
NARSIMHA REDDY ENGINEERING COLLEGE
(UGC AUTONOMOUS)

PYTHON PROGRAMMING
(CY2105PC)

(CSE – CS)

Prepared by
Mr. P Mabu Hussain
Assistant Professor

UNIT-1
INTRODUCTION TO PYTHON

What is Python

Python is a general purpose, dynamic, and interpreted
programming language. It supports Object Oriented
programming approach to develop applications. It is simple
and easy to learn and provides lots of high-level data
structures.

About Author

• Python is an interpreted scripting language
also. Guido Van Rossum is known as the
founder of Python programming.

WHY PYTHON

• Python is a simple, general purpose, high level, and
object-oriented programming language.

• It was designed with an emphasis on code
readability, and its syntax allows programmers to
express their concepts in fewer lines of code.

Why learn Python->
• Python provides many useful features to the programmer.

These features make it most popular and widely used
language.

1. Easy to use and Learn
2. Expressive Language
3. Interpreted Language
4. Object-Oriented Language
5. Open Source Language
6. Extensible
7. Learn Standard Library
8. GUI Programming Support
9. Integrated
10. Embeddable
11. Dynamic Memory Allocation
12. Wide Range of Libraries and Frameworks

Where is Python used->
• Python is a general-purpose, popular programming language and it

is used in almost every technical field. The various areas of Python
use are given below.

1. Data Science
2. Date Mining
3. Desktop Applications
4. Console-based Applications
5. Mobile Applications
6. Software Development
7. Artificial Intelligence
8. Web Applications
9. Enterprise Applications
10. 3D CAD Applications
11. Machine Learning
12. Computer Vision or Image Processing Applications.
13. Speech Recognitions

Python Popular Frameworks and Libraries

• Web development (Server-side) - Django Flask,
Pyramid, CherryPy

• GUIs based applications - Tk, PyGTK, PyQt, PyJs, etc.

• Machine Learning - TensorFlow, PyTorch, Scikit-
learn, Matplotlib, Scipy, etc.

• Mathematics - Numpy, Pandas, etc.

Applications of Python

• Easy-to-learn − Python has few keywords, simple
structure, and a clearly defined syntax. This allows
the student to pick up the language quickly.

• Easy-to-read − Python code is more clearly defined
and visible to the eyes.

• Easy-to-maintain − Python's source code is fairly
easy-to-maintain.

• A broad standard library − Python's bulk of the
library is very portable and cross-platform
compatible on UNIX, Windows, and Macintosh.

• Interactive Mode − Python has support for an
interactive mode which allows interactive testing and
debugging of snippets of code.

Contd…
• Portable − Python can run on a wide variety of

hardware platforms and has the same interface on all
platforms.

• Extendable − You can add low-level modules to the
Python interpreter. These modules enable
programmers to add to or customize their tools to be
more efficient.

• Databases − Python provides interfaces to all major
commercial databases.

• GUI Programming − Python supports GUI
applications that can be created and ported to many
system calls, libraries and windows systems, such as
Windows MFC, Macintosh, and the X Window system
of Unix.

Development of Python

COMPILER & INTERPRETER

PYTHON SOFTWARES

INPUT, PROCESSING, AND OUTPUT

Displaying Output with the Print
Function

• Python print() function : It prints the message to the screen or any
other standard output device.

• Syntax: print(value(s), sep= ‘ ‘, end = ‘\n’, file=file, flush=flush)
Parameters:
• value(s) : Any value, and as many as you like. Will be converted to

string before printed
• sep=’separator’ : (Optional) Specify how to separate the objects, if

there is more than one.Default :’ ‘
• end=’end’: (Optional) Specify what to print at the end.Default : ‘\n’
• file : (Optional) An object with a write method. Default :sys.stdout
• flush : (Optional) A Boolean, specifying if the output is flushed

(True) or buffered (False). Default: False
• Returns: It returns output to the screen.

Example program

• print "Welcome to INDIA“ missing parentheses

• print("USA")

• print (8 * "\n")

• print ("Welcome to", end = ' ')

• print (“hello", end = '!')

• print('can do this work',5)

• print('cannot do this work:'+5)

• Note: You cannot use the "+" to join strings with
int or float, you must use the ","

Reading Input from the Keyboard
• To get input from the user you can use the input

function.
• When the input function is called the program stops

running the program, prompts the user to enter
something at the keyboard by printing a string called
the prompt to the screen, and then waits for the user
to press the Enter key. The user types a string of
characters and presses enter. Then the input function
returns that string and Python continues running the
program by executing the next statement after the
input statement.

• Python provides the function input(). input has an
optional parameter, which is the prompt string.

Comments

Comments in Python start with the hash
character, # , and extend to the end of the
physical line. A comment may appear at the
start of a line or following whitespace or code,
but not within a string literal. A hash character
within a string literal is just a hash character.

• #This is a comment

• #print out Hello

Multi-line comments

• Example :

"""This is also a

perfect example of

multi-line comments"""

Variables

Variables are nothing but reserved memory
locations to store values. This means that when
you create a variable you reserve some space in
memory.

Based on the data type of a variable, the
interpreter allocates memory and decides what
can be stored in the reserved memory. Therefore,
by assigning different data types to variables, you
can store integers, decimals or characters in these
variables.

Assigning Values to Variables
Python variables do not need explicit declaration to reserve memory
space. The declaration happens automatically when you assign a value to
a variable. The equal sign (=) is used to assign values to variables.

 A variable can have a short name (like x and y) or a more descriptive name
(age, name, total_volume). Rules for Python variables:

 A variable name must start with a letter or the underscore character
 A variable name cannot start with a number
 A variable name can only contain alpha-numeric characters and

underscores (A-z, 0-9, and _)
 Variable names are case-sensitive (age, Age and AGE are three different

variables)

• The operand to the left of the = operator is the name of the variable and
the operand to the right of the = operator is the value stored in the
variable.

Multiple Assignments to variables

Python allows you to assign a single value to several variables
simultaneously.

For example :
a = b = c = 1
 Here, an integer object is created with the value 1, and all

three variables are assigned to the same memory location.
You can also assign multiple objects to multiple variables.

For example :
 a, b, c = 1, 2.5, ”ravi”
 Here, two integer objects with values 1 and 2 are assigned

to variables a and b respectively, and one string object with
the value "john" is assigned to the variable c.

Reserved Words
• Reserved words (also called keywords) are defined

with predefined meaning and syntax in the language.
These keywords have to be used to develop
programming instructions.

• Python 3 has 33 keywords while Python 2 has 30.
The print has been removed from Python 2 as
keyword and included as built-in function.

• To check the keyword list, type following commands
in interpreter .

• >>> import keyword >>> keyword.kwlist

>>> import keyword >>> keyword.kwlist

['False', 'None', 'True', 'and', 'as', 'assert', 'break',
'class', 'continue', 'def', 'del', 'elif', 'else',
'except', 'finally', 'for', 'from', 'global', 'if',
'import', 'in', 'is', 'lambda', 'nonlocal', 'not',
'or', 'pass', 'raise', 'return', 'try', 'while', 'with',
'yield‘]

DATA TYPES

• Data Type represent the type of data present
inside a variable. In Python we are not
required to specify the type explicitly.

• Based on value provided, the type will be
assigned automatically.

• Hence Python is Dynamically Typed Language.

DATA TYPES

1.Numeric: In Python, numeric data type
represent the data which has numeric value.
Numeric value can be integer, floating number
or even complex numbers. These values are
defined as int, float and complex class in
Python.

2.Integers : This value is represented by int
class. It contains positive or negative whole
numbers (without fraction or decimal). In
Python there is no limit to how long an integer
value can be.

3.Float : This value is represented by float class. It is
a real number with floating point representation.
It is specified by a decimal point. Optionally, the
character e or E followed by a positive or negative
integer may be appended to specify scientific
notation.

4.Complex Numbers : Complex number is
represented by complex class. It is specified
as (real part) + (imaginary part)j.
For example – 2+3j.

 type() function is used to determine the type of
data type.

Example:
#Python program to demonstrate numeric value
a = 5
print("Type of a: ", type(a))
b = 5.0
print("\n Type of b: ", type(b))
c = 2 + 4j

print("\n Type of c: ", type(c))

OUTPUT:

Type of a: <class 'int'>
Type of b: <class 'float'>
Type of c: <class 'complex'>

Python contains the following in-built data types
1. int
2. float
3.complex
4.bool
5.str
6.bytes
7.bytearray
8.range
9.list
10.Tuple
11.set
12.frozenset
13.dictionary
14.None

• Python contains several in-built functions

1.type() to check the type of variable.

2. id() to get address of object.

3. print() to print the value.

In Python everything is object

int data type: We can use int data type to
represent whole numbers (integral values)

Eg: a=10, type(a), #int.

We can represent int values in the following ways

1. Decimal form

2. Binary form

3. Octal form

4. Hexa decimal form

1.Int data type

1. Decimal form(base-10):
It is the default number system in Python.
The allowed digits are: 0 to 9
Eg: a =10
2. Binary form(Base-2):
The allowed digits are : 0 & 1
Literal value should be prefixed with 0b or 0B
Eg: a = 0B1111 ,a =0B123 ,a=b111
3.Octal Form(Base-8):
The allowed digits are : 0 to 7
Literal value should be prefixed with 0o or 0O
Eg: a=0o123 ,a=0o786

4. Hexa Decimal Form(Base-16):

The allowed digits are : 0 to 9, a-f (both lower
and upper cases are allowed)

Literal value should be prefixed with 0x or 0X

Eg: a =0XFACE

a=0XBeel

a =0XBee

we can specify literal values in decimal, binary,
octal and hexa decimal forms.

 But PVM will always provide values only in
decimal form.

Base Conversions
• Python provide the following in-built functions for

base conversions

1.bin(): We can use bin() to convert from any base
to binary

• Eg: 1) >>> bin(15)

'0b1111'

2) >>> bin(0o11)

'0b1001'

3) >>> bin(0X10)

'0b10000'

2. oct(): We can use oct() to convert from any base to octal
Example: 1) >>> oct(10)

'0o12'
2) >>> oct(0B1111)
'0o17'
3) >>> oct(0X123)

'0o443'
3. hex(): We can use hex() to convert from any base to hexa

decimal
Example : 1) >>> hex(100)

'0x64'
2) >>> hex(0B111111)
'0x3f'
3) >>> hex(0o12345)
'0x14e5'

2.float data type

• We can use float data type to represent floating
point values (decimal values)

Eg: f=1.234

type(f) float

We can also represent floating point values by using
exponential form (scientific notation).

Eg: f=1.2e3

print(f) 1200.0

instead of 'e' we can use 'E'

3.Complex Data Type
a and b contain integers or floating point values.
Eg: 3+5j

10+5.5j
0.5+0.1j

In the real part if we use int value then we can
specify that either by decimal,octal,binary or
hexa decimal form.

But imaginary part should be specified only by
using decimal form.

4.bool data type
• We can use this data type to represent boolean

values.
• The only allowed values for this data type are:

True and False.
Internally Python represents True as 1 and False

as 0.
b=True
type(b) =>bool

Example: a=10 b=20 c=a<b
print(c)==>True

True True+True==>2
True-False==>1
False+False==>0

5.str type
str represents String data type.

A String is a sequence of characters enclosed
within single quotes or double quotes.

s1=‘python'

s1=" python“

We can also use triple quotes to use single quote
or double quote in our String.

'''This "Python class very helpful" for java learners'''

Creating String

 Strings in Python can be created using single quotes or double quotes or even triple quotes.

Example Program 1:

Creating a String with single Quotes

• String1 = 'Welcome to the CMREC'

• print("String with the use of Single Quotes: ")

• print(String1)

Output:

String with the use of Single Quotes:

Welcome to the CMREC

Example Program 2:

Creating a String with double Quotes

• String1 = "I'm a CMRECIAN"

• print("\n String with the use of Double Quotes: ")

• print(String1)

• print(type(String1))

Output:
String with the use of Double Quotes:

I'm a CMRECIAN

<class 'str'>

Accessing elements of String

In Python, individual characters of a String can be accessed by using the method of

Indexing. Indexing allows negative address references to access characters from the

back of the String.

• e.g. -1 refers to the last character, -2 refers to the second last character and so on.

0 1 2 3 4

H E L L O

-5 -4 -3 -2 -1

Example Program

• #python Program to Access characters of String

• String1 = “venkat"

• print("Initial String: ")

• print(String1)

•

• # Printing First character

• print("\n First character of String is: ")

• print(String1[0])

•

• # Printing Last character

• print("\nLast character of String is: ")

• print(String1[-1])

Output:

Initial String:

venkat

First character of String is:
v

Last character of String is:

t

bytes data type represents a group of byte
numbers just like an array.

Eg:

x = [10,20,30,40]

b = bytes(x)

type(b)==>bytes

print(b[0])==> 10

print(b[-1])==> 40

bytearray is exactly same as bytes data type except that
its elements can be modified.
Eg: 1
x=[10,20,30,40]
b = bytearray(x)
for i in b : print(i)
output:

10
20
30
40
Eg:2
b[0]=100
for i in b: print(i)
Output:
100
20
30
40

List is a sequence of data values called items or
elements. An item can be of any type.

Lists are just like the arrays, declared in other
languages which is a ordered collection of data.

It is very flexible as the items in a list do not need
to be of the same type.

Creating List

Lists in Python can be created by just placing the
sequence inside the square brackets [].

If we want to represent a group of values as a
single entity where insertion order required

To preserve and duplicates are allowed then we
should go for list data type.

