‘e
o
@
-
v

j

E
; I
f

CE3203PC: STRUCTURAL ANALYSIS-IT

Topic Name: Two Hinged Arches

Mr. G Surya Narayana
Assistant Professor, Civil Engineering
Narsimha Reddy Engineering College (Autonomous)
Secunderabad, Telangana, India- 500100.

NARSIMHA REDDY ENGINEERING COLLEGE }c Movemouststse o
Approved by AICTE

Permanently affilated to JNTUH

UGC AUTONOMOUS INSTITUTION

vour roots 1o success. Maisammaguda (V), Kompally - 500100, Secunderabad, Telangana State, India
Civil Engineering




ANALYSIS OF TWO-
HINGED ARCHES




ANALYSIS OF TWO-HINGED

ARCHES

P c

A typical two-hinged arch is shown : : ; 2

in Figure. In the case of two-hinged !

arch, we have four unknown .
reactions, but there are only three .

equations of equilibrium available. ' »t\- v

Hence, the degree of statical *

indeterminacy is one for two-

hinged arch. y L2 " L2

Fig. a Two-Hinged Arch
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Symmetrical Two Hinge

Figure shows a two-hinged arch hinged only
at the abutments A and B. The vertical

) —-{.Y‘
reactions Raand Rb ,of the course, may be
determined by taking moments about either
hinge.

The horizontal thrust at each support may be
determined from the condition that the

horizontal displacement of either hinge
with respect to the other is zero.

Let M be the beam moment at any section X.

Fig.a

Actual bending moment at the section is given
by

Mx = (M-Hy)

before applying
external load

Fig. b

Civil Engineering
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Therefore, total strain energy stored by the whole arch _
IS _’% e ;'I_n
Wi=[Ms2 ds/2H B 2
- =t
={(MHyds /2EL A
By the first theorem of castigliano the horizontal end %»Q
relative to other is given by dWi/dH.
Since such a relative horizontal displacement of one
end with respect to the other end is not possible in | Mt
—
Fig.4

two hinged arch.




OWi/ O6H=0
OWi/0H=]2(M-Hy)(-y)ds/2EI

=[Myds/2EI-H]y?ds/2EI=0

H=/Myds/2El/[y*ds/2EI
If the arch is of uniform flexural rigidity El,

H=|Mvds
Jy2ds
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TEMPERATURE EFFECT

Consider an unloaded two-hinged
arch of span L. When the arch
undergoes a uniform temperature
change of T ° C, then its span would
increase by o LT if it were allowed
to expand freely (Fig a). a is the co-
efficient of thermal expansion of the
arch material. Since the arch is
restrained from the horizontal
movement, a horizontal force is
induced at the support as the
temperature is increased.

e
)



Considering the end B as a roller end with an external horizontal force H applied at B, the
bending moment at any section is given by

Mx= -Hy

Strain energy stored by the arch =Wi= _[ Mx2ds/2€El

-|H2y2ds/2E]
By the first theorem of castigliano,
Inward horizontal movement of B =5

5 =owiloH

- [2H(y2ds/2E1)
5 =H |y2ds/El




The condition that H may represent the horizontal thrust for the two hinged arch subjected to the

rise of temperature is,

o =oTl
H [y2ds/El = aTI

H= oTI/Jy*ds/El

the arch section is of uniform flexural rigidity,

H=E| oTI/y%ds




* Archis a curved structure or humped beam,
primarily bears the applied loads by
compression.

* The hinge introduced anywhere in the arch
makes the structure determinate as
Both supports are assumed to be hinged

» Hinge introduced in the arch provides a further
equation to analyze the arch i.e., moment of all
forces about hinge is equal to zero.




3 z ',
- -
[ Q -
g W

soe000O
=

Introduction

* Normally the third hinge is introduced at the

top most point on the arch curve known as
crown.

Hinge at Crown




Introduction

* One can solve the arch as beam if we know
the horizontal reactions at various supports.

* With the help of third hinge, we can easily
determine the horizontal reactions and hence
the arch can be analyzed.
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Arch Formula’s

» Consider an arch ACB, hinged at A, B and C.
 /Is the horizontal span and y. Is central rise.

C Hinge at Crown

y.= Rise

b
-




Arch Formula’s

* Obtain the vertical reactions Vyand Vg at the
ends as usual. To find the horizontal thrust,
MC the moment at central hinge must be

ZEIlO.
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General Derivation :

* To find H the horizontal
thrust, M the moment 3f, =y, +H.y, —8
at central hinge C must

be known. H (1)
X.-

 We can find moment at
any cross-section X of M, - +y — —2)
the arch whose
coordinates are (X, y).
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General Derivation :

* The vertical and
horizontal actions on
the section, considering
the portion AX arc,

 Vertical reaction can be

find out by vertical = —W1=-JV2
shear force at the

section as for a straight
horizontal beam.

