Hencetheseareequivalent.

Let us assume a* b = a.

Now(a*b)Ab=aAb

Weknowthatbyabsorption law,(a*b)Ab=b

so that a A b= b, thereforea*b=abaAb=b (5)
similarly, we can provea Ab=bba*b=a (6)
From (5) and (6), we get



a*b=aUaAb=b Hence the

theorem.

Theorem2  Foranya,b,ciL,where(L,£)isa lattice. b £ ¢

=>{a*bfa*c and
{aAbfaAc
Proof Supposebfc.wehaveprovedthatb£adb*c=b..............cceeurnene (@)
Nowconsider
(@*b)*(a*c)=(a*a)*(b*c) (byldempotent)
=a*(b*c)
=a*b (by(1))

Thus (a*b) * (a*c)=a*bwhich=>(a*b )£ (a*c)
Similarly(@aAb) A (aAc)=(aAa)A (b Ac)
=aA(bAc)
=aAc
which=> (a Ab) £ (a Ac)

note: Thesepropertiesareknownasisotonicity.



Unitlll:
AlgebraicStructures

Syllabus:

Algebraic structures: Algebraic systemswithexamplesandgeneralproperties, semigroupsand
monoids,groups&itstypes, Introductiontohomomorphismandlsomorphism(Proofoftheorems  are
not required)

Algebraicsystems
N={1,2,3.4,.....}=Setofallnaturalnumbers.

7={0,£1,+2,+3,44,.....}=Setofallintegers. Q= Set of all

rational numbers.

R=Setofallrealnumbers.

BinaryOperation: Thebinaryoperator*issaidto beabinaryoperation(closedoperation) on

anon-emptysetA, ifa*beAforalla, b € A (Closure property).

Ex:ThesetNisclosedwithrespecttoadditionandmultiplicationbut not

Ww.r.t subtraction and division.

Algebraic System: Aset Awithone or more binary(closed) operations defined on it is called

an algebraic system.

Ex:(N,+),(Z,+-),(R,+,.,—)arealgebraic systems.

Properties

Associativity:Let*be abinaryoperationona set

A.The operation * issaid to be associative inA .

if(a*b)*c=a*(b*c)foralla,b,cinA



Identity:Foran algebraicsystem(A,*),an elementeinAissaidtobeanidentityelementof A ifa* e

=ze*a=aforallaeA.
Note:Foranalgebraic system(A,*),theidentityelement,ifexists,is unique.

Inverse:Let(A,*)beanalgebraicsystemwithidentity_e‘.LetabeanelementinA.An element b

issaid to be inverse ofA.
ifa*b=b*a=e
Semigroups

SemiGroup:Analgebraicsystem(A,*) issaid tobeasemigroupif

1. *isclosedoperationonA.
2. *isanassociativeoperation,foralla,b,cin
A.Ex.(N,+)isasemigroup.

Ex.(N,.)isasemigroup.

Ex.(N,-)isnot asemigroup.



Monoid

Analgebraicsystem(A,*)issaid tobeamonoidifthefollowingconditionsare satisfied.

1) *isaclosedoperationinA.
2) *isanassociativeoperationinA.
3) Thereisan identityinA.
Ex.Showthattheset Nisamonoidwithrespectto

multiplication. Solution: Here, N ={1,2,34,...... }

Closureproperty:1Weknowthatproductoftwo naturalnumbersisagain anatural number.

I.e.,a.b=b.aforalla,beN
~Multiplicationisaclosedoperation.

Associativity:Multiplicationofnaturalnumbersisassociative.

i.e.,(a.b).c=a.(b.c)foralla,b,ceN Identity:
We have, 1 € N suchthat

a.1=1.a= aforalla eN.
~ldentityelementexists,andlistheidentityelement.

Hence,Nisamonoidwithrespectto multiplication



Examples

Ex. Let (Z,*)beanalgebraicstructure,whereZisthesetofintegers
andtheoperation*isdefinedby n*m=maximumof(n,m).

Showthat(Z,*)isasemigroup.Is(Z,*) amonoid?.Justifyyouranswer.

Solution:Leta,bandcareanythreeintegers.

Closureproperty:Now,a*b=maximumof(a,b)eZ foralla,bez

Associativity:(a*b)*c=maximumof{a,b,c}=a *(b*c)
~(Z,*)isasemigroup.
Identity: Thereisnointeger xsuchthat

a*x=maximumof(a,x)=a forallaeZ
~ldentityelementdoesnotexist.Hence,(Z,*)isnotamonoid.

Ex.ShowthatthesetofallstringsSisamonoidundertheoperationconcatenation of
strings®.

IsSagroupw.r.ttheaboveoperation?Justifyyouranswer.



Solution:Letusdenotetheoperation

_concatenationofstrings ‘by+.
Letsy,s2,S3arethree arbitrarystringsin S.

Closureproperty:Concatenationoftwostringsisagainastring.i.e., S1+s2€ S

Associativity:Concatenationofstringsisassociative. (S1+
S2) + S3= S1t (S2+ S3)

Identity:Wehavenullstring,|€Ssuchthats; +1=S.
~Sisamonoid.

Note: S is nota group, because the inverse of a nonempty string does not existunder concatenation
ofstrings.

Groups

Group:Analgebraicsystem(G,*)issaidtobeagroupifthefollowingconditionsaresatisfied.

1) *isaclosedoperation.

2) *isanassociativeoperation.
3) ThereisanidentityinG.

4) Everyelement inGhasinverseinG.

Abelian group (Commutative group):Agroup (G, *)said to
beabelian (or commutative)if

a*bh=b*a foralla,beG.



Properties

InaGroup (G,*)thefollowingpropertieshold good

1. Identityelementisunique.
2. Inverseofanelementisunique.
3. Cancellationlawsholdgood

a*b=a*c=>b=c (leftcancellationlaw)

a*c=b*c=> a=b(Rightcancellation

law)
4. (a*b)*=b™*a’*
Inagroup,theidentityelementisitsowninverse.

Orderof agroup: The number ofelements inagroupiscalled order ofthe

group.Finitegroup: IftheorderofagroupGisfinite,thenGiscalledafinite
group.
Ex1.Showthat,theset ofallintegersisanabelian group withrespectto addition.

Solution:LetZ=setofallintegers.

Leta,b,careanythreeelementsofZ.

1. Closure property: We know that,Sum of two integersis again

aninteger. i.e.,a+b e ZforallabeZzZ

2. Associativity:Weknowthatadditionofintegersis



associative.i.e.,(a+b)+c=a+(b+c)foralla,b,ce

Z

3. Identity:WehaveOeZanda+0=aforallacZ.

~Identityelementexists,and_0‘istheidentityelement.

4. Inverse: ToeachaeZ wehave—a€eZsuch that

a+(-a)=0

EachelementinZhasaninverse.

5. Commutativity:Weknowthatadditionofintegersis

commutative. i.e.,a+b=b+a foralla,be Z.

Hence, (Z, +) is an abelian group.

Ex2.Showthatsetofallnonzerorealnumbersisagroupwithrespecttomultiplication.

Solution:LetR "=setofallnonzerorealnumbers.

Leta,b,care anythreeelementsofR .

1. Closure _property:Weknowthat,productoftwononzerorealnumbersisagainanonzeroreal
number.

i.e.,a.beRfor alla,ber”.

2. Associativity:Weknowthatmultiplicationofrealnumbersis

associative.

i.e.,(a.b).c=a.(b.c)foralla,b,ceR".

3. Identity:Wehavel€R ‘anda.1=aforallaeR’.

~Identityelementexists,and_1’istheidentityelement.

4. Inverse:Toeacha€R’, wehavel/a€R ‘suchthat
a.(1/a)=1li.e.,EachelementinR hasan inverse.

5. Commutativity: Weknowthatmultiplicationofreal

numbers iscommutative.

ie,a.b=b.a forallaber”.



Hence,(R",.)isanabeliangroup.

Note:Showthatsetofallrealnumbers_Risnotagroupwithrespecttomultiplication.

Solution:Wehave0QeR.

ThemultiplicativeinverseofOdoesnotexist.

Hence.Risnotagroup.



Example:LetSbeafiniteset,andletF(S)bethecollectionof allfunctionsf:S—S under the
operation ofcompositionoffunctions,thenshowthatF(S)isamonoid.

IsSagroupw.r.ttheaboveoperation?Justifyyouranswer.
Solution:Letfy,f>, fzarethreearbitraryfunctionsons.

Closureproperty:CompositionoftwofunctionsonSisagainafunctiononS.

i.e.,fi0f2€F(S)
Associativity:Compositionoffunctionsisassociative.

i.e.,(fi0fz)ofz=f10(f20f3) Identity:
We have identityfunctionl : S—S

suchthat fi0l=f;.

~F(S)isa monoid.

Note:F(S)isnot agroup,becausetheinverseofanbijectivefunctiononS doesnotexist.

Ex.IfMissetof allnonsingularmatricesof order _n xn°‘.thenshow thatMis a
groupw.r.t. matrix multiplication.lIs (M,*) an abelian group?.Justify your
answer.

Solution: LetA,B,CEM.

1. Closureproperty:Productoftwonon-singularmatricesisagainanon-singularmatrix,
because| I 1|=|J]||[#0(Since,AandBarenonsingular)

i.e.,ABe MforallA,BE M .
2. Associativity:Matrixmultiplicationisassociative.
i.e.,(AB)C=A(BC)forallA,B,CEM.
3. Identity:Wehavel,.eMandAl,=AforallAEM.
~Identityelementexists,and_In‘istheidentityelement.
4. Inverse:To eachAeM, wehaveAeMsuchthat AA

= i.e., Each element in M has an inverse.

~Misagroupw.r.t. matrixmultiplication.
Weknowthat,matrixmultiplicationisnotcommutative.Hence,Misnotanabeliangroup.



Ex.Showthatthesetofallpositiverationalnumbersformsanabeliangroupunderthecomposition
*definedby
a *b=(ab)/2.