1. insertion order is preserved

2. heterogeneous objects are allowed

3. duplicates are allowed

4. Growable in nature

5. values should be enclosed within square
brackets.

Example:
list=[10,10.5,’venkat',True,10]
print(list)
Output:[10,10.5,’venkat',True,10]
Example:
list=[10,20,30,40]
>>> list[0]

10
>>> list[-1]

40
>>> list[1:3]
[20, 30]

 list is growable in nature. i.e based on our requirement
we can increase or decrease the size.

• # Python program to demonstrate Creation of List

• # Creating a List

• List = []

• print("Intial blank List: ")

• print(List)

•
• # Creating a List with the use of a String

• List = [‘cmrec']

• print("\n List with the use of String: ")

• print(List)

• Output:
• Intial blank List:
• []
• List with the use of String:
• [‘cmrec']

• # Creating a List with the use of multiple values

• List = ["Ram", "Laxman", "Bharath"]

• print("\nList containing multiple values: ")

• print(List[0])

• print(List[2])

• Output:

• List containing multiple values:
• Ram
• Bharath

• # Creating a Multi-Dimensional List (By

Nesting a list inside a List)

• You can also use other lists as elements

in a list, there by creating a list o

lists.

Example:

>>>List = [['swapna', 'rani'], ['ganaji']]

>>>print("\nMulti-Dimensional List: ")

>>>print(List)

Output:

• Multi-Dimensional List:

• [['swapna', 'rani'], ['ganaji']]

Accessing elements of List

 In order to access the list items refer to the index number. Use the index
operator [] to access an item in a list.

 In Python, negative sequence indexes represent positions from the end of the array.
Instead of having to compute the offset as in List[len(List)-3], it is enough to just
write List[-3].

 Negative indexing means beginning from the end, -1 refers to the last item, -2 refers
to the second-last item, etc.

Example Program

• # Python program to demonstrate accessing of element

from list

• # Creating a List with the use of multiple values

• List = ["AIML", "CSE", "DS"]

• # accessing a element from the list using index number

• print("Accessing element from the list")

• print(List[0])

• print(List[2])

Output:

• Accessing element from the list

• AIML

• DS

A tuple is a type of sequence that resembles a list,
except that, unlike a list , a tuple is immutable.

Tuple data type is exactly same as list data type except
that it is immutable. (i.e we cannot

change values).

Tuple elements can be represented within parenthesis.

Eg:

1) t=(10,20,30,40)

2) type(t)

3) <class 'tuple'>

Creating Tuple

• In Python, tuples are created by placing a sequence of values separated by

‘comma’ with or without the use of parentheses for grouping of the data sequence.

Tuples can contain any number of elements and of any datatype (like strings, integers,

list, etc.).

• Note: Tuples can also be created with a single element, but it is a bit tricky.

Having one element in the parentheses is not sufficient, there must be a trailing

‘comma’ to make it a tuple.

• Example:

• # Creating an empty tuple

• Tuple1 = ()

• print("Initial empty Tuple: ")

• print (Tuple1)

• Output:

• Initial empty Tuple:

• ()

https://www.geeksforgeeks.org/python-tuples/

• # Creating a Tuple with the use of Strings

• Tuple1 = ('AIML', 'DS')

• print("\nTuple with the use of String: ")

• print(Tuple1)

Output:

• Tuple with the use of String:

• ('AIML', 'DS’)

• # Creating a Tuple with the use of list

• list1 = [1, 2, 4, 5, 6]

• print("\nTuple using List: ")

• print(tuple(list1))

Output:

• Tuple using List:

• (1, 2, 4, 5, 6)

• # Creating a Tuple with the use of built-in function

• Tuple1 = tuple('swapna')

• print("\nTuple with the use of function: ")

• print(Tuple1)

Output:

• Tuple with the use of function:

• ('s', 'w', 'a', 'p', 'n', ‘a’)

• # Creating a Tuple with nested tuples

• Tuple1 = (0, 1, 2, 3)

• Tuple2 = ('swapna', 'rani')

• Tuple3 = (Tuple1, Tuple2)

• print("\nTuple with nested tuples: ")

• print(Tuple3)

Output:

• Tuple with nested tuples:

• ((0, 1, 2, 3), ('swapna', 'rani’))

Note : Creation of Python tuple without the use of parentheses is known as Tuple

Packing.

Example:
>>>fruits = ("apple", "banana")

>>>fruits

Output:('apple', 'banana’)

>>>L1=[1,2,3,4,5]

>>>L1

Output:[1, 2, 3, 4, 5]

>>>print(tuple(L1))

Output:(1, 2, 3, 4, 5)

>>>meats=("fish","prawns")

>>>meats

Output:('fish', 'prawns’)

>>>food=fruits+meats

>>>food

Output:('apple', 'banana', 'fish', 'prawns')

 Range Data Type represents a sequence of numbers.

 The elements present in range Data type are not modifiable. i.e range Data
type is immutable.

 Example:

Form-1: range(5)

 generate numbers from 0 to 9

>>>r=range(5)

>>>for i in r:print(i)

Output:

0

1

2

3

4

5

We can access elements present in the range
Data Type by using index.

We cannot modify the values of range data
type.

We can create a list of values with range data
type.

 In Python, set is an unordered collection of data type that is
iterable, mutable and has no duplicate elements.

 The order of elements in a set is undefined though it may
consist of various elements.

Creating Sets

 Sets can be created by using the built-in set() function with an

iterable object or a sequence by placing the sequence inside

curly braces, separated by ‘comma’.

 Type of elements in a set need not be the same, various mixed-

up data type values can also be passed to the set.

If we want to represent a group of values without
duplicates where order is not important

then we should go for set Data Type.

1. insertion order is not preserved

2. duplicates are not allowed

3. heterogeneous objects are allowed

4. index concept is not applicable

5. It is mutable collection

6. Growable in nature

Python program to demonstrate Creation of Set in Python

• # Creating a Set

>>>set1 = set()

>>>print("Intial blank Set: ")

>>>print(set1)

Output:

Intial blank Set:

set()

• # Creating a Set with the use of a String

>>>set1 = set("CMREC")

>>>print("\n Set with the use of String: ")

>>>print(set1)

output:

Set with the use of String:

{'C', 'M', 'R', ‘E', ‘C'}

• # Creating a Set with the use of a List

>>>set1 = set(["CSE", "AIML", "DS", “CSE”])

>>>print("\nSet with the use of List: ")

>>>print(set1)

OUTPUT:

Set with the use of List:

{'CSE', 'AIML', ‘DS’}

• # Creating a Set with a mixed type of values (Having

numbers and strings)

>>>set1 = set([1, 2, 'AIML', 4, ‘DS', 6, 'AIML'])

>>>print("\nSet with the use of Mixed Values")

>>>print(set1)

OUTPUT:

Set with the use of Mixed Values

{1, 2, 4, 6, 'AIML', 'DS'}

Accessing elements of Sets

• Set items cannot be accessed by referring to an index, since
sets are unordered the items has no index.

• But you can loop through the set items using a for loop, or
ask if a specified value is present in a set, by using
the in keyword.

• #Python program to demonstrate Accessing of elements in

a set

• # Creating a set

>>>set1 = set(["CSE", "AIML", "CSE"])

>>>print("\nInitial set")

>>>print(set1)

OUTPUT:

Initial set:

{‘CSE’, ‘AIML’,’CSE’}

• Adding Elements to a Set

• Elements can be added to the Set by using built-in add() function. Only one

element at a time can be added to the set by using add() method, loops are used to add

multiple elements at a time with the use of add() method.

• Using update() method

• For addition of two or more elements Update() method is used. The update()

method accepts lists, strings, tuples as well as other sets as its arguments. In all of

these cases, duplicate elements are avoided.

• Removing elements from the Set

•

• Using remove() method or discard() method

Elements can be removed from the Set by using built-in remove() function but a

KeyError arises if element doesn’t exist in the set. To remove elements from a set

without KeyError, use discard(), if the element doesn’t exist in the set, it remains

unchanged

Example Program
• set1 = set()

• print("Initial blank Set: ")

• print(set1)

• # Adding element and tuple to the Set

• set1.add(8)

• set1.add(9)

• set1.add((6,7))

• print("\nSet after Addition of Three elements: ")

• print(set1)

• # Adding elements to the Set using Iterator

• for i in range(1, 6):

• set1.add(i)

• print("\nSet after Addition of elements from 1-5: ")

• print(set1)

•
• # Addition of elements to the Set using Update function

• set1.update([10, 11])

• print("\nSet after Addition of elements using Update: ")

• print(set1)

• # Accessing element using for loop

• print("\nElements of set: ")

• for i in set1:

• print(i, end=" ")

• set1 = set([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12])

• # Removing elements from Set using Remove() method

• set1.remove(8)

• set1.remove(9)

• print("\nSet after Removal of two elements: ")

• print(set1)

• # Removing elements from Set using Discard() method

• set1.discard(10)

• set1.discard(13)

• print("\nSet after Discarding two elements: ")

• print(set1)

• # Removing elements from Set using iterator method

• for i in range(1, 5):

• set1.remove(i)

• print("\nSet after Removing a range of elements: ")

• print(set1)

OUTPUT:

Initial blank Set:

set()

Set after Addition of Three

elements:

{8, 9, (6, 7)}

Set after Addition of elements from

1-5:

{1, 2, 3, (6, 7), 4, 5, 8, 9}

Set after Addition of elements

using Update:

{1, 2, 3, (6, 7), 4, 5, 8, 9, 10,

11}

Elements of set:

1 2 3 (6, 7) 4 5 8 9 10 11

Set after Removal of two elements:

{1, 2, 3, 4, 5, 6, 7, 10, 11, 12}

Set after Discarding two elements:

{1, 2, 3, 4, 5, 6, 7, 11, 12}

Set after Removing a range of

elements:

{5, 6, 7, 11, 12}

 It is exactly same as set except that it is immutable.
Hence we cannot use add or remove functions.
Eg:
>>> s={10,20,30,40}
>>>fs=frozenset(s)
>>>fs
output:

frozenset({40, 10, 20, 30})
>>>type(fs)
output:
<class 'frozenset'> >>> fs

 A Dictionary organizes information by association, not position.
 In python, a dictionary associates set of keys with values.
 A dictionary is written as a sequence of key/value pairs

separated by commas.
 These pairs are sometimes called entries.
 The entire sequence of entries is enclosed in curly braces({and}).
 A colon(:) separates a key and its value.
Example:
d={101:’raju',102:'ravi',103:'shiva'}
 Duplicate keys are not allowed but values can be duplicated.
 If we are trying to insert an entry with duplicate key then old

value will be replaced with new value.
 Note: dictionary is mutable and the order wont be preserved

Example program

Creating an empty Dictionary

>>>Dict = {}

>>>print("Empty Dictionary: ")

>>>print(Dict)

Creating a Dictionary with Integer Keys

>>>Dict = {1: 'CSE', 2: 'DS', 3: 'AIML’}

>>>print("\nDictionary with the use of Integer

Keys: ")

>>>print(Dict)

Creating a Dictionary with Mixed keys

>>>Dict = {'Name': ‘CMREC', 1: [1, 2, 3, 4]}

>>>print("\nDictionary with the use of Mixed

Keys: ")

>>>print(Dict)

Creating a Dictionary with dict() method

>>>Dict = dict({1: 'AIML', 2: 'CSE', 3:'DS'})

>>>print("\nDictionary with the use of dict():

")

>>>print(Dict)

Creating a Dictionary with each item as a

Pair

>>>Dict = dict([(1, 'KIRAN'), (2, 'BHAVYESH')])

>>>print("\nDictionary with each item as a pair:

")

>>>print(Dict)

Output:

Empty Dictionary:

{}

Dictionary with the use of

Integer Keys:

{1: 'CSE', 2: 'DS', 3:

'AIML'}

Dictionary with the use of

Mixed Keys:

{'Name': ‘CMREC', 1: [1, 2,

3, 4]}

Dictionary with the use of

dict():

{1: 'AIML', 2: 'CSE', 3:

'DS'}

Dictionary with each item

as a pair:

{1: 'KIRAN', 2: 'BHAVYESH'}

Accessing elements of Dictionary
 In order to access the items of a dictionary refer to its key name. Key can be used

inside square brackets.

 There is also a method called get() that will also help in accessing the element from a

dictionary.

Python program to demonstrate accessing a element from a

Dictionary

Creating a Dictionary

>>>Dict = {1: '526', 'name': 'swapna', ‘address’:

'hyderabad'}

accessing a element using key

>>>print("Accessing a element using key:")

>>>print(Dict['name'])

accessing a element using get() method

>>>print("Accessing a element using get:")

>>>print(Dict.get(1))

Output:

• Accessing a element using key:

• swapna

• Accessing a element using get:

• 526

None means Nothing or No value associated.

If the value is not available,then to handle such type
of cases None introduced.

It is something like null value in Java.

