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UNIT-I 

MathematicalLogic 

 

Syllabus 

 

Mathematical Logic: Introduction, Statements and Notation, Connectives, Truthtables, Well- 

formed formulas, Tautology, Contradiction, Contingency, Logical equivalence, Normal Forms, 

TheoryofInference fortheStatement Calculus,ThePredicateCalculus,InferenceTheoryofthe 

Predicate Calculus 

IntroductiontoDiscreteMathematics 

 

• Discrete Mathematics is the study of discrete structures which mathematical models 

dealing with discrete objects and relationships between them. 

• ExamplesofdiscreteobjectsarelikeSets,Permutations,graphsand etc. 

 

Why it is important for computer science 

 

 In the world of computers, all the information is stored in bits,units of information that 

can take the value of either 0 or 1.It’s not like in nature, where something can take all the 

values in between 0 and 1 as well. Instead, everything is binary. 

 Since the bits are the building blocks of everything that happens in computer software, 

every thing becomes discrete.Forinstance,the hard drive on the laptop I’m using right 

now can store 1 845 074 329 600 bits of information. 

 The study of algorithms is also firmly in the discrete world.Analgorithm is a step-by-step 

list of instructions to the computer and it’s whatmakes computer programs possible.When 

determining how much time analgorithm needs to run,you count the number of operations 

it needs to perform. Notice the word count. Again, discrete mathematics. 

• In continuous mathematics (the opposite of discrete),the calculation would go like this: 

• ∫
5�dx=[1/2∗x2]

5
 =5

2
/2−0=12.5 

0 

• In discrete mathematics,the equivalent calculation would go likethis: 

∑4��=0+1+2+3+4=10 
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Applicationsofdiscretemathematicswithcomputerapplications 

 

• 1)Computernetworks 

• 2)Programminglanguages 

• 3)Finite stateautomataor compilers 

• 4)Databases 

Symbolic logic is used in framing algorithms and their verification and in automatic theorem 

proving.Settheory, Graph Theory,treesetc areused in storage and retrieval of information(data 

structures), Algorithms and their complexity studies also uses tools from discrete mathematics. 

Formal Languages, Automata theory, Turing machines etc. are themselves part of discrete 

mathematics and so is Recursive Function Theory. Undecidability of many problems are 

established using Turing machines which is the Mathematical model for studying theoretical 

limitations of Computation. Lattices and Boolean Algebra are used in Computer Science as well 

as in communications and networking. 

 

Mathematical Logic 

Logic 

It is the study of the principles and methods that distinguishes between valid and invalid argument. 

 

1. Proposition Logic 

PropositionorStatement 

A proposition or a statementcan definedas adeclarativesentencetowhich we can assign one and 

onlyone ofthe truth values either true (or) false but not both is called a proposition. 

 

Thetrueorfalse ofaproposition iscalledtruthvalue ofa proposition 

 

Thesetwovaluestrueandfalsearedenotedby thesymbolsTandFrespectively.Sometimes these are 

also denoted by the symbols 1 and 0 respect. 

 

 

 

 

2 



Proposition truth value 

 

Ex:1)IndiacapitalisnewDelhi True 

 

2) 2*3=5 false 

 

3) 5isaprimenumber true 

Thesearepropositions(orstatements) becausetheyareeither trueorfalse. Next 

consider the following sentences: 

 

4) Howbeautifulareyou? 

5) Wishyouahappynewyear 

6) x+y=z 

7) Takeonebook. 

Thesearenotpropositionsastheyarenotdeclarativeinnature,thatis,theydonotdeclarea definite truth 

value T or F. 

TypesofPropositions 

 

1) Atomicproposition 

 

2) CompoundProposition 

 

1) Atomicproposition 

 

• APropositionwhichcannotbedividedfurther iscalledanatomic proposition. 

 

• Examples: 

• 1)India’scapitalisNewDelhi 

• 2)2*3=5 

 

2) CompoundProposition 

 

• Twoor more atomic propositions can be combined to forma compound proposition with 

help of Connectives. Compound Proposition also called as Propositional function. 
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• ExamplesofCompoundstatements 

• ―3+2=-1 andDelhiisthecapitalofIndia. 

• grassisgreenor―itishottoday. 

•  Discretemathematicsisnotdifficulttome. 

And, Or ,Not are called connectives. 

Notations 

 

• StatementsaresymbolicallyrepresentedasA,B,C,..P,Q,R,S…Thosearecalled propositional 

variables or notations. 

• Examples: 

• P→Delhi isthecapitalofIndia. 

• Q→17isdivisibleby3. 

 

LogicalConnectives 

 

Thewordsor phrasesor symbolswhichareusedto makeacompound proposition bytwo or 

moreatomic propositions are called logical connectives or simply connectives. 

There are five basic connectives called negation, conjunction, disjunction, conditional 
and biconditional. 

 

Connectivity Symbol Word 

Negation ¬ Not 

Disjunction ∨ OR 

Conjunction � AND 

Conditional → IFANDTHEN 

Biconditional ↔ Ifandonlyif 



Negation(~)or(¬) 

The negation of a statement is generally formed by writing the word ‘not’ at a proper 

place in the statement (proposition) orbyprefixingthe statement withthe phrase (¬).It is not 

thecasethat.Ifpdenotesastatementthenthenegationofpiswrittenas¬pandreadasnot p. Ifthe 

truthvalue ofp isT thenthe truthvalue of¬p is F. Also ifthe truthvalue ofp is Fthen the truth 

value of ¬p is T. 

 

TruthtableforNegation 

 

P ¬P 

F T 

Disjunction(OR)(V) 

 

• IfPandQ areanytwopropositionsthen‘POR Q’symbolicallywrittenasPVQ. 

• PVQisapropositionwhosetruthvaluesisfalseonlywhenbothPandQarefalse otherwise True.˄ 

 

TruthtableforDisjunction 
 

 

P Q PVQ 

F F F 

F T T 

T F T 

T T T 

 

P:Ishallgotothegame. 

Q:Ishallwatchthe game ontelevision. 

P VQ:Ishallgotothegame ORIshallwatchthe gameon television. 



Conjunction(AND(˄)) 

IFPandQareanytwo propositionsthenPandQSymbolicallywrittenasP˄Q. 

P˄QisapropositionwhosetruthvalueistrueonlywhenbotharePandQaretrue. Whole truth 

value is false when either P or Q are false and both are false. 

TruthtableforConjunction 
 

 

P Q P˄Q 

F F F 

F T F 

T F F 

T T T 

P:Itisrainingtoday. 

Q:Thereare10chairsintheroom. 

P � Q: It is raining today AND There are 10 chairs 

in the room. 

 

Conditional(or)Implication(→) 

IfPandQareanytwostatements(orpropositions)thenthestatementP→Qwhichisread as, If P, 

then Q‗ is called a conditional statement (or proposition) or implication and the connective is 

the conditional connective. 



Truthtableforconditional 

 

P Q P→Q 

F F T 

F T T 

T F F 

T T T 

Inthisconditionalstatement, Piscalledthe hypothesisor premiseor antecedent andQ is 
called the consequence or conclusion. 

Biconditional(Ifandonly if) 

• IfP andQare anytwopropositionsthenPifandonlyifQWrittenasP↔Q. 

• It‘struthvalueistrueonlywhenbothP&Q have same truthvalues. 

 

P q p↔q 

T T T 

T F F 

F T F 

F F T 

 

TAUTOLOGYANDCONTRADICTION 

Tautology: Apropositionissaidto be atautologyifitstruthvalue is T for anyassignment of 

truth values to itscomponents. 

Example: ThepropositionP V¬Pisatautology. 

Contradiction 

Aproposition is said to be a contradiction if its truth value is F for any assignment oftruth 

values to its components. Example: The proposition P ˄ ¬P is a contradiction. 



Contingency: Astatement formulawhichisneitheratautologynoracontradictionisknownas a 

contingency. 

 

Example:P->Q 

 
Tautology: A statement formula which is true regardless of the truth values of the 

statementswhichreplacethevariablesinitiscalledauniversallyvalidformulaoralogical truth 

or a tautology. 

Howtoprovegivencompoundproposition is tautology 

1) ByConstructingtruth table 

 

2) Byusingsubstitution method 

1) Constructingtruthtable 

 

Showthat followingfunctionistautology 

 

a)(PVQ)V¬P 

 

Solution 
 

 

P Q ¬P PVQ (PVQ)V¬P 

F F T F T 

F T T T T 

T F F T T 

T T F T T 

Intheabove table(PVQ)V¬Pisgivingalltruthvaluesaretruesoitisa tautology. 



Showthatgivenpropositionisatautology((P→Q)˄(Q→R))→(P→R) 
 

 

P Q R P → 

Q 

Q→R ((P→Q)˄(Q→R) P→R ((P→Q)˄(Q→R))→(P→R) 

F F F T T T T T 

F F T T T T T T 

F T F T F F T T 

T F F F T F F T 

F T T T T T T T 

T F T F T F T T 

T T F T F F F T 

T T T T T T T T 

Implication: 

• IfPand QareanytwopropositionsthenP->Qie,IfP thenQ 

• P->QispropositionwhosetruthvalueisfalseonlywhenP istrueandQisfalse. 

• HerePisantecedentandQisConsequent.. 

P Q P→Q 

F F T 

F T T 

T F T 

T T T 

 

• WheneverP is falseP->Qis true 



• Ie,falseantecedentPimpliesanypropositionQ 

• WheneverQistrueP->Qisalsotrue 

• Ie,atrueconsequent Qimpliedbyanypropositional‗P‘. 

fromthe implicationstatement wecanwriteanotherthreestatementswhichare converse, 

inverse and contrapositive 

Converse, InverseandContrapositive 

IfP→Qisaconditionalstatement,then(1). 

 

Q→Piscalleditsconverse(2). 

 

¬P→¬Qiscalleditsinverse 

 

(3).¬Q→¬Piscalleditscontrapositive. 

 

Example: 

• P:Todayis Sunday 

• Q: Itisaholiday 

 

• ConverseStatement:Ifitisaholiday,thentodayisSunday. 

 

• InverseStatement:IftodayisnotSunday, thenitisnot aholiday. 

• ContrapositiveStatement-Ifitisnot aholiday,thentodayisnotSunday. 



 

Here Implication and Contrapositive are equal. 

Converseand inverseareoppositepropositions. 

Wellformedformulas(wff): 

Notallstringscanrepresent propositionsofthepredicatelogic.Thosewhichproducea 

propositionwhentheirsymbolsareinterpretedmustfollowtherulesgivenbelow,andtheyare called 

wffs (well-formed formulas) ofthe first order predicate logic. 

Rulesforconstructing Wffs 

ApredicatenamefollowedbyalistofvariablessuchasP(x,y),wherePispredicatename,andx and yare 

variables, is called an atomic formula. 

 

Awellformedformulaofpredicatecalculus isobtainedbyusingthefollowing rules. 

1. Anatomicformulaisawff. 

2. IfAisawff,then7Aisalsoawff. 

3. IfAandBarewffs,then(AVB),(A˄B),(A→B)and(ADB). 

4. IfAisawffandxisanyvariable,then(x)Aand($x)Aarewffs. 

5. Onlythoseformulasobtainedbyusing(1)to(4)arewffs. 

Since we will be concerned with only wffs, we shall use the term formulas for wff. We shall 

followthesameconventionsregardingtheuseofparenthesesaswasdoneinthecaseofstatement  

formulas. 

 

Wffsareconstructed usingthefollowingrules: 

 

1. TrueandFalsearewffs. 

2. Eachpropositionalconstant(i.e.specificproposition),andeachpropositionalvariable (i.e. a 

variable representing propositions) are wffs. 

3. Eachatomicformula(i.e.aspecificpredicatewithvariables)isa wff. 

4. IfA,B,and Carewffs,thensoare A,(A B),(A B),(A B),and (A B). 

5. If x is a variable (representing objects of the universe of discourse), and Ais a wff, thenso 

are x A and x A .For example, "The capital of Virginia is Richmond." is a specific 

proposition. Hence it is a wffby Rule 2. 



LetBbeapredicatenamerepresenting"beingblue"andletxbeavariable.ThenB(x)isanatomic formula 

meaning "x is blue". Thus itis a wff by Rule 3. above. By applying Rule 5. toB(x), xB(x) is a wff 

and so is xB(x). Then by applying Rule 4. to them xB(x)xB(x) isseento bea 

wff.Similarly,ifRisapredicatenamerepresenting"beinground".ThenR(x)isanatomic formula. 

Hence it is a wff. By applying Rule 4 to B(x) and R(x), a wff B(x) R(x)isobtained.In this 

manner, larger and more complex wffs can be constructed following the rules given above. 

Note,however,thatstringsthatcannotbeconstructedbyusingthoserulesarenotwffs.For example, 

xB(x)R(x), and B(x ) are NOT wffs, NOR are B( R(x) ), and B(   x R(x) ) 

. 

More examples: To express the fact that Tom is taller than John, we can use the atomic formula 

taller(Tom, John), which is a wff. This wff can also be part of some compound statement such 

astaller(Tom,John) taller(John,Tom),whichisalsoawff.Ifx is a variable representing people in 

the world, then taller(x,Tom), x taller(x,Tom), x taller(x,Tom), x y taller(x,y) are all wffs 

among others. However, taller( x,John) and taller(Tom Mary, Jim), for example, are NOT 

wffs. 

LogicalEquivalence 

Two formulas A and B are said to equivalent to each other if and only if A↔ Bis 

a tautology. If A↔B is a tautology, we write A ⇔ B which is read as A is 

equivalent to B. 

Note:1.⇔isonlysymbol,butnot connective. 

A ↔ B is a tautology if and only if truth tables of Aand Bare the same.Equivalence relation is 

symmetric and transitive. 

(or) 

LetPandQaretwopropositionalfunctionsPisEquivalenttoQ. Symbolicallywritten 

as P⇔ Q or P ≡ Q ifP and Q have same truthtable. 



IntheabovetablebothP→Qand¬P∨Qarehavesametruthvalues. So that 

(P → Q) ⇔(¬P ∨Q). 

EquivalenceFormulas: 

1.Idempotentlaws: 

(a)P∨P⇔P (b)P∧P⇔P 

2. Associativelaws: 

(a)(P∨Q)∨R⇔P∨ (Q∨R) (b)(P∧Q)∧R⇔P∧ (Q∧R) 

3. Commutative laws: 

(a)P∨Q⇔Q∨P (b)P∧Q⇔Q∧P 

4. Distributive laws: 

Ex:P->Q⇔~PVQ. 

Method I. Truth Table Method: One method to determine whether any two statementformulasare 

equivalent is to construct their truth tables. 

 

Example:Prove(P→Q)⇔(¬P∨Q). 
 

 

P Q P→Q ¬P ¬P∨Q 

T T T F T 

T F F F F 

F T T T T 

F F T T T 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

P∨ (Q∧R)⇔(P∨Q)∧ (P∨R) P∧ (Q∨R)⇔(P∧Q)∨ (P∧R) 

 

 

Identitylaws(or) 

5. Domination Law 

(a)(i)P∨F⇔P (ii)P∨T⇔T 



7. Absorptionlaws: 

P∨(P∧Q)⇔
P 

(b)P∧(P∨Q)⇔
P 

DeMorgan‘sLaws 

 (b)¬(P∧Q)⇔¬P∨¬

Q 

(b)(i)P∧T⇔P (ii)P∧F⇔F 

6. Componentlaws: 

(a)(i)P∨¬P⇔T (ii)P∧¬P⇔F . 

(b)(i)¬¬P⇔P (ii)¬T⇔F,¬F⇔T 
 



TautologicalImplications. 

 

Astatement formula A is said to tautologically imply a statement B ifand onlyifA → B is a 

tautology. Inthis case we write A ⇒ B, which is read as ‗A implies B‗. 

Note:⇒isnotaconnective,A⇒Bisnotastatement formula. 

A⇒BstatesthatA→Bistautology. 

Clearly A ⇒ B guarantees that B has a truth value T whenever A has the truth value T . One can 

determine whether A ⇒ B byconstructing the truth tables of A and B in the same manner as was 

done in the determination of A ⇔ B. 

Example:Provethat(P→Q)⇒(¬Q→¬P). 
 

 

 

 

P Q ¬P ¬Q P→Q ¬Q→¬P (P→Q)→(¬Q→¬P) 

T T F F T T T 

T F F T F F T 

F T T F T T T 

F F T T T T T 

 

 

Sincealltheentriesinthelastcolumnaretrue,(P→Q)→(¬Q→¬P)isa tautology. 

Hence(P→Q) isTautologicalImplicationsto (¬Q→¬P). Sothat 

(P → Q) ⇒ (¬Q → ¬P ). 

Inordertoshowanyofthegivenimplications,itissufficienttoshowthatanassignmentofthe 

truthvalueTto the antecedentofthecorrespondingconditionalleadstothetruthvalueTforthe 



consequent. This procedure guarantees that the conditional becomes tautology, thereby proving 

the implication. 

Example:Provethat¬Q∧(P→Q)⇒¬P. 

Solution:Assumethattheantecedent¬Q∧(P→Q)hasthetruthvalueT,thenboth¬QandP 

→QhavethetruthvalueT,whichmeansthatQhasthetruthvalueF,P→Qhasthetruth value T . 

HencePmusthavethetruthvalueF.Therefore,theconsequent¬Pmusthavethetruthvalue T. 

¬Q∧(P→Q)➙¬P. 

AnothermethodtoshowA⇒Bistoassumethattheconsequent BhasthetruthvalueFandthen show that 

this assumption leads to A having the truth value F. Then A → B must have the truth value T. 

Example:Showthat¬(P→Q)⇒P. 

Solution:Assume thatP has the truth valueF . When P has F , P → Qhas T , then ¬(P → Q) has 

F. Hence ¬(P → Q) → P has T . 

 

Sothat¬(P→Q)⇒P. 

NormalForms 

 

If a given statement formula A(p1, p2, ...pn) involves n atomic variables, we have 2
n
possible 

combinations of truth values of statements replacing the variables. 

The formula A is a tautology if A has the truth value T for all possible assignments of the truth 

values to the variables p1, p2, ...pnand A is called a contradiction if A has the truthvalue F for all 

possible assignments of the truth values of the n variables. A is said to be satisfiable if A has the 

truth value T for at least one combination of truth values assigned to p1, p2, ...pn. 

Theproblemofdeterminingwhetheragivenstatement formulaisaTautology,oraContradiction is 

called a decision problem. 



The constructionoftruthtable involves a finite number ofsteps, but the construction maynot be 

practical. We therefore reduce the given statement formula to normal form and find whether a 

givenstatementformulaisaTautologyorContradictionoratleastsatisfiable.Itwillbeconvenient to use 

the word product in place of conjunction and sum in place of disjunction . 

A product of the variables and their negations in a formula is called an elementary Product. 

Similarly, asumofthevariablesandtheir negationsinaformulaiscalledanelementarysum.Let P and Q 

be any atomic variables Then P,~P˄Q, ¬Q˄P˄~P,Q˄~P are some example 

ofelementaryproducts. 

OntheotherhandP,¬P∨Q,¬Q∨P∨¬P,Q∨¬P.aresomeexamplesofelementarysums. Types of 

Normal forms 

1) DisjunctiveNormalforms 

2) ConjunctiveNormal forms. 