Solution:LetA=set ofallpositiverationalnumbers.
Leta,b,cbe anythree elementsofA.

1. Closureproperty:Weknowthat,Productoftwopositiverationalnumbersisagaina

rationalnumber.

i.e.,a*beAfor alla,beA.
2. Associativity:  (a*b)*c= (ab/2)*c=(abc)/4
a*(b*c)=a*(bc/2)=(abc)/4

3. ldentity: Letebethe identityelement.
We havea*e=(ae)/2...(1),Bythedefinitionofagain, a*e=a
.....(2),Since e is the identity.

From(1)and(2),(ae)/2=a =e=2and2eA
~ldentityelementexists,and2istheidentityelementinA.
4. Inverse:Letae Aletussupposebisinverseofa

Now, a*b=(ab)/2....(1)(Bydefinitionofinverse.)
Again,a*b=e=2.....(2)(Bydefinitionofinverse) From
(1) and (2),itfollows that(a b)/2 =2
=> b=(4/a)e A
~(A,*)isagroup.
Commutativity: a*b=(ab/2)=(ba/2)=b*a

Hence, (A, *)isanabelian group.



Finite groups

Ex. ShowthatG= {1,-1} isanabeliangroupundermultiplication.

Solution: ThecompositiontableofGis

* 1 -1
1 -1
-1 -1 1

1. Closureproperty:Sincealltheentriesofthecompositiontablearetheelementsofthe
givenset,theset Gisclosedunder multiplication.

2. Associativity: TheelementsofGarerealnumbers, andweknowthatmultiplication ofreal
numbers is associative.

3. Identity:Here, listheidentityelementand1€G.

4. Inverse:Fromthecompositiontable,weseethattheinverseelementsof

1 and- larel and- 1 respectively.
Hence, G is a group w.r.t multiplication.

5. Commutativity: The corresponding rows and columns of the table are identical.
Therefore the binary operation . is commutative.

Hence,G isanabeliangroup w.r.t. multiplication..

Ex.Showthat G={1, w,w*}isanabeliangroupundermultiplication.
Wherel,w,w?arecuberootsofunity.

Solution:ThecompositiontableofGis

1 w | w2
1 1 w | w2
w w [wll1l
W2 W2 1 W




1. Closureproperty:Sincealltheentriesofthecompositiontablearetheelementsofthegiven
set,theset Gisclosed under multiplication.

2. Associativity: TheelementsofGarecomplexnumbers,andweknowthat
multiplication of complex numbers is associative.

3. Identity:Here, listheidentityelementand1€G.
4. Inverse:Fromthecompositiontable,weseethattheinverseelementsofl w,ware 1, w?,
w respectively.

Hence,Gisagroupw.r.tmultiplication.

5. Commutativity: Thecorrespondingrowsandcolumnsofthetableareidentical. Therefore
the binary operation . is commutative.

Hence,G isanabeliangroup w.r.t. multiplication.

Modulosystems

Additionmodulom(+m)

letmisapositiveinteger.Foranytwopositiveintegersaandb

a +mb=a+b ifa+b<m

a +mb= r ifa+ b>mwhereristheremainderobtained
bydividing(a+b)withm.

Multiplicationmodulop(*m)

letpisapositiveinteger.Foranytwopositiveintegersaandba
*mb=ab ifab<p
a*mb= r ifab3p  whereristheremainderobtained
by dividing (ab) with p.

Ex.3*54=2 . 5*%:4=0 . 2%52=4



Example:ThesetG={0,1,2,3,4,5}isagroupwithrespecttoadditionmodulo6.

Solution: ThecompositiontableofGis

6|0 |1 | 2| 3|4 |5

0O |0 |1 (2|34 |5

5 |5 |0 (1]2]|3 |4

1. Closureproperty:Sincealltheentriesofthecompositiontablearetheelementsofthe givenset, theset
Gisclosed under+s.

2. Associativity: Thebinaryoperation+sisassociativeinG.

forex.(2+63)+64 =5+¢4=3 and

2+6(3+64)=2+61=3

3. Identity:Here, Thefirstrowofthetablecoincideswiththetoprow. Theelement headingthat
row,i.e., Oisthe identityelement.

4. .Inverse: From the composition table, we see that the inverse elements of 0,1,2,3,4.5 are0,
54, 3, 2, 1 respectively
5. Commutativity: Thecorrespondingrowsandcolumnsofthetableareidentical. Thereforethe
binaryoperation +sis commutative.

Hence,(G,+s)isanabeliangroup.



Example: ThesetG={1,2,3,4,5,6 }yisagroupwithrespecttomultiplicationmodulo?.

Solution: ThecompositiontableofGis

*71 1 2| 34| 5| 6

11, 2| 34| 5| 6

6| 6| 5| 43| 2|1

1. Closureproperty:Sincealltheentriesofthecompositiontablearetheelementsofthegivenset, the set
G isclosed under *7.

2. Associativity: Thebinaryoperation*;isassociativeinG.

forex.(2*73)*74 =6*74=3 and
2*7(3*74)=2*75=3

3. Identity:Here, Thefirstrowofthetablecoincideswiththetoprow. Theelement headingthat
row,i.e., listhe identityelement.

4. .Inverse:Fromthecompositiontable,weseethattheinverseelementsofl,2,3,4.56arel,4,
5,2,5,6respectively.

5. Commutativity: Thecorrespondingrowsandcolumnsofthetableareidentical. Thereforethebinary
operation *7is commutative.

Hence,(G,*7)isanabeliangroup. More on

finite groups

Inagroupwith2elements,eachelementisitsowninverse



Inagroupofevenordertherewillbeatleastoneelement(otherthanidentityelement) which is itsowninverse The

set G = {0,1,2,3,4,.....m-1} is a group with respect to addition modulo m.

Theset G = {1,2,3.4,....p-1} is a group with respect to
multiplicationmodulo p,wherep isa primenumber.

Subgroups
Def.AnonemptysubsetHofagroup(G,*)is asubgroupofG,
if(H,*)isagroup.
Note:Foranygroup{G,*},{e,*}and(G,*)aretrivialsubgroups.
Ex.G ={1,-1,i,-i}isagroupw.r.tmultiplication.
H:={1,-1 }isasubgroupofG.H>={1}isatrivialsubgroupofG.

Ex.(Z,+)and(Q,+)aresubgroupsofthegroup(R+).Theorem: Anon-emptysubsetHofagroup

(G,®)isasubgroupofGiff
i) a*beH Va,beH
) a'eH VaeH

Homomorphismandlsomorphism

Homomorphism:Considerthegroups(G,*) and (G*,®)

A functionf:G—G'is calledahomomorphismiff(a*b)=Ff(a)Bf(b)
Isomorphism:Ifa homomorphismf:G—G" isa bijectionthenfiscalledisomorphism betweenG and
G'.

ThenwewriteG=G*



Example:LetRbeagroupofallrealnumbersunderadditionandR "beagroupofallpositivereal
numbersundermultiplication.Showthatthemapping ~ f:R—Rdefinedbyf(x)=2"forallxe =~ R s
anisomorphism.

Solution:First,letusshowthatfisahomomorphism.Leta,pe R. Now,
f(a+h) = 27"
- 262b
=f(a).f(b)
~fisanhomomorphism.
Next, let usprovethat fis a Bijection.For
any a, b €R, Let, f(a) = f(b)
=>22=2"
=>a=b

~fisone.to-one.
Next,take anyc €R".
ThenlogzceRandf(logac)=2"%°=c

=EveryelementinR"hasapreimageinR.i.e.,fis onto.
~fisabijection.

Hence,fisan isomorphism.

Ex.LetRbe agroupofallrealnumbers underadditionandR*be a groupofallpositivereal

Numbers under multiplication. Show that the mapping  f:R*—Rdefinedbyf(x)=logioxfor all x €
R is an isomorphism.

Solution: First, let usshowthat fisahomomorphism.Leta, b
ER".
Now,f(a.b) =logio(a.b)

=logioa+logiob

=f(a) + f(b)

~fisanhomomorphism.



Next,letusprove that fisa
Bijection.Forany a,beER™ ,Let,
f(a)=f(b)

=>logio0a=logiob

=>a=b

~fisone.to-one.

Next,take
anyceR.hen10°eRandf(10°)=log
1010°=c.EveryelementinRhasaprei
mageinR™. i.e., fis onto.

~fisabijection.

Hence,fisan isomorphism.



UNIT-IV
COMBINATORICS
Basisofcounting:

If X is a set, let us use |X|to denote the numberof elements in X.
Two Basic Counting Principles

Twoelementaryprinciplesactas—buildingblocks<forallcountingproblems.The first
principle says that the whole is the sum of its parts; it is at once immediate and
elementary.

SumRule: Theprinciple ofdisjunctivecounting:

IfasetXisthe unionofdisjointnonemptysubsetsS1,.....,Sn,then| X |=| S1|+ [S2[+.....+
ISn|.

WeemphasizethatthesubsetsS1,S2,....,.Snmusthavenoelementsincommon.
Moreover, sinceX=S1US2U...... USn, eachelement ofX is inexactlyoneofthe subsets
Si. In other words, S1, S2, ...., Sn is a partition of X.

If the subsets S1, S2, ...., Sn were allowed to overlap, then a more
profoundprinciplewillbeneeded--theprincipleofinclusionand exclusion.

Frequently,insteadofasking forthenumberofelements inasetperse,someproblems ask
for how many ways a certain event can happen.

Thedifference is largelyinsemantics, forifAisanevent, wecanlet Xbethesetofways that
Acan happenand count the number ofelements inX. Nevertheless, let us statethe sumrule for
counting events.

ItEL,...... ,Enaremutuallyexclusiveevents,andE1canhappenelways,E2happen e2
ways,.... ,En can happen en ways, Elor E2 or .... or En can happen el +e2 +
........ +tenways.

Againweemphasizethat — mutuallyexclusiveeventsElandE2  meanthat ElorE2can
happen but both cannot happen simultaneously.