Eg:

def m1():

a=10

print(m1())

None

Datatype Description Is Immutable Example

Int We can use to represent the
whole/integral numbers

Immutable
>>> a=10
>>> type(a)
<class 'int'>

Float We can use to represent the
decimal/floating point
numbers

Immutable
>>> b=10.5
>>> type(b)
<class 'float'>

Complex
We can use to represent the
complex numbers Immutable

>>> c=10+5j
>>> type(c)
<class 'complex'>
>>> c.real10.0
>>> c.imag5.0

Bool
We can use to represent the
logical values(Only allowed
values are True and False)

Immutable

>>> flag=True
>>> flag=False
>>> type(flag)
<class 'bool'>

Str
To represent sequence of
Characters

Immutable

>>> s=‘pyton’'
>>> type(s)
<class 'str'>
>>> s=“python programming"
>>> s=‘‘’cmrec '''
>>> type(s)
<class 'str'>

bytes To represent a sequence of
byte values from 0-255

Immutable
>>> list=[1,2,3,4]
>>> b=bytes(list)
>>> type(b)
<class 'bytes'>

bytearray To represent a sequence of
byte values from 0-255

Mutable
>>> list=[10,20,30]
>>> ba=bytearray(list)
>>> type(ba)
<class 'bytearray'>

range To represent a range of
values

Immutable
>>> r=range(10)
>>> r1=range(0,10)
>>> r2=range(0,10,2)

list To represent an ordered
collection of objects

Mutable >>> l=[10,11,12,13,14,15]
>>> type(l)
<class 'list'>

tuple To represent an ordered
collections of objects

Immutable >>> t=(1,2,3,4,5)
>>> type(t)
<class 'tuple'>

set To represent an
unordered
collection of unique
objects

Mutable >>> s={1,2,3,4,5,6}
>>> type(s)

<class 'set'>

frozenset
To represent an unordered
collection of unique objects

Immutable
>>>
s={11,2,3,’Venkat’,100,'Ramu'}
>>> fs=frozenset(s)
>>> type(fs)
<class 'frozenset'>

dict
To represent a group of
keyvalue pairs Mutable

>>>
d={101:’venkat',102:'ramu',10
3:'hari'}
>>> type(d)
<class 'dict'>

Operators are used to perform operations on
variables and values. Python divides the operators
in the following groups:

1.Arithmetic operators

2.Assignment operators

3.Comparison operators

4.Logical operators

5.Identity operators

6.Membership operators

7.Bitwise operators

Python Arithmetic Operators: Arithmetic
operators are used with numeric values to
perform common mathematical operations.

Program:
a=int(input('Enter a value:'))
b=int(input('Enter b value:'))
print('Addition=',a+b)
print('Subtraction=',a-b)
print('Multiplication=',a*b)
print('Floor division=',a//b)
print('Exponenciation=',a**b)
print('Division=',a/b)
print('Modulus=',a%b)
Output:
Enter a value:10
Enter b value:15
Addition= 25
Subtraction= -5
Multiplication= 150
Floor division= 0
Exponenciation= 1000000000000000
Division= 0.6666666666666666
Modulus= 10

Assignment operators are used to assign values to
variables

Comparison operators are used to compare two values

Program on Relational operators:
a=int(input('Enter a value:'))
b=int(input('Enter b value:'))
print("a > b is ",a>b)
print("a >= b is ",a>=b)
print("a < b is ",a<b)
print("a <= b is ",a<=b)
Output:
Enter a value:10
Enter b value:5
a > b is True
a >= b is True
a < b is False
a <= b is False

Logical operators are used to combine conditional statements

Program on Logical operators:

a=int(input('Enter a value:'))

b=int(input('Enter b value:'))

print("a or b is ",a or b)

print("a and b is ",a and b)

print("a not b is ", not a)

Output:

Enter a value:5

Enter b value:3

a or b is 5

a and b is 3

a not b is False

Identity operators are used to compare the objects, not if
they are equal, but if they are actually the same object,
with the same memory location.

Membership operators are used to test if a sequence is presented

in an object:

Bitwise operators are used to compare (binary)
numbers

Program on Bitwise Operators:
a=int(input('Enter a value:'))
b=int(input('Enter b value:'))
print("a & b is ",a & b)
print("a | b is ",a | b)
print(" ~ a is ", ~ a)
print("a ^ b is ",a ^ b)
print("a << 2 is ",a << 2)
print("a >> 2 is ",a >> 2)
Output:
Enter a value:4
Enter b value:5
a & b is 4
a | b is 5
~ a is -5

a ^ b is 1
a << 2 is 16
a >> 2 is 1

Python defines the following 2 special operators

1. Identity Operators

2. Membership operators

We can use identity operators for address comparison.

Two identity operators are available.

1. is

2. is not

r1 is r2 returns True if both r1 and r2 are pointing to the
same object

r1 is not r2 returns True if both r1 and r2 are not
pointing to the same object.

Example:

1) a=10

2) b=10

3) print(a is b) True

4) x=True

5) y=True

6) print(x is y) True

Example:

1) list1=["one","two","three"]

2) list2=["one","two","three"]

3) print(id(list1))

4) print(id(list2))

5) print(list1 is list2) False

6) print(list1 is not list2) True

7) print(list1 == list2) True

Note: We can use is operator for address comparison
where as == operator for content comparison.

We can use Membership operators to check whether
the given object present in the
given collection.(It may be String,List,Set,Tuple or
Dict).
Example:
1) x="hello learning Python is very easy!!!"
2) print('h' in x) True
3) print('d' in x) False
4) print('d' not in x) True
5) print('Python' in x) True

If multiple operators present then which
operator will be evaluated first is decided by

operator precedence.

Example:

print(3+10*2) ->23

print((3+10)*2) -> 26

The following list describes operator precedence in Python

 () ---->Parenthesis

 ** ----> exponential operator

 ~,- ----> Bitwise complement operator , unary minus operator

 *,/,%,// ----> multiplication, division, modulo, floor division

 +,- ----> addition , subtraction

 <<,>> ----> Left and Right Shift

 & ----> bitwise And

 ^ ----> Bitwise X-OR

 | ----> Bitwise OR

 >,>=,<,<=, ==, != ==>Relational or Comparison operators

 =,+=,-=,*=... ==>Assignment operators

 is , is not ----> Identity Operators

 in , not in ----> Membership operators

 not ----> Logical not

 and ----> Logical and

 or ----> Logical or

Example:

1) a=30

2) b=20

3) c=10

4) d=5

5) print((a+b)*c/d) 100.0

6) print((a+b)*(c/d)) 100.0

7) print(a+(b*c)/d) 70.0

8) 3/2*4+3+(10/5)**3-2

91) 3/2*4+3+2.0**3-2

10) 3/2*4+3+8.0-2

11) 1.5*4+3+8.0-2

12) 6.0+3+8.0-2

13) 15.0

 Sometimes, you may need to perform conversions between the built-in types. To

convert between types, you simply use the type name as a function.

 For example, it is not possible to perform “2”+4 since one operand is integer and

the other is string type. To perform this we have convert string to integer i.e.,

int(“2”) + 4 = 6.

 There are several built-in functions to perform conversion from one data type to

another. These functions return a new object representing the converted value.

Example: (int)
1) >>> int(123.987)

123
2) >>> int(10+5j)
TypeError: can't convert complex to int 5)
3)>>> int(True)
1
4) >>> int(False)
0
5) >>> int("10")
10
6) >>> int("10.5")
ValueError: invalid literal for int() with base 10: '10.5' 13)
7)>>> int("ten")
ValueError: invalid literal for int() with base 10: 'ten'

Example:(float)

1) >>> float(10)

10.0

2) >>> float(10+5j)

TypeError: can't convert complex to float

3) >>> float(True)

1.0

4) >>> float(False)

0.0

5) >>> float("10")

10.0 11)

6)>>> float("10.5")

10.5

Example:(complex)

1) complex(10)==>10+0j

2) complex(10.5)===>10.5+0j

3) complex(True)==>1+0j

4) complex(False)==>0j

5) complex("10")==>10+0j

6) complex("10.5")==>10.5+0j

7) complex("ten")

ValueError: complex() arg is a malformed string

Example: (Boolean)
1) bool(0)==>False
2) bool(1)==>True

3) bool(10)===>True
4) bool(10.5)===>True
5) bool(0.178)==>True
6) bool(0.0)==>False
7) bool(10-2j)==>True
8) bool(0+1.5j)==>True
9) bool(0+0j)==>False
10) bool("True")==>True
11) bool("False")==>True
12) bool("")==>False

Expressions

 An expression is a combination of variables constants and operators written

according to the syntax of Python language.

 In Python every expression evaluates to a value i.e., every expression results in

some value of a certain type that can be assigned to a variable.

 Some examples of Python expressions are shown in the table given below.

Algebraic Expression Python Expression

a x b – c a * b – c

(m + n) (x + y) (m + n) * (x + y)

(ab / c) a * b / c

3x2 +2x + 1 3*x*x+2*x+1

(x / y) + c x / y + c

Control structures

Decision Structures and Boolean Logic: if, if-else, if-elif-else Statements

• Decision making is anticipation of conditions occurring while execution of the

program and specifying actions taken according to the conditions.

• Decision structures evaluate multiple expressions which produce True or False

as outcome. You need to determine which action to take and which statements to

execute if outcome is True or False otherwise.

Statement Description

if statements if statement consists of a boolean expression

followed by one or more statements.

if...else

statements

if statement can be followed by an optional else

statement, which executes when the boolean

expression is FALSE.

nested if

statements

You can use one if or else if statement inside

another if or else if statement(s).

If statement

• It is similar to that of other languages. The if statement contains a logical

expression using which data is compared and a decision is made based on the result

of the comparison.

• Syntax:

if condition:

statements

• First, the condition is tested. If the condition is True, then the statements
given after colon (:) are executed.

• We can write one or more statements after colon (:).

• Example:

Syntax:

>>>a=10

>>>b=15

>>>if a < b:

print (“a is lessthan b”)

output:

a is lessthan b

The if ... else statement

• The if-else statement is the most common type of selection statement. It is

also called as two-way selection statement, because it directs the computer to

make a choice between two alternative courses of action.

• An else statement can be combined with an if statement. An else statement

contains the block of code that executes if the conditional expression in the if

statement resolves to 0 or a FALSE value.

• The else statement is an optional statement and there could be at most only one

else statement following if.

• Syntax:

if condition:

statement(s)

else:

statement(s)

Example:

>>>a=100

>>>b=200

>>>if(a<b):

print("b is greater:“,b)

>>>else:

print("a is greater:“,a)

Output:

• b is greater:200

Write a program for checking whether the given

number is even or odd.

Program:

a= int(input("enter a value:"))

if(a%2==0):

print(" a is even")

else:

print("a is odd")
Output:

enter a value:56

a is even

The elif Statement

• The process of testing several conditions and responding accordingly can be

described in code by a multi-way selection statement.

• The multi-way if statement considers each condition until one evaluates to False.

• When a condition evaluates to True, the corresponding action is performed and

control skips to the end of the entire selection statement.

• If no condition evaluates to True, then the action after the trailing else is

performed.

• Syntax:

if condition1:
statement(s)

elif condition2:
statements(s)

else:

statement(s)

Program:

a=int(input("Enter a value: "))

b=int(input("Enter b value: "))

c=int(input("Enter c value: "))

if((a>=b) and (a>=c)):

print("a is greater")

elif((b>=a)and (b>=c)):

print("b is big")

else:

print("c is big")

Output:

Enter a value: 56

Enter b value: 23

Enter c value: 21

a is greater

Program:
Number=int(input("Enter the Number: "))
if(Number>99):

print("letter=A")
elif(Number>89):

print('letter=B')
elif(Number>79):

print('letter=C')
else:

print("The Number is:", Number)

Output:
1.Enter the Number: 100
letter=A
2.Enter the Number: 1
The Number is: 1

Nested IF statements

• There may be a situation when you want to check for another condition after

a condition resolves to true. In such a situation, you can use the

nested if construct.

• In a nested if construct, you can have an if...elif...else construct inside

another if...elif...else construct.

• Syntax: if expression1:

statement(s)

if expression2:

statement(s)

elif expression3:

statement(s)

elif expression4:

statement(s)

else: statement(s)

Program:
num = float(input("Enter a number: "))
if num >= 0:

if num == 0:
print("Zero")

else:
print("Positive number")

else:
print("Negative number")

Output:
1)Enter a number: 52

Positive number
2)Enter a number: -9
Negative number

Program:
age = int(input(" Please Enter Your Age Here: "))
if (age < 18):

print(" You are Minor ")
print(" You are not Eligible to Work ")

else:
if (age >= 18 and age <= 60):

print(" You are Eligible to Work ")
print(" Please fill in your details and apply")

else:
print(" You are too old to work ")
print(" Please Collect your pension!")

Output:
Please Enter Your Age Here: 9
You are Minor
You are not Eligible to Work

for loop

• The for loop is useful to iterate over the elements of a sequence. It means, the for

loop can be used to execute a group of statements repeatedly depending upon the

number of elements in the sequence. The for loop can work with sequence like string,

list, tuple, range etc.

The syntax of the for loop is given below:

for var in sequence:

statement (s)

 The first element of the sequence is assigned to the variable written after

„for‟ and then the statements are executed.

 The second element of the sequence is assigned to the variable and then the

statements are executed second time.

• The first word of the statement starts with the keyword

“for” which signifies the beginning of the for loop.

• Then we have the iterator variable which iterates over the

sequence and can be used within the loop to perform various

functions.

• The next is the “in” keyword in Python which tells the

iterator variable to loop for elements within the sequence.

• And finally, we have the sequence variable which can either

be a list, a tuple, or any other kind of iterator.

• The statements part of the loop is where you can play around

with the iterator variable and perform various function.

Example 1:

fruits = ["apple", "banana", "cherry"]

for x in fruits:

print(x)

Output:

apple

banana

Cherry

Example-2: Program to print the sum of the given list.

list = [10,30,23,43,65,12]

sum = 0

for i in list:

sum = sum+i

print("The sum is:",sum)

Output:

The sum is: 10

The sum is: 40

The sum is: 63

The sum is: 106

The sum is: 171

The sum is: 183

For loop Using range() function

The range() function

This function returns a sequence of integers that we can use to determine how many

iterations (repetitions) of the loop will be completed. The loop will complete one

iteration per integer.

