



## Syllabus

NR23 B.Tech CSE (AI&ML) Syllabus

NRCM

### KNOWLEDGE REPRESENTATION AND REASONING

B Tech III Year II Sem

| Course Code         | Category             | Hours/ Week            |   |   | Credits          | Maximum Marks |     |       |
|---------------------|----------------------|------------------------|---|---|------------------|---------------|-----|-------|
|                     |                      | L                      | T | P |                  | CIE           | SEE | TOTAL |
| 23AM601             | Professional Course  | 3                      | 0 | 0 | 3                | 40            | 60  | 100   |
| Contact Classes: 45 | Tutorial Classes: 15 | Practical Classes: Nil |   |   | Total Classes:60 |               |     |       |

#### Pre-requisites:

1. A course on "Computer Programming and Data Structures".
2. A course on "Advanced Data Structures".

#### Course Objectives: To learn

1. To investigate the key concepts of Knowledge Representation (KR) techniques and different notations.
2. To integrate the KR view as a knowledge engineering approach to model organizational knowledge.
3. To introduce the study of ontologies as a KR paradigm and applications of ontologies.
4. To understand various KR techniques and process, knowledge acquisition and sharing of ontology.

#### Course outcomes: The student will be able to

1. Analyze and design knowledge-based systems intended for computer implementation.
2. Acquire theoretical knowledge about principles for logic-based representation and reasoning.
3. Ability to understand knowledge-engineering process
4. Ability to implement production systems, frames, inheritance systems and approaches to handle uncertain or incomplete knowledge.

#### UNIT-I

The Key Concepts: Knowledge, Representation, Reasoning, Why knowledge representation and reasoning, Role of logic

Logic: Historical background, Representing knowledge in logic, Varieties of logic, Name, Type, Measures, Unity Amidst diversity.

#### UNIT -II

Ontology: Ontological categories, Philosophical background, Top-level categories, Describing physical entities, Defining abstractions, Sets, Collections, Types and Categories, Space and Time.

#### UNIT - III

Knowledge Representations: Knowledge Engineering, Representing structure in frames, Rules and data, Object-oriented systems, Natural language Semantics, Levels of representation.

#### UNIT- IV

Processes: Times, Events and Situations, Classification of processes, Procedures, Processes and Histories, Concurrent processes, Computation, Constraint satisfaction, Change Contexts: Syntax of contexts, Semantics of contexts, First-order reasoning in contexts, Modal reasoning in contexts, Encapsulating objects in contexts.

**UNIT-V**

Knowledge Soup: Vagueness, Uncertainty, Randomness and Ignorance, Limitations of logic, Fuzzy logic, Nonmonotonic Logic, Theories, Models and the world, Semiotics Knowledge Acquisition and Sharing: Sharing Ontologies, Conceptual schema, Accommodating multiple paradigms, Relating different knowledge representations, Language patterns, Tools for knowledge acquisition.

**TEXT BOOKS:**

1. Knowledge Representation logical, Philosophical, and Computational Foundations by John F.Sowa, Thomson Learning.
2. Knowledge Representation and Reasoning by Ronald J. Brachman, Hector J. Levesque, Elsevier.