Thesumrulecanalsobeformulatedintermsofchoices: Ifanobjectcanbe selected
fromareservoirinelwaysandanobjectcanbeselectedfromaseparatereservoirine2ways
andanobject canbeselectedfromaseparatereservoir ine2ways, thenthe selectionofone object
fromeither one reservoir or the other can be made in el + e2 ways.



Product Rule:Theprincipleofsequencingcounting
IfS1, .....,.Snarenonemptysets, thenthenumberofelementsin theCartesian product S1 x S2

X ..... X Sn is the product [[in=1 |S i |. That is,
[SIXS2X ..o xSn|=] [in=1]Si].

Observe that there are 5 branches in the first stage corresponding to the 5 elements of S1
and to each of these branches there are 3 branches in the second stage corresponding to the 3
elements ofS2 giving a totalof15 branches altogether. Moreover, the Cartesian product S1 x S2
can be partitioned as (al x S2) U (a2 x S2) U(a3 xS2) U (a4 x S2) U (a5 x S2), where (aix S2)
={(ai,bl),(aii,b2),(ai,b3)}.Thus, forexample,(a3xS2)correspondstothe thirdbranchin the first
stage followed by each of the 3 branches in the second stage.

Moregenerally, ifal,....., anarethendistinct elementsofSland bl,....,bmarethe m

distinct elements of S2, then S1 x S2 = Uin =1 (ai x S2).

For if x is an arbitrary element of S1 x S2 , then x = (a, b) where aAT Slandb1
S2. Thus, a=aifor some iandb= bjfor some j. Thus, x=(ai, bj) I(aixS2) and
therefore x 1 Uni =1(ai x S2).

Conversely, if xI Uin=1(aixS2), tbenxT (aixS2) for some iand thus x=(ai, bj) where bj is
some element of S2. Therefore, x I S1 x S2.
Nextobserve that (aixS2)and(ajxS2)aredisjointifiZjsinceif
xI (aixS2) N(ajxS2) thenx=( ai, bk) for somekand x=(aj, b1) for some I.
Butthen(ai,bk) =(aj,bl)impliesthat ai=ajand bk=bl.But sincei#j,ai#aj.
Thus, weconcludethatS1xS2isthedisjointunionofthesets(aix S2).

Furthermorel|aixS2|=|S2|sincethere isobviouslyaone-to-onecorrespondence between the sets
ai x S2 and

S2,namely,(ai,bj)—bj.
Thenbythe sumrule [S1xS2|= Y nni=1]aixS2|
7.(nsummands)|S2| +|S2| +..........+ |S2|

8.n|S2|
9.nm.
Therefore, wehaveproventheproductrule fortwo sets. Thegeneralrule follows by
mathematical induction.



Wecanreformulatetheproduct rule in termsofevents. IfeventsEl, E2, ....,En can
happen el, e2,...., and en ways, respectively, then the sequence of events E1 first,

followedbyE?2,...., followed byEncanhappenele2...enways.

Interms ofchoices, the product rule is statedthus: Ifa first object can be chosen elways,
a second e2 ways, ..., and an nth object can be made in ele2....en ways.

Combinations&Permutations
Definition.

Acombinationofnobjectstakenr at atime (called anr-combinationofnobjects) is an
unordered selection of r of the objects.

Apermutationofnobjectstakenr at atime (also called anr-permutationof n objects) is
an ordered selection or arrangement of r of the objects.

Notethat wearesimplydefiningthetermsr-combinationsandr-permutations here
and have not mentioned anything about the properties ofthe n objects.

Forexample,thesedefinitionssaynothingaboutwhetherornot agivenelement may
appear more than once in the list of n objects.

Inother words, it maybethatthenobjectsdo notconstituteasetinthe normalusageof the
word.

General formulas for enumerating combinations and permutations will now be
presented. At this time, we will only list formulas for combinations and permutations without
repetitionsor withunlimited repetitions. We willwait until laterto use generating functionsto
give generaltechniques for enumerating combinationswhere otherrulesgoverntheselections.

LetP(n,r)denotethenumberofr-permutationsofnelements withoutrepetitions.

Theorem5.3.1.(Enumeratingr-permutationswithout repetitions).
P(n,r)=n(n-1).......(n-r+1)=n!/(n-r)!

Proof.Sincetherearendistinct objects,the first positionofanr-permutationmaybe filled in
nways. Thisdone,thesecondpositioncanbefilledinn-1wayssincenorepetitionsareallowed and there
aren— lobjectsleft to choose from. Thethird canbe filled inn-2 ways. Byapplying the product
rule, we conduct that

P (n,r) =n(n-1)(n-2)....... (n—r+1).
Fromthedefinitionoffactorials,itfollows that
P(n,r)=n!/(n-r)!



Whenr =n,this formula becomes
P (n,n)=n!/ 0!'=nl

Whenweexplicit referencetorisnot made, weassumethat alltheobjectsareto be arranged,;
thuswetalk about the permutations ofnobjects we meanthe case r=n. Corollaryl. There are n!
permutations of n distinct objects.

Number ofpermutationsthat can be formed froma collectionof*n’objectsofwhich n; are of
onetype noareofsecondtype....... nikareofkthtypewithni+na+. ... .. +nk=n.Thenthe

numberofpermutationsoftheofthenobjectsis-.
O 0204400000

Example 1.
There are 3! = 6 permutations of {a, b, c}.

Thereare4!=24permutationsof(a,b,c,d).

Thenumberof2-permutations{a,b,c,d,e}isP(5,2)=5!/(5

-2)! =5x4=20.

Thenumberof5-letterwordsusingthe lettersa,b,c,d,andeatmostonce is P (5, 5)
= 120.

Example 2 There are P (10, 4) = 5,040 4-digit numbers that contain no repeated digits since
eachsuchnumber is just anarrangement offour ofthedigits0, 1, 2,3, ....,9(leadingzeroes are
allowed). There are P (26, 3) P(10, 4) license plates formed by3 distinct letters followed by 4
distinct digits.

Example3. In how many ways can 7 women and 3 men be arranged in a row ifthe3
men must always stand next to each other?

There are 3! ways of arranging the 3 men. Since the 3 men always stand next to each other, we
treat them as a single entity, which we denote by X. Then if W1, W2,...... W7 represents the
women,wenext areinterestedinthenumberofwaysofarranging{X,W1,W2, W3........ ,W7}. There
are 8! permutations these 8 objects. Hence there are (3!) (8!) permutations altogether. (of course,
if there has to be a prescribed order of an arrangement on the

3menthenthereareonly8!totalpermutations).



Example4. Inhowmanywayscanthe lettersoftheEnglishalphabet bearrangedsothatthere are

exactly 5 letters between the letters a andb?

There are P(24, 5) ways to arrangethe 5 letters betweena and b, 2 ways to place a andb,and
then 20! ways to arrange any 7-letter word treated as one unit along with the remaining 19
letters. The total is P (24, 5) (20!) (2).

Note: If instead ofarranging objects in a line, we arrange them in a circle, then the number
of permutations decreases.

Example5.Inhowmanywayscan5childrenarrange themselvesinaring?

Solution:Here,thebchildrenarenotassignedtoparticularplacesbutareonlyarrangedrelative
tooneanother. Thus, thearrangements(seeFigure 2-3) areconsideredthesame ifthe children are
inthe same orderclockwise. Hence, the positionofchild C1 is immaterialand itisonlythe position
of the 4 other children relative to C1 that counts. Therefore, keeping C1 fixedin position, there
are 4! arrangements of the remaining children.

Example 6. A certain question paper contains 3 parts A,B,C with 4 questions in part A, 5
questions in part B and 6 questions in part C. it is required to answer 7 questions selecting at
least 2 question from each part. In how many different ways can a student select his seven
question for answering?

Solution: Thedifferentpossiblewaysinwhichastudentcanmakeaselectionare

(1) 2questionsfrompartA,2frompartBand 3frompartC

(2) 2questionsfrompartA,3frompartBand 2frompartC

(3) 3questions frompart A, 2frompartBand2frompartC
Selection (1) can be made in C(4,2)xC(5,2)xC(6,3)=1200 ways
Selection (2) can be made in C(4,2)xC(5,3)xC(6,2)=900 ways
Selection (1) can be made in C(4,2)xC(5,2)xC(6,3)=600 ways
Therefore number ofpossible selection is1200+900+600=2700

1. Howmanydifferentstrings(sequences)oflength4ncanbeformedusingthelettersofthewordFLOWER. Sol:
The given word FLOWER has 6 letters where all of which are distinct.

TherequirednumberofstringsisP(6,4) = -6 =6!=360
(6-4)! 2!

2. FindthenumberofpermutationsofthelettersofthewordSUCCESS.
Sol: ThegivenwordSUCCESShas7 letters,ofwhich3areS’s, 2areC’sand 1 each
are U and E.

Therequirednumber ofpermutationsis  —7Z-— =420
3121111!

3. FindthenumberofpermutationsofthelettersofthewordMASSASAUGA. Inhowmany Of

these, all four A’s are together? How many of them begin with S?
Sol:ThegivenwordMASSASAUGAhas10lettersofwhich4 areA’s,3 areS’s
and 1 eachareM,UandG.

i i i 10!
Requirednumberofpermutations is sy =25,200

IfallA’sare together,wetreatallA’sasone singleletter.



Thenrequirednumberofpermutations is —72— _g4
113111111!

Ifthewordbeginwithletter S,thereoccurs9openpositionsto fill, where2areS’s, 4 are
A’s and one each are M,U,G

Thenrequired number ofpermutationsis A =7560
21411111!

4. Howmanypositiveintegersncanweformusingthedigits3,4,4,5,5,6, 7ifwewantntoexceed5,000,000 Sol: Here
n must be ofthe formn = X1X2X3X4X5XeX7
Wherexi X2,X3,Xa,X5,Xs,X7arethegivendigitswithx:=5or6or7
Suppose wetake x1= 5 then x2,X3,X4,X5,Xe,X71S an arrangement of the remaining 6 digits which contains
two4’sand one each of 3,5,6,7

Thenumberofsucharrangementsis & _36
21111111

Next,Supposewe takexi1=6thenxz,X3,Xa,Xs,Xs,X7iSanarrangementoftheremainingédigitswhich contains two
each of 4 and 5and one each of 3,7

Thenumberofsucharrangementsis -6 _4g
21211'1!