The range function has three parameters:

 start: where the sequence of integers will start. By default, it's 0.
 stop: where the sequence of integers will stop (without including this value).
 step: the value that will be added to each element to get the next element in the

sequence. By default, it's 1.

This is the general syntax to write a for loop with range():

for <loop_variable> in range(<start>, <stop>, <step>):
<code>

• You can pass 1, 2, or 3 arguments to range():

 With 1 argument, the value is assigned to the stop parameter and the default
values for the other two parameters are used.

 With 2 arguments, the values are assigned to the start and stop parameters
and the default value for step is used.

 With 3 arguments, the values are assigned to the start, stop,
and step parameters (in order)

Range function

for var in range(m,n):

print var

The function range(m,n) returns the sequence of
integers starting from m, m+1, m+2, m+3…..n-1.

Example with one parameter:
For i in range(10):

print(i)
Output:
0
1
2
3
4
5
6
7
8
9

Example Program:

for i in range(10):

print(i*2)

Output:

0

2

4

6

8

10

12

14

16

18

• In the example below, we repeat a string as many times
as indicated by the value of the loop variable:

Program:
for num in range(8):

print("Hello" * num)
Output:
Hello
HelloHello
HelloHelloHello
HelloHelloHelloHello
HelloHelloHelloHelloHello
HelloHelloHelloHelloHelloHello
HelloHelloHelloHelloHelloHelloHello

Example with Two parameters:
for i in range(2,10):

print(i)

Output:

2

3

4

5

6

7

8

9

The expression range(2,10) creates an object known as an iterable .

This allows loop to assign the values 2,3,4,5,6,7,8 and 9 to the iteration
variable i.

for i in range(2,6):

print("hello"*i)

Output:

hellohello

hellohellohello

hellohellohellohello

hellohellohellohellohello

The len() function is combined with range() function which

iterate through a sequence using indexing. Consider the following

example.

list = ['Peter','Joseph','Ricky','Devansh']

for i in range(len(list)):

print("Hello",list[i])

Output:

Hello Peter

Hello Joseph

Hello Ricky

Hello Devansh

Example with Three parameters:

for i in range(2,25,2):
print(i)

Output:
2
4
6
8
10
12
14
16
18
20
22

Program to print even number using step size in range().

n = int(input("Enter the number "))

for i in range(2,n,2):

print(i)

Output:

Enter the number 10

2

4

6

8

Nested for loop in python

Python allows us to nest any number of for loops inside a for loop. The inner loop is executed n

number of times for every iteration of the outer loop. The syntax is given below.

Syntax

for iterating_var1 in sequence: #outer loop

 for iterating_var2 in sequence: #inner loop

 #block of statements

#Other statements

Example- 1: Nested for loop

User input for number of rows

rows = int(input("Enter the rows:"))

Outer loop will print number of rows

for i in range(0,rows+1):

Inner loop will print number of Astrisk

 for j in range(i):

 print("*",end = '')

 print()

Output:

Enter the rows:5

*

**

Example-2: Program to number pyramid.

rows = int(input("Enter the rows"))
for i in range(0,rows+1):
for j in range(i):

print(i,end = '')
print()

Output:

1

22

333

4444

55555

While Loop

• The while loop is a loop control statement in
Python and frequently used in programming for
repeated execution of statement(s) in a loop.

• It executes a sequence of statements repeatedly
as long as a condition remains true.

syntax :

while (test-condition):

sequence of statement(s)

Write a program to print the numbers from one
to five using the while loop.

Program:
count=0
while count<=5:

print(“Count = “,count)
count=count+1

Output:
Count = 0
Count = 1
Count = 2
Count = 3
Count = 4
Count = 5

Break statement

• The keyword allows a programmer to
terminate a loop

• When the break statement is encountered
inside a loop, the loop is immediately
terminated and the program control
automatically goes to the first statement
following the loop.

Write a program to demonstrate the use of the
break statement
Program:
print("The Numbers from 1 to 10 are as follows: ")
for i in range(1,100,1):

if(i==11):
break

else:
print(i,end=" ")

Output:
The Numbers from 1 to 10 are as follows:
1 2 3 4 5 6 7 8 9 10

continue statement

• The continue statement is exactly opposite of
the break statement.

• When continue is encountered within a loop,
the remaining statements within the body are
skipped but the loop condition is checked to
see if the loop should continue or exit.

Program:

for i in range(1,11,1):

if i==5:

continue

print(i,end=" ")

Output:

1 2 3 4 6 7 8 9 10

Pass statement

• The pass statement does not do anything . It is
used with ‘if’ statement or inside a loop to
represent no operation.

• We use pass statement when we need a
statement syntactically but we do not want to
do any operation.

A program to know that the pass does nothing
X=0
While x<5:

X+=1
if X>3:

pass
print(‘X=‘,X)

Print (“out of the loop)
Output:
X=1
X=2
X=3
X=4
X=5

UNIT – II
Files and Exceptions

Files

When we want to read from or write to a file we need to
open it first. When we are done, it needs to be closed, so
that resources that are tied with the file are freed.

Hence, in Python, a file operation takes place in the
following order.

• Open a file
• Read or write (perform operation)
• Close the file

File Built-in Function [open ()]
Python has a built-in function open() to open a file.
Which accepts two arguments, file name and access
mode in which the file is accessed. The function returns a
file object which can be used to perform various
operations like reading, writing, etc.

close()
The close() method used to close the currently opened file, after which no
more writing or Reading can be done.
Python automatically closes a file when the reference object of a file is
reassigned to another file. It is a good practice to use the close() method to
close a file.

read()
The read () method is used to read the content from file. To read a
file in Python, we must open the file in reading mode.

Syntax:Fileobject.read([size])

Where ‘size’ specifies number of bytes to be read

readline()
Python facilitates us to read the file line by line by using a function
readline(). The readline() method reads the lines of the file from the
beginning, i.e., if we use the readline() method two times, then we
can get the first two lines of the file.

Syntax:Fileobject.readline()

write()
The write () method is used to write the content into file. To write
some text to a file, we need to open the file using the open method
with one of the following access modes.
w: It will overwrite the file if any file exists. The file pointer point at the
beginning of the file in this mode.
a: It will append the existing file. The file pointer point at the end of
the file.

Syntax:Fileobject.write(content)

writelines()
The writelines () method is used to write multiple lines
of content into file. To write some lines to a file

Syntax:Fileobject.writelines(list)
list − This is the Sequence of the strings.

write()
The write () method is used to write the content into file. To write
some text to a file, we need to open the file using the open method
with one of the following access modes.
w: It will overwrite the file if any file exists. The file pointer point at the
beginning of the file in this mode.
a: It will append the existing file. The file pointer point at the end of
the file.

Syntax:Fileobject.write(content)

writelines()
The writelines () method is used to write multiple lines
of content into file. To write some lines to a file

Syntax:Fileobject.writelines(list)
list − This is the Sequence of the strings.

File Positions
Methods that set or modify the current position within the
file
☞ tell()
The tell() method returns the current file position in a file
stream. You can change the current file position with the
seek() method.
Syntax:Fileobject.tell()

☞ seek()
The seek() method sets and returns the current file
position in a file stream.
Syntax:Fileobject.seek(offset)

File Built-in Attributes

Python Supports following built-in attributes, those are
file.name - returns the name of the file which is already
opened.
file.mode - returns the access mode of opened file.
file.closed - returns true, if the file closed, otherwise false.

Command-Line Arguments in Python
Till now, we have taken input in python using raw_input() or input(). There is
another method that uses command line arguments. The command line
arguments must be given whenever we want to give the input before the start
of the script, while on the other hand, input() is used to get the input while the
python program / script is running.

The sys module also provides access to any command-line arguments via
sys.argv. Command-line
arguments are those arguments given to the program in addition to the script
name on invocation.
sys.argv is the list of command-line arguments
len(sys.argv) is the number of command-line arguments.
To use argv, you will first have to import it (import sys) The first argument,
sys.argv[0], is always the name of the program as it was invoked, and sys.argv[1]
is the first argument you pass to the program. It's common that you slice the list
to access the actual command line arguments.

File System in Python
In python, the file system contains the files and directories. To handle these files
and directories python supports “os” module. Python has the “os” module,
which provides us with many useful methods to work with directories (and files
as well).
The os module provides us the methods that are involved in file processing
operations and directory processing like renaming, deleting, get current
directory, changing directory etc.
Renaming the file - rename()
The os module provides us the rename() method which is used to rename the
specified file to a new name.
Syntax:
os.rename (“current-name”, “new-name”)
Example:
]import os;
#rename file2.txt to file3.txt
os.rename("file2.txt","file3.txt")

Removing the file – remove()
The os module provides us the remove() method
which is used to remove the specified file.
Syntax:
os.remove(“file-name”)
Example:
import os;
#deleting the file named file3.txt
os.remove("file3.txt")

Creating the new directory – mkdir()
The mkdir() method is used to create the directories
in the current working directory.
Syntax:
os.mkdir(“directory-name”)
Example:
import os;
#creating a new directory with the name new
os.mkdir("dirnew")

Changing the current working directory – chdir()
The chdir() method is used to change the current
working directory to a specified directory.
Syntax:
os.chdir("new-directory")
Example:
import os;
#changing the current working directory to new
os.chdir("dir2")

Get current working directory – getpwd()
This method returns the current working directory.
Syntax:
os.getcwd()
Example:
import os;
#printing the current working directory
print(os.getcwd())

Deleting directory - rmdir()
The rmdir() method is used to delete the specified
directory.
Syntax:
os.rmdir(“directory name”)
Example:
import os;
#removing the new directory os.rmdir("dir2")

List Directories and Files – listdir()
All files and sub directories inside a directory can be known
using the listdir() method. This method takes in a path and
returns a list of sub directories and files in that path. If no
path is specified, it returns from the current working
directory.
Syntax:
os.listdir([“path”])
Example:
import os;
#list of files and directories in current working directory
print(os.listdir()) #list of files and directories in specified
path print(os.listdir(“D:\\”))

Exceptions

An exception can be defined as an abnormal condition in a
program. It interrupts the flow of the program. Whenever an
exception occurs, the program halts the execution, and thus the
further code is not executed.

In general an exception is an error that happens during
execution of a program. When that error occurs, it terminates
program execution. In Python, an error can be a syntax error or
an exception. Now we will see what an exception is and how it
differs from a syntax error.
Syntax errors occur when the parser detects an incorrect
statement.
expdemo.py

a=5
b=0
print(a/b))
Output:

File "expdemo.py", line 3 print(a/b))
SyntaxError: invalid syntax

Standard Exceptions in Python
Python supports various built-in exceptions, the
commonly used exceptions are
• NameError: It occurs when a name is not found.i.e
attempt to access an undeclared variable
Example:
a=5
c=a+b
print("Sum =",c)
Output:
Traceback (most recent call last):
File "expdemo.py", line 2, in c=a+b
NameError: name 'b' is not defined

ZeroDivisionError: Occurs when a number
is divided by zero.
Example:
a=5
b=0
print(a/b)
Output:
Traceback (most recent call last):
File "expdemo.py", line 3, in print(a/b)
ZeroDivisionError: division by zero

ValueError: Occurs when an inappropriate value
assigned to variable.
Example:
a=int(input("Enter a number : ")) b=int(input("Enter
a number : ")) print("Sum =",a+b)
Output:
Enter a number : 23
Enter a number : abc
Traceback (most recent call last): File "expdemo.py",
line 2, in
b=int(input("Enter a number : ")) ValueError: invalid
literal for int() with base 10: 'abc'

IndexError: Occurs when we request for an out-of-
range index for sequence
Example:
ls=['c','java','python']
print("list item is :",ls[5])
Output:
Traceback (most recent call last): File "expdemo.py",
line 2, in
print("list item is :",ls[5])
IndexError: list index out of range.

KeyError: Occurs when we request for a non-
existent dictionary key
Example:
dic={"name":"Madhu","location":"Hyd"}
print("The age is :",dic["age"])
Output:
Traceback (most recent call last):
File "expdemo.py", line 2, in
print("The age is :",dic["age"])
KeyError: 'age'

KeyError: Occurs when we request for a non-
existent dictionary key
Example:
dic={"name":"Madhu","location":"Hyd"}
print("The age is :",dic["age"])
Output:
Traceback (most recent call last):
File "expdemo.py", line 2, in
print("The age is :",dic["age"])
KeyError: 'age'

IOError: Occurs when we request for a non-existent
input/output file.
Example:
fn=open("exam.py")
print(fn)
Output:
Traceback (most recent call last):
File "expdemo.py", line 1, in
fn=open("exam.py")
FileNotFoundError: [IOError] No such file or
directory: 'exam.py'

Exceptions as Strings
Prior to Python 1.5, standard exceptions were
implemented as strings. However, this became limiting in
that it did not allow for exceptions to have relationships to
each other. As of python 1.5, all standard exceptions are
now classes. It is still possible for programmers to
generate their own exceptions as strings, but we
recommend using exception classes from now on.
Python 2.5 begins the process of deprecating string
exceptions from Python forever. In 2.5, raise of string
exceptions generates a warning. In 2.6, the catching of
string exceptions results in a warning. Since they are rarely
used and are being deprecated, we will no longer consider
string exceptions.