DisjunctiveNormalForm(DNF) 

Aformulawhichisequivalent to agiven formula andwhichconsistsofasumofelementary products is 

called a disjunctive normal form of the given formula. 

Example:Obtaindisjunctive normalformsof 

(a)P �(P→Q) 

P�(P→Q)⇔P�(¬P∨Q) (applydistributivelawP∧(Q∨R)⇔(P∧Q)∨(P∧R) 

-(P�¬P)∨(P�Q) 

b) ¬(P∨Q)↔(P∧Q) 

¬(P∨Q)↔(P∧Q)⇔(¬(P∨Q)�(P∧Q))∨((P∨Q)�¬(P∧Q))[using 

R↔S⇔(R∧S)∨(¬R∧¬S)] 

⇔((¬P∧¬Q)�(P∧Q))∨((P∨Q)∧ (¬P∨ ¬Q)). 

⇔(¬P∧¬Q∧P∧Q)∨((P∨Q)∧¬P)∨((P∨Q)∧¬Q). 

⇔(¬P∧¬Q∧P∧Q)∨(P∧¬P)∨(Q∧¬P)∨(P∧¬Q)∨(Q∧¬Q). 

Whichistherequireddisjunctive normalform.Note:TheDNFofagivenformulaisnotunique. 



ConjunctiveNormalForm (CNF) 

Aformulawhichisequivalent to agiven formula andwhichconsistsofaproductofelementary sums is 

called a conjunctive normal form of the given formula. 

The methodforobtainingconjunctive normalformofagivenformula is similartotheone given 

for disjunctive normal form. Again, the conjunctive normal form is not unique. 

(a) P∧(P→Q)obtaintheconjunctivenormalform 

P∧(P→Q)⇔P∧(¬P∨Q) 

(b) ¬(P∨Q)↔(P∧Q) 

-(¬(P∨Q)→(P∧Q))�((P∧Q)→¬(P∨Q)) 

-((P∨Q)∨(P∧Q))∧(¬(P∧Q)∨¬(P∨Q)) 

-[(P∨Q∨P)∧(P∨Q∨Q)]∧[(¬P∨¬Q)∨(¬P∧¬Q)] 

-(P∨Q∨P) ∧ (P∨Q∨Q) ∧(¬P∨¬Q∨¬P) ∧(¬P∨¬Q∨¬Q) 

PrincipalDisjunctiveNormalForm 

Inthissection,wewilldiscusstheconceptofprincipaldisjunctive normalform(PDNF). 

 

Minterm: For a given number of variables, the minterm consists of conjunctions in which each 

statement variable or its negation, but not both, appears only once. 

LetPandQbethetwostatementvariables.Thenthereare2
2
mintermsgivenby 

P∧Q,P∧¬Q, 

 

¬P∧Q,and¬P�∧¬Q 

MintermsforthreevariablesP ,QandR areP∧Q∧R,P∧Q∧¬R,P ∧¬Q∧ 

R,P∧¬Q∧¬R,¬P∧Q∧R,¬P∧Q∧¬R,¬P∧¬Q∧Rand¬P∧¬Q∧¬R. 



FromthetruthtablesofthesemintermsofPandQ,itisclearthat. 

 

P Q P ∧Q P∧¬Q ¬P∧Q ¬P∧¬Q 

T T T F F F 

T F F T F F 

F T F F T F 

F F F F F T 

 

(i). Notwomintermsareequivalent 

 

(ii). EachmintermhasthetruthvalueTforexactlyonecombinationof the truthvaluesof the variables P 

and Q. 

 

PDNF 

Definition: For a given formula, an equivalent formula consisting of disjunctions of minterms 

only is called the Principal disjunctive normal form of the given formula. The principle 

disjunctive normal formula is also called the sum-of-products canonical form. 

MethodstoobtainthePDNFofagivenformula. 

 

(a). By Truth table: 

 

(b). withoutconstructingthetruthtable 

 

(a). By Truthtable: 

 

(i). Constructatruthtableofthe givenformula. 

 

(ii). For everytruth value T in the truth table of the given formula, select the minterm which 

also has the value T for the same combination of the truth values of P and Q. 

(iii). Thedisjunctionofthesemintermswillthenbeequivalenttothegivenformula 



Example: Obtain the PDNF of P → Q. 

Solution:Fromthetruthtable ofP→Q 

P Q P→Q Minterm 

T 

 

T 

T 

 

F 

T 

 

F 

P ∧Q 

 

P∧¬Q 

F T T ¬P∧Q 

F F T ¬P∧¬Q 

 

 

ThePDNF ofP→Qis(P∧Q)∨(¬P∧Q)∨(¬P∧¬Q). 

ObtainthePDNFfor(P∧Q)∨(¬P∧R)∨(Q∧R). 

Solution: 

P Q R Minterm P∧Q ¬P∧R Q∧R (P∧Q)∨(¬P∧R)∨(Q∧R) 

T T T P∧Q∧R T F T T 

T T F P∧Q∧¬R T F F T 

T F T P∧¬Q∧R F F F F 

T F F P∧¬Q∧¬R F F F F 

F T T ¬P∧Q∧R F T T T 

F T F ¬P∧Q∧¬R F F F F 

F F T ¬P∧¬Q∧R F T F T 

F F F ¬P∧¬Q∧¬R F F F F 

 

 

ThePDNFof(P∧Q)∨(¬P∧R)∨(Q∧R)is(P∧Q∧R)∨(P∧Q∧¬R)∨(¬P∧Q∧R)∨(¬P∧¬Q∧R). 
(b). Withoutconstructingthetruthtable: 

Inordertoobtaintheprincipaldisjunctivenormalformofagivenformulaiscon- structed as 

follows: 



(1). Firstreplace→,bytheirequivalentformulacontainingonly�,∨and¬. 

(2). Next,negationsareappliedtothevariablesbyDeMorgan‗slawsfollowedbytheapplication of 

distributive laws. 

(3). Any elementarily product which is a contradiction is dropped. Minterms are obtained in the 

disjunctions by introducing the missing factors. Identical minterms appearing in the disjunctions 

are deleted. 

Example:Obtaintheprincipaldisjunctivenormalformof 

(a) ¬P∨Q 

(b) (P∧Q)∨(¬P∧R)∨(Q∧R). 

(a) ¬P∨Q 

¬P∨Q⇔(¬P∧T)∨(Q∧T) 

- (¬P∧(Q∨¬Q))∨(Q∧(P∨¬P))[∵P∨¬P⇔T] 

- (¬P∧Q)∨(¬P∧¬Q)∨(Q∧P)∨(Q∧¬P) 

- (¬P�Q)∨(¬P�¬Q)∨(P�Q) [∵P∨P⇔P] 

(b) (P∧Q)∨(¬P∧R)∨(Q∧R) 

(P∧Q)∨(¬P∧R)∨(Q∧R)⇔(P∧Q∧T)∨(¬P∧R∧T)∨(Q∧R∧T) 

-(P∧Q∧(R∨¬R))∨(¬P∧R∧(Q∨¬Q))∨(Q∧R∧(P∨¬P)) 

-(P∧Q∧R)∨(P∧Q∧¬R)∨(¬P∧R∧Q)∨(¬P∧R∧¬Q)∨ 
(Q∧R∧P)∨ (Q∧R∧¬P) 

-(P∧Q∧R)∨(P∧Q∧¬R)∨(¬P∧Q∧R)∨(¬P∧¬Q∧R) 

PrincipalConjunctiveNormalForm 

ThedualofamintermiscalledaMaxterm.Foragivennumberofvariables,the maxtermconsists 

ofdisjunctionsinwhicheachvariableor itsnegation,butnotboth,appearsonlyonce. Eachofthe 

maxterm has the truth value F for exactly one combination of the truth values of the variables. 

Now we define the principal conjunctive normal form. 

For a given formula, an equivalent formula consisting of conjunctions of the max-terms only is 

known as its principle conjunctive normal form. This normal form is also called the product-of- 

sums canonical form.The method for obtaining the PCNF for a given formula is similar to the 

one described previously for PDNF. 



Example:Obtaintheprincipalconjunctivenormalformoftheformula(¬P→R)∧ (Q↔P) 

Solution: 

(¬P→R)∧(Q↔P)⇔[¬(¬P)∨R]∧[(Q→P)∧(P→Q)] 

-[(P∨R)∧[(¬Q∨P)∧(¬P∨Q)] 

-(P∨R∨F)∧[(¬Q∨P∨F)∧(¬P∨Q∨F)] 

-[(P∨R)∨(Q∧¬Q)]�[¬Q∨P)∨(R∧¬R)]�[(¬P∨Q)∨(R∧¬R)] 

⇔ 
(P∨R∨Q)∧(P∨R∨¬Q)∧(P∨¬Q∨R)∧(P∨¬Q∨¬R)∧(¬P∨Q∨R)∧(¬P∨Q∨¬R) 



Rulesofinference: 

 

Thetworulesofinferencearecalled rulesPand T. 

RuleP:Apremisemaybeintroducedatanypointinthe derivation. 

RuleT:AformulaS maybe introducedinaderivationifs is tautologicallyimpliedby any 

one ormore of the preceding formulas in the derivation. 

Beforeproceedingtheactualprocessofderivation, some important list 

ofimplications and equivalences are given in the following tables. 

Implications 
 

 

I1 

I2 

P٨Q=>P 

PQ٨=>Q 

}  Simplification 

I3 P=>PVQ  } Addition 

I4 Q=>PVQ    

I5 7P=>P→Q    

I6 Q =>P→Q    

I7 7(P→Q)=>P    

I8 7(P→Q)=>7Q    

I9 P,Q=>P ٨Q    

I10 7P,PVQ=>Q   (disjunctivesyllogism) 

I11 P,P→Q=>Q   (modusponens) 

I12 

I13 

7Q,P→Q=>7P 

P→Q,Q →R=>P→R 

  (modustollens) 

(hypotheticalsyllogism) 

I14 PVQ,P→Q,Q→R=>R   (dilemma) 

Equivalences 



E1 77P<=>P  

E2 P٨Q<=>Q٨P  } Commutativelaws 

E3 PV Q<=>Q VP    

E4 (P ٨Q) ٨R<=>P٨(Q ٨R)  } Associative laws 

E5 (PVQ)VR <=>PV(QVR)    

E6 P٨(QVR)<=>(P ٨Q)V(P٨R)  } Distributive laws 

E7 PV(Q٨R) <=>(PVQ)٨(PVR)    

E8 

E9 

7(P٨Q) <=>7PV7Q 

7(P VQ)<=>7P ٨7Q 

 
 

} 

 

DeMorgan‘slaws 

E10 PVP<=>P    

E11 P٨P<=>P    

E12 RV(P٨7P) <=>R    

E13 R٨(PV7P)<=>R    

E14 RV(PV7P)<=>T    

E15 R ٨(P٨7P)<=>F    

E16 P→Q<=>7PVQ    

E17 7(P→Q)<=>P ٨7Q    

E18 P→Q <=>7Q→7P    

E19 P →(Q→R) <=>(P٨Q) → R   

E20 7(PDQ)<=>PD7Q    

E21 PDQ <=>(P→Q)٨(Q→P)    

E22 (PDQ) <=>(P٨Q)V(7P٨7Q)    
 



Example1.ShowthatRislogicallyderivedfromP→ Q, Q→ R,andP 
 

 

Solution. {1} (1) P→Q RuleP 

 {2} (2) P RuleP 

 {1,2} (3) Q Rule(1),(2)and I11 

 {4} (4) Q→R RuleP 

 {1,2,4} (5) R Rule(3),(4)and I11. 

 

Example2.ShowthatSV Rtautologicallyimplied by(PV Q)٨(P→R)٨(Q→S). 
 

 

Solution. {1} (1) PVQ RuleP 

 {1} (2) 7P→Q T,(1),E1andE16 

 {3} (3) Q→S P 

 {1,3} (4) 7P→S T,(2),(3),andI13 

 {1,3} (5) 7S→P T,(4),E13andE1 

 {6} (6) P→R P 

 {1,3,6} (7) 7S→R T,(5),(6),andI13 

 {1,3,6) (8) SVR T,(7),E16andE1 

 

Example3.Showthat7Q,P→Q=>7P 
 

 

Solution. {1} (1) P→Q RuleP 

 {1} (2) 7P→7Q T,and E18 

 {3} (3) 7Q P 

 {1,3} (4) 7P T,(2),(3),andI11. 

 

Example4.ProvethatR ٨(PVQ )isavalidconclusionfromthepremisesPVQ,Q 

→R,P→Mand7M. 

 

Solution. {1} (1) P→M P 

 {2} (2) 7M P 

 {1,2} (3) 7P T,(1),(2),and I12 

 {4} (4) PVQ P 
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{1,2,4} (5) Q T,(3),(4),andI10. 

{6} (6) Q→R P 

{1,2,4,6}(7) R T,(5),(6)and I11 

{1,2,4,6}(8) R ٨(PVQ) T,(4),(7),and I9. 

 

 

Thereisathirdinference rule,knownasruleCPorruleofconditionalproof. 

 

Rule CP: Ifwe can derive s fromR and a setofpremises, thenwe canderive R → S fromtheset of 

premises alone. 

 

Note. 1.RuleCP followsfromtheequivalenceE10whichstatesthat ( P 

٨R ) → S óP → (R → S). 

2. Let P denote the conjunction of the set of premises and let R be any formula 

TheaboveequivalencestatesthatifR isincluded asanadditionalpremiseand S 

isderived fromP ٨RthenR→S canbederived fromthe premisesP alone. 

3. Rule CP is also called the deduction theorem and is generally used if the 

conclusion isofthe formR→S. Insuchcases, R istakenasanadditional 

premise and S is derived from the given premises and R. 

 

Example5.ShowthatR→Scanbederivedfromthepremises P → 

(Q → S), 7R V P , and Q. 

 

Solution. {1} (1) 7R VP P 

 {2} (2) R P,assumedpremise 

 {1,2} (3) P T,(1),(2),andI10 

 {4} (4) P→(Q→S) P 

 {1,2,4} (5) Q→S T,(3),(4),andI11 

 {6} (6) Q P 

 {1, 2,4,6} (7) S T,(5),(6),andI11 

 {1,4,6} (8) R →S CP. 



Example 6 Show that P → S can be derived from the premises, 7P V Q, 7Q V R, 

and R → S . 

Solution. 
 

 

 

{1} (1) 7PVQ P 

{2} (2) P P,assumedpremise 

{1,2} (3) Q T,(1),(2)andI11 

{4} (4) 7QVR P 

{1,2,4} (5) R T,(3),(4)and I11 

{6} (6) R →S P 

{1, 2,4,6} (7) S T,(5),(6)and I11 

{2,7} (8) P→S CP 

 

Example7. ”Iftherewasaballgame, thentravelingwasdifficult. Iftheyarrivedontime, 

thentraveling wasnotdifficult. They arrived on time. Therefore, there wasnoballgame”. 

Show that these statements constitute a valid argument. 

Solution.LetP:There wasaballgame 

Q:Travelingwasdifficult. R: 

They arrived on time. 

Givenpremisesare:P→Q,R →7Q andRconclusionis:7P 
 

 

{1} (1)P→Q P 

{2} (2)R →7Q P 

{3} (3) R P 

{2,3} (4)7Q T,(2),(3),and I11 

{1,2,3} (5) 7P T,(2),(4)andI12 



Consistency ofpremises: 

Consistency 

A set of formulas H1, H2, …, Hm is said to be consistent if their conjunction has the truth 

value T for some assignment of the truth values to be atomic appearing in H1, H2, …, Hm. 

 

Inconsistency 

 

Ifforeveryassignmentofthetruthvaluestotheatomicvariables,atleastoneofthe formulas 

H1,H2,…Hmisfalse,sothattheirconjunctionisidenticallyfalse,thentheformulasH1,H2,…, Hm are 

called inconsistent. 

 

AsetofformulasH1, H2, …, Hmis inconsistent, iftheir conjunctionimpliesa contradiction, 

that isH1 ٨H2 ٨ …٨Hm => R ٨7R 

WhereR isanyformula. Notethat R٨7Risacontradictionand it is necessaryand sufficient 

thatH1, H2, …,Hm are inconsistentthe formula. 

Indirectmethodof proof 

In order to show that a conclusion C follows logically from the premises H1, H2,…, Hm, 

weassumethat Cis falseandconsider 7Casanadditionalpremise. Ifthenew setofpremises is 

inconsistent, sothat theyimplya contradiction, thenthe assumptionthat 7C is true does not hold 

simultaneouslywith H1 ٨H2 ٨…..٨Hmbeing true. Therefore, C is true wheneverH1٨ 

H2٨…..٨Hmistrue.Thus,Cfollowslogicallyfromthe premisesH1,H2…..,Hm. 

 

Example8Showthat7(P٨Q)followsfrom7P٨7Q.Solution. 

 

We introduce77(P٨Q) asanadditionalpremiseandshowthatthisadditional premise leads 

to a contradiction. 

{1} (1)77(P٨Q) Passumedpremise 

{1} (2)P٨Q T,(1)andE1 

{1} (3)P T,(2)and I1 



{1} {4)7P٨7Q P 

{4} (5) 7P T,(4)and I1 

{1,4} (6)P٨7P T,(3),(5) and I9 

Here(6)P٨7Pisacontradiction. Thus{1,4}viz.77(P٨Q)and7P٨7Qleadsto a 

contradiction P ٨7P. 

Example9Showthatthefollowingpremisesareinconsistent. 

1. IfJackmissesmanyclassesthroughillness,thenhefailshighschool. 

2. IfJackfails highschool,thenheisuneducated. 

3. IfJackreadsalotofbooks,thenheisnotuneducated. 

4. Jackmissesmanyclassesthroughillnessandreadsalotofbooks. 

Solution. 

P:Jackmissesmanyclasses. Q: 

Jack fails high school. 

R:Jackreadsalotofbooks. S: 

Jack is uneducated. 

ThepremisesareP→ Q,Q→ S,R→7SandP٨R 

 

{1} (1) P→Q P 

{2} (2) Q→S P 

{1,2} (3) P→S T,(1),(2)and I13 

{4} (4) R→ 7S P 

{4} (5) S→7R T,(4),and E18 

{1,2,4} (6) P→7R T,(3),(5)and I13 

{1,2,4} (7) 7PV7R T,(6)andE16 

{1,2,4} (8) 7(P٨R) T,(7)andE8 

{9} (9) P ٨R P 

{1,2,4,9)(10) (P ٨R)٨7(P٨R) T,(8),(9)and I9 

 

Therulesabovecanbesummedup inthe followingtable. The"Tautology"columnshowshow to 

interpret the notation of a given rule. 



Conjunction 

Modusponens 

Modustollens 

Hypothetical 
syllogism 

Disjunctivesyllogism 

Resolution 

Ruleof inference Tautology Nam e 

 

Addition 
 

 

Simplification 



Predicativelogic: 

 

A predicate or propositional function is a statement containing variables. For instance ―x + 2 = 

7‖,―XisAmerican‖,―x<y‖,―pisaprimenumber‖arepredicates.Thetruthvalueofthe 

predicatedependsonthevalueassignedtoitsvariables. For instance ifwereplace xwith1 inthe 

predicate―x+2=7‖weobtain―1+2=7‖,whichisfalse,butifwereplaceitwith5weget―5 

+ 2 = 7‖, which is true. We represent a predicate by a letter followed by the variables enclosed 

between parenthesis: P (x), Q(x, y), etc. An example for P (x) is a value of x for which P (x) is 

true. A counterexample is a value ofx for which P (x) is false. So, 5 is anexample for ―x + 2 = 

7‖, while 1 is acounterexample. Eachvariable in apredicate is assumed to belongto auniverse (or 

domain) of discourse, for instance in the predicate ―n is an odd integer‖ ‘n‘ represents an 

integer,sotheuniverseofdiscourseofnisthesetofallintegers.In―Xis American‖ we may assume that X 

is a human being, so in this case the universe of discourse is the set of all human beings. 