Similarly,wetakex;=7thenxz,X3,Xs,X5,Xs,X7isanarrangement oftheremainingédigitswhichcontains two each
of 4 and 5and one each of 3,6

Thenumberofsucharrangementsis ﬁ =18

AccordingtoSumRule,
Thenumberofn’sofdesired typeis= 360+180+180 = 720

5. Fourdifferent Mathematicsbooks, fivedifferentcomputersciencebooksandtwo

Differentcontroltheorybooksaretobearrangedinashelf. Howmanydifferentarrangementsare possible
if
a) thebooksin eachparticularsubjectmust allbetogether?
b) Only theMathematicsbooksmustbetogether?

Sol:a) The Mathematics books can be arranged among themselves in 4! ways, the
Computer sciencebookin5!ways, thecontroltheorybooksin2!waysandthethreegroups
in3!Ways
thenumberofpossible arrangementsis4! X 51X21X3!= 34,560
b)Considerthefourmathematicsbooksasonesingle book.Thenwehave8bookswhich Can be
arranged in 8! Ways. In all of these ways the mathematics books aretogether. But the
mathematics books can be arranged among themselves in 4! Ways.
Hence,thenumberofarrangementsis8!X4!=967,680
6. Findthevalueofnsuchthat2P(n,2)+50=P(2n,2) Sol:
2P(n,2) + 50 = P(2n,2)
2X +50= 2ol

n!
(n-2) (2n-2)!
!

2r21(n—1)+50=2n(2n-1)
n°=25
n=5or -5
sincencannot benegative,thevalueofn =5




THEPRINCIPLEOFINCLUSION-EXCLUSION:

ConsiderafinitesetScontainingpnumberofelements.Here,thenumberpiscalledorder,

sizeor thecardinalityofthesetSandisdenotedby [ 1(J),orJ(1)or | ).
Forexample,if(1={1,2,6}and={1,(1,[],[1}thenC]1([1)=|1|=3and1((])=|1|= 4

Itis obvious that |¢#=0, and [[J[=1 for everynon-emptyfinite set S.Further for anytwo
finitesetsAandB, if[J] <[] then|(I|< |[J]and ifAl]l < Cthen||<|J]

If_AisaBubsetofa finiteuniversalset U,thenthenumberofelementsinthecomplement1(of A in U) is
given by-

|Cl=10]=10] )

Supposeweconsider theunionoftwo  finitesetsAandBandwishtodeterminethe number of
elements in [JUL]. Since, the elements of [1UC] consist ofall elements which are in Aor in B
orbothAand B, thenumber ofelements infJUll isequalto thenumber ofelements inAplus
thenumberofelementsin Bminusthenumberofelements(ifany)thatarecommon toA and

B. Thatis,
|Cud]=|O+|0]-|OnO]| 3]

Amoreexplicit(visual)wayofobtainingthisresultisthroughtheuseofaVVennDiagram.

Consider the Venn diagram shown above. In this diagram, the set A is made up of two parts [1and [1zand
thesetBismadeupoftwopartsiizand(13,where( ]2 = [INn{],and[JUL] ismadeupofparts(11,/12and(]3. Therefore,

| 7]=Numberofelementsin11+Numberofelementsin(2
=|Ca|+] 2]
Similarly, |C|=|C0z|+]|3], |AUB|=|C1|+|CI2]+] 3]

Fromthese,weget
[AUB|=| 11|+ Clz|+]CIs]=C 2]+ O2D+( 2]+ 3]) - 2]
=|C[+[0]-10N]
Thus,fordeterminingthenumberofelementsin T1U],wefirst includeallelementsinAandallelementsin B, and then
exclude all elements that are common to A and B.

IfUisafiniteuniversalsetofwhichAandBaresubsets,then,byvirtueofaDe’MorganLawandthe expression (1)
above, we have-



| TnT 1=1W=]0 v
Withtheuseofformula(2) above, thisbecomes

| D00 I=Td=100-0+01-10n0)

= U= =10+ n ] 3

Expressions (2) and (3) are equivalent toone another. Either ofthese is referredto asthe AdditionPrinciple
(Rule) or the Principle of inclusion-exclusion for two sets.

IntheparticularcasewhereAandBaredisjointsetssothat 1N 1= @,theadditionrule(2)becomes-

|0 u O =107+ 0] - 1@] =101 + 1] 4)

This is known as the Principle of disjunctive counting for two sets.

BinomialCoefficients: Inmathematics,thebinomialcoefficient fn\,isthecoefficientofthe
y
termx"inthepolynomialexpansionofthebinomialpower(1+x).

In combinatorics,(™ )is interpreted asthe number of k-element subsets (the k-combinations) of
ann-eIementset,thaﬁsthenumberofwaysthatkthingscanbe"chosen"froma setofnthings.

Hence, isoftenread as"n choose k"and iscalledthechoosefunctionofn and k.The

notation  was introduced by Andreas von Ettingshausen in 182, although the numbers were
alreadyknowncenturiesbeforethat(seePascal'striangle).Alternativenotations includeC(n,k),

n
nCk,Ck, Cr-0F, inallofwhichtheCstandsforcombinationsorchoices.

Fornaturalnumbers(takentoincludeO)nandk,thebinomialcoefficient (nr)canbedefined as
k 1

thecoefficient ofthemonomialX intheexpansionof(1+X) .Thesamecoefficientalso



occurs(ifk <n)inthebinomial formula

n . B n—k, k
(z+y)" = Z (k>;l? Fyk

k=0

(valid for anyelements x,yofa commutative ring), which explains the name "binomial
coefficient".

Another occurrence of this number is in combinatorics, where it gives the number of
ways,disregarding order, that a k objects can be chosen from among n objects;
moreformally,thenumber of k-element subsets (or k-combinations) of an n-element set. This
number can be seen tobe equal to the one of the first definition, independently of any of the
formulas below to computen

it:ifineachofthenfactors ofthepower(1+X)onetemporarilylabelsthetermXwithanindexi
(runningfrom1to n),theneachsubsetofkindicesgivesafterexpansionacontribution
k

X', and the coefficient of that monomial in the result will be the number of such subsets. This

showsinparticularthat(Z) isanaturalnumberforanynaturalnumbersnandk. Therearemany  other
combinatorial interpretations of binomial coefficients (counting problems for which theanswer
is given by a binomial coefficient expression), for instance the number of words formedof n
bits (digits 0 or 1) whose sum is k, but most of these are easily seen to beequivalenttocounting
k-combinations.

n

Severalmethodsexisttocomputethevalueof (k)withoutactual lyexpandingabinomialpower or
counting k-combinations.
Methodofgenerating functionsforFirst-OrderRecurrenceRelations:-
Supposetherecurrencerelationtobesolved isofthe form an=

C an1t F(n) forn>1
oran+1=C an+L1([1)forn>0
generatingfunctionisf(x)=Y* - o[l
0
thenweget fy=oen DR OOOO(0 = D)0
(@ =) >
1-(10] ) 2
Problems:

1. Findageneratingfunctionfortherecurrence relationan+1—a»=3",n>0 and
ao= 1. Hence solve the relation.

Sol:Givenan+1—an=3"
=> an+1=an+t 3n

this is ofthe forman+1=c an+[ /([ )forn>0

Herec=1,=1 and [J(1)=3"



Generatlngfunctlon|sf(x)—3°+—3E@1 Oh OO0
() EZ°°= Bk

:_221 = B =39
M=

0
r(x):1+D(1—3 j)_

1+
1+
=27 istherequiredG.F
— 1-2[
Let 27 (11—3[)(1—
= T
(1-30)(1- 1 1730
) -0
1-2x =A(1-3x) + B(1-x)
OnsolvingA=B=%2 - — ——
f(x)= 1-20 =1(1+ 1)
(1-30)(1-01) 21-0 1=30

=13 T +Ee(30))
5 [1=0 =0

—1ZO° (1+3L)DL—Z°° mjmE
=00
Hencereqwredsolutlonlsan— (1+3U)

2. F|ndthegeneranngfunctlonfoetherecurrencerelationan+1—an:n2,n20andao:1 Hence

solve it.
Sol: Givenans1-an= N°=>an+1= an+n°, n>0 this is
ofthe forman+1=c an+[ /([ ])for n>0 Here £= 1

,a0=1 and ((0)=n’
Generatlngfunctlon|sf(x)—30+—if—1 Or OO0
(D)WZ‘” D(D)DE
=y 0 2o

0=0
i.e.,g(x) istheG.F for <n®>=0%1%2%........occvvvivienn.
theng(x)="01+

(1-LD3 -
f(X) _._1_[_J (1+J)
(1- u3
f(x):1 3?;:*3) istherequiredG.F
4

0 A 4

=(1-3x+4x2)[ T=° 3+ ] o

_® 3+ O= Q‘ + 1 ©
= uzo( ﬂ)ﬁu-SZ uzo(% HDJ +42 u2([3-|-r|u)uu_,_2

Sincef(x)=%° [, o
=0
Coeff.Ofx"is



3+[1-2

/043 3+0-1
an=(" % (TA( ) -2
C+ +
2 1
0
= )3 )+ )
O -1 -2
:[D+3)! _3(D+2|! +4(D+1|!
13! (0-1)!3! (0-2)!3!
=(=0HO2+500+6)-3(2+20]) +4(2-0)}
6
=(L+D2[12-5[1+6) istherequiredsolution.
6

Methodofgeneratingfunctionsforsecond-orderRecurrence relations:-

Considerthesecondorderrecurrencerelation ant
A an1+ Ban2= F(n)for n >2
Oran+2+Aan+1+Ban=L1(n)forn>0

Generating functionisf(x)= »* 1= [Jo[J"
0

thenweget Ok 000 O(0)=X* 0-0 O(0)O0

+ + +012
f(x):D() (Dl joj)j O

mn)}
1+00+002

Note: If[](n)=0thengeneratingfunctionisf(x)="0("1-00)
1+00+002

1. Findageneratingfunctionfortherecurrence relation an+an.1-6an-2=0forn>2
Given ap=-1,a:1=8
Sol:Given an+an-1-6an2=0for n>2
an+2+an+1'6an20f0m20
andap=-1,a:=8, A=1,B =-6,[1(n)=0

thengeneratingfunctionf(x) ="0+(-1+100)
1+0100+[1[12

f(x)=—Z=1 istherequiredgenerating function.
1+0)-6[12

2. Findageneratingfunctionfortherecurrencerelationan+2-2an+1+an=2"forn>0 Given

ao= 1, a1= 2Hence solve it.
Sol:Givenan+2-2an+1+an=2"for n>0

= = =- = ="
N htabhoTaAGorR " 2 0 10y (D)

1+0000+1012

() =X01(0]
)
[1=0

Oh OO0

[oe] [oe]

O()=X2000=(21)'=(1-2(])-1
=0 =0



Thus, __1-20+02 _ 1
A T e e

)
x)~1

f(x)=(1-2x)*
= fgo: (20)"=X" 920"
an=2"istherequiredsolution.