Exceptions as Strings
Prior to Python 1.5, standard exceptions were
implemented as strings. However, this became limiting in
that it did not allow for exceptions to have relationships to
each other. As of python 1.5, all standard exceptions are
now classes. It is still possible for programmers to
generate their own exceptions as strings, but we
recommend using exception classes from now on.
Python 2.5 begins the process of deprecating string
exceptions from Python forever. In 2.5, raise of string
exceptions generates a warning. In 2.6, the catching of
string exceptions results in a warning. Since they are rarely
used and are being deprecated, we will no longer consider
string exceptions.

Exceptions as Strings
Prior to Python 1.5, standard exceptions were
implemented as strings. However, this became limiting in
that it did not allow for exceptions to have relationships to
each other. As of python 1.5, all standard exceptions are
now classes. It is still possible for programmers to
generate their own exceptions as strings, but we
recommend using exception classes from now on.
Python 2.5 begins the process of deprecating string
exceptions from Python forever. In 2.5, raise of string
exceptions generates a warning. In 2.6, the catching of
string exceptions results in a warning. Since they are rarely
used and are being deprecated, we will no longer consider
string exceptions.

Exception handling in Python
Python provides us with the way to handle the Exception
so that the other part of the code can be executed
without any interrupt.
For Exception handling, python uses following keywords
or statements
try
except
finally
raise
assert

try – except statement
If the python program contains suspicious code that may
throw the exception, we must place that code in the try
block. The try block must be followed with the except
statement which contains a block of code that will be
executed if there is some exception in the try block.
Syntax:
try:

#block of code except
Exception1:

#block of code except
Exception2:

#block of code #other code

try – except - else statement
We can also use the else statement with the try-except
statement in which, we can place the code which will be
executed if no exception occurs in the try block.
Syntax:
try:

#block of code
except Exception1:

#block of code
else:

#this code executes if no except block is executed

finally statement
We can use the finally block with the try block in which,
we can place the important code which must be executed
either try throws an exception or not.
Syntax:
try:

#block of code
except Exception1:

#block of code
else:

#this code executes if no except block is executed
finally:

this code will always be executed

raise statement (or) Raising exceptions
We can use raise to throw an exception if a condition
occurs. i.e. If you want to throw an error when a certain
condition occurs we can use raise keyword.
Syntax:
raise Exception_class

Example:
try:

age = int(input("Enter the age : "))
if age<18:

raise Exception;
else:

print("the age is valid")
except Exception:

print("The age is not valid")
Output: Case 1
Enter the age : 34
the age is valid
Output: Case 2
Enter the age : 12
The age is not valid

assert statement (or) Assertions
Assertions are simply Boolean expressions that checks if
the conditions return true or not. If it is true, the program
does nothing and moves to the next line of code.
However, if it's false, the program stops and throws an
error.
It is also a debugging tool as it brings the program on halt
as soon as any error is occurred and shows on which point
of the program error has occurred.

assert Statement
Python has built-in assert statement to use assertion condition in
the program. assert statement has a condition or expression which
is supposed to be always true. If the condition is false assert halts
the program and gives an AssertionError.
Syntax:
assert condition [, error_message]
In Python we can use assert statement in two ways as mentioned
above.
• assert statement has a condition and if the condition is not

satisfied the program will stop and give AssertionError.
• assert statement can also have a condition and a optional error

message. If the condition is not satisfied assert stops the
program and gives AssertionError along with the error message.

Example:
x = int(input("Enter x :"))
y = int(input("Enter y :"))

It uses assert to check for 0 print ("x / y value is : ")
assert y != 0, "Divide by 0 error"
Output: Case 1
Enter x :33 Enter y :11
x / y value is : 3.0

Output: Case 2
Enter x :33 Enter y :0
x / y value is :

AssertionError: Divide by 0 error

Modules in Python
In python module can be defined as a python program file which
contains a python code including python functions, class, or
variables. In other words, we can say that our python code file
saved with the extension (.py) is treated as the module.

Modules in Python provides us the flexibility to organize the code
in a logical way. To use the functionality of one module into
another, we must have to import the specific module.

Creating Module
Example: demo.py
Python Module example
def sum(a,b):

return a+b
def sub(a,b):

return a-b
def mul(a,b):

return a*b
def div(a,b):

return a/b

In the above example we have defined 4 functions sum(), sub(),
mul() and div() inside a module named demo.

Loading the module in our python code
We need to load the module in our python code to use its
functionality. Python provides two types of statements as defined
below.
1. import statement
2. from-import statement

1. import statement
The import statement is used to import all the functionality of one
module into another. Here, we must notice that we can use the
functionality of any python source file by importing that file as the
module into another python source file.
We can import multiple modules with a single import statement.
Syntax:
import module1,module2..

Example:
import demo
#importing entire Module

a=int(input("Enter a :"))
b=int(input("Enter b :"))
print("Sum is :",demo.sum(a,b))
print("Sub is :",demo.sub(a,b))
print("Mul is :",demo.mul(a,b))
print("Div is :",demo.div(a,b))
Output:
Enter a :12
Enter b :6
Sum is : 18
Sub is : 6
Mul is : 72
Div is : 2.0

2. from-import statement
Instead of importing the whole module into the namespace,
python provides the flexibility to import only the specific attributes
of a module. This can be done by using from - import statement. In
such case we don't use the dot operator.
Syntax:
from module-name import

Example:
from demo import *
a=int(input("Enter a :"))
b=int(input("Enter b :"))
print("Sum is :",sum(a,b))
print("Sub is :",sub(a,b))

print("Mul is :",mul(a,b))
print("Div is :",div(a,b))
Output:
Enter a :12
Enter b :6
Sum is : 18
Sub is : 6
Mul is : 72
Div is : 2.0

We can import specific function from a module without importing
the module as a whole. Here is an example.
Syntax:
from module-name import function1,function2…
Example:
from demo import sub,mul
#importing specific functionality from Module
a=int(input("Enter a :"))
b=int(input("Enter b :"))
print("Sub is :",sub(a,b))
print("Mul is :",mul(a,b))
Output:
Enter a :12
Enter b :6
Sub is : 6
Mul is : 72

Renaming a module
Python provides us the flexibility to import some module with a
specific name so that we can use this name to use that module in
our python source file.
Syntax:
import module-name as specific-name
Example:
import demo as c
a=int(input("Enter a :"))
b=int(input("Enter b :"))

print("Sum is :",c.sum(a,b))
print("Sub is :",c.sub(a,b))
Output:
Enter a :25
Enter b :12
Sum is : 37
Sub is : 13

Namespaces in Python
A namespace is basically a system to make sure that all the names
in a program are unique and can be used without any conflict.
A namespace is a system to have a unique name for each and
every object in Python. An object might be a variable or a method.
Python itself maintains a namespace in the form of a Python
dictionary.
Let’s go through an example, a directory-file system structure in
computers. Needless to say, that one can have multiple directories
having a file with the same name inside of every directory.
Real-time example, the role of a namespace is like a surname. One
might not find a single “Kumar” in the class there might be
multiple “Kumar” but when you particularly ask for “N Kumar” or
“S Kumar” (with a surname), there will be only one (time being
don’t think of both first name and surname are same for multiple
students).

Types of namespaces
Local Namespace: This namespace includes local names inside a
function. This namespace is created when a function is called, and
it only lasts until the function returns.
Global Namespace: This namespace includes names from various
imported modules that you are using in a project. It is created
when the module is included in the project, and it lasts until the
script ends.
Built-in Namespace: This namespace includes built-in functions
and built-in exception names. Like print (), input (), list () and etc.

Example:
print("Namespace Example") #built-in namespace
a=10 #global namespace
def func1():

b=20 #local namespace
print(a+b)

func1()
Output:30
In above code, print () is built-in namespace, ‘a’ is in the global
namespace in python and ‘b’ is in the local namespace of func1.

Python supports “global” keyword to update global namespaces in
local.
Example:
count = 5
def func1():

global count
#To update global namespace

count = count + 1
print(count)

func1()
Output:
6

Example:
a=10 #global namespace
def func1():

b=20 #non-local namespace
def func2():

nonlocal b
c=30 #local namesapce
global a
a=a+c
b=b+c

func2()
print(a,b)

func1()
Output:
40 50
To func2, ‘c’ is local, ‘b’ is nonlocal, and ‘a’ is global. By nonlocal, we mean it isn’t global, but isn’t
local either. Of course, here, you can write ‘c’, and read both ‘b’ and ‘a’. To update ‘b’ (non-local
namespace), we need to use “nonlocal” keyword and to update ‘a’(global namespace), we need to
“global” keyword.

globals() and locals()
The globals() and locals() functions can be used to return the names in the global
and local namespaces depending on the location from where they are called.

If locals() is called from within a function, it will return all the names that can be
accessed locally from that function.

If globals() is called from within a function, it will return all the names that can be
accessed globally from that function.

The return type of both these functions is dictionary. Therefore, names can be
extracted using the keys() function.

Example:
xy="Madhu"
def sum(a,b):

c=0
c=a+b
print(c)
print(globals())
print(locals())

sum(2,3)
Output:
5
{'__name__': '__main__', '__doc__': None, '__package__': None, '__loader__': <_f
rozen_importlib_external.SourceFileLoader object at 0x006BDBD0>, '__spec__':
Non e, '__annotations__': {}, '__builtins__': , '__fil e__': 'module1.py',
'__cached__': None, 'xy': 'Madhu', 'sum': }
{'a': 2, 'b': 3, 'c': 5}

Packages in Python
Suppose you have developed a very large application that includes
many modules. As the number of modules grows, it becomes difficult
to keep track of them all if they are dumped into one location. This is
particularly so if they have similar names or functionality.

In python a Package contains collection of modules and sub-packages.
Packages are a way of structuring many packages and modules which
help in a well-organized hierarchy of data set, making the packages and
modules easy to access. Just like there are different drives and folders
in an OS to help us store files, similarly packages help us in storing
other sub-packages and modules, so that it can be used by the user
when necessary.

To create a package in Python, we need to follow these three simple
steps:
First, we create a directory and give it a package name, preferably
related to its operation.Then we put the all modules in it.
Finally we create an __init__.py file inside the directory(folder), to let
Python know that the directory is a package.(This is optional from
python 3.3)

If a file named __init__.py is present in a package directory, it is
invoked when the package or a module in the package is imported. This
can be used for execution of package initialization code, such as
initialization of package-level data, this data can able to use any
modules under package.

UNIT – III
Regular Expressions and

Multithreading

Regular
Expressions

What is Regular Expression

A Regular Expression (RegEx) is a sequence of characters that defines a
search pattern. For example,

^a……s$

The above code defines a RegEx pattern. The pattern is: any five
letter string starting with a and ending with s.

e

ython has a module named re to work with regular expression. Here’s an example:

import re

pattern = ‘^a…s$’
test_string = ‘abyss’
Result = re.match(pattern, test_string)

if result:
print(“Search successful.”)

else:
print(“Search unsuccessful”)

Here, we used re.match function to grab pattern within the test_string.
The method returns a match object if th search is successful. If not, it returns No

Specify Pattern Using RegEx:
To specify regular expressions, metacharacters are used. In the above
example, ^ and $ are metacharacters.

Meta characters:
Metacharacters are characters that are interpreted in a special way by a
RegEx engine. Here's a list of metacharacters:
[] . ^ $ *

[] – Square brackets:
Square brackets specifies a set of char cters you wish to match.

c

r

Above, [abc] will match if the string you are trying to match contains any
of the a, b or c.

You can also specify a range of chara ters using – inside square brackets.
o [a-e] is the same as [abcde].
o [1-4] is the same as [1234].
o [0-39] is the same as [01239].

You can complement (invert) the cha acter set by using caret ^ symbol at
the start of a square-bracket.

o [^abc] means any character except a or b or c.
o [^0-9] means any non-digit character.

c
– Period:
period matches any single character (ex ept newline ’\n’).

^ – Caret:
The caret symbol ^ is used to check if a string starts with a certain character.

$ – Dollar:
The dollar symbol $ is used to check if a string ends with a certain character.

+ – Plus:
The plus symbol + matches one or more occurrences of the pattern left to it.

import re

Python RegEx

Python has a module named re to work with regular expressions. To use it,
we need to import the module.

The module defines several functions and constants to work with RegEx.

re.findall()

The re.findall() method returns a list of strings containing all matches

Example:

#program to extract numbers from a string

import re

string = ‘hello 12 hi 89. Howdy 34
pattern = ‘\d+’
result = re.findall(patern, string)
print(result)

#Output: [‘12’, ‘89’, ‘34’]

If the pattern is no found, re.findall() returns an empty list.

re.split()

The re.split method splits the string where there is a match and returns a list
of strings where the splits have occurred.

Example:

import re

String = ‘Twelve:12 Eighty nine:89’
pattern = ‘\d+’

result = re.split(pattern, string)
Print(result)

#Output: [‘Twelve:’, ‘ Eighty nine:’, ‘ . ’]

If the pattern is no found, re.split() returns a list containing an empty string.

The syntax of re.sub() is:

re.sub(pattern, replace, string)

e

n

re.sub()

Example:

#program to remove all white spaces
Import re
string = ‘abc 12\ de 23 \n f4 6’

#matches all whitespace characters
pattern = ‘\s+’

#empty string
replace = ‘ ’

new_string = re.sub(pattern, r place, string)

If the pattern is no found, re.sub() retur s the original string.

n

e

re.sub ()

The re.subn() is similar to re.sub() expect it returns a tuple of 2 items
containing the new string and the number of substitutions made.