Free&Boundvariables: 

 

Let's now turn to a rather important topic: the distinction between free variables and bound 

variables. 

Havealookatthefollowingformula: 

 

 

The first occurrence of x is free, whereas the second and third occurrences of x are bound, 

namelybythefirstoccurrenceofthequantifier.Thefirstandsecondoccurrencesofthe variable y are 

also bound, namely by the second occurrence of the quantifier . 

 

Informally,theconceptofaboundvariablecanbeexplainedasfollows:Recallthatquantifications are 

generally of the form: 

 

 

or 

 

 

wheremay be any variable. Generally, all occurrences of this variable within the quantification 

are bound. But we have to distinguish two cases. Look at the following formula to see why: 

 



1. mayoccurwithinanother,embedded,quantification or ,suchasthe in in our 

example.Then we say thatitis bound by the quantifier of this 

embeddedquantification(andsoon,ifthere'sanotherembeddedquantificationover  

within ). 

2. Otherwise, wesaythat it is boundbythetop-levelquantifier (likeallotheroccurrencesof in 

our example). 

 

Here'sa fullformalsimultaneousdefinitionoffreeand bound: 

 

1. Anyoccurrenceofanyvariableisfreeinanyatomicformula. 

2. Nooccurrenceofanyvariableisboundinanyatomicformula. 

3. If an occurrence of any variableis freein or in , then that same occurrenceis freein , 

, , and . 

4. If an occurrence of any variable is bound in or in , then that same occurrence is 

bound in  , , , . Moreover, that same occurrence is bound in  

and  as well, for anychoice of variable y. 

5. In any formula of the form or (where y can be any variable at all in this case) the 

occurrence of ythat immediately follows the initial quantifier symbol is bound. 

6. Ifanoccurrenceofavariablexisfreein ,thenthatsameoccurrenceisfreein  and 

, for any variable y distinct from x. On the other hand, all occurrences of x that are 

free in , are bound in  and in  . 

 

Ifaformulacontainsnooccurrencesoffreevariableswecallitasentence 



Quantifiers 

 

Thevariableofpredicatesisquantifiedbyquantifiers.Therearetwotypesofquantifierin predicate logic 

− Universal Quantifier and Existential Quantifier. 

 

Universal Quantifier 

 

Universalquantifierstatesthatthestatementswithinitsscopearetrueforevery valueofthe specific 

variable. It is denoted by the symbol ∀ 

∀xP(x)isread asforeveryvalueofx,P(x)is true.. 

Example− "Man is mortal" can be transformed into the propositionalform 

∀xP(x)∀xP(x)whereP(x)isthepredicatewhichdenotesxismortalandtheuniverseofdiscourse is all 

men. 

 

ExistentialQuantifier 

 

Existential quantifier states that the statements within its scope are true for some values of the 

specific variable. It is denoted by the symbol ∃. 

∃xP(x)isreadasforsomevaluesofx, P(x)istrue. 

Example −"Somepeoplearedishonest"canbetransformedintothepropositionalform 

∃xP(x) where P(x) is the predicate whichdenotesx is dishonest and the universe ofdiscourse is 

some people. 



 

 

Syllabus 

UNIT-II 

Relations 

 

Introduction, Basic ConceptsofSet Theory, RepresentationofDiscrete Structures, Relations, Types of 

relations, Partial order relation, POSET, External elements in POSET, Lattices, Functions, Types of 

functions,inverseoffunctions,invertiblefunctionsandCompositionoffunctions 

 

Introduction 

 

The elements of a set may be related to one another. For example, in the set of natural numbers 

thereisthe‘lessthanorequalto’relationbetweentheelements. Theelementsofoneset mayalso be 

related to the elements another set. 

 

Binary Relation 

 

Abinaryrelationbetweentwo setsAand B isaruleRwhichdecides, for anyelements, whether a is in 

relation R to b. If so, we write a R b. 

IfaisnotinrelationRtob,thenwe shallwrite aRb. 

 

Wecanalso consider aRbastheorderedpair (a,b) inwhichcasewecandefinea binary relation from 

A to B as a subset of A X B. This subset is denoted bythe relation R. 

Ingeneral,anysetoforderedpairsdefinesabinaryrelation. 

Forexample,the relationoffatherto hischildisF={(a,b) /aisthe fatherofb} 

InthisrelationF, thefirst member isthenameofthe fatherandthesecond isthenameofthe child. 

Thedefinitionofrelationpermitsanysetoforderedpairstodefinearelation. 

 

Forexample,the setS given by 

S ={(1,2),(3,a),(b,a),(b,Joe)} 

Definition 

Thedomain Dofa binaryrelationS isthe set ofallfirst elementsoftheordered pairs inthe 

relation. (i.e) D(S)= {a/ ∃ b for which (a, b) Є S} 



The rangeRofabinaryrelationS isthe set ofall second elementsofthe ordered pairs 

in the relation.(i.e) R(S) = {b /∃a for which (a, b) ЄS}. 

Forexample 

FortherelationS={(1,2),(3,a),(b,a),(b,Joe)} D(S)= 

{1, 3, b, b} and 

R(S)={2,a,a,Joe} 

Let X and Y be anytwo sets. Asubset ofthe Cartesianproduct X * Y definesa relation, sayC. For 

anysuchrelationC, wehave D( C)Í X and R( C)Í Y, andthe relation C is saidto fromX to Y. IfY 

= X,thenC is said to be arelation formXto X. Insuchcase, c is called a relation in 

X. ThusanyrelationinX isasubset ofX*X.Theset X*Xiscalleda universalrelation inX, while the 

emptyset which is also a subset ofX * X is called a void relation in X. 

 

Forexample 

LetLdenotetherelation―lessthanorequalto‖andDdenotetherelation 

―divides‖wherexDymeans― xdividesy‖.BothLandDaredefinedonthe set {1, 2, 3, 

4} 

L={(1,1),(1,2),(1,3),(1,4),(2,2),(2,3),(2,4),(3,3),(3,4),(4,4)} 

D={(1,1),(1,2),(1,3),(1,4),(2,2),(2,4),(3,3),(4,4)} 

LÇD ={(1,1),(1,2),(1,3),(1,4), (2,2),(2,4),(3,3),(4,4)} 

=D 

 

PropertiesofBinaryRelations: 

1. reflexive 

Definition: AbinaryrelationR inaset Xis reflexive if, foreveryxЄX,xR x, That is (x, 

x) ЄR. 

Forexample 

 

 Therelation£isreflexiveinthesetofrealnumbers. 

 Thesetinclusionisreflexiveinthefamilyofallsubsetsofauniversalset. 

 Therelationequalityofsetisalsoreflexive. 

 Therelationisparallelinthesetlines inaplane. 



 Therelationofsimilarityinthe setoftrianglesin aplaneis reflexive. 

Examples:(i).IfR1 ={(1,1),(1,2),(2,2),(2,3),(3,3)}bearelationonA={1,2,3},thenR1 is 

 areflexiverelation,sinceforeveryx∈A,(x,x)∈R1. 

(ii). IfR2={(1, 1),(1,2),(2,3),(3,3)}bearelationonA={1,2,3},thenR2isnota reflexive 

relation, since for every 2 ∈ A, (2, 2)  R2. 

Symmetric 

 

Definition:ArelationRinasetXissymmetricifforeveryxandyinX,wheneverx Ry,theny Rx. 

Forexample 

 

 Therelationequalityofsetis symmetric. 

 Therelationofsimilarityinthe setoftrianglesin aplaneis symmetric. 

 Therelationofbeingasisterisnotsymmetricinthe setofallpeople. 

 However,inthesetfemalesitissymmetric. 

Example.IfR3 ={(1,1),(1,2),(1,3),(2,2),(2,1),(3,1)}bearelationonA={1,2,3},then 

R3isasymmetricrelation. 

 

Transitive 

 

Definition: ArelationRinaset Xistransitive if,foreveryx, y,andzare inX, whenever x R y 

and y R z , then x R z. 

Forexample 

 

 Therelations<and >aretransitivein set ofrealnumbers 

 Therelationofsimilarityintheset oftrianglesinaplaneis transitive. 

 Definition:ArelationRinasetxis antisymmetricifforeveryxandyinX, whenever x R 

y and y R x, then x = y. 



Example: IfR4={(1,2),(2,2),(2,3)}onA={1,2,3}isanantisymmetricrelation. 

 

EquivalenceRelation: 

DefinitionTypeequationhere.:ArelationRinasetAiscalledanequivalencerelationif 

 aRaforeveryi.e.Ris reflexive 

 aRb=> bRaforeverya,bЄA i.e.Ris symmetric 

 aRbandbRc=>aRc foreverya,b,cЄA,i.e.Ris transitive. 

 

Forexample 

 

 Therelationequalityofnumbersonsetofrealnumbers. 

 Therelation beingparallelonaset oflinesinaplane. 

 

Problem1: Let usconsider thesetToftriangles inaplane. Let usdefinearelation R in T 

as R= {(a, b) / (a, b Є T and a is similar to b} 

Wehavetoshowthat relationRisanequivalence relation 

Solution: 

 

 Atriangleaissimilartoitself.aRa 

 Ifthetrianglea issimilar tothetriangle b, thentriangle bissimilartothetriangleathen a R b 

=> b R a 

 Ifa issimilar to bandb issimilar to c,thenaissimilar to c(i.e)aRband bRc=>aR c. 

 

HenceRisanequivalencerelation. 

 

Problem2: Let x={1, 2, 3, …7}andR={(x, y) /x–yisdivisible by3} Show that 

R is an equivalence relation. 

 

Solution: ForanyaЄX, a- aisdivisible by3, Hence a 

R a, R is reflexive 

Foranya,bЄ X,ifa – b isdivisible by3,thenb– aisalsodivisibleby3, 



Rissymmetric. 

Foranya,b,cЄ, ifaRband bRc,thena– bisdivisibleby3and b– 

cisdivisible by3. Sothat (a –b) +(b–c) isalso divisible by3, hence a – c 

is also divisible by 3. Thus R is transitive. 

HenceRis equivalence. 
 

 

Problem3. Let Z be the set of all integers.Letmbeafixedinteger.Twointegersaandbaresaid to be 

congruent modulo m if and only if m divides a-b, in which casewe write a≡b (mod m). 

Thisrelationiscalledtherelationofcongruencemodulomandwecanshowthatisanequivalence relation. 

Solution: 

 

 a-a=0 and m divides a – a(i.e)aRa,(a,a)ЄR,Risreflexive. 

 a R b=mdivides a-b 

 

mdividesb-a 

b ≡a (mod m) 

b R a 

thatisR issymmetric. 

 

 aRbandbRc =>a≡b(modm)andb≡c(mod m) 

o mdividesa –bandmdividesb-c 

o a–b= kmandb–c= lmforsomek,lЄz 

o (a –b)+(b–c)=km+lm 

o a– c=(k +l)m 

o a≡c(modm) 

o aR c 

o Ristransitive 

Hencethecongruencerelation isanequivalencerelation. 



 

 

EquivalenceClasses: 

 

Let Rbeanequivalence relationona set A. ForanyaЄA, theequivalence classgenerated bya 

isthesetofallelementsbЄAsuchaRbandisdenoted[a].ItisalsocalledtheR–equivalence class and 

denoted by a Є A. 

i.e.,[a]={bЄA/bR a} 

Let ZbethesetofintegerandRbetherelationcalled ―congruencemodulo 3 

defined byR = {(x, y)/ x∈Z and y∈ Z , (x-y) is divisible by3} 

Thentheequivalenceclassesare 

[0]={…-6,-3,0,3,6,…} 

[1] ={…, -5, -2,1,4,7,…} 

[2] ={…, -4, -1,2,5,8,…} 

Composition ofbinaryrelations: 

 

Definition:LetRbe a relationfromX toY andSbe a relationfromYtoZ.Thenthe relationR 

o S is a relation from X toZ given by R oS = {(x, z) /x∈ �,� ∈ �S)} is called the composite 

relation of R and S. 

TheoperationofobtainingRo S iscalled the compositionofrelations. 

 

Example:LetR={(1,2),(3,4),(2,2)} and 

S ={(4,2),(2,5),(3,1),(1,3)} 

ThenRoS={(1,5),(3,2),(2,5)}andSoR={(4,2),(3,2),(1,4)} 

It is to benotedthat Ro S≠So R. 

Also Ro(S o T) = (R o S) o T = R o S o T 

 

Note: We write RoRasR
2
;RoRoRasR

3
andso on. 

 

Definition 

Let R be a relation fromX to Y, a relation R from Y to X is called the converse ofR, 

wheretheorderedpairsofŘareobtained byinterchangingthe numbers ineachofthe ordered pairs 

ofR. This means for x ∈ X and y ∈Y,that x R yóyŘ x. 



ThentherelationŘisgivenbyR={(x,y) /(y,x)∈R}iscalledtheconverseofR 

 

Example: 

LetR={(1,2),(3,4),(2,2)} 

ThenŘ={(2,1),(4,3),(2,2)} 

 

 

Note:IfRisanequivalence relation,thenŘisalsoanequivalencerelation. 

 



PartialOrderingRelations: 

 

Definition 

AbinaryrelationRinasetPiscalled apartial orderrelation orapartial orderingin 

PifRisreflexive,antsymmetric,andtransitive. i.e., 

 aRaforalla∈P 

 aRbandbRa➙a=b 

 aRbandbRc➙aRc 
AsetPtogether withapartialordering Riscalledapartialordered setor poset.TherelationR 

isoftendenotedbythe symbol≤which is different fromtheusualless thanequalto symbol. Thus, 

if≤is a partialorder in P , thenthe orderedpair (P, ≤) is called a poset. 

Example:Showthattherelation‖greaterthanorequalto‖isapartialorderingonthesetof  integers. 

Solution: LetZbethesetofallintegersandtherelationR=≥ 

(i). Sincea≥aforeveryintegera,therelation ≥isreflexive. 

(ii). Letaandbbeanytwointegers. Let 

aRbandbRa➙a≥bandb≥a 

➙a= b 

∴ The relation≥ is antisymmetric. 

(iii).Let a,bandcbeanythreeintegers. Let 

aRb and bRc ➙ a ≥ b and b ≥c 

➙a≥c 

∴TherelationLetaRbandbRc➙a≥bandb≥c 

➙a≥c 

∴Therelation≥istransitive. 

Since the relation≥is reflexive, antisymmetric and transitive,≥is partialorderingonthe setof 

integers. Therefore, (Z, ≥) is a poset. 



HasseDiagram: 

AHassediagramis a digraphfor aposet whichdoesnot have loopsandarcs implied bythe transitivity. 

Example 10: Fortherelation{<a, a>, <a, b>, <a, c >, <b, b>, <b, c >, <c,c>}onset {a, b,c}, the 

Hasse diagram has the arcs {< a, b >, < b, c >} as shown below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ex: Let Abeagivenfiniteset andr(A) itspowerset.Let Íbethesubset relationontheelements of r(A). 

Draw Hasse diagram of (r(A), Í) for A = {a, b, c} 



Functions: 

 

Introduction 

A function is a special type of relation. It may be consred as a relation in which each 

elementof the domain belongsto only one ordered pairin the relation.Thus a function from A to 

Bis a subset ofAX Bhaving the propertythatfor eacha ЄA, there is one and onlyone bЄ B such 

that (a, b) Î G. 

Definition 

LetA and B be any two sets. A relation f from A toB is calleda functionif for everya Є A there 

is a unique b Є B such that (a, b) Є f . 

Notethatthedefinitionoffunctionrequires thatarelationmustsatisfytwo additional conditions in 

Qn.From the Hasse diagram, find the maximal, Minimal, Greatest element, Least element, Upper bound, 
Least upper bound, Lower bound and Greatest lower bound of {�,�,�} 

 
 
 

 

order to qualify as a function. 

 

The first condition is that everya Є Amust be relatedto some bЄ B, (i.e) the domainoffmust be 

Aand not merelysubset ofA. The second requirement ofuniquenesscanbe expressed as(a, b) Є f 

٨(b, c) Є f => b = c 

Intuitively,afunctionfromasetAtoasetBisarulewhichassignstoeveryelementofA,a 



unique element ofB. Ifa ЄA, then the unique element ofB assigned to a under f is denoted by f 

(a).The usual notation for a function f from Ato B is f: A® B defined by a ® f(a) where a Є A, 

f(a) is called the image ofa under fand a is called pre image of f(a). 

 

 LetX=Y=Randf(x) = x
2
 +2.D(f)=RandR(f) ⊆R. 

 LetXbethesetofallstatementsinlogicandletY={True,False}. 

 

Amapping f:X®Y isafunction. 

 

 Aprogramwritteninhighlevellanguageismappedintoamachinelanguagebya compiler. 

Similarly, the output from a compiler is a function of its input. 

 LetX=Y=Randf(x)=x
2
isafunctionfromX®Y,andg(x

2
)=xisnotafunction from X ® Y. 

 

 

Amappingf:A®Biscalled one-to-one(injectiveor1–1)ifdistinct elements of A 

aremapped into distinct elements of B. (i.e) f is one-to-one if 

a1=a2 =>f(a1)=f(a2)orequivalentlyf(a1)¹f(a2)=>a1 ¹ a2 

Forexample,f:N® Ngivenbyf(x)=x is1-1whereNisthe set ofa naturalnumbers. 

Amappingf:A®Biscalledonto(surjective)ifforeverybЄBthereisanaЄAsuchthat f(a) = B. 

i.e. if everyelement ofB has a pre-image in A.Otherwise it is called into. 

 

Forexample,f:Z®Zgivenbyf(x)=x+1isanonto mapping.A mapping is 

both 1-1 and onto is called bijective 

. 
Forexample f:R®Rgivenbyf(x)=X+1 is bijective 

 

Definition: Amapping f: R® bis called a constant mappingif, foralla Є A, f(a)= 

b,afixed element. 

Forexample f: Z®Zgivenbyf(x)=0,forallxЄ Zisaconstantmapping. 



. 

 

Definition 

Amapping f: A®Aiscalledthe identitymapping ofAiff(a) =a, for all a 

Є A. Usually it is denoted byIA or simply I. 

 

Composition offunctions: 

 

Iff: A®Band g: B®Caretwofunctions, thenthecompositionoffunctions fand g, denoted byg o 

f, is the function is given by g o f: A®C and is given by 

go f={(a, c)/ aЄA٨cЄ C٨bЄB': f(a)=b٨g(b) = c} and (g 

of)(a) = ((f(a)) 

 

Example1:ConsiderthesetsA={1,2,3},B={a,b}andC={x,y}. 

Let f: A®Bbedefined byf(1) =a;f(2)=band f(3)=band Let g: 

B® C be defined by g(a) = x and g(b) = y 

(i.e)f={(1,a),(2,b),(3,b)}andg={(a,x), (b,y)}. 