(1-0)2

3. Findageneratingfunctionfortherecurrence relationan+2-5an+1+6an=2forn>0 Given

ao= 3, a1= 7Hence solve it.

Sol:Givenan+2-5an+1+6an=2forn>0

Here ap=3,a1=7,A=-5,B=6andL!(n)=2
thengeneratingfunction f(x)=C0+(01+000)2m(0)

1+00+0012 Ur 00D
O(0) =X
O(o)ov
=0
=Y b= 200
0
. =2(1-x)*
Thus f(x)= 3270
1-50+6012
10002-1100+ istherequiredgenerating function.
(1-2)(1-30)(1-1)
= _ 4 N +

NOW,Let 10u2—11L
+3
O 1_2 —‘:‘-1—
(1-20)(@3-30)a 1 -30
_u) -0 0
10x%-11x+3=A(1-2x)(1-3x)+B(1-x)(1-3x)+C(1-x)(1-2x)
OnsolvingA=1,B=0,C=2
_ 10002-110+3 _ 1, _2
f(xel_—u)(l—w)(l—u 1 1-30)

=(1-x)*+2(1-3x)*
= O°= DT+2200 =0
5260
0= (1+2.37)01°
Hencea,=1+2.3"istherequiredsolution.
4.Find a generating function for the Fibonacci sequence <F,> and hence obtain an expression
for Fn

Sol:RecurrencerelationforFibonaccisequenceis
Fn+2=Fn+1+Fn forn>0withFo=0,F1=1

—_— Fn+2-Fn+1'



Fn=0forn>0 HereFo=0,F1=1,A=-1B =-
land’i(n)=0



thengeneratingfunctionf(x) =-0+(-1+100)1
1+00+002

NRCM

your roots to success...



-0

_?2+)3:1 _ _ o .o
Now,f(x)= - = + Oh 00002+ 0-1=(0-0)(0-00)
112+j—1
0,0="(-12V5)
2

-x= A(X-B)+B(x-a)
o_ 1 O_ 1

0 T’ O —
0-0

Now fx=— __ - ——
-0
O
:_JL1_L)_1___J(1___L)_1 4
0 0 0 0

=-"3() = 2=
0 ]

- [ 0
:—Z o + )D O
=0 Oo+1 [JH+1

ThUSFn:—D g

1“—* - o+
(ooy b D_
, Lo 0%+ o, 07 OODOoD0="1sz ,O=-1-s
T e =1 = -
1 1 DJ+1[L j_j=—1,D—D=\/5
1" [g\/ vs!
1

= 0o-0o
(-1)"/5 [ ]

SecondorderlinearhomogeneousRecurrencerelationsBYCHARACTERESTIC ROOTS
Considerthesecondorder RR
Cnan+Cn-1an-1+Cn-Zan-ZZOfOrn22—>(1)
Chn,Cn-1,Cn-2areconstantsWithCn 0.
Wewantto getthesolutionof(1) inthe forman,=ck" C £ 0
& k # 0, put a= ck" in (1)
Cn(Ckn) +Cn-1Ckn_1+Cn-Zngn_2) =0
Ck™2 [Cnk® + Cnak + Cn2] =0
Cnk? +Cn.1k+Cn-2=0—-(2)
an= Ck" isthe solutionof (1)if(2) istrue.Thisquadratic equation(2) ink iscalled auxiliary
equation or Characteristic equation of RR (1). Then 3 three cases
1) Thetworootski&koarerealanddistinctthensolution isa,=Aki"+ Bk2".
2) The tworoots ki&koarerealbutequalthensolutionisa,= (A+Bn)k".
3) Ki&koarecomplexconjugateslikeki=p+iq &k2 =p-iq



An=r"(Acosn(I+Bsinnil)wherer=y/ 2+ T2& =001 ) -

Q1:Solvetherecurrencerelationan+an-1-6an-2=0forn=2,a,=-1,a:=8

Sol:General form of second order RR is Chan+ Cn-18n-1+ Cn-28n-2= 0
-'-Cn:].,Cn-j_:l,Cn-Z:‘G
Nowthecharacteristicequationisk®+k-6=0,onsolving it ky=-3,k,=2 (real
and distinct).
an=A(-3)"+B(2)"where A&Bare constants.
Nowusingtheinitialconditionfinda&B ao =
A+B=»A+B=-1
al=-3A+2B=»-3A+ 2B= 8thenA=-2,B=1
~Solutionisan=-2(-3)"+(2")

Q2:Solvean=2(an-1—an-2)forn=2/ap=1&a1=2 Sol :an-
2an-1+2an2= 0 ,cn=1, C2= -2, C3=2
characteristicequation isk®-2k+2 =0,k=1xi
~Generalsolutiona,=r" [Acosn[J + Bsinn] r

=V2+02, =1 =1
=V2,0=000- 1(—) 0oo- 1(1) >000-1(1)=>0="

~8,=(V2) [Acos +Bsm ™ -

TogetA&Businginitialconditions,ao=1:>>AcosO+Bsin0:>> B=1
a1=2= >>(\/2){Acosm+Bsinm] o
=v2at+gl]
t V2 ] \/2 gl 0o
A+B=2thenB=1=>>a,=(v2) +Bsin J_
[Acos 4
Q3:SolveFn+2=Fn+1+Fnforn= 0,Fo=0, F1=1 Sol:Fn+2 -
Pt Rt RAGUABAER=A (15

)+B 1-2 5)

2

Usingcriticalvalues, A+B—0—> (1)=>B =-A

5 15
1=A (2 +B( )
1+%/5u ! \%‘5

=A( ) -A( 2)
1=2*ARE = A=t — ,B="1_

Zm \5 V5
1 _ — _ -
F = ”5‘(&5 —(M Jisthesolution.
V5 2 ) 2

ThirdandHigherOrderLinearHomogeneousRecurrenceRelation:



Q1.Solve2a,,3—an;»+2an.1—anfor n>0given  ag=0,a;=1,a,=2
Sol:Let 2an,3—ano+2an.1—an=0for n>0
WehaVGCnZZ,Cn,1=—1 y Cn72:_2 y Cn73:1

_1
Characteristicequationis  2k*-k2-2k+1=0=k 1 ——Ko=1ks =-1

2
The roots are, realanddistinct.
(1) n n
a=h —L 2) +B(1) +C(-1)
TofindA,B& C:
ap=0-9A+B+C -----=--=--=--=- 1
ao:l:% B O (&))
A_

1 1 2
a=2=" A+B+C -------memem- (3)

2 4
Adding(1)+(2)gives3A+4B=2 -------------- @)
Adding(2)+(3)gives3A+8B:12-----_-é----é-- (51

Now,solving(4)&(5)weget A= _’B: 1=
81 5 . 1 .
ra= _ |71 +—0) (1)
3L2) 2 6
This istherequiredsolution.
Q2.Solvetherecurrencerelationa,+a,-1—8a,,—12a, 3=0,givenas=1,a;=5,a,=1.
Sol:Given ap+an-1—8an_—12a,3=0

WehaveC1=1,C2=1,C3=—8,C4=—12
Characteristicequationisk®+k’~8k—12=0=sk=k =2,k=3
B

1 2

w
o |

The roots arerealandrepeated.
Hencethesolutionis  a=(A+Bn)(-2)"+C(3)"

Y .V o S )
a1=5=—2(A+B)+C -------------- 2
ar=1=4(A+2B)+9C------------- (3)

Solving(1),(2)and(3),wegetA=0,B=—1,C=1

=@ (-n)(-2)"+3"istherequiredsolution.
Non-HomogeneousRecurrenceRelationofSecond andHigherOrder:
Recurrencerelation isoftheform,
Cn@n+Cn-18n-1+Cn_zan_2+...=f(N)wheren>k>2&c,#0 Q)
AgeneralsolutionforthisRRbea=a"+awherea®™isthesolutionoftheLHS part.

n n n n




Togeta®considerthefollowingcases:
Case(i):Supposef(n)isapolynomialofdegreeq&lisnotarootofthecharacteristicequationofthehomogeneous

part (LHS)ofreIatlonmequatlon(l) Inthiscasea®canb, e takenas
aP=A +An+An®+...+An% Then AAA,.. Ashouldbeevaluated.
q

0 1 2 q 0o 1 2
Case(ii):Supposef(n)isapolynomialofdegreeq &1lisarootofmultiplicity m,a®’can betaken as

aP=n"(A | +An+An’s..+An%).Then AAA, ..., Ashoyldbeevaluated.
Case(iii): Suppose f(n) ab”wherealsconstantandb|snotarootofthecharacterlstlcequatlonthena(p) Ab"

Case(iv):Suppose  f(n)=ab"wheregisconstantandbisarootofmultiplicitymofthecharacteristicequation
then agp):Anm(pn

Problems:
Q1.Solvetherecurrencerelationa,+4an-1+4an=8forn>2anday=1,a;=2
Sol:Givenrecurrencerelationis  ap+4a, j+4an ;=8------------- Q)

Consider the homogeneous part,ap,+4an_1+4an,_ =0 We

haveC,=1,Cn_1=4,Cr=4
Thecharacteristic equationisk2+4k+4:0:>k:k:—2 )
1 2
Therootsarerealandrepeated,so the required solutionis a"=(A+Bn)(-2)" @3)

Con5|dertheR Sltlsaconstant8 consider itasapolynomialwithdegree0.(ie.,n=0)andlisnotarootforLHS.
Bycase(i), a ’=A----------- 4) 8 8
" A+AA+AA=8=A= aP=p=
i .Sowehave
Put (4)in(1),weget . . . o i .