Example:

#program to remove all whitespac s
Import re
#multiline string
string = ‘abc 12\ de 23 \n f45 6’

matches all whitespace characters
pattern = ‘\s+’

#empty string
replace = ‘ ’
new_string = re.subn(pattern, replace, string)
print(new_string)

#Output: (‘abc12de23f456’, 4)

e

match = re.search(pattern, str)

re.search()

The re.search() method takes two arguments: a pattern and a string. The
method looks for the first location wher the RegEx pattern produces a match
with the string. If the search is successful, re.search() returns a match object;
if not, it returns None.

Example:

Here, match contains a match object.

import re
String = “Python is fun”

#check if ‘Python’ is at the beginning
match = re.search(‘\APython’, string)

if match:
print(“pattern found inside the string”)

else:
print(“pattern not found”)

#Output : pattern found inside the string

s

Math Object

You can get methods and attributes of a match object using dir() function.
Some of the commonly used methods and attributes of match objects are:

Import re
String = ‘ 39801 356, 2102 1111 ’

#Three digit number followed by pace followed by two digit number
Pattern = ‘ (\d{3}) (\d{2}) ’

#match variable contains a Match object.
Match = re.search(pattern, string)

If match:
print(match.group())

Else:
print(“ pattern not found ”)

Output: 801 35

>>> match.group(1)
‘801’

>>> match.group(2)
‘35’

>>> match.group(3)
(‘801’, ‘35’)

>>> match.group()
(‘801’, ‘35’)

ere, match variable contains a match object.
ur pattern (\d{3}) (\d{2}) has two subgroups (\d{3}) and (\d{2}). You can get th
art of the string of these parenthesized subgroups. Here's how:

t

>>> match.start()
2
>>>match.end()
8

>>> match.span()
(2, 8)

match.start(), match.end() and match.span()

The start() function returns the index of he matched substring. Similarly,
end() returns the end index of the matched substring.

The span() function returns a tuple containing start and end index of the
matched part.

u

)
>>> match.re
Re.compile(‘ (\\d{3}) (\\d{2}) ’

>>> match.string
‘ 39801 356, 2102 1111 ’

match.re and match.string

The re attribute of a matched object ret rns a regular expression object.
Similarly, string attribute returns the passed string.

Multithreaded Programming
(or)

Multithreading in python

Introduction:
• Multitasking is a process of executing multiple tasks simultaneously,

we use multitasking to utilize the CPU.

• Multitasking can be achieved by two ways or classified into two
types
– Process-Based Multitasking(Multiprocessing)
– Thread-Based Multitasking(Multithreading)

• Process-Based Multitasking(Multiprocessing):
Executing multiple tasks simultaneously, where each task is
separate independent process (or) program is called as process
based multitasking.

Example:
– Typing a python program in notepad
– Listening audio songs
– Download a file from internet

• The above three tasks are performed simultaneously in a system,
but there is no dependence between one task and another task.

• Process based multitasking is best suitable at “Operating System”
level not at programming level.

• Thread-Based Multitasking(Multithreading):

Executing multiple tasks simultaneously, where each task is separate
independent part of process (or) program is called as thread based
multitasking.

• The each independent part is called as thread. The thread based
multitasking is best suitable at programming level.

Example:

Let a program has 10k line of code, where last 5k lines of code doesn’t
depend on first 5k lines of code, then both are the execution
simultaneously. So takes less time to complete the execution.

Note: Any type of multitasking is used to reduce response time of system and

Improves performance.

Multithreading:

 A thread is a lightweight process; In simple words, a thread is a sequence
of some instructions within a program that can be executed independently
of other code.

 Threads are independent; if there is an exception in one thread it doesn’t
affect remaining threads.

 Threads shares common memory area.

 As shown in the figure, a thread is executed inside the process. There can
be multiple processes inside the OS, and each process can have multiple
threads.

 Definition: Multithreading is a process of executing multiple threads
simultaneously. Multithreading allows you to break down an application
into multiple sub-tasks and run these tasks simultaneously.

• In other words, the ability of a process to execute multiple threads
parallelly is called multithreading. Ideally, multithreading can significantly
improve the performance of any program.

• Multiprocessing and Multithreading both are used to achieve
multitasking, but we use multithreading than multiprocessing because
threads shares a common memory area and context-switching between
threads takes less time than process.

Advantages:

• Multithreading can significantly improve the speed of computation on
multiprocessor

• Multithreading allows a program to remain responsive while one thread
waits for input, and another runs a GUI at the same time.

Disadvantages:

• It raises the possibility of deadlocks.

• It may cause starvation when a thread doesn’t get regular access to shared
resources.

 Global Interpreter Lock (GIL):

• Execution of Python code is controlled by the Python Virtual Machine.

• Python was designed in such a way that only one thread may be executing
in Python Virtual Machine. similar to how multiple processes in a system
share a single CPU.

• Many programs may be in memory, but only one is live on the CPU at any
given moment.

• Likewise, although multiple threads may be "running" within the Python
interpreter, only one thread is being executed by the interpreter at any
given time.

• Access to the Python Virtual Machine is controlled by the global
interpreter lock (GIL). This lock is what ensures that exactly one thread is
running.

• This essentially means is a process can run only one thread at a time.
When a thread starts running, it acquires GIL and when it waits for I/O, it
releases the GIL, so that other threads of that process can run.

For example

Let us suppose process P1 has threads Thread1 and Thread2.

Thread1 running (acquire GIL) -> Thread1 waiting for I/O (releases GIL)

-> Thread2 running (acquires GIL) -> Thread2 waiting for I/O (releases GIL)

 Multithreading Modules:

Python offers two modules to implement threads in programs.

– thread module and

– threading module.

Thread Module(_thread):
• This module provides low-level primitives

threads .
for working with multiple

• The <_thread> module supports one method to create thread. That is

thread.start_new_thread(function, args)

• This method starts a new thread and returns its identifier. It’ll invoke the
function specified as the “function” parameter with the passed list of
arguments. When the <function> returns, the thread would silently exit.

• Here, args is a tuple of arguments; use an empty tuple to call <function>
without any arguments.

Note: Python 2.x used to have the <thread> module. But it got deprecated in
Python 3.x and renamed to <_thread> module for backward compatibility.

Example:

from _thread import start_new_thread

from time import sleep

def disp(n):

for i in range(5):

print(n)

start_new_thread(disp, ("hai",))

start_new_thread(disp, ("hello",))

sleep(2)

print("threads are executed...")

Output:
>>>python multithr1.py hai
hello hai hai hai hai
hello hello hello hello
threads are executed...

Threading Module:

• The threading module provides more features and good support for
threads than thread module.

• This Module provides Thread class, and this Thread class provide following

methods

• start() − The start() method starts a thread by calling the run method.

• join([time]) − The join() waits for threads to terminate.

• isAlive() − The isAlive() method checks whether a thread is still executing.

• getName() − The getName() method returns the name of a thread.

• setName() − The setName() method sets the name of a thread.

Creating Thread Using Threading Module

• To implement a new thread using the threading module, use following
code snippet

Syntax:

threading.Thread (target=None, name=None, args=())

This method has following arguments. Those are:

• target is the callable function to be invoked by the run() method. Defaults
to None, meaning nothing is called.

• name is the thread name. By default, a unique name is constructed of the
form “Thread-N” where N is a small decimal number.

• args is the argument tuple for the function invocation. Defaults to ().

https://docs.python.org/2/library/threading.html

Example:
import threading #function display def display(msg):

for i in range(5):

print(msg)

creating thread

t1 = threading.Thread(target=display, args=("Thread1",))

t2 = threading.Thread(target=display, args=("Thread2",))

starting thread 1

t1.start()

starting thread 2

t2.start()

wait until thread 1 is completely executed

t1.join()

wait until thread 2 is completely executed

t2.join()

both threads completely executed

print("Done!")

Output:
>>>python multithr.py
Thread1
Thread1
Thread2
Thread1
Thread1
Thread2
Thread1
Thread2
Thread2
Thread2
Done!

Let us try to understand the above code:
• To import the threading module, we do:

import threading

• To create a new thread, we create an object of Thread class. It takes following
arguments:

target: the function to be executed by thread
args: the arguments to be passed to the target function

• In above example, we created 2 threads with different target functions:
t1 = threading.Thread(target=display, args=(“Thread1”,))
t2 = threading.Thread(target=display, args=(“Thread2”,))

• To start a thread, we use start method of Thread class.
t1.start()
t2.start()

• Once the threads start, the current program also keeps on executing. In order
to stop execution of current program until a thread is complete, we
use join method.

t1.join()
t2.join()

• As a result, the current program will first wait for the completion of t1 and
then t2. Once, they are finished, the remaining statements of current program
are executed.

UNIT – IV
GUI Programming and Web

Programming

GUI Programming
in

Python

Introduction:
• A graphical user interface is an application that has buttons,

windows, and lots of other widgets that the user can use to

interact with your application.

• A good example would be a web browser. It has buttons, tabs,
and a main window where all the content loads.

• In GUI programming, a top-level root windowing object

contains all of the little windowing objects that will be part of

your complete GUI application.

• These windowing objects can be text labels, buttons, list boxes,

etc.These individual little GUI components are known as
widgets.

• Python offers multiple options for developing GUI (Graphical User
Interface). The most commonly used GUI method is tkinter.

• Tkinter is the easiest among all to get started with. It is Python's
standard GUI (Graphical User Interface) package. It is the most
commonly used toolkit for GUI Programming in Python

• since Tkinter is the Python interface to Tk (Tea Kay), it can be
pronounced as Tea-Kay-inter. i.e tkinter = t k inter.

tkinter - GUI for Python:

• Python provides the standard library tkinter for creating the
graphical user interface for desktop based applications.

• Developing desktop based applications with tkinter is not a
complex task.

• A Tkinter window application can be created by using the
following steps.

1. Import the tkinter module.

2. Create the main application window.

3. Add the widgets like labels, buttons, frames, etc. to the window.

4. Call the main event loop so that the actions can take place on the
user's computer screen.

1. Importing tkinter is same as importing any other module in the
python code. Note that the name of the module in Python 2.x
is ‘Tkinter’ and in Python 3.x is ‘tkinter’.

import tkinter (or) from tkinter import *

2. After importing tkinter module we need to create a main
window, tkinter offers a method ‘Tk()’ to create main window.
The basic code used to create the main window of the
application is:

top = tkinter.Tk() (or) top=Tk()

3. After creating main window, we need to add components or
widgets like labels, buttons, frames, etc.

4. After adding widgets to main window, we need to run the
application, tkinter offers a method ‘mainloop()’ to run
application. The basic code used to run the application is:

top.mainloop ()

Example: tkndemo.py

import tkinter

top = tkinter.Tk()

top.title("Welcome")

#creating the application main window.

#title of main window

#size of main window

#calling the event main loop

top.geometry("400x300")

top.mainloop()

Output:

>>> python tkndemo.py Title of window

Main Window
(400x300)

• tkinter also offers access to the geometric configuration of the
widgets which can organize the widgets in the parent windows.

Tkinter provides the following geometry methods

1. pack () method:

The pack() method is used to organize components or widgets in
main window.

Syntax:

widget.pack (options)

The possible options are

side: it represents the side to which the widget is to be placed
on the window. Side may be LEFT or RIGHT or TOP(default) or
BOTTOM.

Example: tknpack.py

from tkinter import *

top = Tk()

top.geometry("300x200")

btn1 = Button(top, text = "Login")

btn1.pack(side = LEFT)

top.mainloop()

Output:

>>> python tknpack.py

2. grid() method:
The grid() method organizes the widgets in the tabular form. We
can specify the rows and columns as the options in the method call.

This is a more organized way to place the widgets to the python
application.
Syntax:

widget.grid (options)

The possible options are
• Column

The column number in which the widget is to be placed. The
leftmost column is represented by 0.

• padx, pady
It represents the number of pixels to pad the widget outside the
widget's border.

• row
The row number in which the widget is to be placed. The topmost
row is represented by 0.

Example: tkngrid.py
from tkinter import *
parent = Tk()
parent.title("Students")
parent.geometry("300x200")
name = Label(parent,text = "Name : ")
name.grid(row = 0, column = 0,pady=10,padx=5)
e1 = Entry(parent)
e1.grid(row = 0, column = 1)
regno = Label(parent,text = "Regd No : ")
regno.grid(row = 1, column = 0,pady=10,padx=5)
e2 = Entry(parent)
e2.grid(row = 1, column = 1)
btn = Button(parent, text = "Submit")
btn.grid(row = 3, column = 1)
parent.mainloop()
Output:

>>>python tkngrid.py

3. place() method:

The place() method organizes the widgets to the specific x and
y coordinates.

Syntax:

widget.place(x,y)

• x, y: It refers to the horizontal and vertical offset in the pixels.

Example: tknplace.py

from tkinter import *

parent = Tk()

parent.title("Students")

parent.geometry("300x200")

name = Label(parent,text = "Name : ")

name.place(x=50,y=50)

e1 = Entry(parent)

e1.place(x=100,y=50)

regno = Label(parent,text = "Regd No : ")

regno.place(x=50,y=100)

e2 = Entry(parent)

e2.place(x=110,y=100)

parent.mainloop()

Output:

>>>python tknplace.py

• Tkinter widgets or components:

Tkinter supports various widgets or components to build GUI
application in python.

Widget Description

Button Creates various buttons in Python Application.

Checkbutton Select one or more options from multiple options.(Checkbox)

Entry Allows the user to enter single line of text(Textbox)

Frame Acts like a container which can be used to hold the other widgets

Label Used to display non editable text on window

Listbox Display the list items, The user can choose one or more items.

Radiobutton Select one option from multiple options.