Thengof:A®Cisdefinedby 

(gof)(1)= g(f(1))= g(a)=x 

(gof)(2)=g(f(2))= g(b)=y 

(go f)(3)=g(f(3))=g(b)= y i.e., g o 

f = {(1, x), (2, y),(3, y)} 

 

Iff:A®Aand g:A®A,whereA={1,2, 3},aregiven by 

f= {(1,2), (2,3),(3,1)} and g= {(1,3),(2,2),(3,1)} 

Thengof={(1,2),(2,1),(3,3)},fog={(1,1),(2,3),(3,2)} 

fof= {(1,3),(2,1),(3, 2)}andgog= {(1,1),(2,2),(3,3)} 



Example 2: Let f(x) = x+2, g(x) = x – 2 and h(x) = 3x for x Î R, where R is the set of 

realnumbers. 

Thenf o f = {(x, x+4)/x Є R}f 

o g = {(x, x)/ x Є X} 

gof= {(x,x)/xЄX} 

gog={(x,x-4)/xЄX} 

ho g={(x,3x-6)/xЄX} h o 

f = {(x, 3x+6)/ x Î Є X} 

 

Inversefunctions: 

Let f: A® B be aone-to-one and onto mapping. Then, itsinverse, denotedbyf-1 isgivenbyf- 1 = 

{(b, a) / (a, b) Єf} Clearly f
-1

: B® A is one-to-one and onto. 

 

Also weobservethat fo f
-1

=IBand f
-1

o f=IA.If f 
-1

 

exists then f is called invertible. 

 

Forexample:Letf:R®Rbedefinedbyf(x)=x+2 Then f - 

1: R® R is defined by f 
-1

 (x) = x - 2 



Theorem: Let f:X®Yandg: Y®Zbetwoonetooneandontofunctions. Thengofisalsoone to one and 

onto function. 

 

Proof 

Letf:X ®Yg:Y ®Zbetwoonetooneandonto functions.Letx1,x2ЄX 

 

 gof(x1)=gof(x2), 

 g(f(x1))= g(f(x2)), 

 g(x1)=g(x2)since[fis1-1] 

 

x1 = x2 since [ g is 1-1} 

so that gof is 1-1. 

 

Bythe definitionofcomposition,gof:X ®Zisafunction. 

We have to prove that everyelement ofz ЄZ an image element for some x Є Xunder 

gof. 

Sinceg isonto$yЄ Y':g(y)= zand fisontofromX toY, 

$ xЄ X':f(x)= y. 

Now,gof(x)=g(f(x)) 

=g(y) [sincef(x)=y] 

=z[since g(y)= z] 

whichshowsthat gofisonto. 

Theorem (gof)
-1

 =f
-1

og
-1

 

(i.e) theinverseofacomposite functioncanbeexpressed intermsofthe composition of 

the inverses in the reverse order. 

 

Proof. 
 

f: A ® B is one to one and onto. 

g: B® Cisonetooneand onto. 

gof: A ® C is also one to one and 

onto.Þ(gof)
-1

:C®Aisonetooneandonto. 



LetaЄA,thenthereexistsanelement bЄBsuchthatf(a)=bÞa=f
-1

(b). Nowb ЄB 

Þthere exists anelement c ЄC suchthat g(b) = cÞ b=g
-1

 (c). Then (gof)(a) = 

g[f(a)] = g(b) = c Þ a = (gof) 
-1

(c) ........................................ (1) 

(f
-1

og
-1

)(c)=f
-1

(g
-1

(c))=f
-1

(b)= a Þa=(f
-1

o g
-1

)(c)….(2) 

Combining(1)and (2),wehave 

(gof)
-1

 =f
-1

 og
-1

 

Theorem:Iff: A®Bisaninvertible mapping,then f o f 
-
 

1
 = I B and f

-1
 o f = IA 

Proof: fis invertible, then f-1 is defined byf(a) = bó f
-1

(b) =a 

where a Є A and b Є B . 

Nowwehavetoprovethatfof
-1

=IB. 

Let bЄ Band f
-1

(b) = a,a ÎA 

thenfof
-1

(b) = f(f
-1

(b)) 

=f(a)=b 

therefore fo f-1 (b) = b " b Î B => fo f 
-1

 = IB 

Nowf
-1

o f(a)= f
-1

 (f(a))= f
-1

 (b)=atherefore f -1 o 

f(a) = a " a ЄA => f 
-1

 o f = IA. 

LatticeanditsProperties: 

 

Introduction: 

A lattice ispartiallyordered set (L, £) inwhicheverypair ofelementsa, bÎLhasagreatest lower 

bound and a least upper bound. 

Theglbofasubset,{a,b}ÍLwillbedenotedbya*bandthelubbya Åb. 

. 

Usually, foranypaira,bÎL,GLB{a,b}=a*b, iscalledthe meetorproductandLUB{a, b} = a Åb, 

is called the join or sum of a and b. 

 

Example1Consideranon-emptysetSandletP(S)beitspowerset.TherelationÍ―contained in‖ is a 

partialordering onP(S). Foranytwo subsets A, BP(S) 

GLB{A,B} and LUB{A,B} areevidentlyAÇBandAÈBrespectively. 



Example2Let I+bethesetofpositive integers,andDdenotetherelationof‘division’in I+ such 

that for anya, b Є I+ , a D b iff a divides b. Then (I+, D) is a lattice in which 

thejoinofaandb isgivenbytheleastcommon multiple(LCM)ofaand b,thatis, 

a Å b = LCM ofa and b, and the meet ofa and b, that is , a * b is the greatest common divisor 

(GCD) of a and b. 

 

Alattice can beconvenientlyrepresented byadiagram. 

Forexample, let Snbethesetofalldivisorsofn, wherenisapositive integer. Let Ddenotethe 

relation―division‖ suchthat foranya, bcdi654p[] 

Fda21 ASn,aDbiffadividesb. 

Then(Sn,D)isalatticewitha*b=gcd(a,b)anda Åb= lcm(a,b). 

Taken=6. ThenS6 ={1, 2,3,6}.It canberepresentedbyadiagramin Fig(1). Take n=8. 

Then S8 = {1, 2, 4, 8} 

Twolatticescanhavethesamediagram. For example ifS={1, 2, 3}then(p(s), Í) and(S6,D) have 

the same diagram viz. fig(1), but the nodes are differently labeled . 

We observe that for any partial ordering relation £ on a set S the 

converserelation³isalso partialordering relation onS.If(S, £)isa lattice With 

meet a * b and join a Å b , then (S, ³ ) is the also a lattice with meet 

aÅband joina* bi.e., theGLB and LUBget interchanged. Thus wehave the 

principle of duality of lattice as follows. 

Anystatement about latticesinvolvingtheoperations ̂ andVandtherelations£ 

and³remains true if ^, V, ³ and£ are replaced by V, ^,£ and³ respectively. 

Theoperation^and Vare calleddualsofeachotherasaretherelations £and³.. 

Also,thelattice(L,£)and(L,³)arecalledthedualsofeachother. 

 

Propertiesoflattices: 

Let(L,£)bealatticewiththebinaryoperations* andÅthen for anya,b,cÎL, 

 a*a=a aÅa = a (Idempotent) 

 a*b=b*a, aÅb =bÅ a (Commutative) 

 (a*b)*c=a*(b*c),(aÅ)Åc=aÅ(bÅc) 



o(Associative) 

 a*(aÅb)=a , aÅ(a*b)=a (absorption) 

 

ForanyaÎL,a£a,a£LUB{a,b}=>a£a*(aÅb).Ontheotherhand,GLB 

{a, aÅb}£ ai.e.,(aÅb)Åa,hencea* (a Åb)= a 

 

Theorem1 

Let (L, £)bea latticewiththe binaryoperations*and Ådenotetheoperationsofmeet and join 

respectivelyFor any a, b Î L, 

a£bóa*b=aóaÅb=b 

Proof 

 

Supposethat a£b. weknowthat a£a, a£GLB {a, b}, i.e., a£a*b. But 

from the definition of a * b, we get a * b £ a. 

Hence a £ b => a * b = a………………………… (1) 

Now we assume that a * b = a; but is possible only if a £ b, 

that isa * b = a=> a £ b ………………………… (2) 

From (1) and (2), we get a £ bó a * b = a. 

Supposea*b=a. 

then b Å (a * b) = b Å a=a Å b ……………………. (3) 

but b Å ( a * b) = b( by iv)…………………….. (4) 

Hence a Å b = b, from (3) => (4) 

SupposeaÅb=b,i.e.,LUB{a,b}=b,thisispossibleonlyifa£b,thus(3)=>(1) 

(1)=>(2)=>(3)=>(1).Hencetheseareequivalent. 

Let us assume a * b = a. 

Now(a*b)Åb=aÅb 

Weknowthatbyabsorption law,(a*b)Åb= b 

so that a Å b= b, therefore a * b = a Þ a Å b= b (5) 

similarly, we can prove a Å b= b Þa * b = a (6) 

From (5) and (6), we get 



a*b=aÛaÅb=b Hence the 

theorem. 

 

Theorem2 Foranya,b,cÎL,where(L,£)isa lattice. b £ c 

=>{a * b £a * c and 

{aÅb£aÅc 

 

Proof Supposeb£c.wehaveprovedthatb£aób*c=b… ....................... (1) 

Nowconsider 

(a*b)*(a*c)=(a*a)*(b*c) (byIdempotent) 

=a*(b*c) 

=a*b (by(1)) 

Thus (a *b) * (a * c ) = a * bwhich => (a * b )£ (a * c) 

Similarly(a Å b) Å ( a Å c) = (a Å a) Å (b Åc) 

=aÅ(bÅc) 

=aÅc 

which=> (a Åb ) £ (a Åc ) 

 

note:Thesepropertiesareknownasisotonicity. 



UnitIII: 

AlgebraicStructures 

 

 

Syllabus: 

Algebraic structures: Algebraic systemswithexamplesandgeneralproperties, semigroupsand 

monoids,groups&itstypes,IntroductiontohomomorphismandIsomorphism(Proofoftheorems are 

not required) 

Algebraicsystems 

N={1,2,3,4,…..}=Setofallnaturalnumbers. 

Z={0,±1,±2,±3,±4,…..}=Setofallintegers. Q= Set of all 

rational numbers. 

R=Setofallrealnumbers. 

BinaryOperation: Thebinaryoperator*issaidto beabinaryoperation(closedoperation) on 

anon-emptysetA, ifa*b∈Aforalla, b ∈ A (Closure property). 

Ex:ThesetNisclosedwithrespecttoadditionandmultiplicationbut not 

w.r.t subtraction and division. 

 

Algebraic System: Aset Awithone or more binary(closed) operations defined on it is called 

an algebraic system. 

Ex:(N,+),(Z,+,–),(R,+,.,–)arealgebraic systems. 

 

 

Properties 

 

Associativity:Let*be abinaryoperationona set 

A.The operation * issaid to be associative inA . 

if(a*b)*c=a*(b*c)foralla,b,cinA 



Identity:Foran algebraicsystem(A,*),an elementeinAissaidtobeanidentityelementof A if a * e 

= e * a = a for alla ∈ A. 

 

Note:Foranalgebraic system(A,*),theidentityelement,ifexists,is unique. 

 

Inverse:Let(A,*)beanalgebraicsystemwithidentity‗e‘.LetabeanelementinA.An element b 

issaid to be inverse ofA. 

ifa*b=b*a=e 

 

Semigroups 

 

SemiGroup:Analgebraicsystem(A,*) issaid tobeasemigroupif 

 

1. *isclosedoperationonA. 

 

2. *isanassociativeoperation,foralla,b,cin 

A.Ex.(N,+)isasemigroup. 

Ex.(N,.)isasemigroup. 

 

Ex.(N,–)isnot asemigroup. 



Monoid 

 

Analgebraicsystem(A,*)issaid tobeamonoidifthefollowingconditionsare satisfied. 

 

1) *isaclosedoperationinA. 

 

2) *isanassociativeoperationinA. 

 

3) Thereisan identityinA. 

 

Ex.Showthattheset Nisamonoidwithrespectto 

multiplication. Solution: Here, N ={1,2,3,4,……} 

 

Closureproperty:1Weknowthatproductoftwo naturalnumbersisagain anatural number. 

 

 

i.e.,a.b=b.aforalla,b∈N 

∴Multiplicationisaclosedoperation. 

Associativity:Multiplicationofnaturalnumbersisassociative. 

 

i.e.,(a.b).c=a.(b.c)foralla,b,c∈N Identity: 

We have, 1 ∈ N suchthat 

 

a.1=1.a= aforalla ∈N. 

∴Identityelementexists,and1istheidentityelement. 

Hence,Nisamonoidwithrespectto multiplication 



 

Examples 

 

 

Ex. Let (Z,*)beanalgebraicstructure,whereZisthesetofintegers 

andtheoperation*isdefinedby n*m=maximumof(n,m). 

Showthat(Z,*)isasemigroup.Is(Z,*) amonoid?.Justifyyouranswer. 

 

Solution:Leta,bandcareanythreeintegers. 

Closureproperty:Now,a*b=maximumof(a,b)∈Z foralla,b∈Z 

 

Associativity:(a*b)*c=maximumof{a,b,c}=a *(b*c) 

∴(Z,*)isasemigroup. 

Identity: Thereisnointeger xsuchthat 

a*x=maximumof(a,x)=a foralla∈Z 

∴Identityelementdoesnotexist.Hence,(Z,*)isnotamonoid. 

 

 

Ex.ShowthatthesetofallstringsSisamonoidundertheoperationconcatenation of 

strings‘. 

IsSagroupw.r.ttheaboveoperation?Justifyyouranswer. 



Solution:Letusdenotetheoperation 

 

‗concatenationofstrings‘by+. 

Lets1,s2,s3arethree arbitrarystringsin S. 

Closureproperty:Concatenationoftwostringsisagainastring.i.e., s1+s2∈ S 

Associativity:Concatenationofstringsisassociative. (s1+ 

s2) + s3= s1+ (s2+ s3) 

Identity:Wehavenullstring,l∈Ssuchthats1+l=S. 

∴Sisamonoid. 

Note: S is nota group, because the inverse of a nonempty string does not existunder concatenation 

ofstrings. 

 

Groups 

 

Group:Analgebraicsystem(G,*)issaidtobeagroupifthefollowingconditionsaresatisfied. 

 

1) *isaclosedoperation. 

 

2) *isanassociativeoperation. 

 

3) ThereisanidentityinG. 

 

4) Everyelement inGhasinverseinG. 

 

Abelian group (Commutative group):Agroup (G, *)said to 

beabelian (or commutative)if 

 

a*b=b*a foralla,b∈G. 



Properties 

 

InaGroup (G,*)thefollowingpropertieshold good 

 

1. Identityelementisunique. 

2. Inverseofanelementisunique. 

 

3. Cancellationlawsholdgood 

a*b=a*c=>b=c (leftcancellationlaw) 

a*c=b*c=> a=b(Rightcancellation 

 

law) 

 

4. (a*b)
-1

=b
-1

*a
-1

 

Inagroup,theidentityelementisitsowninverse. 

Orderof agroup:The number ofelements inagroupiscalled order ofthe 

group.Finitegroup:IftheorderofagroupGisfinite,thenGiscalledafinite 

group. 
 

 

Ex1.Showthat,theset ofallintegersisanabelian group withrespectto addition. 

 

Solution:LetZ=setofallintegers. 

 

Leta,b,careanythreeelementsofZ. 

1. Closure property: We know that,Sum of two integersis again 

aninteger. i.e., a + b ∈ Zfor all a,b ∈ Z 

2. Associativity:Weknowthatadditionofintegersis 



associative.i.e.,(a+b)+c=a+(b+c)foralla,b,c∈ 

Z. 

3. Identity:Wehave0∈Zanda+0=aforalla∈Z. 

∴Identityelementexists,and‗0‘istheidentityelement. 

4. Inverse:Toeacha∈Z,wehave–a∈Zsuch that 

 

a+(–a)=0 

 

EachelementinZhasaninverse. 

 

5. Commutativity:Weknowthatadditionofintegersis 

commutative. i.e., a + b = b +a for alla,b∈ Z. 

Hence, ( Z , + ) is an abelian group. 

Ex2.Showthatsetofallnonzerorealnumbersisagroupwithrespecttomultiplication. 

Solution:LetR
*
=setofallnonzerorealnumbers. 

Leta,b,care anythreeelementsofR
*
. 

 

1. Closure property:Weknowthat,productoftwononzerorealnumbersisagainanonzeroreal 

number. 

i.e.,a.b∈R
*
for alla,b∈R

*
. 

2. Associativity:Weknowthatmultiplicationofrealnumbersis 

 

associative. 

 

i.e.,(a.b).c=a.(b.c)foralla,b,c∈R
*
. 

3. Identity:Wehave1∈R
*
anda.1=aforalla∈R

*
. 

∴Identityelementexists,and‗1’istheidentityelement. 

4. Inverse:Toeacha∈R
*
, wehave1/a∈R

*
suchthat 

a.(1/a)=1i.e.,EachelementinR
*
hasan inverse. 

 

5. Commutativity: Weknowthatmultiplicationofreal 

numbers iscommutative. 

 

i.e., a . b = b . a foralla,b∈R
*
. 



Hence,(R
*
,.)isanabeliangroup. 

Note:Showthatsetofallrealnumbers‗Risnotagroupwithrespecttomultiplication. 

 

Solution:Wehave0∈R. 

Themultiplicativeinverseof0doesnotexist. 

 

Hence.Risnotagroup. 



Example:LetSbeafiniteset,andletF(S)bethecollectionof allfunctionsf:S→S under the 

operation ofcompositionoffunctions,thenshowthatF(S)isamonoid. 

IsSagroupw.r.ttheaboveoperation?Justifyyouranswer. 

 

Solution:Letf1,f2, f3arethreearbitraryfunctionsonS. 
 

Closureproperty:CompositionoftwofunctionsonSisagainafunctiononS. 

 

i.e.,f1of2∈F(S) 

Associativity:Compositionoffunctionsisassociative. 

 

i.e.,(f1of2)of3=f1o(f2of3) Identity: 

We have identityfunctionI : S→S 

 

suchthat f1oI=f1. 

∴F(S)isa monoid. 

Note:F(S)isnot agroup,becausetheinverseofanbijectivefunctiononS doesnotexist. 

 

Ex.IfMissetof allnonsingularmatricesof order ‗n xn‘.thenshow thatMis a 

groupw.r.t. matrix multiplication.Is (M,*) an abelian group?.Justify your 

answer. 

Solution: LetA,B,C∈M. 

1. Closureproperty:Productoftwonon-singularmatricesisagainanon-singularmatrix, 

because|��|=|�||�|≠0(Since,AandBarenonsingular) 

i.e.,AB∈ MforallA,B∈ M . 

2. Associativity:Matrixmultiplicationisassociative. 

i.e.,(AB)C=A(BC)forallA,B,C∈M. 

3. Identity:WehaveIn∈MandAIn=AforallA∈M. 

∴Identityelementexists,and‗In‘istheidentityelement. 

4. Inverse:To eachA∈M, wehaveA
-1∈Msuchthat AA

-
 

1
=In i.e., Each element in M has an inverse. 

∴Misagroupw.r.t.matrixmultiplication. 