Therefore,thegeneralsolutionof(1)isa

©|

—gMyg@
, —a +ar.

:(A+Bn)(—2)”+8 B (5)
9
8 81
Now,forfindingvaluesofA& B, a=1=A+ =A=1-"= (6)
g % 9 9
(7

—a

©|

a:2:—2(A+B)+8 —=-—2A-2B=2—
1
9

Solving(6)&(7),weget B-0

9 12
Substitutingthe valuesofA &Bin(5),wehave az( - nr) ﬁ 2}‘+

K

Q2.Solvetherecurrencerelationa,,—4an.1+3a,=—200forn>0andgivena,=3000,a;=3300

3 9
)

Sol:Given an,>—4an1+3a,=—200forn>0 --------------- 1)
WehaveC,=1,C, 1=—4,C,»=3



Characteristicequationisk’~4k+3=0=k =1 k=3
1 2

Therootsarerealanddistinct,sowehave al=A(1)"+B(3)"
Sincelisthe root ofthecharacteristicequationwithmultiplicitym=1,wecanwrite
a®=n*(A), nowsubstitutingthis ineqn.(1)weget,
n 0
(n+2)A0—4(n+l)A0+3nAo=—200:>—2A0=—200:>Ao=100
Hence,wehave a®=100n

Weknowthatthe generalsolutionisgivenbya _a(4g®
-.a=A+B(3)+100n ------e-mm-- )

Also,wehave

a0=3000=A+B=B=3000—A ---------mmmmmev (1)
2,=3300=A+B(3)"+100(1) ------------- @)

Solving(1)&(2)wegetA=2900,B=100
Hencetheparticularsolutionisgivenbya=290Q+100(3)"+100n
Q3.Solvetherecurrencerelationa ., —10an.1 +218=,3n"—2,n>0.

Sol:Given anmz —10an +21a=n3n*-2,1>0 ---------------- 1)
WehaveC,=1,C,1=—10,C,_»=21
Characteristic equationisk’~10k+21=0=k =3,k=7
1 2
Therootsarerealanddistinct,sowehave a=AR)"+B(7)" 2)
SinceRHSisapolynomialofdegree2 and 1 isnot arootofthecharacteristicequation,wecanwrite
+AN+AN? T 3)

af]")zA 0 1 2
nowsubstituting(3)inegn.(1) wehave,
[|A+AGN+2)+AN+2,)° 1100 A 139 +€\(1n+1)+A(n+1)2—| [2L,I1 A o +An AR, 32

Onsolvingthis equationwe get™ A= A=

2
0131 1, 3= 3
aP=""+
Hence, wehave n+n
" 72 3 4
Weknowthatthegeneralsolutionisgivenbya =al4a®
n n 131 1, : .
-a =A(3)'+B(7) + "+ _n+ n“istherequired solution.
2231 4
Q4.Solveatd, a | ,+4a,, =5x(-2)"
Sol:Given atda | +4a , =5x(-2)" T (1)
WehaveC,=1,C,.1=4,C,, =4
Characteristicequationisk*+4k+4=0=>k=k =2

1 2
The rootsarerealandrepeated,sowehave al=(A+Bn)(-2)" )



Here RHS is of the form5x(-2)"=ab"whereb=—2is a root of the characteristic equation with multiplicity, m=2.
Soa® is of the forma®=A n"b"=alP'=A n*(-2)" )
Nowsubstitute(3)in(1)toget | An*(-2)) |+l | A(n-1)°(<2)" " | 14l | A(-2)2(-2)5 1 j5%(-2)"

224 A2 | A-Loy(-2) 1| A-271 o =5(-2)"

=4AN —8A(N51)*+4A(N—2)2=5x(~2)

=4AN—8A(N-2n+1)+4A(N*—4n+4)=20

:8A=20:A=05
0 0 )
2 5
Substitutingthisvaluein(3), weget ~ a®="n?-2)"
"l
Weknowthatthegeneralsolutionisgivenbya EPNOING!

-a :(A+Bn)(—2)”+5n2(_—2)”istherequiredsolution.
2



UNIT-V

GraphTheory

Syllabus

GraphTheory:RepresentationofGraph,DFS,BFS,SpanningTrees,planarGraphs.

RepresentationofGraphs:

Therearetwodifferentsequentialrepresentationsofagraph. Theyare

o AdjacencyMatrixrepresentation
o PathMatrixrepresentation

AdjacencyMatrixRepresentation
SupposeGisasimpledirectedgraphwithmnodes, andsupposethenodesofGhavebeen ordered
and arecalled v1, v2, . . ., vm. Thentheadjacency matrix A=(aij) ofthegraphG isthe m x m matrix
defined as follows:
1,ifviis adjacenttoVj,thatis,ifthereisanedge(Vi,Vj)
aijj =
Ootherwise
SupposeGisanundirectedgraph. ThentheadjacencymatrixAofGwill beasymmetric matrix, i.e.,
one in which aij = aji; for every i and j.
Drawbacks
1. ItmaybedifficulttoinsertanddeletenodesinG.
2. Ifthenumberofedges is0O(m) orO(mlog2 m), thenthe matrixAwillbesparse, hencea great

deal of space will be wasted.

PathMatrixRepresentation
Let Gbeasimpledirectedgraphwithmnodes, v1,v2, ...,vm. ThepathmatrixofGisthe m-square

matrix P = (pij) defined as follows:



lifthereis apathfromVitoVj
Pij=
Ootherwise

Graphsand Multigraphs
AgraphGconsistsoftwothings:

1.AsetVofelementscallednodes(orpoints or vertices)
2. AsetEofedgessuchthateachedgeeinE is identifiedwithaunique

(unordered)pair[u,v]of nodesin V,denotedby e= [u,v]
Sometimes weindicatethepartsofagraphbywritingG =(V,E).
Suppose e=[u, v].Thenthe nodesu and vare called theendpointsofe, and u and vare said to be
adjacent nodes or neighbors. The degree ofa node u, writtendeg(u), is the number ofedges
containing u. If deg(u) = 0 — that is, if u does not belong to any edge—then u is called an

isolated node.

PathandCycle
ApathP oflength n fromanodeu to anodev isdefined asasequenceofn+1 nodes. P = (v0, v1,
V2, ...,vn)such that u = v0; vi-1is adjacent to vi fori=1,2,...,nand vn = v.

TypesofPath

1. SimplePath
2. CyclePath

(i) SimplePath
Simplepathisapathinwhichfirstandlastvertexaredifferent(V0#Vn)

(i) CyclePath
Cyclepathisapathinwhichfirst and last vertexaresame(V0=Vn).It isalso calledas Closed path.

ConnectedGraph

AgraphGis said tobeconnectedifthereisapathbetweenanytwoofitsnodes.



CompleteGraph

AgraphGissaid tobecompleteifeverynodeuin GisadjacenttoeveryothernodevinG.

Tree

Aconnected graphTwithout anycyclesiscalledatreegraphorfreetreeor,simply,atree.

Labeled orWeightedGraph

Iftheweight isassignedto eachedgeofthegraphthenit iscalled as Weightedor Labeled
graph.

e 10 20

e3 e2

(a)
weighted or Labeled Graph

Thedefinitionofagraphmaybegeneralizedbypermittingthefollowing:

1. Multipleedges:Distinctedgeseand e'arecalled multipleedges iftheyconnect thesame
endpoints, that is, if e = [u, v] and €' = [u, v].
2. Loops:Anedgeeiscalledaloopifithas identicalendpoints,thatis,ife=[u, u].



3. Finite Graph:A multigraphM issaid to be finite ifit hasa finite number ofnodes and
afinite number of edges.

A E
B
C D
(a) Graph.
Ao— B C
o . N
D E F C r3
(¢) Tree.

(d) Weighted graph.

Directed Graphs

AdirectedgraphG,also calledadigraphorgraphisthesameasa multigraphexceptthat each edgee

inG isassignedadirection, or inother words, eachedgee is identifiedwithanordered pair (u, v) of
nodes in G.

Outdegreeand Indegree

Indegree:Theindegreeofavertexisthenumber ofedgesforwhichvishead
Example

Indegreeofl=1
Indegreepf2=2
Outdegree: Theoutdegreeofanodeorvertexisthenumberofedgesforwhich v istail.

Example



Outdegreeofl =1

Outdegreeof2 =2
SimpleDirectedGraph

AdirectedgraphG issaidto besimple ifG has no paralleledges. AsimplegraphG may have
loops, but it cannot have more than one loop at a given node.
Basic Conceptslsomorphism:
Let GlandGlbetwo graphsand let fbea functionfromthe vertexset ofGltothevertexset of
G2.Supposethatfisone-to-oneandonto&f(v)isadjacenttof(w)inG2ifandonlyifvisadjacent to w in
Gl

Thenwesay that the function f is an isomorphism and that the two graphs G1 and GZ2are
isomorphic. So two graphs G1 and G2 are isomorphic if there is a one-to-one correspondence

between vertices ofG1 and those of G2 with the propertythatif two vertices of G1 are adjacent

thenso aretheir images inG2. Iftwo graphs are isomorphic thenas far as we concerned they are
thesamegraphthoughthelocationoftheverticesmaybedifferent. Toshowyouhowthe program
canbeusedto exploreisomorphismdrawthegraphinfigure4 withtheprogram(first getthenull graph

on four vertices and then use the right mouse to add edges).