Text Allows the user to enter single or multiple line of text(Textarea)

Scale Creates the graphical slider, the user can slide through the range of values

Toplevel Used to create and display the top-level windows(Open a new window)

 Button Widget in Tkinter:

• The Button is used to add various kinds of buttons to the python
application. We can also associate a method or function with a button
which is called when the button is pressed.

Syntax: name = Button(parent, options)

The options are

• activebackground:It represents the background of the button when it is
active.

• activeforeground:It represents the font color of the button when it is active..

• bd: It represents the border width in pixels.

• bg: It represents the background color of the button.

• command:It is set to the function call which is scheduled when the function is
called.

• text: It is set to the text displayed on the button.

• fg: Foreground color of the button.

• height:The height of the button.

• padx:Additional padding to the button in the horizontal direction.

• pady:Additional padding to the button in the vertical direction.

• width:The width of the button.

Example: btndemo1.py

from tkinter import *

from tkinter import messagebox

top = Tk()

top.geometry("300x200")

def fun():

messagebox.showinfo("Hello", "Blue Button clicked")

btn1 = Button(top, text = "Red",bg="red",fg="white",width=10)

btn1.pack(side = LEFT)

btn2 = Button(top, text = "Green",bg="green",fg="white",width=10,height=5,
activebackground="yellow")

btn2.pack(side = TOP)

btn3 = Button(top, text ="Blue",bg="blue",fg="white",padx=10,pady=10,
command=fun)

btn3.pack(side = BOTTOM)

top.mainloop()

Output:

>>>python btndemo1.py

 Checkbutton Widget in Tkinter:

• The Checkbutton is used to display the CheckButton on the window. The
Checkbutton is mostly used to provide many choices to the user among which,
the user needs to choose the one. It generally implements many of many
selections.

Syntax: name = Checkbutton(parent, options)

The options are

• activebackground:It represents the background of the Checkbutton when it is active.

• activeforeground:It represents the font color of the Checkbutton when when it is active.

• bd: It represents the border width in pixels.

• bg: It represents the background color of the Checkbutton.

• command: It is set to the function call which is scheduled when the function is
called.

• text: It is set to the text displayed on the Checkbutton.

• fg: Foreground color of the Checkbutton.

• height: The height of the Checkbutton.

• padx: Additional padding to the Checkbutton in the horizontal direction.

• pady: Additional padding to the Checkbutton in the vertical direction.

• width: The width of the Checkbutton.

Example: chbtndemo.py

from tkinter import *

top = Tk()

top.geometry("300x200")

cbtn1 = Checkbutton(top, text="red",fg="red")

cbtn1.pack()

cbtn2 = Checkbutton(top, text="Green",fg="green",activebackground="orange")

cbtn2.pack()

cbtn3 = Checkbutton(top, text="Blue",fg="blue",bg="yellow",width=10,height=3)

cbtn3.pack()

top.mainloop()

Output:

>>>python chbtndemo.py

 Entry Widget in Tkinter:

• The Entry widget is used to provide the single line text-box to the user to
accept a value from the user. We can use the Entry widget to accept the
text strings from the user.

Syntax: name = Entry(parent, options)

The options are

• bd: It represents the border width in pixels.

• bg: It represents the background color of the Entry.

• show: It is used to show the entry text of some other type instead of the
string. For example, the password is typed using stars (*).

• fg: Foreground color of the Entry.

• width: The width of the Entry.

Example: entrydemo.py

from tkinter import *

top = Tk()

top.geometry("300x200")

enty0 = Entry(top,width="30")

enty0.place(x=50,y=40)

enty1 = Entry(top,bg="yellow")

enty1.place(x=50,y=70)

enty2 = Entry(top,fg="red",show="*")

enty2.place(x=50,y=100)

top.mainloop()

Output:

>>>python entrydemo.py

 Frame Widget in Tkinter:

• Frame widget is used to organize the group of widgets. It acts like a
container which can be used to hold the other widgets. The
rectangular areas of the screen are used to organize the widgets to
the python application.

Syntax: name = Frame(parent, options)

The options are

• bd: It represents the border width in pixels.

• bg: It represents the background color of the frame.

• width: The width of the frame.

• height: The height of the frame.

Example: framedemo.py

from tkinter import *

top = Tk()

top.geometry("300x200")

tframe = Frame(top,width="100",height="100",bg="yellow")

tframe.pack()

lframe = Frame(top,width="100",height="50",bg="blue")

lframe.pack(side = LEFT)

rframe = Frame(top,width="100",height="50",bg="green")

rframe.pack(side = RIGHT)

btn1 = Button(tframe, text="Submit", fg="red")

btn1.place(x=10,y=10)

top.mainloop()

Output:

>>>python framedemo.py

 Label Widget in Tkinter:

• The Label is used to specify the container box where we can place
the text or images.

Syntax: name = Label(parent, options)

The options are

• bd: It represents the border width in pixels.

• bg: It represents the background color of the label.

• text: It is set to the text displayed on the label.

• fg: Foreground color of the label.

• height:

• image:

• padx:

• pady:

• width:

The height of the label.

It is set to the image displayed on the label.

Additional padding to the label in the horizontal direction.

Additional padding to the label in the vertical direction.

The width of the label.

Example: labeldemo.py

from tkinter import *

top = Tk()

top.geometry("300x200")

lbl1 = Label(top, text="Name")

lbl1.place(x=10,y=10)

lbl2 = Label(top, text="Password", fg="red",bg="yellow")

lbl2.place(x=10,y=40)

lbl3 = Label(top, text="Age", padx=10,pady=10,bg="green")

lbl3.place(x=10,y=70)

top.mainloop()

Output:

>>>python labeldemo.py

 Listbox Widget in Tkinter:

• The Listbox widget is used to display the list items to the user. We
can place only text items in the Listbox. The user can choose one or
more items from the list.

Syntax: name = Listbox(parent, options)

The options are

• bd: It represents the border width in pixels.

• bg: It represents the background color of the listbox.

• fg: Foreground color of the listbox.

• width: The width of the listbox.

• height: The height of the listbox.

The following method is associated with the Listbox to insert list item to listbox at

specified index.i.e, insert ().

Syntax:

Listbox.insert (index, item)

Example: listboxdemo.py

from tkinter import *

top = Tk()

top.geometry("300x200")

lbl1 = Label(top, text="List of Colours",fg="red",bg="yellow")

lbl1.place(x=10,y=10)

lb = Listbox(top,height=5)

lb.insert(1,"Red")

lb.insert(2, "Yellow")

lb.insert(3, "Green")

lb.insert(4, "Blue")

lb.place(x=10,y=30)

lbl2 = Label(top, text="List of Fruits",fg="blue",bg="green")

lbl2.place(x=160,y=10)

lb1 = Listbox(top,height=5)

lb1.insert(1,"Mango")

lb1.insert(2, "Grapes")

lb1.insert(3, "Banana")

lb1.insert(4, "Berry")

lb1.place(x=160,y=30)

top.mainloop()

Output:

>>>python listboxdemo.py

 Radiobutton Widget in Tkinter:

• The Radiobutton widget is used to select one option among multiple options.
The Radiobutton is different from a checkbutton. Here, the user is provided with
various options and the user can select only one option among them.

Syntax: name = Radiobutton(parent, options)

The options are

• activebackground:It represents the background of the Radiobutton when it is active.

• activeforeground:It represents the font color of the Radiobutton when when it is active.

• bd: It represents the border width in pixels.

• bg: It represents the background color of the Radiobutton.

• command:It is set to the function call which is scheduled when the function is called.

• text: It is set to the text displayed on the Radiobutton.

• fg: Foreground color of the Radiobutton.

• height:The height of the Radiobutton.

• padx: Additional padding to the Radiobutton in the horizontal direction.

• pady: Additional padding to the Radiobutton in the vertical direction.

• width:The width of the Radiobutton.

• Variable: It is used to keep track of the user's choices. It is shared among all the
radiobuttons.

Example: rbtndemo.py from tkinter import * top = Tk()

top.geometry("200x100") radio = IntVar()

rbtn1 = Radiobutton(top, text="red",variable=radio,value="1")

rbtn1.pack()

rbtn2 = Radiobutton(top, text="Green",variable=radio,value="2")

rbtn2.pack()

rbtn3 = Radiobutton(top, text="Blue",variable=radio,value="3")

rbtn3.pack()

top.mainloop()

Output:

>>>python rbtndemo.py

 Text Widget in Tkinter:

• The Text widget allows the user to enter multiple lines of text.It is different from
Entry because it provides a multi-line text field to the user so that the user can
write the text and edit the text inside it.

Syntax: name = Text(parent, options)

The options are

• bd: It represents the border width in pixels.

• bg: It represents the background color of the Text.

• show: It is used to show the entry text of some other type instead of the
string. For example, the password is typed using stars (*).

• fg: Foreground color of the Text.

• width: The width of the Text.

• height: The vertical dimension of the widget in lines.

Example: textdemo.py

from tkinter

import * top =

Tk()

top.title("Address

")

top.geometry("300x200")

lbl=Label(top,text="Address

:",fg="red",bg="yellow")

lbl.place(x=10,y=10)

txt=Text(top,width=15,height=5)

txt.place(x=10,y=40)

top.mainloop()

Output:

>>>python textdemo.py

 Scale Widget in Tkinter:

• The Text widget allows the user to enter multiple lines of text.It is different from
Entry because it provides a multi-line text field to the user so that the user can
write the text and edit the text inside it.

Syntax: name = Scale(parent, options)

The options are

• activebackground:It represents the background of the Scale when it is active.

• bd: It represents the border width in pixels.

• bg: It represents the background color of the Scale.

• command: It is set to the function call which is scheduled when the function is
called.

• fg: Foreground color of the Scale.

• from_: It is used to represent one end of the widget range.

• to: It represents a float or integer value that specifies the other end of the range
represented by the scale.

• orient: It can be set to horizontal or vertical depending upon the type of the scale.

Example: scaledemo.py

from tkinter

import * top =

Tk()

top.geometry("200x200")

lbl=Label(top,text="Price

:",bg="yellow",fg="red") lbl.pack()

scale = Scale(top, from_ = 100, to = 1000, orient = HORIZONTAL)

scale.pack(anchor=CENTER)

top.mainloop()

Output:

>>>python scaledemo.py

 Toplevel Widget in Tkinter:

• The Toplevel widget is used to create and display the toplevel windows which
are directly managed by the window manager.

Syntax: name = Toplevel(options)

The options are

• bd: It represents the border width in pixels.

• bg: It represents the background color of the Toplevel.

• fg: Foreground color of the Toplevel.

• width: The width of the Toplevel.

• height: The vertical dimension of the widget in lines.

Example: topleveldemo.py

from tkinter import *

top = Tk() top.geometry("300x200") def fun():

chld = Toplevel(top)

chld.mainloop()

btn1 = Button(top, text = "Open",width=10,command=fun)

btn1.place(x=50,y=50)

top.mainloop() Output:

>>>python topleveldemo.py

Example: simplecalc.py

import tkinter as
tkfrom functools import partial

def call_result(label_result, n1, n2):

num1 = (n1.get())

num2 = (n2.get())

result = int(num1)+int(num2)

label_result.config(text="Result is %d" % result)

return

root = tk.Tk()

root.geometry('400x200+100+200')

root.title('Simple Calculator')

number1 = tk.StringVar()

number2 = tk.StringVar()

labelTitle = tk.Label(root, text="Simple Calculator").grid(row=0, column=2)

labelNum1 = tk.Label(root, text="Enter a number").grid(row=1, column=0)

labelNum2 = tk.Label(root, text="Enter another number").grid(row=2,

column=0)

labelResult = tk.Label(root)

labelResult.grid(row=7, column=2)

entryNum1 = tk.Entry(root, textvariable=number1).grid(row=1, column=2)

entryNum2 = tk.Entry(root, textvariable=number2).grid(row=2, column=2)

call_result = partial(call_result, labelResult, number1, number2)

buttonCal = tk.Button(root, text="Calculate",
command=call_result).grid(row=3, column=0)

root.mainloop()

 Brief Tour of Other GUIs:

• Python offers multiple options for developing GUI (Graphical User Interface). The
most commonly used GUI methods are

1. Tix (Tk Interface eXtensions):

• Tix, which stands for Tk Interface Extension, is an extension library for Tcl/Tk. Tix adds
many new widgets, image types and other commands that allows you to create
compelling Tcl/Tk-based GUI applications.

• Tix includes the standard, widgets those are tixGrid,tixHList,tixInputOnly, tixTlist and
etc.

2. Pmw (Python MegaWidgets Tkinter extension):

• Pmw is a toolkit for building high-level compound widgets in Python using the
Tkinter module.

• It consists of a set of base classes and a library of flexible and extensible
megawidgets built on this foundation. These megawidgets include notebooks,
comboboxes, selection widgets, paned widgets, scrolled widgets and dialog windows.

3. wxPython (Python binding to wxWidgets):

• wxPython is a blending of the wxWidgets GUI classes and the Python programming
language.

• wxPython is a Python package that can be imported at runtime that includes a
collection of Python modules and an extension module (native code). It provides a
series of Python classes that mirror (or shadow) many of the wxWidgets GUI classes.

UNIT – V
Database Programming

Introduction:
• To build the real world applications, connecting with the databases is the

necessity for the programming languages. However, python allows us to
connect our application to the databases like MySQL, SQLite, MongoDB,
and many others.

• Python also supports Data Definition Language (DDL), Data Manipulation
Language (DML) and Data Query Statements. For database programming,
the Python DB-API is a widely used module that provides a database
application programming interface.

The Python Programming language has powerful features for database

programming, those are

• Python is famous for its portability.

• It is platform independent.