Weknowthat,matrixmultiplicationisnotcommutative.Hence,Misnotanabeliangroup. 



Ex.Showthatthesetofallpositiverationalnumbersformsanabeliangroupunderthecomposition 

*definedby 

a *b=(ab)/2. 

 

Solution:LetA=set ofallpositiverationalnumbers. 

 

Leta,b,cbe anythree elementsofA. 

 

1. Closureproperty:Weknowthat,Productoftwopositiverationalnumbersisagaina 

 

rationalnumber. 

 

i.e.,a*b∈Afor alla,b∈A. 

2. Associativity: (a*b)*c= (ab/2)*c=(abc)/4 

 

a*(b*c)=a*(bc/2)=(abc)/4 

3. Identity: Letebethe identityelement. 

 

We havea*e=(ae)/2…(1),Bythedefinitionofagain, a*e=a 

 

…..(2),Since e is the identity. 

 

From(1)and(2),(ae)/2=a ⇒e=2and2∈A 

∴Identityelementexists,and2istheidentityelementinA. 

4. Inverse:Leta∈Aletussupposebisinverseofa 

 

. Now, a*b=(ab)/2….(1)(Bydefinitionofinverse.) 

Again,a*b=e=2…..(2)(Bydefinitionofinverse) From 

(1) and (2),itfollows that(a b)/2 =2 

 

=> b=(4/a)∈ A 

∴(A,*)isagroup. 

Commutativity: a*b=(ab/2)=(ba/2)=b*a 

Hence,(A,*)isanabelian group. 



Finite groups 

 

Ex. ShowthatG= {1,-1} isanabeliangroupundermultiplication. 

 

Solution:ThecompositiontableofGis 

 

* 1 -1 

1 1 -1 

-1 -1 1 

 

1. Closureproperty:Sincealltheentriesofthecompositiontablearetheelementsofthe 

givenset,theset Gisclosedunder multiplication. 

2. Associativity:TheelementsofGarerealnumbers, andweknowthatmultiplication ofreal 

numbers is associative. 

3. Identity:Here, 1istheidentityelementand1∈G. 

 

4. Inverse:Fromthecompositiontable,weseethattheinverseelementsof 

 

1 and– 1are1 and– 1 respectively. 

 

Hence, G is a group w.r.t multiplication. 

 

5. Commutativity:The corresponding rows and columns of the table are identical. 

Therefore the binary operation . is commutative. 

Hence,G isanabeliangroup w.r.t. multiplication.. 

 

Ex.Showthat G={1, w,w
2
}isanabeliangroupundermultiplication. 

Where1,w,w
2
arecuberootsofunity. 

 

Solution:ThecompositiontableofGis 
 

 

* 1 w w2 

1 1 w w2 

w w w2 1 

w2 w2 1 w 



1. Closureproperty:Sincealltheentriesofthecompositiontablearetheelementsofthegiven 

set,theset Gisclosed under multiplication. 

2. Associativity:TheelementsofGarecomplexnumbers,andweknowthat 

multiplication of complex numbers is associative. 

3. Identity:Here, 1istheidentityelementand1∈G. 

4. Inverse:Fromthecompositiontable,weseethattheinverseelementsof1 w,w
2
are 1, w

2
, 

w respectively. 

Hence,Gisagroupw.r.tmultiplication. 

 

5. Commutativity:Thecorrespondingrowsandcolumnsofthetableareidentical. Therefore 

the binary operation . is commutative. 

Hence,G isanabeliangroup w.r.t. multiplication. 

                                                                                    

Modulosystems 

 

Additionmodulom(+m) 

 

letmisapositiveinteger.Foranytwopositiveintegersaandb 

 

 

a +mb=a+b ifa+b<m 

a +mb= r ifa+ b>mwhereristheremainderobtained 

bydividing(a+b)withm. 

 

Multiplicationmodulop(*m) 

 

letpisapositiveinteger.Foranytwopositiveintegersaandba 

*mb=ab ifab<p 

a*mb= r ifa b ³ p whereristheremainderobtained 

by dividing (ab) with p. 

Ex.3*54=2 , 5*54=0 , 2*52=4 



Example:ThesetG={0,1,2,3,4,5}isagroupwithrespecttoadditionmodulo6. 

 

Solution:ThecompositiontableofGis 

 

+6 0 1 2 3 4 5 

0 0 1 2 3 4 5 

1 1 2 3 4 5 0 

2 2 3 4 5 0 1 

3 3 4 5 0 1 2 

4 4 5 0 1 2 3 

5 5 0 1 2 3 4 

 

1. Closureproperty:Sincealltheentriesofthecompositiontablearetheelementsofthe givenset, theset 

Gisclosed under+6. 

2. Associativity:Thebinaryoperation+6isassociativeinG. 

 

forex.(2+63)+64 =5+64=3 and 
 

2+6(3+64)=2+61= 3 
 

 

 

3. Identity:Here,Thefirstrowofthetablecoincideswiththetoprow.Theelement headingthat 

row,i.e., 0isthe identityelement. 

4. .Inverse: From the composition table, we see that the inverse elements of 0,1,2,3,4.5 are0, 

5,4, 3, 2, 1 respectively 

 

5. Commutativity:Thecorrespondingrowsandcolumnsofthetableareidentical.Thereforethe 

binaryoperation +6is commutative. 

Hence,(G,+6)isanabeliangroup. 



 

Example:ThesetG={1,2,3,4,5,6}isagroupwithrespecttomultiplicationmodulo7. 

 

Solution:ThecompositiontableofGis 

 

*7 1 2 3 4 5 6 

1 1 2 3 4 5 6 

2 2 4 6 1 3 5 

3 3 6 2 5 1 4 

4 4 1 5 2 6 3 

 5 3 1 6 4 2 

6 6 5 4 3 2 1 

 

1. Closureproperty:Sincealltheentriesofthecompositiontablearetheelementsofthegivenset, the set 

G isclosed under *7. 

2. Associativity:Thebinaryoperation*7isassociativeinG. 

 

forex.(2*73)*74 =6*74=3 and 

2*7(3*74)=2*75=3 

3. Identity:Here,Thefirstrowofthetablecoincideswiththetoprow.Theelement headingthat 

row,i.e., 1isthe identityelement. 

4. .Inverse:Fromthecompositiontable,weseethattheinverseelementsof1,2,3,4.56are1,4, 

5,2,5,6respectively. 

5. Commutativity:Thecorrespondingrowsandcolumnsofthetableareidentical.Thereforethebinary 

operation *7is commutative. 

Hence,(G,*7)isanabeliangroup. More on  

finite groups 

 

Inagroupwith2elements,eachelementisitsowninverse 



Inagroupofevenordertherewillbeatleastoneelement(otherthanidentityelement) which is itsowninverse The 

set G = {0,1,2,3,4,…..m-1} is a group with respect to addition modulo m. 

 

The set G = {1,2,3,4,….p-1} is a group with respect to 

multiplicationmodulo p,wherep isa primenumber. 

 

Subgroups 

Def.AnonemptysubsetHofagroup(G,*)is asubgroupofG, 

 

if(H,*)isagroup. 

Note:Foranygroup{G,*},{e,*}and(G,*)aretrivialsubgroups. 

Ex.G ={1,-1,i,-i}isagroupw.r.tmultiplication. 

 

H1={1,-1 }isasubgroupofG.H2={1}isatrivialsubgroupofG. 

Ex.(Z,+)and(Q,+)aresubgroupsofthegroup(R+).Theorem:Anon-emptysubsetHofagroup 

(G,*)isasubgroupofGiff 

i) a*b∈H Va,b∈H 

 

 

i) a
-1∈H Va∈H 

 

HomomorphismandIsomorphism 

Homomorphism:Considerthegroups(G,*) and (G
1
,⊕) 

A functionf:G→G
1
is calledahomomorphismiff(a*b)=f(a)⊕f(b) 

Isomorphism:Ifa homomorphismf:G→G
1
 isa bijectionthenfiscalledisomorphism betweenG and 

G
1
 . 

ThenwewriteG≡G
1
 



Example:LetRbeagroupofallrealnumbersunderadditionandR
+
beagroupofallpositivereal 

numbersundermultiplication.Showthatthemapping f:R→R
+
definedbyf(x)=2

x
forallx∈ R is 

anisomorphism. 

Solution:First,letusshowthatfisahomomorphism.Leta,b∈ R. Now, 

f(a+b) = 2
a+b

 

= 2
a
2

b
 

=f(a).f(b) 

∴fisanhomomorphism. 

Next, let usprovethat fis a Bijection.For 

any a , b ∈ R, Let, f(a) = f(b) 

=>2
a
=2

b
 

=>a=b 

∴fisone.to-one. 

Next,take anyc ∈R
+
. 

Thenlog2c∈Randf(log2c)=2
log2c

=c

. 

⇒EveryelementinR
+
hasapreimageinR.i.e.,fis onto. 

∴fisabijection. 

Hence,fisan isomorphism. 

Ex.LetRbe agroupofallrealnumbers underadditionandR
+
be a groupofallpositivereal 

Numbers under multiplication. Show that the mapping f:R
+
→Rdefinedbyf(x)=log10xfor all x ∈ 

R is an isomorphism. 

Solution: First, let usshowthat fisahomomorphism.Let a , b 

∈ R+
 . 

Now,f(a.b) =log10(a.b) 

=log10a+log10b 

=f(a) + f(b) 

 

 

 

 

∴fisanhomomorphism. 



Next,letusprove that fisa 

Bijection.Forany a,b∈R
+
 ,Let, 

f(a)=f(b) 

=>log10a=log10b 

=> a=b 

∴fisone.to-one. 

Next,take 

anyc∈R.hen10
c∈Randf(10

c
)=log

1010
c
=c.EveryelementinRhasaprei

mageinR
+
. i.e., f is onto. 

∴fisabijection. 

Hence,fisan isomorphism. 



 

 

 

Basisofcounting: 

UNIT-IV 

COMBINATORICS 

If X is a set, let us use |X|to denote the numberof elements in X. 

Two Basic Counting Principles 

Twoelementaryprinciplesactas―buildingblocks<forallcountingproblems.The first 

principle says that the whole is the sum of its parts; it is at once immediate and 

elementary. 

 

SumRule: Theprinciple ofdisjunctivecounting: 

IfasetXisthe unionofdisjointnonemptysubsetsS1,…..,Sn,then| X |=| S1|+ |S2|+…..+ 

|Sn|. 

 

WeemphasizethatthesubsetsS1,S2,….,Snmusthavenoelementsincommon. 

Moreover, sinceX=S1US2U……USn, eachelement ofX is inexactlyoneofthe subsets 
Si. In other words, S1, S2, …., Sn is a partition of X. 

 

If the subsets S1, S2, …., Sn were allowed to overlap, then a more 

profoundprinciplewillbeneeded--theprincipleofinclusionand exclusion. 

Frequently,insteadofasking forthenumberofelements inasetperse,someproblems ask 

for how many ways a certain event can happen. 

Thedifference is largelyinsemantics, forifAisanevent, wecanlet Xbethesetofways that 

Acan happenand count the number ofelements inX. Nevertheless, let us statethe sumrule for 

counting events. 

IfE1,……,Enaremutuallyexclusiveevents,andE1canhappene1ways,E2happen e2 

ways,…. ,En can happen en ways, E1or E2 or …. or En can happen e1 + e2 + 

……..+enways. 

Againweemphasizethat mutuallyexclusiveeventsE1andE2 meanthat E1orE2can 

happen but both cannot happen simultaneously. 

Thesumrulecanalsobeformulatedintermsofchoices:Ifanobjectcanbe selected 

fromareservoirine1waysandanobjectcanbeselectedfromaseparatereservoirine2ways 

andanobject canbeselectedfromaseparatereservoir ine2ways, thenthe selectionofone object 

fromeither one reservoir or the other can be made in e1 + e2 ways. 



Product Rule:Theprincipleofsequencingcounting 

IfS1, …..,Snarenonemptysets, thenthenumberofelementsin theCartesian product S1 x S2 

x ….. x Sn is the product ∏in=1 |S i |. That is, 

|S1xS2x .................. xSn|=∏in=1|Si|. 

 

 

Observe that there are 5 branches in the first stage corresponding to the 5 elements of S1 

and to each of these branches there are 3 branches in the second stage corresponding to the 3 

elements ofS2 giving a totalof15 branches altogether. Moreover, the Cartesian product S1 x S2 

can be partitioned as (a1 x S2) U (a2 x S2) U(a3 xS2) U (a4 x S2) U (a5 x S2), where (aix S2) 

={(ai,b1),(aii,b2),(ai,b3)}.Thus, forexample,(a3xS2)correspondstothe thirdbranchin the first 

stage followed by each of the 3 branches in the second stage. 

 

 

Moregenerally, ifa1,….., anarethendistinct elementsofS1and b1,….,bmarethe m 

distinct elements of S2, then S1 x S2 = Uin =1 (ai x S2). 

For if x is an arbitrary element of S1 x S2 , then x = (a, b) where a Î S1 and b Î 
S2. Thus, a=aifor some iandb= bjfor some j. Thus, x=(ai, bj) Î(aixS2) and 

therefore x Î Uni =1(ai x S2). 

Conversely, if xÎ Uin=1(aixS2), thenxÎ (aixS2) for some iand thus x=(ai, bj) where bj is 

some element of S2. Therefore, x Î S1 x S2. 

 

Nextobserve that (aixS2)and(ajxS2)aredisjointifi≠jsinceif 

xÎ (aixS2) ∩(ajxS2) thenx=( ai, bk) for somekand x=(aj, b1) for some l. 

Butthen(ai,bk) =(aj,bl)impliesthat ai=ajand bk=bl.But sincei≠j,ai≠aj. 

Thus, weconcludethatS1xS2isthedisjointunionofthesets(aix S2). 

Furthermore|aixS2|=|S2|sincethere isobviouslyaone-to-onecorrespondence between the sets 

ai x S2 and 

S2,namely,(ai,bj)→bj. 

Thenbythe sumrule |S1xS2|= ∑nni=1|aixS2| 

7.(nsummands)|S2| +|S2| +… ........ + |S2| 

8. n|S2| 

9. nm. 

Therefore, wehaveproventheproductrule fortwo sets. Thegeneralrule follows by 

mathematical induction. 



Wecanreformulatetheproduct rule in termsofevents. IfeventsE1, E2, ….,En can 

happen e1, e2,…., and en ways, respectively, then the sequence of events E1 first, 

 

followedbyE2,…., followed byEncanhappene1e2…enways. 

Interms ofchoices, the product rule is statedthus: Ifa first object can be chosen e1ways, 

a second e2 ways , …, and an nth object can be made in e1e2….en ways. 

 

Combinations&Permutations 
Definition. 

Acombinationofnobjectstakenr at atime (called anr-combinationofnobjects) is an 
unordered selection of r of the objects. 

Apermutationofnobjectstakenr at atime (also called anr-permutationof n objects) is 

an ordered selection or arrangement of r of the objects. 

Notethat wearesimplydefiningthetermsr-combinationsandr-permutations here 
and have not mentioned anything about the properties ofthe n objects. 

Forexample,thesedefinitionssaynothingaboutwhetherornot agivenelement may 

appear more than once in the list of n objects. 

Inother words, it maybethatthenobjectsdo notconstituteasetinthe normalusageof the 
word. 

General formulas for enumerating combinations and permutations will now be 

presented. At this time, we will only list formulas for combinations and permutations without 

repetitionsor withunlimited repetitions. We willwait until laterto use generating functionsto 

give generaltechniques for enumerating combinationswhere otherrulesgoverntheselections. 

LetP(n,r)denotethenumberofr-permutationsofnelements withoutrepetitions. 

Theorem5.3.1.(Enumeratingr-permutationswithout repetitions). 

 

P(n,r)=n(n-1)…….(n–r+1)=n!/(n-r)! 

 

Proof.Sincetherearendistinct objects,the first positionofanr-permutationmaybe filled in 

nways.Thisdone,thesecondpositioncanbefilledinn-1wayssincenorepetitionsareallowed and there 

aren– 1objectsleft to choose from. Thethird canbe filled inn-2 ways. Byapplying the product 

rule, we conduct that 

 

P (n, r) = n(n-1)(n-2)……. (n – r + 1). 

Fromthedefinitionoffactorials,itfollows that 
P(n,r)=n!/(n-r)! 



 

 

Whenr =n,this formula becomes 

P (n,n)=n!/ 0!= n! 

Whenweexplicit referencetorisnot made, weassumethat alltheobjectsareto be arranged; 

thuswetalk about the permutations ofnobjects we meanthe case r=n. Corollary1. There are n! 

permutations of n distinct objects. 

Number ofpermutationsthat can be formed froma collectionof‘n’objectsofwhich n1 are of 

onetype,n2areofsecondtype…….nkareofkthtypewithn1+n2+……+nk=n.Thenthe 

numberofpermutationsoftheofthenobjectsis�!. 
�1!+�2!+⋯+��! 

 

 
Example 1. 

There are 3! = 6 permutations of {a, b, c}. 

Thereare4!=24permutationsof(a,b,c,d). 

Thenumberof2-permutations{a,b,c,d,e}isP(5,2)=5!/(5 

-2)! =5x4=20. 

Thenumberof5-letterwordsusingthe lettersa,b,c,d,andeatmostonce is P (5, 5) 

= 120. 

Example 2 There are P (10, 4) = 5,040 4-digit numbers that contain no repeated digits since 

eachsuchnumber is just anarrangement offour ofthedigits0, 1, 2,3, ….,9(leadingzeroes are 

allowed). There are P (26, 3) P(10, 4) license plates formed by3 distinct letters followed by 4 

distinct digits. 

 

Example3. In how many ways can 7 women and 3 men be arranged in a row ifthe3 

men must always stand next to each other? 

 

 

There are 3! ways of arranging the 3 men. Since the 3 men always stand next to each other, we 

treat them as a single entity, which we denote by X. Then if W1, W2,…..,W7 represents the 

women,wenext areinterestedinthenumberofwaysofarranging{X,W1,W2, W3,…….,W7}. There 

are 8! permutations these 8 objects. Hence there are (3!) (8!) permutations altogether. (of course, 

if there has to be a prescribed order of an arrangement on the 

3menthenthereareonly8!totalpermutations). 



Example4. Inhowmanywayscanthe lettersoftheEnglishalphabet bearrangedsothatthere are 

exactly 5 letters between the letters a andb? 

There are P(24, 5) ways to arrangethe 5 letters betweena and b, 2 ways to place a andb,and 

then 20! ways to arrange any 7-letter word treated as one unit along with the remaining 19 

letters. The total is P (24, 5) (20!) (2). 

 
Note: If instead ofarranging objects in a line, we arrange them in a circle, then the number 
of permutations decreases. 

 

Example5.Inhowmanywayscan5childrenarrange themselvesinaring? 

 

Solution:Here,the5childrenarenotassignedtoparticularplacesbutareonlyarrangedrelative 

tooneanother. Thus, thearrangements(seeFigure 2-3) areconsideredthesame ifthe children are 

inthe same orderclockwise. Hence, the positionofchild C1 is immaterialand itisonlythe position 

of the 4 other children relative to C1 that counts. Therefore, keeping C1 fixedin position, there 

are 4! arrangements of the remaining children. 