SavethisgraphasGraphl(youneedtoclickGraphthenSave). Nowgetthecircuit graphwith4 vertices.
It looks like figure 5, and we shall call it C(4).

Example:

Thetwographsshownbelowareisomorphic, despitetheirdifferentlooking drawings.

GraphG GraphH Anisomorphism
betweenGandH




@ f@=1

f(b)=6
f(c)=8

o f(d)=3

f(@)=5

@ f(h)=2

f)=4
fO)=7

Subgraphs:

AsubgraphofagraphGisagraphwhosevertexsetisasubsetofthatofG,andwhoseadjacency relation isa
subset ofthat ofGrestricted to this subset. Intheother direction, asupergraph ofa
graphGisagraphofwhichGisasubgraph. WesayagraphGcontainsanother graphHifsome subgraph

of G is H or is isomorphic to H.

AsubgraphH is a spanningsubgraph,or factor, ofa graph Gifit has the same vertexset as G. We

say H spans G.

Asubgraph Hofa graph G is said to be induced if, for anypair ofvertices x and yofH, xy is an edge
of H if and only if xyis an edge of G.In other words,H is an induced subgraph of G if it
hasalltheedgesthat appear in G overthesame vertexset. Ifthevertexset ofH isthesubset Sof V(G),

then H can be written as G[S] and is said to be induced by S.

AgraphthatdoesnotcontainHasaninduced subgraph issaid to beH-free.

A universal graph in a class K of graphs is a simple graph in which every element in K can be

embedded as a subgraph.



Ks, a complete graph. Ifa subgraph looks like this, the vertices in that subgraph forma clique of

size 5.

Multi graphs:

In mathematics, a multigraph or pseudograph is a graph which is permitted to have multiple
edges, (alsocalled"paralleledges"),thatis,edgesthathavethesameendnodes. Thustwo vertices maybe

connected bymorethanone edge. Formally, a multigraph G is anordered pair G:=(V, E) with

o Vasetofverticesor nodes,

o Eamultisetofunordered pairsofvertices,callededgesorlines.

Multigraphs might be used to modelthe possible flight connections offered by an airline. In this
case the multigraph would be a directed graph with pairs of directed parallel edges connecting

cities to show that it is possible to fly both to and from these locations.



A multigraph with multiple edges (red) and a loop (blue). Not all authors allow multigraphs to

have loops.

Eulercircuits:

In graph theory, an Eulerian trail is a trail in a graph which visits every edge exactly once.
Similarly, anEulerian circuit isanEuleriantrailwhichstartsandendsonthesamevertex. They were
first discussed by Leonhard Euler while solving the famous Seven Bridges of Kénigsberg

problem in 1736. Mathematically the problem can be stated like this:

Given the graph on the right, is it possible to construct a path (or a cycle, i.e. a path starting and

ending on the same vertex) which visits each edge exactly once?

Euler proved that anecessarycondition for theexistenceofEuleriancircuits isthat allvertices in the
graph have an even degree, and stated withoutproof that connected graphs with all verticesof
even degree have an Eulerian circuit. The first complete proof of this latter claim was published
in 1873 by Carl Hierholzer.

The term Eulerian graph has two common meanings in graph theory. One meaning is a graph
with an Eulerian circuit, and the other is a graph with every vertex of even degree. These

definitions coincide for connected graphs.



For the existence of Eulerian trails it is necessary that no more than two vertices have an odd
degree;thismeanstheKdnigsberggraphisnotEulerian.Iftherearenoverticesofodddegree,all Eulerian
trails are circuits. Ifthere are exactly two vertices ofodd degree, all Eulerian trailsstart
atoneofthemandendattheother.SometimesagraphthathasanEuleriantrailbutnotanEulerian circuit is

called semi-Eulerian.

An Eulerian trail, Eulerian trail or Euler walk in an undirected graph is a path that uses each
edge exactlyonce. If such a path exists, the graph is called traversable or semi-Eulerian.

AnEuleriancycle,EuleriancircuitorEulertourinanundirectedgraphisacyclethatuseseach ~ edge
exactly once. If such a cycle exists, the graph is called unicursal. While such graphs are Eulerian
graphs, not every Eulerian graph possesses a Eulerian cycle.

Fordirectedgraphs pathhastobe replaced withdirectedpathandcycle withdirectedcycle.

ThedefinitionandpropertiesofEuleriantrails,cyclesandgraphsarevalidformultigraphsaswell.

ThisgraphisnotEuIerian therefore,asolutiondoesnotexist.

o

5



Every vertex ofthis graph has an even degree, therefore this is an Eulerian graph. Following the

edges in alphabetical order gives an Eulerian circuit/cycle.

Hamiltonian graphs:

In the mathematical field of graph theory, a Hamiltonian path (or traceable path) is a path
inanundirectedgraphwhichvisitseachvertexexactlyonce. AHamiltoniancycle(orHamiltonian
circuit) is a cycle inanundirected graphwhichvisits eachvertexexactlyonce andalso returnsto
thestartingvertex. Determiningwhether suchpathsandcyclesexist ingraphs is theHamiltonian path

problem which is NP-complete.

HamiltonianpathsandcyclesarenamedafterWilliamRowanHamiltonwho inventedthelcosian game,
now also known as Hamilton's puzzle, which involves finding a Hamiltonian cyclein the edge
graph of the dodecahedron. Hamilton solved this problem using the Icosian Calculus,an
algebraicstructurebasedonrootsofunitywithmanysimilaritiestothequaternions(alsoinvented by

Hamilton). This solution does not generalize to arbitrary graphs.

A Hamiltonian path or traceable path is a paththat visits each vertex exactlyonce. A graph that
contains a Hamiltonian path is called a traceable graph. A graph is Hamilton-connected if for

everypair of vertices there is a Hamiltonian path between the two vertices.

A Hamiltonian cycle, Hamiltonian circuit, vertex tour or graph cycle is a cycle that visits each
vertexexactlyonce (except the vertexwhich is boththe start and end, and so is visited twice). A

graph that contains a Hamiltonian cycle is called a Hamiltonian graph.

Similar notions may be defined for directed graphs, where eachedge (arc)ofa pathorcycle can
onlybetracedinasingledirection(i.e.,theverticesareconnectedwitharrowsandtheedgestraced "tail-to-
head").

AHamiltoniandecompositionisanedgedecompositionofagraphinto Hamiltoniancircuits.

Examples
o acompletegraphwithmorethantwoverticesisHamiltonian
« everycycle graphisHamiltonian
o everytournamenthasanoddnumberofHamiltonianpaths

« everyplatonicsolid, consideredasagraph,isHamiltonian



PlanarGraphs:

Ingraphtheory,aplanargraph isagraphthatcanbeembeddedintheplane, i.e.,itcanbedrawn onthe
plane in such a waythat its edges intersect only at their endpoints.
A planar graph already drawn in the plane without edge intersections is called a plane graph or
planarembeddingofthegraph.Aplanegraphcanbedefinedasaplanargraphwitha mapping
fromeverynodetoapointin2Dspace,andfromeveryedgetoaplanecurve,suchthattheextreme points of
each curve are the points mapped from its end nodes, and allcurves are disjoint except on their
extreme points. Plane graphs can be encoded by combinatorial maps.
It is easily seen that a graph that can be drawn on the plane can be drawn on the sphere as well,
and vice versa.
Theequivalenceclassoftopologicallyequivalentdrawingsonthesphereiscalledaplanarmap.
Although a plane graph has an external or unbounded face, none of the faces of a planar map
have a particular status.
Applications

o Telecommunications—e.g.spanningtrees

o Vehiclerouting—e.g.planning routesonroadswithoutunderpasses

o VLSI-e.g.layingoutcircuitsoncomputerchip.

o The puzzle game Planarity requires the player to "untangle” a planar graph so that noneof

its edges intersect.

Examplegraphs:

Planar Nonplanar
Graph Graph



ChromaticNumbers:

In graph theory, graph coloring is a special case of graph labeling; it is an assignment of labels
traditionally called "colors” to elements of a graph subject to certain constraints. In its simplest
form, it is a way of coloring the vertices of a graph such that no two adjacent vertices share the
same color; this is called a vertex coloring. Similarly, an edge coloring assigns a color to each
edge so that no two adjacent edges share the same color, and a face coloring of a planar graph
assigns a color to each face or region so that no two faces that share a boundary have the same

color.

Vertexcoloringisthestartingpointofthesubject,andothercoloringproblemscanbetransformed  into
avertexversion. For example, anedgecoloringofagraphis just avertex coloringofits line graph, and
a face coloring ofa planar graph is just a vertexcoloring of its planar dual. However, non-
vertexcoloringproblemsareoftenstatedandstudied asis. Thatispartlyforperspective,and

partlybecausesomeproblemsarebeststudiedinnon-vertexform,asforinstanceisedgecoloring.

GraphColouring:

Graph coloring enjoys many practical applications as well as theoretical challenges. Beside the
classicaltypesofproblems,different  limitationscanalsobesetonthegraph,oronthewayacolor  is
assigned, or even on the color itself. It has even reached popularity with the general public in the

form of the popular number puzzle Sudoku. Graph coloring is stilla very activefield of research.

ApropervertexcoloringofthePetersengraphwith3colors, theminimumnumber possible.



Vertexcoloring

When used without any qualification, a coloring of a graph is almost always a proper vertex
coloring, namelya labelling ofthe graph‘s vertices with colors suchthat no two vertices sharing
thesameedge havethesamecolor. Sincea vertexwitha loopcould never beproperlycolored, it is
understood that graphs in this context are loop less.

The terminologyofusing colors for vertex labels goesback to map coloring. Labels like red and
blueareonlyusedwhenthenumberofcolorsissmall,andnormallyitisunderstoodthatthe  labels are
drawn from the integers {1,2,3,...}.