• In many programming languages, the application developer needs to take
care of the open and closed connections of the database, to avoid further
exceptions and errors. In Python, these connections are taken care of.

• Python supports relational database systems.

• Python database APIs are compatible with various databases, so it is very
easy to migrate and port database application interfaces.

Environment Setup:

• In this topic we will discuss Python-MySQL database connectivity,
and we will perform the database operations in python.

• The Python DB API implementation for MySQL is possible by
MySQLdb or mysql.connector.

Note: The Python DB-API implementation for MySQL is possible by

MySQLdb in python2.x but it deprecated in python3.x.In Python3.x,DB

-API implementation for MySQL is possible by mysql.connector.

• You should have MySQL installed on your computer

Windows:

You can download a free MySQL database at

https://www.mysql.com/downloads/.

Linux(Ubuntu):

sudo apt-get install mysql-server

https://www.mysql.com/downloads/

• You need to install MySQLdb: (in case of Python2.x)

• MySQLdb is an interface for connecting to a MySQL database server
from Python. The MySQLdb is not a built-in module, We need to
install it to get it working.

• Execute the following command to install it.

 For (Linux)Ubuntu, use the following command -

sudo apt-get install python2.7-mysqldb

 For Windows command prompt, use the following command -
pip install MySQL-python

• To test if the installation was successful, or if you already have
"MySQLdb" installed, execute following python statement at
terminal or CMD.

import MySQLdb

• If the above statement was executed with no errors,
"MySQLdb " is installed and ready to be used.

(OR)

• You need to install mysql.connector: (in case of Python3.x)

• To connect the python application with the MySQL database,
we must import the mysql.connector module in the program.

• The mysql.connector is not a built-in module, We need to install it
to get it working.

• Execute the following command to install it using pip installer.

 For (Linux)Ubuntu, use the following command -

pip install mysql-connector-python

 For Windows command prompt, use the following command -

pip install mysql-connector

• To test if the installation was successful, or if you already have
" mysql.connector " installed, execute following python
statement at terminal or CMD.

import mysql.connector

• If the above statement was executed with no errors,
"mysql.connector " is installed and ready to be used.

Python Database Application Programmer’s Interface (DB-API):

• Python DB-API is independent of any database engine, which
enables you to write Python scripts to access any database engine.

• The Python DB API implementation for MySQL is possible by
MySQLdb or mysql.connector.

• Using Python structure, DB-API provides standard and support for
working with databases.

The API consists of:

1. Import module(mysql.connector or MySQLdb)

2. Create the connection object.

3. Create the cursor object

4. Execute the query

5. Close the connection

1. Import module(mysql.connector or MySQLdb):

• To interact with MySQL database using Python, you need first
to import mysql.connector or MySQLdb module by using
following statement.

• MySQLdb(in python2.x)

import MySQLdb

• mysql.connector(in python3.x)

import mysql.connector

2. Create the connection object:

• After importing mysql.connector or MySQLdb module, we need to create
connection object, for that python DB-API supports one method i.e. connect ()
method.

• It creates connection between MySQL database and Python Application.

• If you import MySQLdb(in python2.x) then we need to use following code to
create connection.

Syntax:

Conn-name=MySQLdb.connect(<hostname>,<username>,<password>,<database>)

Example:

Myconn =MySQLdb.connect ("localhost","root","root",”emp”)

(Or)

• If you import mysql.connector(in python3.x) then we need to use following code
to create connection.

Syntax:

conn-name= mysql.connector.connect (host=<host-name>,

user=<username>,passwd=<pwd>,database=<dbname>)

Example:

myconn=mysql.connector.connect(host="localhost",user="root",

passwd="root",database=”emp”)

3. Create the cursor object:

• After creation of connection object we need to create cursor
object to execute SQL queries in MySQL database.

• The cursor object facilitates us to have multiple separate
working environments through the same connection to the
database.

• The Cursor object can be created by using cursor () method.

Syntax:

cur_came = conn-name.cursor()

Example:

my_cur=myconn.cursor()

4. Execute the query:

• After creation of cursor object we need to execute required
queries by using cursor object. To execute SQL queries,
python DB-API supports following method i.e. execute ().

Syntax:

cur-name.execute(query)

Example:

my_cur.execute (“select * from Employee”)

5. Close the connection:

• After completion of all required queries we need to close the
connection.

Syntax:

conn-name.close()

Example:

conn-name.close()

MySQLdb(in python2.x):

• MySQLdb is an interface for connecting to a MySQL database server from
Python. The following are example programs demonstrate interactions
with MySQL database using MySQLdb module.

• Note − Make sure you have root privileges of MySQL database to interact
with database.i.e. Userid and password of MySQL database.

• We are going to perform the following operations on MySQL database.

 Show databases

 Create database

 Create table

 To insert data into table

 Read/Select data from table

 Update data in table

 Delete data from table

Example Programs:

To display databases :
We can get the list of all the databases by using the following MySQL query.

>show databases;

Example: showdb.py

import MySQLdb

#Create the connection object

myconn = MySQLdb.connect("localhost","root","root")

#creating the cursor object

cur = myconn.cursor()

#executing the query

dbs = cur.execute("show databases")

#display the result

for x in cur:

print(x)

#close the connection

myconn.close()

Output:

>>>python showdb.py

('information_schema',)

('mysql',)

('performance_schema',)

('phpmyadmin',)

('test',)

('Sampledb',)

To Create database :
The new database can be created by using the following SQL query.

> create database <database-name>

Example: createdb.py
import MySQLdb

#Create the connection object

myconn = MySQLdb.connect("localhost","root","root")

#creating the cursor object

cur = myconn.cursor()

#executing the query

cur.execute("create database Collegedb")

print("Database created successfully")

#close the connection

myconn.close()

Output:

>>>python createdb.py

Database created successfully

To Create table :
The new table can be created by using the following SQL query.

> create table <table-name> (column-name1 datatype, column-name2 datatype,…)

Example: createtable.py

import MySQLdb

#Create the connection object

myconn = MySQLdb.connect("localhost","root","root",”Colleged”)

#creating the cursor object

cur = myconn.cursor()

#executing the query

cur.execute("create table students(sid varchar(20)primary key,sname varchar(25),age int(10))")

print("Table created successfully")

#close the connection

myconn.close()

Output:

>>>python createtable.py

Table created successfully

To Insert data into table :
The data can be inserted into table by using the following SQL query.

> insert into <table-name> values (value1, value2,…)

Example: insertdata.py
import MySQLdb

#Create the connection object

myconn = MySQLdb.connect("localhost","root","root",”Colleged”)

#creating the cursor object

cur = myconn.cursor()

#executing the query

cur.execute("INSERT INTO students VALUES ('501', 'ABC', 23)")

cur.execute("INSERT INTO students VALUES ('502', 'XYZ', 22)")

#commit the transaction

myconn.commit()

print("Data inserted successfully")

#close the connection

myconn.close()

Output:

>>>python insertdata.py

Data inserted successfully

To Read/Select data from table ::
The data can be read/select data from table by using the following SQL query.

>select column-names from <table-name>

Example: selectdata.py

import MySQLdb

#Create the connection object

myconn = MySQLdb.connect("localhost","root","root",”Colleged”)

#creating the cursor object

cur = myconn.cursor()

#executing the query

cur.execute("select * from students")

#fetching all the rows from the cursor object

result = cur.fetchall()

print("Student Details are :")

#printing the result

for x in result:

print(x);

#close the connection

myconn.close()

Output:
>>>python selectdata.py

Student Details are:
('501', 'ABC', 23)
('502', 'XYZ', 22)

fetchall() method returns all rows in the table.
fetchone() method returns one row from table.

print(result)

#close the connection

myconn.close()

Output:
>>>python selectone.py

One student Details are:
('501', 'ABC', 23)

fetchall() method returns all rows in the table.
fetchone() method returns one row from table.

Example: selectone.py

import MySQLdb

#Create the connection object

myconn = MySQLdb.connect("localhost","root","root",”Colleged”)

#creating the cursor object

cur = myconn.cursor()

#executing the query

cur.execute("select * from students")

#fetching all the rows from the cursor object

result = cur.fetchone()

print("One student Details are :")

#printing the result

To Update data into table :
The data can be updated in table by using the following SQL query.

> update <table-name> set column-name=value where condition

Example: updatedata.py

import MySQLdb

#Create the connection object

myconn = MySQLdb.connect("localhost","root","root",”Colleged”)

#creating the cursor object

cur = myconn.cursor()

#executing the query

cur.execute("update students set sname='Kumar' where sid='502'")

#commit the transaction

myconn.commit()

print("Data updated successfully")

#close the connection

myconn.close()

Output:

>>>python updatedata.py

Data updated successfully

To Delete data from table :
The data can be deleted from table by using the following SQL query.

> delete from <table-name> where condition

Example: deletedata.py

import MySQLdb

#Create the connection object

myconn = MySQLdb.connect("localhost","root","root",”Colleged”)

#creating the cursor object

cur = myconn.cursor()

#executing the query

cur.execute("delete from students where sid='502'")

#commit the transaction

myconn.commit()

print("Data deleted successfully")

#close the connection

myconn.close()

Output:

>>>python deletedata.py

Data deleted successfully

DB-API for MySQL in Python

MySQLdb (python2.x)

#Import MySQLdb

import MySQLdb

#Create the connection object

myconn =MySQLdb.connect

("localhost","root","root",”Colleged”)

Mysql.connector(python3.x)

#Import mysql.connector

import mysql.connector

#Create the connection object

myconn=mysql.connector.connect

(host="localhost",user="root",

passwd="root",database="Colleged")

mysql.connector(in python3.x)::
MySQL Connector enables Python programs to access MySQL

databases.
Example: deletedata.py
import mysql.connector

#Create the connection object

myconn=mysql.connector.connect(host="localhost",user="root",passwd="root",

database="Collegedb")

#creating the cursor object

cur = myconn.cursor()

#executing the querys

cur.execute("delete from students where sid='502'")

#commit the transaction

myconn.commit()

print("Data deleted successfully")

#close the connection

myconn.close()

Output:

>>>python deletedata.py

Data deleted successfully

Object Relational Mapping (ORM)
in python

Introduction:

• Object Relational Mapping is a system of mapping objects to a
database. That means it automates the transfer of data stored in
relational databases tables into objects that are commonly used in
application code.

• An object relational mapper maps a relational database system to
objects. The ORM is independent of which relational database
system is used. From within Python, you can talk to objects and the
ORM will map it to the database.

• ORMs provide a high-level abstraction upon a relational
database that allows a developer to write Python code instead of
SQL to interact (create, read, update and delete data and schemas)
with database.

https://www.fullstackpython.com/databases.html
https://www.fullstackpython.com/databases.html

The mapping like this…

– Python Class == SQL Table

– Instance of the Class == Row in the Table

• Developers can use the programming language they are
comfortable with to work with a database instead of writing SQL
statements or stored procedures.

• There are many ORM implementations written in Python, including

– SQLAlchemy

– Peewee

– The Django ORM

– PonyORM

– SQLObject

– Tortoise ORM

• We are going to discuss about SQLAlchemy,it pronounced as
SQL-All-Chemy.

SQLAlchemy:
• SQLAlchemy is a library used to interact with a wide variety of

databases. It enables you to create data models and queries in a
manner that feels like normal Python classes and statements.

• It can be used to connect to most common databases such as
Postgres, MySQL, SQLite, Oracle, and many others.

• SQLAlchemy is a popular SQL toolkit and Object Relational Mapper.
It is written in Python and gives full power and flexibility of SQL to
an application developer.

• It is necessary to install SQLAlchemy. To install we have to use
following code at Terminal or CMD.

pip install sqlalchemy
• To check if SQLAlchemy is properly installed or not, enter the

following command in the Python prompt
>>>import sqlalchemy

• If the above statement was executed with no errors, “sqlalchemy "
is installed and ready to be used.

Connecting to Database:

• To connect with database using SQLAlchemy, we have to
create engine for this purpose SQLAlchemy supports one
function is create_engine().

• The create_engine() function is used to create engine; it takes
overall responsibilities of database connectivity.

Syntax:

Database-server[+driver]://user:password@host/dbname

Example:

mysql+mysqldb://root:root@localhost/collegedb

• The main objective of the ORM-API of SQLAlchemy is to
facilitate associating user-defined Python classes with
database tables, and objects of those classes with rows in
their corresponding tables.

Declare Mapping:

• First of all, create_engine() function is called to set up an engine object
which is subsequently used to perform SQL operations.

To create engine in case of MySQL:

Example:

from sqlalchemy import create_engine

engine = create_engine('mysql+mysqldb://root:@localhost/Collegedb')

• When using ORM, we first configure database tables that we will be using.
Then we define classes that will be mapped to them. Modern SQLAlchemy
uses Declarative system to do these tasks.

• A declarative base class is created, which maintains a catalog of classes
and tables. A declarative base class is created with
the declarative_base() function.

• The declarative_base() function is used to create base class. This function
is defined in sqlalchemy.ext.declarative module.

To create declarative base class:

Example:

from sqlalchemy.ext.declarative import declarative_base

Base = declarative_base()

Example: tabledef.py

from sqlalchemy import Column, Integer, String

from sqlalchemy import create_engine

from sqlalchemy.ext.declarative import declarative_base

create a engine

engine =create_engine('mysql+mysqldb://root:@localhost/Sampledb‘)

create a declarative base class

Base = declarative_base()

class Students(Base):

tablename = 'students'

id = Column(Integer, primary_key=True)

name = Column(String(10))

address = Column(String(10))

email = Column(String(10))

Base.metadata.create_all(engine)