 

Example 6. A certain question paper contains 3 parts A,B,C with 4 questions in part A, 5 

questions in part B and 6 questions in part C. it is required to answer 7 questions selecting at 

least 2 question from each part. In how many different ways can a student select his seven 

question for answering? 

Solution:Thedifferentpossiblewaysinwhichastudentcanmakeaselectionare 

(1) 2questionsfrompartA,2frompartBand 3frompartC 

(2) 2questionsfrompartA,3frompartBand 2frompartC 

(3) 3questions frompart A, 2frompartBand2frompartC 

Selection (1) can be made in C(4,2)xC(5,2)xC(6,3)=1200 ways 

Selection (2) can be made in C(4,2)xC(5,3)xC(6,2)=900 ways 

Selection (1) can be made in C(4,2)xC(5,2)xC(6,3)=600 ways 

Therefore number ofpossible selection is1200+900+600=2700 

1. Howmanydifferentstrings(sequences)oflength4ncanbeformedusingthelettersofthewordFLOWER. Sol: 

The given word FLOWER has 6 letters where all of which are distinct. 

TherequirednumberofstringsisP(6,4) =  6!  

(6−4)! 
=6!=360 

2! 

2. FindthenumberofpermutationsofthelettersofthewordSUCCESS. 

Sol: ThegivenwordSUCCESShas7 letters,ofwhich3areS’s, 2areC’sand 1 each 
are U and E. 

Therequirednumber ofpermutationsis   7!  =420 
3!2!1!1! 

3. FindthenumberofpermutationsofthelettersofthewordMASSASAUGA. Inhowmany Of 

these, all four A’s are together? How many of them begin with S? 

Sol:ThegivenwordMASSASAUGAhas10lettersofwhich4 areA’s,3 areS’s 
and 1 eachareM,UandG. 

Requirednumberofpermutations is 10! 
4!3!1!1!1! 

=25,200 

IfallA’sare together,wetreatallA’sasone singleletter. 



Thenrequirednumberofpermutations is  7!  
1!3!1!1!1! 

Ifthewordbeginwithletter S,thereoccurs9openpositionsto fill, where2areS’s, 4 are 
A’s and one each are M,U,G 

Thenrequired number ofpermutationsis  9!  =7560 
2!4!1!1!1! 

4. Howmanypositiveintegersncanweformusingthedigits3,4,4,5,5,6,7ifwewantntoexceed5,000,000 Sol: Here 

n must be ofthe formn = x1x2x3x4x5x6x7 

Wherex1,x2,x3,x4,x5,x6,x7arethegivendigitswithx1=5or6or7 

Suppose wetake x1= 5 then x2,x3,x4,x5,x6,x7is an arrangement of the remaining 6 digits which contains 

two4’sand one each of 3,5,6,7 

Thenumberofsucharrangementsis  6!  
2!1!1!1!1! 

Next,Supposewe takex1=6thenx2,x3,x4,x5,x6,x7isanarrangementoftheremaining6digitswhich contains two 
each of 4 and 5and one each of 3,7 

Thenumberofsucharrangementsis   6!  
2!2!1!1! 

Similarly,wetakex1=7thenx2,x3,x4,x5,x6,x7isanarrangement oftheremaining6digitswhichcontains two each 

of 4 and 5and one each of 3,6 
Thenumberofsucharrangementsis   6!  

2!2!1!1! 

AccordingtoSumRule, 

Thenumberofn’sofdesired typeis= 360+180+180 = 720 
 

 

5. Fourdifferent Mathematicsbooks, fivedifferentcomputersciencebooksandtwo 

Differentcontroltheorybooksaretobearrangedinashelf.Howmanydifferentarrangementsare  possible 

if 

a) thebooksin eachparticularsubjectmust allbetogether? 

b) Only theMathematicsbooksmustbetogether? 

Sol:a) The Mathematics books can be arranged among themselves in 4! ways, the 
Computer sciencebookin5!ways, thecontroltheorybooksin2!waysandthethreegroups 

in3!Ways 
thenumberofpossible arrangementsis4!X 5!X2!X3!= 34,560 

b)Considerthefourmathematicsbooksasonesingle book.Thenwehave8bookswhich Can be 

arranged in 8! Ways. In all of these ways the mathematics books aretogether. But the 

mathematics books can be arranged among themselves in 4! Ways. 

Hence,thenumberofarrangementsis8!X4!=967,680 
6. Findthevalueofnsuchthat2P(n,2)+50=P(2n,2) Sol: 

2P(n,2) + 50 = P(2n,2) 
n! 

(n−2)
! 

+50= (2n)! 

(2n−2)! 

2n(n−1)+50=2n(2n-1) 
n

2
= 25 

n=5or -5 

sincencannot benegative,thevalueofn =5 

=84
0 

=36
0 

=18
0 

=18
0 

2 X 



THEPRINCIPLEOFINCLUSION-EXCLUSION: 

ConsiderafinitesetScontainingpnumberofelements.Here,thenumberpiscalledorder, 

sizeor thecardinalityofthesetSandisdenotedby�(�),or�(�)or |�|. 
Forexample,if�={1,2,6}and�={�,�,�,�}then�(�)=|�|=3and�(�)=|�|= 4 

Itis obvious that |∅|=0, and |�|≥1 for everynon-emptyfinite set S.Further for anytwo 
finitesetsAandB, if� ⊆� then|�|≤ |�|and ifA� ⊂ �then|�|<|�| 

 
IfAisasubsetofa finiteuniversalset U,thenthenumberofelementsinthecomplement� ̅(of A in U) is 
given by- 

|�̅|=|�|−|�| (1) 

Supposeweconsider theunionoftwo finitesetsAandBandwishtodeterminethe number of 
elements in �∪�. Since, the elements of �∪� consist ofall elements which are in Aor in B 
orbothAand B, thenumber ofelements in�∪� isequalto thenumber ofelements inAplus 
thenumberofelementsin Bminusthenumberofelements(ifany)thatarecommon toA and 
B. Thatis, 

|�∪�|=|�|+|�|−|�∩�| (2) 

Amoreexplicit(visual)wayofobtainingthisresultisthroughtheuseofaVennDiagram. 

 

 

 

 

 

 

 

 

 

 
Consider the Venn diagram shown above. In this diagram, the set A is made up of two parts �1and �2and 
thesetBismadeupoftwoparts�2and�3,where�2 = �∩�,and�∪� ismadeupofparts�1,�2and�3. Therefore, 

|�|=Numberofelementsin�1+Numberofelementsin�2 

=|�1|+|�2| 

Similarly, |�|=|�2|+|�3|, |A∪B|=|�1|+|�2|+|�3| 

Fromthese,weget 

|A∪B|=|�1|+|�2|+|�3|=(|�1|+|�2|)+(|�2|+|�3|)−|�2| 

=|�|+|�|−|�∩�| 
Thus,fordeterminingthenumberofelementsin �∪�,wefirst includeallelementsinAandallelementsin B, and then 
exclude all elements that are common to A and B. 

IfUisafiniteuniversalsetofwhichAandBaresubsets,then,byvirtueofaDe’MorganLawandthe expression (1) 

above, we have- 



|  �̅∩�̅  |=|̅�̅̅∪̅̅̅�̅|=|�|−|�∪�| 
Withtheuseofformula(2) above, thisbecomes 

|   �̅∩�̅    |=|̅�̅̅∪̅̅̅�̅|=|�|−{|�|+|�|−|�∩�|} 

 
=|�|−|�|−|�|+|�∩�| (3) 

Expressions (2) and (3) are equivalent toone another. Either ofthese is referredto asthe AdditionPrinciple 

(Rule) or the Principle of inclusion-exclusion for two sets. 

IntheparticularcasewhereAandBaredisjointsetssothat�∩�= ∅,theadditionrule(2)becomes- 

|� ∪ �| = |�| + |�| − |∅| = |�| + |�| (4) 

This is known as the Principle of disjunctive counting for two sets. 

 

 

BinomialCoefficients: Inmathematics,thebinomialcoefficient isthecoefficientofthe 

n 

termx
n
inthepolynomialexpansionofthebinomialpower(1+x). 

 

In combinatorics, is interpreted asthe number of k-element subsets (the k-combinations) of 
ann-elementset,thatisthenumberofwaysthatkthingscanbe"chosen"froma setofnthings. 

Hence, isoftenread as"n choose k"and iscalledthechoosefunctionofn and k.The 

notation was introduced by Andreas von Ettingshausen in 182, although the numbers were 

alreadyknowncenturiesbeforethat(seePascal'striangle).Alternativenotations includeC(n,k), 

n 

nCk,Ck, , inallofwhichtheCstandsforcombinationsorchoices. 

Fornaturalnumbers(takentoinclude0)nandk,thebinomialcoefficient canbedefined as 

k n 

thecoefficient ofthemonomialX intheexpansionof(1+X) .Thesamecoefficientalso 



occurs(ifk ≤n)inthebinomial formula 

 

 

 

(valid for anyelements x,yofa commutative ring), which explains the name "binomial 
coefficient". 

 

 

 

 

 

 

 

Another occurrence of this number is in combinatorics, where it gives the number of 

ways,disregarding order, that a k objects can be chosen from among n objects; 

moreformally,thenumber of k-element subsets (or k-combinations) of an n-element set. This 

number can be seen tobe equal to the one of the first definition, independently of any of the 

formulas below to computen 

it:ifineachofthenfactors ofthepower(1+X)onetemporarilylabelsthetermXwithanindexi 
(runningfrom1to n),theneachsubsetofkindicesgivesafterexpansionacontribution 

k 
X , and the coefficient of that monomial in the result will be the number of such subsets. This 

showsinparticularthat isanaturalnumberforanynaturalnumbersnandk.Therearemany other 

combinatorial interpretations of binomial coefficients (counting problems for which theanswer 

is given by a binomial coefficient expression), for instance the number of words formedof n 

bits (digits 0 or 1) whose sum is k, but most of these are easily seen to beequivalenttocounting 

k-combinations. 

 
Severalmethodsexisttocomputethevalueof withoutactuallyexpandingabinomialpower or 
counting k-combinations. 

Methodofgenerating functionsforFirst-OrderRecurrenceRelations:- 

Supposetherecurrencerelationtobesolved isofthe form an= 

c an-1+ F(n) for n ≥ 1 
oran+1=c an+�(�)forn≥0 

generatingfunctionisf(x)= ∑∞ �=

0 

�0�� 

thenweget
 f(x)=�0+��

(�) 
1−�� 

�ℎ ����(�

)=∑∞ 

�=
0 

�(�)�� 

Problems: 

1. Findageneratingfunctionfortherecurrence relationan+1–an=3
n
,n≥0 and 

a0= 1. Hence solve the relation. 
Sol:Givenan+1–an=3

n
 

=> an+1=an+ 3
n
 

this is ofthe forman+1=c an+�(�)for n≥ 0 
Here c = 1 ,a0=1 and �(�)= 3

n
 



=∑ � 
-1 

1− 

� � 
= 

= 

� 

Generatingfunctionisf(x)=�0+��(�) 

�(�1−)�=�∑∞ 
�=
0 

∞ 

= ∑�∞= 0  

�=
0 

�ℎ ��� 

�(�)�� 

3� � 

(3�)�  =(1-3x) 

 

 

 

 

 

 

Let 
1−2� 

f(x)=
1+�(1−3�)−

1 
� 

1+
�

 
  1−3� 

1−� 
 1−2�  
(1−3�)(1−
�) 

= + � 

 

 
istherequiredG.F 

(1−3�)(1−

�) 

�
1 

−� 

1−3� 

1-2x =A(1-3x) + B(1-x) 

OnsolvingA=B=½ 

f(x)=  1−2�  =1(1+ 1) 
(1−3�)(1−�) 21−� 1−3� 

=1(∑∞ ��+∑∞(3�)�) 
2 �=0 �=0 

 
 
 

 

=1∑∞ (1+3�)��=∑∞ ��� 

2 �=0 �=00 

Hencerequiredsolutionisan=
1
(1+3�) 

2 

2. Findthegeneratingfunctionfoetherecurrencerelationan+1–an=n
2
,n≥0anda0=1 Hence 

solve it. 
Sol: Givenan+1-an= n

2
=>an+1= an+n

2
, n≥0 this is 

ofthe forman+1=c an+�(�)for n≥ 0 Here c = 1 
,a0=1 and �(�)= n

2
 

Generatingfunctionisf(x)=�0+��(�) 

(1−)��∑∞ 
�ℎ ��� 
�(�)�� 

�=
0 

∞ 
�=0 

�2�� 

i.e.,g(x) istheG.F for <n
2
>= 0

2
,1

2
,2

2
,...................... 

theng(x)=�(1+�)  

(1−�)3 

f(x) 

 

 
1 

1−� 

(1+�2(1+�)) 
(1−�) 

1−3�+4�2 

(1−�)
4 

istherequiredG.F 

f(x) =(1-3x+4x
2
)(1-x)

-4
 

=(1-3x+4x
2
)[ ∑∞ 4 + � − 

1 
��] 

�=0 
=(1-3x+4x

2
)[ ∑∞ 3+

� 
�� 

�] 
∞ 3+ �=

0 
�� 
∞ 

3+
� 

�+1 ∞ 
=∑ ( �)�� -3∑ ( )� +4∑ 

(3+�)��+2 

 
Sincef(x)=∑∞ 

�=0 

Coeff.Ofx
n
is 

�=0 
� 

���� 

�=0 � �=0 � 

= 

= 

=∑ 

3 

f(x)= 



an=(
�+3

)–3
3+�−

(
1)+4(

3+�−2
)
 

�+
�

3
 �+
2 

�−1
+

1 
�−2 

=( )-3( ) +4(
� 

) 
� �−1 �−2 

=
(�+3)! 

�!3! 
−3(�+2)! 

(�−1)!3! 
+4(�+1)! 

(�−2)!3! 

=(�+1){(�2+5�+6)−3(�2+2�) +4(�2−�)} 
6 

=(�+1)(2�2−5�+6) istherequiredsolution. 
6 

Methodofgeneratingfunctionsforsecond-orderRecurrence relations:- 

Considerthesecondorderrecurrencerelation an+ 

A an-1+ Ban-2= F(n)for n ≥2 
oran+2+Aan+1+Ban=�(n)forn≥0 

Generating functionisf(x)= ∑∞ 
 
�=
0 

�0�� 

thenweget

 f(x)=
�0+(�1+�0�)�+�2

�(�) 
1+��+��2 

�ℎ ��� �(�)=∑∞ 
�=0 �(�)�� 

 

Note:If�(n)=0thengeneratingfunctionisf(x)=�0+(�1+�0�)� 

1+��+��2 

 
 
 
 

 

1. Findageneratingfunctionfortherecurrence relation an+an-1-6an-2=0forn≥2 

Given a0= -1, a1= 8 
Sol:Given an+an-1-6an-2=0for n≥2 

an+2+an+1-6an=0forn≥0 

anda0=-1,a1=8, A=1,B =-6,�(n)=0 

thengeneratingfunctionf(x) =�0+(�1+�0�)� 

1+��+��2 

f(x)=  7�−1  

1+�−6�2 

istherequiredgenerating function. 

2. Findageneratingfunctionfortherecurrencerelationan+2-2an+1+an=2
n
forn≥0 Given 

a0= 1, a1= 2Hence solve it. 
Sol:Givenan+2-2an+1+an=2

n
for n≥0 

Herea0=1,a1=2,A=-2,B=1and�(n)= 2
n
 

thengeneratingfunction f(x)=�0+(�1+�0�)�+�
2�(�)

 
 

 

1+��+��2 

∞ 

�(�)=∑�(�

)�� 

�=0 

∞ ∞ 

�ℎ ��� 

�(�)=∑2���=∑(2�)�=(1−2�)−1 

�=0 �=0 



Thus, 
 2f(x)

 

=1+x (1−2 
= 

1−2�+�2 

(1−�)2(1−2
�) 

=   1  

1−2� 

x)−1 
(1−�)2 

f(x)=(1-2x)
-1

 
∞ 
�=
0 

(2�)�=∑∞  
�=0 2

��� 

an=2
n
istherequiredsolution. 

 

 

 

 

3. Findageneratingfunctionfortherecurrence relationan+2-5an+1+6an=2forn≥0 Given 

a0= 3, a1= 7Hence solve it. 
Sol:Givenan+2-5an+1+6an=2forn≥0 
Here a0=3,a1=7,A=-5,B=6and�(n)=2 

2�(�) thengeneratingfunction f(x)=�0+(�1+�0�)�+� 

1+��+��2 

∞ 

�(�) =∑ 

�(�)�� 

�=0 

�ℎ ��� 

∞ 
�=
0 

2�� 

 

Thus f(x)= 
3−8�+2�2(1−�)−1 

1−5�+6�2 

=
 

10�2−11�+
3 

(1−2�)(1−3�)(1−�) 

=2(1-x)
-1

 

 

 

istherequiredgenerating function. 

 

 

 

 

Now,Let
 

10�2−11�
+3 

=  + � + 

(1−2�)(1−3�)(1

−�) 

�
1 

−� 

1−2
� 

  �1  
−3� 

10x
2
-11x+3=A(1-2x)(1-3x)+B(1-x)(1-3x)+C(1-x)(1-2x) 

OnsolvingA=1,B=0,C=2 

f(x)= 
10�2−11�+3 =  1  +   2  

(1−2�)(1−3�)(1−�) 1−� 1−3� 

=(1-x)
-1

+2(1-3x)
-1

 
∞ 
�=0 
∞ 
�=
0 

��+2∑∞ 
�=0 

(3�)� 

(1+2.3�)�� 

Hencean=1+2.3
n
istherequiredsolution. 

4. Find a generating function for the Fibonacci sequence <Fn> and hence obtain an expression 

for Fn 

Sol:RecurrencerelationforFibonaccisequenceis 
Fn+2=Fn+1+Fn forn≥0withF0=0,F1=1 

  Fn+2-Fn+1-

=∑ 

=∑ 

=∑ 
=∑ 



Fn=0forn≥0 HereF0=0,F1=1,A=-1,B =-

1and�(n)=0 



thengeneratingfunctionf(x) =�0+(�1+�0�)� 

1+��+��2 

 
 
 
 
 
 
 

 



2 

= 
−� 

�2+�−1 
Now,f(x)=  −�  

 

=  �  +�   
�ℎ ����2+�−1=(�−�)(�−�) 

1 
�2+�−1 

�,�= (−1±√5) 
2 

-x= A(x-β)+B(x-α) 
�= 1 ,�= 1 
� �−� �
 �−� 

�−

� 

�−� 

Now f(x)=−�  

�−
� 

–  �  

�−� 

=−�(1−�)−1−�(1−�)−1 

� � � � 

=−�∑(�)�−�∑(�)� 

� � � � 

=−∑ ∞ (�  +  � )�� 

�=0 ��+1 ��+1 

 

ThusFn=−
�

 
 

��+
1 

  �  
��+1 

=− 1 [���+� ��] 
(��)
� 

=− 1 
(−1)� 

� 

[1 
�−� 

� 

��+
1 

 

 
�−� 

��] ������=−1+√5 2 ,�=−1−√5 
2 

=− 1 
(−1)� 

[1 
−√
5 

��+1��] �.�=−1,�−�=√5 
√5 

= 
1 

(−1)�√5 
[��−��] 

 
 
 
 
 

SecondorderlinearhomogeneousRecurrencerelationsBYCHARACTERESTIC ROOTS 

Considerthesecondorder RR 

Cnan+Cn-1an-1+Cn-2an-2=0forn≥2→(1) 
Cn,cn-1,cn-2areconstantswithcn≠0. 
Wewantto getthesolutionof(1) inthe forman=ck

n
 C ≠ 0 

& k ≠ 0, put an= ck
n
 in (1) 

Cn(Ckn) +Cn-1Ck
n-1+Cn-2(Ckn-2) =0 

Ck
n-2

 [Cnk
2
 + Cn-1k + Cn-2] = 0 

Cnk
2
 +Cn-1k+Cn-2=0→(2) 

an= Ck
n
 isthe solutionof (1)if(2) istrue.Thisquadratic equation(2) ink iscalled auxiliary 

equation or Characteristic equation of RR (1). Then ∃ three cases 
1) Thetworootsk1&k2arerealanddistinctthensolution isan=Ak1

n+ Bk 
n
. 