A coloring using at most k colors is called a (proper) k-coloring. The smallest number of colors
needed to color a graph G is called its chromatic number, y(G). A graphthat can be assigned a
(proper) k-coloring is k-colorable, and it is k-chromatic if its chromatic number is exactly k. A

subsetofverticesassignedtothesamecoloriscalledacolorclass,every suchclassformsan

independent set. Thus, a k-coloring is the same as a partitionofthe vertex set into k independent

sets, and the terms k-partite and k-colorable have the same meaning.

1258
TTLY
B2 21

Thisgraphcanbe3-coloredinl2differentways.

Thefollowingtablegivesthechromatic numberforfamiliar classesofgraphs.

G
graph yiG)

completegraph R

cyclegraph®s, 3 fornodd
2 forneven

stargraph®, 2




yiKg) =16 yiCs) =3 Yl =2

\ —/

¥(Sa) ; 2 y(Ws) =3 fj_mj =4
N 0/

Treesanditsbasic properties:

AgraphGiscalledatreeifitis connectedandhas nocycles.
Apendantvertex(a vertexhasdegree one)ofa treeiscalled aleaf.

Theorem 1: Prove that of T is a tree if and only if there is one and only one path between every pair of
vertices.

Proof:Let T beatree. ThenT isasimplegraph. SinceT isconnectedthere isat leastonepathbetweeneach pair
ofvertices. Ifthere aretwo paths betweenone pair ofvertices, the unionofthese two paths willmake a cycle in
T contradicting the fact that T is a tree. There for in a tree there is one and only one path between every pair
of vertices.

Now conversely assume that in T there is one and only one path between every pair of vertices. Then it is
connected. Since there is one and only one path between everypair of vertices in T, T cannot have a cycle.
Therefore T is a tree.

Theorem2: Atreewithnverticeshasn-ledges.

Proof:Proofis doneby induction onnumber ofvertices n. Thetheoremis truefor n=1,n=2 andn=3(wecanseethis
usinggraphs).Assumethetheoremistrueforn=kvertices.ConsideratreeT withk+1vertices.Let e=uvbeanedgein

T. nowT-eis a disconnected graph(sinceT is tree). Thereexist 2 components of T-e, sayT1 and T2.T1 contains say k1
vertices andT2contains sayk2 vertices: kl+k2=k+1. SinceTlandT2has number of vertices less thanor equal to
kbyourassumptionT1andT2containk1-1andk2-1edgesrespectively. ThenT-econtains (k1+k2)-2 edges,that is( k+1)-2

edges, k-1 edges. ThereforeT contains k-1+e edges, which implies k edges. Thetheorem is proved for n=k+1 vertices.
Therefore the theoremis true for all positive integer n.

Result: Anyconnectedgraphwithnverticesandn-ledgesisatree.



Problems:

a. S.Tthecompletegraph( isnotatreeforn>2.
Solution:Let, (14, [12,013beanythree vertices of [ 1;,.Since, [1is a completegraphthere exists anadjacency between
each pair of vertices.

~.[yisadjll2,[willbeadjtosand;isadjtoJsalso.
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MinimallyConnectedGraph:
Aconnected graphis saidtobeminimallyconnectediftheremovalofanyoneedgefromitdisconnects thegraph.

*Alltreesareminimallyconnected.

Theorem:Aconnectedgraphisatreeiffitisminimallyconnected.
Proof:Gisa connectedgraphwhichisnot a treeimpliesthereexistsacycle. Fromthecycleremoveoneedge ‘e’ implies G-e

is still connected implies G is not minimally connected.
Ifagraphisnot atree, thenit isnot minimallyconnected. Bycontrapositivityweprovedthat,ifaconnected graph is

minimally connected then it is a tree.
Conversely, let Gbenon-minimallyconnectedgraphthen3 ‘e’suchthat G-eisconnected.

~.emustbeapartofacyclei.e.Gcontainsacyclei.e.Gisnotatree. By
contrapositivity if G is a tree then it is minimally connected.

RootedTree:

Adirectedtreeis a directedgraphwhoseunderlying graphis atree.AdirectedtreeT is calleda rootedtreeT contains -

1) a unique vertex, called the root (r) whose indegree is zero
2)theindegreesofallother verticesofTarel

Eg.
a

Avertex [ of therootedtree is saidtobeat the 17k levelif thepathfrom([1— [ is of length(7. In

the above figure, [1 is at the 37"level.
If ;& T,aretwovertices: [11has alowerlevel than].andthereispathfrom];tol],thenwesay that1;isan




ancestor of [J;and [,is a descendant of [ 1;. If[1:&[,areadjacent i.e. thereexists anedgefrom [ 11— [, then
[sis called parent of [J,and [,is the child of [J;. Two vertices with a common parent are called siblings. A
vertex whose outdegreezero is called a leaf. A vertex which is not a leaf is called as an internal vertex.

Eg




1) Ulistheroot.

2) L1000 zare in1¥level.

3) 300 4are in2"level.

4) [Jistheancestorofils, g ][] J[Jeand[l;istheparentofis.
5) gl oare childrenofJszandare calledsiblings.

6) [lg,[o,[ 16 17areleaves.

BinaryTree
ArootedtreeT iscalleda binaryrootedtree, if everyinternal vertexis ofout degreelor 2. Thatiseveryvertex has at most 2
children. It is called a completebinary tree, if each vertex is of out degree2.
SpanningTrees
Let TG beaconnectedgraph.AsubgraphTofGis calledaspanningtreeofGif
(1) Tisatree
(2) Tcontainsallvertices ofG
Theedges ofthespanningtreearecalledbranches.

Example:

ChordsandCotree
Let T beaspanningtreeofG.ThentheEdges ofGthat arenot inTarecalledchords ofGwithrespect toT. Theset
ofallchordsofGiscalledachordsetoracotreeof TinGandisrepresentedby 1. ThereforeG=T U []

DES(depthfirstsearch)Algorithmtofindthespanningtreeofagraph:

Let(=([1,[1)bea connectedgraphoforder ‘n’,withverticeslabelled  11,[12,..... 1 insomespecifiedorder.

Stepl:Assignthevertex (11 tothevariable [] andinitials T asthetreeconsistingofjust this vertex. (this vertex will become the
root of the tree T)

Stepll:Select thesmallest subscript k, for 2<k<n: {{],[1-}[1[] &I has not alreadybeenselected inT. If
Nno such subscript is found go to Step 11, otherwise:

(i) Attachtheedge{[ 1,1 }tothetreeT
(if) Assign(]-tov
(iii) ReturntoStepll.



Steplll:IflJ=014,thetreeTisthespanningtree.

SteplV:For =04, backtrackfrom(.If[Jistheparentof thevertexassignedtoJinT,thenassignitoL
andreturntoStep 1.

BFES (breadthfirstsearch)Algorithmtofindthespanningtreeofagraph:

Let G=(V,E)beaconnectedgraphof order nwithverticeslabelledvi,vs,.....vn.insomespecifiedorder. Werefer to an
ordered list Q of vertices of G as a queue in G. Vertices areinserted in this list at one end (called therear of the queue)
and deleted fromthe list at the other end (called the front of the queue). The BFS algorithmspecifies the following
steps.

Step I:  Assignthefirst vertex [;andinsert this vertex inthequeueandinitializeT as thetreemadeup ofthis one vertex

L1.

Stepll:Deletevfromthefrontofl1.When [lis deleted,consider(] foreach2<[ /<[ 1.Iftheedge{(],(] } €[Jand

1 has not been visited (considered) previously, attach this edge to T. If we examine all of the vertices
previouslyvisitedandobtainnonewedge, thetreeT (generatedtothispoint)isthedesiredspanningtree.

Steplll:Insert thevertices adjacent to each [1 (fromStep Il)attherear ofthequeue [1,accordingtotheorder in which they
are (first) visited. Then return to Step II.

ShowthataHamiltonianpathisaspanningtree.

Proof:Bydefinitionnofa Hamiltonianpath,weknowthata Hamiltonianpathina graphGcontainsalltheverticesof
G. Apathisatreesinceit doesn’tcontainacycle.
~.AHamiltonianpathisatreecontainsalltheverticesofthegivengraphG.AHamiltonianpathisa panning tree.
WeightedGraph:L etGbeagraphinwhichthereisapositivenumberassociatedwitheachedgeiscalledaweighted  graph.
Minimalspanningtree: Thespanningtreeofa weightedgraphwhoseweight isleast iscalledtheminimalspanning tree




Example:
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TlandT?2arespanningtrees ofGbutSinceweightofT2 is 13anditis theminimalspanningtreeofG.

Algorithmtofindminimalspanningtree:

1.Kruskal’s Algorithm:
Stepl:LetGbeaconnectedweightedgraphGwithnvertices.ListedgesofGinincreasingweights.
Stepl|:Startingwitha smallestweightededge, proceedsequentiallybyselectingoneedgeatatime:nocycle is
formed.
Steplll:StoptheprocessofStepIIwhen‘n-1edgesareselectedasabove. Thesen-1edgesconstitutea minimal spanning
tree G.



Example:
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Edge: CR. QR. CQ. BP. AB. AP. CPAC. BQ
Weight: 3. 3. 5 5. 6 6. 7. 8 10

Selection: Yes. Yes No. Yes. - TS\ T W - — -

ByKruskal’sAlgorithm,thefollowingtreeTistheminimalspanningtreeoftheabovegraphwithweight 24



PrimsAlgorithmtogetminimumspanningtree.

Stepl:Prepareanxntable inwhichweightsofalledgesareshown. Indicatethewightsof non-existing edges as
o0
Stepl|I:Startfromvertexviandconnectittothenearestneighborwhichhasasmallerweightinthevirow
sayvk.Nowconsideredgevlvkandconnectthisedgetoanewvertexwhichhasaminimumvalue  in the
viand vkrows. Let this vertex be vm.
Stepl11:Start fromvmandrepeat stepll. Stoptheprocesswhenallthe nverticesareconnectedbyn-1 Edges.