2) The tworoots k1&k2arerealbutequalthensolutionisan= (A+Bn)k
n
. 

3) K1&k2arecomplexconjugateslikek1=p+iq &k2 =p-iq 

– 



n ) [Acos +Bsin ]   

4 4 

1 

An=r
n
(Acosn�+Bsinn�)wherer=√�2+�2&� =���−1(

�
)  

� 

Q1:Solvetherecurrencerelationan+an-1-6an-2=0forn≥2,ao=-1,a1=8 
Sol:General form of second order RR is cnan+ cn-1an-1+ cn-2an-2= 0 

∴Cn=1,cn-1=1,cn-2=-6 

Nowthecharacteristicequationisk
2
+k-6=0,onsolving it k1=-3,k2=2 (real 

and distinct). 

an=A(-3)
n
+B(2)

n
where A&Bare constants. 

Nowusingtheinitialconditionfinda&B a0 = 

A+B =» A+B = -1 
a1=-3A+2B=»-3A+ 2B= 8thenA=-2,B=1 

∴Solutionisan=-2(-3)
n
+(2

n
) 

Q2:Solvean=2(an-1–an-2)forn≥2/a0=1&a1=2 Sol :an- 
2an-1+2an-2= 0 ,cn=1, c2= -2, c3=2 

characteristicequation isk
2
-2k+2 =0,k=1±i 

∴Generalsolutionan= r
n
 [Acos n� + B sin n�] r 

 

= √�2 + �2, � = 1 � = 1 
=√2,�=���−1(�)=���−1(1)=≫���−1(1)=≫�=�

 

∴a =(√2 
n
 

�� � �� 1 4 

4 4 
TogetA&Businginitialconditions,a0=1=≫Acos0+Bsin0=≫ �=1 
a1=2=≫(√2) [Acos

��
+Bsin

��
]   

=√2[A
1
+ B

1
] 

√2 √2 n �� �� 

A+B=2thenB=1=≫an=(√2) 
[Acos 

+Bsin  ]  
4 4 

Q3:SolveFn+2=Fn+1+Fnforn≥ 0,F0=0, F1=1 Sol:Fn+2 - 
Fn+1– Fn= 0 , cn=1, cn-1=-1, cn-2= 1 

CharacteristicequationFn=A (1+√5 (  √ 
�

 

2  
)+B 

1− 5) 
2 

 
 
 
 

 
Usingcriticalvalues, A+B=0→ (1)=≫ B =-A 

1=A 
� 

(
1+√5

) 
2 

 � 1+√5 

+B ( 
1−√5

�
 

2 
) 

1−√5
 �

 

=A( ) -A( ) 
2 2 

1=2*A*√5 =≫A=1   ,B=−1  
2 
� 

n=
 [(1+√5

) 
√5 2 

 

−(1−√5

) 
2 

 
  

√5 √5 
� 

]isthesolution. 

ThirdandHigherOrderLinearHomogeneousRecurrenceRelation: 

F 

� 



n 
2
 

n 

1 

n 

Q1.Solve2an3an22an1anfor n0given a00,a11,a22 

Sol:Let 2an3an22an1an0for  n0 

WehaveCn2,Cn11,Cn22,Cn31 

Characteristicequationis 2k
3
k

2
2k10k 

The roots aren realanddistinct. 

1 
 ,k 

21,k3 1 
2 

1

aA 
 

n n 

B1 C1

TofindA,B& C: 

a00ABC ---------------- (1) 
a1

1 
BC --------------- (2) 

A 
 

1 
2
 

a2
1
ABC --------------- (3) 

2 
4
 

Adding(1)+(2)gives3A4B2 -------------- (4) 
Adding(2)+(3)gives3A8B12 -------------- (5) 

Now,solving(4)&(5)weget A
8

,B
5
,C

1
 

81
n 

5 n 1 n 
3 2 6 

a     1  1
3 2  2 6 

This istherequiredsolution. 

Q2.Solvetherecurrencerelationanan18an212an30,givena01,a15,a21. 

Sol:Given anan18an212an30 

WehaveC11,C21,C38,C412 

Characteristicequationisk
3
k

2
8k120kk 2,k3 

1 2 3 

The roots arerealandrepeated. 

Hencethesolutionis  aABn2
n
C3

n 

a01AC --------------- (1) 

a152ABC -------------- (2) 

a214A2B9C ------------- (3) 

 

 

 

Solving(1),(2)and(3),wegetA0,B1,C1 

an (n)(2)
n
3

n
istherequiredsolution. 

Non-HomogeneousRecurrenceRelationofSecond andHigherOrder: 

Recurrencerelation isoftheform, 

cnancn1an1cn2an2...f(n)wherenk2&cn0 ------------------------- (1) 
AgeneralsolutionforthisRRbeaa

(h)
a

(p)
wherea

(h)
isthesolutionoftheLHS part. 

n n n n 



n 

a A 

n 

n 0 

n n n 

n 0 1 2 q 0 1 2 q 

Togeta
(p)

considerthefollowingcases: 

Case(i):Supposef(n)isapolynomialofdegreeq&1isnotarootofthecharacteristicequationofthehomogeneous 

part (LHS)ofrelationinequation(1).Inthiscasea
(p)

canbne takenas 
(p) AnAn

2
...An

q
.Then A,A,A,...,Ashouldbeevaluated. 

n 0 1 2 q 0 1 2 q 

Case(ii):Supposef(n)isapolynomialofdegreeq &1isarootofmultiplicity m,a
(p)

can betakn en as 

a
(p)
n

mA AnAn
2
...An

q.Then A,A,A,...,Ashouldbeevaluated. 

Case(iii):Suppose f(n)αb
nwhereαisconstantandbisnotarootofthecharacteristicequationthena

(p)
Ab

n
 

n 0 

Case(iv):Suppose f(n)αb
nwhereαisconstantandbisarootofmultiplicitymofthecharacteristicequation 

then a(p)Anmbn 

Problems: 

Q1.Solvetherecurrencerelationan4an14an28forn2anda01,a12 

Sol:Givenrecurrencerelationis an4an14an28 ------------- (1) 

Consider the homogeneous part,an4an14an20 We 

haveCn1,Cn1 4,Cn2 4 

Thecharacteristic equationisk
2
4k40kk2 ---------------------- (2) 

1 2 

Therootsarerealandrepeated,so the required solutionis a
(h)
(ABn)(2)

n ------------------ (3) 

ConsidertheRHS,itisaconstant8,consider itasapolynomialwithdegree0.(ie.,n=0)and1isnotarootforLHS. 
Bycase(i), a

(p)
A ----------- (4) 

n 0 
A4A4A8A

8 
a

(p)
A

8
 

Put (4)in(1),weget .Sowehave 
0 0 0 0 

9 
n 0 

9
 

Therefore,thegeneralsolutionof(1)isa a(h)a(p). 

an 
(ABn)(2)

n


8 ----------- 
(5) 

9 

Now,forfindingvaluesofA& B, a1A
8
A1

8


1 --------------------- 
(6) 

0
 9 9 9 

a22AB
8 
2A2B2

8 -------------------- 
(7) 

1
 9 9 

Solving(6)&(7),weget B
6 

 
9 

a
1


2  n 8 
Substitutingthe valuesofA &Bin(5),wehave nn (2)  . 


9  3

 
 9 

 

Q2.Solvetherecurrencerelationan24an13an200forn0andgivena03000,a13300 

 

 

 

 

Sol:Given an24an13an200forn0 --------------- (1) 

WehaveCn1,Cn14,Cn23 



n 

n 

n n n 

n 

n 

n 

a A 

n n n 

n n1 n2 

n 

Characteristicequationisk
2
4k30k 1,k3 

1 2 

Therootsarerealanddistinct,sowehave a
(h)
A(1)

n
B(3)

n
 

Since1isthe root ofthecharacteristicequationwithmultiplicitym=1,wecanwrite 

a
(p)
n

1A, nowsubstitutingthis ineqn.(1)weget, 
n 0 

(n2)A04(n1)A03nA02002A0200A0100 

Hence,wehave a
(p)
100n 

Weknowthatthe generalsolutionisgivenbya a(h)a(p) 

aAB3
n
100n -------------- (2) 

Also,wehave 

a03000ABB3000A ----------------- (1) 

a13300AB(3)
1
100(1) ------------- (2) 

Solving(1)&(2)wegetA2900,B100 

Hencetheparticularsolutionisgivenbya29001003
n
100n 

Q3.Solvetherecurrencerelationa n2 10a n1 21an 3n
2
2,n0. 

Sol:Given an2 10a n1 21an 3n
2
2,n0 ---------------- (1) 

WehaveCn1,Cn110,Cn221 

Characteristic equationisk
2
10k210k 3,k7 

1 2 

Therootsarerealanddistinct,sowehave a(h)A(3)nB(7)n ----------------- (2) 

SinceRHSisapolynomialofdegree2 and 1 isnot arootofthecharacteristicequation,wecanwrite 
(p) AnAn2 -------------------- (3) 
n 0 1 2 

nowsubstituting(3)ineqn.(1) wehave, 

A0 A(1n2)A(n22)
210A 0 A(1n1)A(n1)

2212 A 0 An1An
22 3n

2
2 

A
13 1 1 

Onsolvingthis equationwe get ,A ,A
0
 72 

1
 3 

2
 4 

a(p)
13


1 1 2 

Hence, wehave n  n 
n
 72 3 4 

Weknowthatthegeneralsolutionisgivenbya a(h)a(p) 

an 
A3

n
B7

n


13


1
n

1
n

2
istherequired solution. 

72 3 4 

Q4.Solvea4n a n1 4a n2 
5(2)

n
 

Sol:Given a4a 4a 5(2)
n ---------------------- (1) 

WehaveCn1,Cn14,Cn24 

Characteristicequationisk
2
4k40kk 2 

1 2 

The rootsarerealandrepeated,sowehave a(h)(ABn)(2)n ---------------- (2) 



0 0 0 

0 0 0 

0 0 0 

n n n 

Here RHS is of the form5(2)
n
αb

n
whereb2is a root of the characteristic equation with multiplicity, m=2. 

Soa(p) is of the forma(p)A nmbna(p)A n2(2)n ---------------------------------------- (3) 
n n 0 n 0 

Nowsubstitute(3)in(1)togetAn
2
(2)

n4A(n1)
2
(2)

n14A(n2)
2
(2)

n25(2)
n
 

(2)
n2An0

2
(2)

24A(n10)
2
(2)

14A(n2)
20 

4An
2
8A(n1)

2
4A(n2)

2
5(2)

2
 

4An
2
8A(n

2
2n1)4A(n

2
4n4)20 

8A20A
5
 

0 0 
2
 

Substitutingthisvaluein(3), weget a(p)
5
n2(2)n

 

n 
2
 

5(2)
n
 

Weknowthatthegeneralsolutionisgivenbya a(h)a(p) 

an 
(ABn)(2)

n


5
n

2
(2)

n
istherequiredsolution. 

2 



UNIT-V 

 

GraphTheory 

 

Syllabus 

 

 

GraphTheory:RepresentationofGraph,DFS,BFS,SpanningTrees,planarGraphs.  

RepresentationofGraphs: 

Therearetwodifferentsequentialrepresentationsofagraph.Theyare 

 

 AdjacencyMatrixrepresentation 

 PathMatrixrepresentation 

 

AdjacencyMatrixRepresentation 

SupposeGisasimpledirectedgraphwithmnodes, andsupposethenodesofGhavebeen ordered 

and arecalled v1, v2, . . ., vm. Thentheadjacency matrix A=(aij) ofthegraphG isthe m x m matrix 

defined as follows: 

 

 

aij = 
1,ifviis adjacenttoVj,thatis,ifthereisanedge(Vi,Vj) 

 

0otherwise 

SupposeGisanundirectedgraph. ThentheadjacencymatrixAofGwill beasymmetric matrix, i.e., 

one in which aij = aji; for every i and j. 

 

Drawbacks 

1. ItmaybedifficulttoinsertanddeletenodesinG. 

2. Ifthenumberofedges is0(m) or0(mlog2 m), thenthe matrixAwillbesparse, hencea great 

deal of space will be wasted. 

PathMatrixRepresentation 

Let Gbeasimpledirectedgraphwithmnodes, v1,v2, ...,vm. ThepathmatrixofGisthe m-square 

matrix P = (pij) defined as follows: 



 

Pij= 
1ifthereis apathfromVitoVj 

0otherwise 

Graphsand Multigraphs 

AgraphGconsistsoftwothings: 

1.AsetVofelementscallednodes(orpoints or vertices) 

2. AsetEofedgessuchthateachedgeeinE is identifiedwithaunique 

(unordered)pair[u,v]of nodesin V,denotedby e= [u,v] 

Sometimes weindicatethepartsofagraphbywritingG =(V,E). 

Suppose e=[u, v].Thenthe nodesu and vare called theendpointsofe, and u and vare said to be 

adjacent nodes or neighbors. The degree ofa node u, writtendeg(u), is the number ofedges 

containing u. If deg(u) = 0 — that is, if u does not belong to any edge—then u is called an 

isolated node. 

PathandCycle 

ApathP oflength n fromanodeu to anodev isdefined asasequenceofn+1 nodes. P = (v0, v1, 

v2, . . . , vn) such that u = v0; vi-1 is adjacent to vi for i= 1,2, . . ., n and vn = v. 

TypesofPath 

 

1. SimplePath 

2. CyclePath 

 

(i) SimplePath 

Simplepathisapathinwhichfirstandlastvertexaredifferent(V0≠Vn) 

 

(ii) CyclePath 

Cyclepathisapathinwhichfirst and last vertexaresame(V0=Vn).It isalso calledas Closed path. 

ConnectedGraph 

AgraphGis said tobeconnectedifthereisapathbetweenanytwoofitsnodes. 



Labeled orWeightedGraph 

Iftheweight isassignedto eachedgeofthegraphthenit iscalled as Weightedor Labeled 

graph. 

Thedefinitionofagraphmaybegeneralizedbypermittingthefollowing: 
 

1. Multipleedges:Distinctedgeseand e'arecalled multipleedges iftheyconnect thesame 

endpoints, that is, if e = [u, v] and e' = [u, v]. 

2. Loops:Anedgeeiscalledaloopifithas identicalendpoints,thatis,ife=[u, u]. 

CompleteGraph 

AgraphGissaid tobecompleteifeverynodeuin GisadjacenttoeveryothernodevinG. 

 

Tree 

Aconnected graphTwithout anycyclesiscalledatreegraphorfreetreeor,simply,atree. 

 



3. Finite Graph:A multigraphM issaid to be finite ifit hasa finite number ofnodes and 

afinite number of edges. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Directed Graphs 

AdirectedgraphG,also calledadigraphorgraphisthesameasa multigraphexceptthat each edgee 

inG isassignedadirection, or inother words, eachedgee is identifiedwithanordered pair (u, v) of 

nodes in G. 

Outdegreeand Indegree 

Indegree:Theindegreeofavertexisthenumber ofedgesforwhichvishead 

Example 

 

 

 

 

 

 

 

Indegreeof1=1 

Indegreepf2=2 

Outdegree:Theoutdegreeofanodeorvertexisthenumberofedgesforwhich v istail. 

Example 



 

 
 

 

 

 

SimpleDirectedGraph 

Outdegreeof1 =1 

Outdegreeof2 =2 

 

 

AdirectedgraphG issaidto besimple ifG has no paralleledges. AsimplegraphG may have 

loops, but it cannot have more than one loop at a given node. 

Basic ConceptsIsomorphism: 

Let G1andG1betwo graphsand let fbea functionfromthe vertexset ofG1tothevertexset of 

G2.Supposethatfisone-to-oneandonto&f(v)isadjacenttof(w)inG2ifandonlyifvisadjacent to w in 

G1. 

 

Thenwesay that the function f is an isomorphism and that the two graphs G1 and G2are 

isomorphic. So two graphs G1 and G2 are isomorphic if there is a one-to-one correspondence 

between vertices ofG1 and those of G2 with the propertythatif two vertices of G1 are adjacent 

thenso aretheir images inG2. Iftwo graphs are isomorphic thenas far as we concerned they are 

thesamegraphthoughthelocationoftheverticesmaybedifferent.Toshowyouhowthe program 

canbeusedto exploreisomorphismdrawthegraphinfigure4 withtheprogram(first getthenull graph 

on four vertices and then use the right mouse to add edges). 



 

SavethisgraphasGraph1(youneedtoclickGraphthenSave). Nowgetthecircuit graphwith4 vertices. 

It looks like figure 5, and we shall call it C(4). 

 

 

 

 

 

 

 

 

 

 

 

Example: 

 

Thetwographsshownbelowareisomorphic, despitetheirdifferentlooking drawings. 
 

 

 

GraphG 

 

GraphH 

 

Anisomorphism 

betweenGandH 



 

 

 

 

ƒ(a)=1 

 

ƒ(b)=6 

 

ƒ(c)=8 

 

ƒ(d)=3 

 

ƒ(g)=5 

 

ƒ(h)=2 

 

ƒ(i)=4 

 

ƒ(j)=7 

 

Subgraphs: 

AsubgraphofagraphGisagraphwhosevertexsetisasubsetofthatofG,andwhoseadjacency relation isa 

subset ofthat ofGrestricted to this subset. Intheother direction, asupergraph ofa 

graphGisagraphofwhichGisasubgraph. WesayagraphGcontainsanother graphHifsome subgraph 

of G is H or is isomorphic to H. 

 

AsubgraphH is a spanningsubgraph,or factor, ofa graph Gifit has the same vertexset as G. We 

say H spans G. 

 

Asubgraph Hofa graph G is said to be induced if, for anypair ofvertices x and yofH, xy is an edge 

of H if and only if xyis an edge of G.In other words,H is an induced subgraph of G if it 

hasalltheedgesthat appear in G overthesame vertexset. Ifthevertexset ofH isthesubset Sof V(G), 

then H can be written as G[S] and is said to be induced by S. 

 

AgraphthatdoesnotcontainHasaninduced subgraph issaid to beH-free. 

 

A universal graph in a class K of graphs is a simple graph in which every element in K can be 

embedded as a subgraph. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

K5, a complete graph. Ifa subgraph looks like this, the vertices in that subgraph forma clique of 

size 5. 

 

Multi graphs: 

 

In mathematics, a multigraph or pseudograph is a graph which is permitted to have multiple 

edges,(alsocalled"paralleledges"),thatis,edgesthathavethesameendnodes.Thustwo vertices maybe 

connected bymorethanone edge. Formally, a multigraph G is anordered pair G:=(V, E) with 

 

 Vasetofverticesor nodes, 

 Eamultisetofunordered pairsofvertices,callededgesorlines. 

 

Multigraphs might be used to modelthe possible flight connections offered by an airline. In this 

case the multigraph would be a directed graph with pairs of directed parallel edges connecting 

cities to show that it is possible to fly both to and from these locations. 



 

 

 

 

 

 

 

 

 

 

 

 

 

A multigraph with multiple edges (red) and a loop (blue). Not all authors allow multigraphs to 

have loops. 

 

 

Eulercircuits: 

 

In graph theory, an Eulerian trail is a trail in a graph which visits every edge exactly once. 

Similarly, anEulerian circuit isanEuleriantrailwhichstartsandendsonthesamevertex. They were 

first discussed by Leonhard Euler while solving the famous Seven Bridges of Königsberg 

problem in 1736. Mathematically the problem can be stated like this: 

 

Given the graph on the right, is it possible to construct a path (or a cycle, i.e. a path starting and 

ending on the same vertex) which visits each edge exactly once? 

 

Euler proved that anecessarycondition for theexistenceofEuleriancircuits isthat allvertices in the 

graph have an even degree, and stated withoutproof that connected graphs with all verticesof 

even degree have an Eulerian circuit. The first complete proof of this latter claim was published 

in 1873 by Carl Hierholzer. 

 

The term Eulerian graph has two common meanings in graph theory. One meaning is a graph 

with an Eulerian circuit, and the other is a graph with every vertex of even degree. These 

definitions coincide for connected graphs. 



For the existence of Eulerian trails it is necessary that no more than two vertices have an odd 

degree;thismeanstheKönigsberggraphisnotEulerian.Iftherearenoverticesofodddegree,all Eulerian 

trails are circuits. Ifthere are exactly two vertices ofodd degree, all Eulerian trailsstart 

atoneofthemandendattheother.SometimesagraphthathasanEuleriantrailbutnotanEulerian circuit is 

called semi-Eulerian. 

An Eulerian trail, Eulerian trail or Euler walk in an undirected graph is a path that uses each 

edge exactlyonce. If such a path exists, the graph is called traversable or semi-Eulerian. 

 

AnEuleriancycle,EuleriancircuitorEulertourinanundirectedgraphisacyclethatuseseach edge 

exactly once. If such a cycle exists, the graph is called unicursal. While such graphs are Eulerian 

graphs, not every Eulerian graph possesses a Eulerian cycle. 

 

Fordirectedgraphs pathhastobe replaced withdirectedpathandcycle withdirectedcycle. 

ThedefinitionandpropertiesofEuleriantrails,cyclesandgraphsarevalidformultigraphsaswell. 

 

 

 

 

 

 

 

 

 

 

 

ThisgraphisnotEulerian,therefore,asolutiondoesnotexist. 



Every vertex ofthis graph has an even degree, therefore this is an Eulerian graph. Following the 

edges in alphabetical order gives an Eulerian circuit/cycle. 

Hamiltonian graphs: 

In the mathematical field of graph theory, a Hamiltonian path (or traceable path) is a path 

inanundirectedgraphwhichvisitseachvertexexactlyonce.AHamiltoniancycle(orHamiltonian 

circuit) is a cycle inanundirected graphwhichvisits eachvertexexactlyonce andalso returnsto 

thestartingvertex. Determiningwhether suchpathsandcyclesexist ingraphs is theHamiltonian path 

problem which is NP-complete. 

 

HamiltonianpathsandcyclesarenamedafterWilliamRowanHamiltonwho inventedtheIcosian game, 

now also known as Hamilton's puzzle, which involves finding a Hamiltonian cyclein the edge 

graph of the dodecahedron. Hamilton solved this problem using the Icosian Calculus,an 

algebraicstructurebasedonrootsofunitywithmanysimilaritiestothequaternions(alsoinvented by 

Hamilton). This solution does not generalize to arbitrary graphs. 

A Hamiltonian path or traceable path is a paththat visits each vertex exactlyonce. A graph that 

contains a Hamiltonian path is called a traceable graph. A graph is Hamilton-connected if for 

everypair of vertices there is a Hamiltonian path between the two vertices. 

 

A Hamiltonian cycle, Hamiltonian circuit, vertex tour or graph cycle is a cycle that visits each 

vertexexactlyonce (except the vertexwhich is boththe start and end, and so is visited twice). A 

graph that contains a Hamiltonian cycle is called a Hamiltonian graph. 

 

Similar notions may be defined for directed graphs, where eachedge (arc)ofa pathorcycle can 

onlybetracedinasingledirection(i.e.,theverticesareconnectedwitharrowsandtheedgestraced "tail-to- 

head"). 

 

AHamiltoniandecompositionisanedgedecompositionofagraphinto Hamiltoniancircuits. 

 

Examples 

 acompletegraphwithmorethantwoverticesisHamiltonian 

 everycycle graphisHamiltonian 

 everytournamenthasanoddnumberofHamiltonianpaths 

 everyplatonicsolid, consideredasagraph,isHamiltonian 



PlanarGraphs: 

 

Ingraphtheory,aplanargraph isagraphthatcanbeembeddedintheplane, i.e.,itcanbedrawn onthe 

plane in such a waythat its edges intersect only at their endpoints. 

A planar graph already drawn in the plane without edge intersections is called a plane graph or 

planarembeddingofthegraph.Aplanegraphcanbedefinedasaplanargraphwitha mapping 

fromeverynodetoapointin2Dspace,andfromeveryedgetoaplanecurve,suchthattheextreme points of 

each curve are the points mapped from its end nodes, and allcurves are disjoint except on their 

extreme points. Plane graphs can be encoded by combinatorial maps. 

It is easily seen that a graph that can be drawn on the plane can be drawn on the sphere as well, 

and vice versa. 

Theequivalenceclassoftopologicallyequivalentdrawingsonthesphereiscalledaplanarmap. 

Although a plane graph has an external or unbounded face, none of the faces of a planar map 

have a particular status. 

Applications 

 Telecommunications–e.g.spanningtrees 

 Vehiclerouting–e.g.planning routesonroadswithoutunderpasses 

 VLSI–e.g.layingoutcircuitsoncomputerchip. 

 The puzzle game Planarity requires the player to "untangle" a planar graph so that noneof 

its edges intersect. 

 

 

Examplegraphs: 

 

Planar 

Graph 

Nonplanar 

Graph 



ChromaticNumbers: 

 

In graph theory, graph coloring is a special case of graph labeling; it is an assignment of labels 

traditionally called "colors" to elements of a graph subject to certain constraints. In its simplest 

form, it is a way of coloring the vertices of a graph such that no two adjacent vertices share the 

same color; this is called a vertex coloring. Similarly, an edge coloring assigns a color to each 

edge so that no two adjacent edges share the same color, and a face coloring of a planar graph 

assigns a color to each face or region so that no two faces that share a boundary have the same 

color. 

 

Vertexcoloringisthestartingpointofthesubject,andothercoloringproblemscanbetransformed into 

avertexversion. For example, anedgecoloringofagraphis just avertex coloringofits line graph, and 

a face coloring ofa planar graph is just a vertexcoloring of its planar dual. However, non- 

vertexcoloringproblemsareoftenstatedandstudied asis.Thatispartlyforperspective,and 

partlybecausesomeproblemsarebeststudiedinnon-vertexform,asforinstanceisedgecoloring. 

 

 

GraphColouring: 

 

 

Graph coloring enjoys many practical applications as well as theoretical challenges. Beside the 

classicaltypesofproblems,different limitationscanalsobesetonthegraph,oronthewayacolor is 

assigned, or even on the color itself. It has even reached popularity with the general public in the 

form of the popular number puzzle Sudoku. Graph coloring is stilla very activefield of research. 

 

 

 

 

 

 

 

 

 

 

ApropervertexcoloringofthePetersengraphwith3colors, theminimumnumber possible. 



Vertexcoloring 

 

When used without any qualification, a coloring of a graph is almost always a proper vertex 

coloring, namelya labelling ofthe graph‘s vertices with colors suchthat no two vertices sharing 

thesameedge havethesamecolor. Sincea vertexwitha loopcould never beproperlycolored, it is 

understood that graphs in this context are loop less. 

 

The terminologyofusing colors for vertex labels goesback to map coloring. Labels like red and 

blueareonlyusedwhenthenumberofcolorsissmall,andnormallyitisunderstoodthatthe labels are 

drawn from the integers {1,2,3,...}. 

A coloring using at most k colors is called a (proper) k-coloring. The smallest number of colors 

needed to color a graph G is called its chromatic number, χ(G). A graphthat can be assigned a 

(proper) k-coloring is k-colorable, and it is k-chromatic if its chromatic number is exactly k. A 

subsetofverticesassignedtothesamecoloriscalledacolorclass,every suchclassformsan 

 

 

independent set. Thus, a k-coloring is the same as a partitionofthe vertex set into k independent 

sets, and the terms k-partite and k-colorable have the same meaning. 

 

 

 

 

 

 

 

 

 

Thisgraphcanbe3-coloredin12differentways. 

Thefollowingtablegivesthechromatic numberforfamiliar classesofgraphs. 

 

graph  

completegraph  
 

cyclegraph , 

 

stargraph , 2 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Treesanditsbasic properties: 

AgraphGiscalledatreeifitis connectedandhas nocycles. 

Apendantvertex(a vertexhasdegree one)ofa treeiscalled aleaf. 

Theorem 1: Prove that of T is a tree if and only if there is one and only one path between every pair of 
vertices. 

Proof:Let T beatree. ThenT isasimplegraph. SinceT isconnectedthere isat leastonepathbetweeneach pair 

ofvertices. Ifthere aretwo paths betweenone pair ofvertices, the unionofthese two paths willmake a cycle in 

T contradicting the fact that T is a tree. There for in a tree there is one and only one path between every pair 

of vertices. 

Now conversely assume that in T there is one and only one path between every pair of vertices. Then it is 

connected. Since there is one and only one path between everypair of vertices in T, T cannot have a cycle. 

Therefore T is a tree. 

Theorem2: Atreewithnverticeshasn-1edges. 

Proof:Proofis doneby induction onnumber ofvertices n. Thetheoremis truefor n=1,n=2 andn=3(wecanseethis 

usinggraphs).Assumethetheoremistrueforn=kvertices.ConsideratreeT withk+1vertices.Let e=uvbeanedgein 

T. nowT-eis a disconnected graph(sinceT is tree). Thereexist 2 components of T-e, sayT1 and T2.T1 contains say k1 

vertices andT2contains sayk2 vertices: k1+k2=k+1. SinceT1andT2has number of vertices less thanor equal to 

kbyourassumptionT1andT2containk1-1andk2-1edgesrespectively. ThenT-econtains (k1+k2)-2 edges,that is( k+1)-2 

edges, k-1 edges. ThereforeT contains k-1+e edges, which implies k edges. Thetheorem is proved for n=k+1 vertices. 

Therefore the theoremis true for all positive integer n. 

Result:Anyconnectedgraphwithnverticesandn-1edgesisatree. 



Problems: 

a. S.Tthecompletegraph��isnotatreeforn>2. 

Solution:Let, �1, �2,�3beanythree vertices of��.Since, ��is a completegraphthere exists anadjacency between 
each pair of vertices. 

⸫�1isadj�2,�2willbeadjto�3and�1isadjto�3also. 

⸫�1�2�3creates acycleinside��implies ��isnotacycle. 

b. S.Tthecompletegraphbipartitegraph��,�isnotatreewhen�≥2 
Solution:Let,�1, �2beanytwoverticesinthefirst vertexset&�′,�′betwoverticesofsecondsetofthe given 
completebipartitegraph� with�≥2.Since,� iscompletethereexists1adj2from� ⟶�′&�′, 

�2⟶�′&�′ 
1 2 

�,� �,� 1 
1 2 

∴�1�′�2�′�1isacyclein��,�whichimplies��,�isnotatree. 
1 2 

 

MinimallyConnectedGraph: 

Aconnected graphis saidtobeminimallyconnectediftheremovalofanyoneedgefromitdisconnects thegraph. 

*Alltreesareminimallyconnected. 

Theorem:Aconnectedgraphisatreeiffitisminimallyconnected. 

Proof:Gisa connectedgraphwhichisnot a treeimpliesthereexistsacycle. Fromthecycleremoveoneedge‘e’ implies G-e 

is still connected implies G is not minimally connected. 
Ifagraphisnot atree, thenit isnot minimallyconnected. Bycontrapositivityweprovedthat,ifaconnected graph is 

minimally connected then it is a tree. 

Conversely, let Gbenon-minimallyconnectedgraphthen∃ ‘e’suchthat G-eisconnected. 

⸫emustbeapartofacyclei.e.Gcontainsacyclei.e.Gisnotatree. By 
contrapositivity if G is a tree then it is minimally connected. 

RootedTree: 

Adirectedtreeis a directedgraphwhoseunderlying graphis atree.AdirectedtreeT is calleda rootedtreeT contains - 

1) a unique vertex, called the root (r) whose indegree is zero 

2)theindegreesofallother verticesofTare1 

Eg. 

 

 

 

 

 

 

 

 

 

 

 
Avertex � of therootedtree is saidtobeat the ��ℎ levelif thepathfrom�→ � is of length�. In 
the above figure, � is at the 3��level. 

If�1&�2aretwovertices:�1has alowerlevel than�2andthereispathfrom�1to�2thenwesay that�1isan 



ancestor of �2and �2is a descendant of�1. If�1&�2areadjacent i.e. thereexists anedgefrom �1→ �2, then 
�1is called parent of �2and �2is the child of �1. Two vertices with a common parent are called siblings. A 
vertex whose outdegreezero is called a leaf. A vertex which is not a leaf is called as an internal vertex. 

 

Eg 
 

 

 

 



1) �istheroot. 
2) �1����2are in1

st
level. 

3) �3����4are in2
nd

level. 

4) �1istheancestorof�3,�8����9and�1istheparentof�3. 

5) �8����9are childrenof�3andare calledsiblings. 

6) �8,�9,�6,�7areleaves. 

BinaryTree 
ArootedtreeT iscalleda binaryrootedtree, if everyinternal vertexis ofout degree1or 2.Thatiseveryvertex has at most 2 

children. It is called a completebinary tree, if each vertex is of out degree2. 

SpanningTrees 

Let TG beaconnectedgraph.AsubgraphTofGis calledaspanningtreeofGif 

(1) Tisatree 

(2) Tcontainsallvertices ofG 

Theedges ofthespanningtreearecalledbranches. 

Example: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ChordsandCotree 
Let T beaspanningtreeofG.ThentheEdges ofGthat arenot inTarecalledchords ofGwithrespect toT.Theset 

ofallchordsofGiscalledachordsetoracotreeofTinGandisrepresentedby �̅. ThereforeG=T U �̅ 

DFS(depthfirstsearch)Algorithmtofindthespanningtreeofagraph: 

Let�=(�,�)bea connectedgraphoforder ‘n’,withverticeslabelled�1,�2,….��insomespecifiedorder. 
StepI:Assignthevertex ‘�1’tothevariable � andinitials T asthetreeconsistingofjust this vertex. (this vertex will become the 
root of the tree T) 

StepII:Select thesmallest subscript k, for 2≤k≤n: {�,��}�� &��has not alreadybeenselected inT. If 
no such subscript is found go to Step III, otherwise: 

(i) Attachtheedge{�,��}tothetreeT 

(ii) Assign��tov 

(iii) ReturntoStepII. 



StepIII:If�=�1,thetreeTisthespanningtree. 
StepIV:For �≠�1, backtrackfrom�.If�istheparentof thevertexassignedto�inT,thenassign�to� 

andreturntoStep II. 

 

BFS (breadthfirstsearch)Algorithmtofindthespanningtreeofagraph: 

Let G=(V,E)beaconnectedgraphof order nwithverticeslabelledv1,v2,…..vn.insomespecifiedorder. Werefer to an 

ordered list Q of vertices of G as a queue in G. Vertices areinserted in this list at one end (called therear of the queue) 

and deleted fromthe list at the other end (called the front of the queue). The BFS algorithmspecifies the following 

steps. 
Step I: Assignthefirst vertex �1andinsert this vertex inthequeueandinitializeT as thetreemadeup ofthis one vertex 

�1. 

StepII:Deletevfromthefrontof�.When �is deleted,consider��foreach2≤�≤�.Iftheedge{�,��} ∈�and 
��has not been visited (considered) previously, attach this edge to T. If we examine all of the vertices 
previouslyvisitedandobtainnonewedge, thetreeT (generatedtothispoint)isthedesiredspanningtree. 

 
StepIII:Insert thevertices adjacent to each � (fromStep II)attherear ofthequeue �,accordingtotheorder in which they 

are (first) visited. Then return to Step II. 
 

 

ShowthataHamiltonianpathisaspanningtree. 

Proof:Bydefinitionnofa Hamiltonianpath,weknowthata Hamiltonianpathina graphGcontainsalltheverticesof 
G. Apathisatreesinceit doesn’tcontainacycle. 

⸫AHamiltonianpathisatreecontainsalltheverticesofthegivengraphG.AHamiltonianpathisa panning tree. 

WeightedGraph:LetGbeagraphinwhichthereisapositivenumberassociatedwitheachedgeiscalledaweighted  graph. 

Minimalspanningtree:Thespanningtreeofa weightedgraphwhoseweight isleast iscalledtheminimalspanning tree 



 

. 

Example: 
 

 

 

 

 

 

 

(G) 
ThefollowingaresomespanningtreesofG 

 

 

 

 

 

 

 

 

(T1) (T2) 

T1andT2arespanningtrees ofGbutSinceweightofT2 is 13anditis theminimalspanningtreeofG. 

 

Algorithmtofindminimalspanningtree: 

1.Kruskal’s Algorithm: 

StepI:LetGbeaconnectedweightedgraphGwithnvertices.ListedgesofGinincreasingweights. 

StepII:Startingwitha smallestweightededge, proceedsequentiallybyselectingoneedgeatatime:nocycle is 

formed. 

StepIII:StoptheprocessofStepIIwhen‘n-1edgesareselectedasabove.Thesen-1edgesconstitutea minimal spanning 

tree G. 
 

 

 

 

 

 



Example: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(G) 

Edge: CR. QR. CQ. BP. AB. AP.  CP.AC. BQ 

Weight:  3.  3.  5.  5.  6.  6. 7. 8.  10 

Selection: Yes. Yes No. Yes. Yes. No. Yes. - - 

 

 

 

 

ByKruskal’sAlgorithm,thefollowingtreeTistheminimalspanningtreeoftheabovegraphwithweight  24 



 

PrimsAlgorithmtogetminimumspanningtree. 

StepI:Prepareanxntable inwhichweightsofalledgesareshown. Indicatethewightsof non-existing edges as 

∞ 

StepII:Startfromvertexv1andconnectittothenearestneighborwhichhasasmallerweightinthev1row 

sayvk.Nowconsideredgev1vkandconnectthisedgetoanewvertexwhichhasaminimumvalue in the 

v1and vkrows. Let this vertex be vm. 
StepIII:Start fromvmandrepeat stepII. Stoptheprocesswhenallthe nverticesareconnectedbyn-1 Edges. 
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