 Horizontal thrust at both H=H
ends IS same.




General Derivation

(0%
P —ffcost+Vsin6 (3) Fx’{g
7 2
A sink— V cost (4)

EO
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General Derivation e

« Draw the tangent at X
to the centre-line of the P C cosd+ Vsink (3)
archand let its

Inclination to the
horizontal must be 6.

* Resolving Vand H
normally to the section T V2+Hz2.or../P2+F" —9)
and tangentially, I.e.,
along the tangent at X)

e If theresultant T is

required, use eq.5

F —f sin6—V cos6 (4)
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Parabolic Arch

* |f the three hinged arch is parabolic in shape
and If it carries a uniformly distributed load

over the entire span,

every action of the arch will be purely in
compression,

resisting only a normal thrust;

* there will be no shear force nor B. M. at the
section.
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Parabolic Arch

* The linear arch for a given load system on an
arch represents the y-diagram.

X With a uniformly distributed load over the
entire span, the y-diagram is a parabola.

* The linear arch which Is parabolic will, then,
have three points (at the hinges) in common
with the centre-line of the actual arch, which
IS also parabolic.




Parabolic Arch

o EWS Qgﬁﬁlarch will therefore be identical with

arch.
X For any other loading on a parabolic arch,

there will be three straining actions, P, F and
M at any section.

* To obtain the bending moment, it will be

necessary to calculate the rise at any section
of the arch.




It may also be note

that at quarter
points, where z=/
the rize Ay




Circular Arch
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Circular Arch e

* |f the centre-line of the arch is a segment of a
circle of radius R, It iIs more convenient to
have the origin at D, the middle of the span.
Let (X, y) be the coordinates of a section.

17




Circular Arch

2
AO OB R y A—y,)=L
4
AD —DB — _ AD 1
2 sihro —
DC AO 2A
RS oD (A—v)
¥ —&® + —R — )+ y cOST
oy =e Xx=0X sin8 —#Asind
07€2 = OY “+ XY y=0Y —OD —R cos@d —Ac0s0
RP=x"+{(R-y.)+y) y = /t(«0»B —€050)
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Example 01 :

« Athree hinged Parabolic arch, at the crown
and springings has a horizontal span of 48ft.
It carries UDL of .75 Ton/ft run over the left
hand half of the span. Rise = 10". Calculate
the
Reactions
Normal Thrust

Shear force and BMat 6, 12, 30ft from left hinge.




0.7S ton/ft X

NN n N nrnnnn
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Solution .
Va=13.5T; Vg = 4.5
T: H=10.8T
y = 5/288*x(48-x), 0 = 5/288*(48-2x)
X y 0 cosO | sin8 M Vv P F
6 4.375 32° 0.848 | 0.529 | -20.25 9 13.93 1.91
12 7.5 220°37' | 0.923 | 0.348 -27 4.5 11.7 0
20.25 4.5 11.49 2.2

21
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Example 02

 Circular arch of span 80 ft with central rise 16
ft Is hinged at crown and supports. Carries a
point load of 10 tons 20ft from left support.

* Reactions
Normal Thrust
« Maximum and Minimum BM




Solution
VA — 7 o 5

T, VB —
2.5T:H =

6.25 T

/4t
y,(2 R—YC)—

RZ=x2+{yl(R )t




Example =

6

The three-hinRcd open-spaudrcl arch bridpc shown iii the figure bclou has a
parabolic shape and supports the unifomi load . Show thatthe parabolic arch is
subjected only to axial compression at an intermediate point D along its axis.

Assume the load is iuiifoivily tmnsmitted to the archribs.

7 kKN/m
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SOLUTION

2t0 kN

S EM,=0:  C,(30)210(15) 0

C —3105IN

+1 £P =0: d ,—210+105=0
At,—t05 kN




S IMp=0:  —105(7.5)+105(15)-C,(7.5)=0

C.=105kN

ZF, -0 B:—105k.Y

B, —105+105—0
B —0




Arch segment BD

Asection of the arch taken through point D.x —7.5m y =-7.5(7.5%)/(t5)* = -1.875m:
Is shown in the figure. The slope of the segment at D is

dv -15

tanf = - = =05, 0= 26.6s

l‘:\: : XD

— IF =0 105 - Np cos 26.6° - Kpsin 26.6e =0
<f -8 -52.5+ Npsin 26.6°- Kpcos 26,90 0
G M, =0: MQ +52.5(3.75) - 105(1.875) = 0
N —317.40kN. V —0, | —OBkN



(&)

Alternate Method

AR

Arch segment BD :
A section of the arch taken throiigbpointD.x- 7.5m, y - -7.5(7.5%)/(15)2=-1.875 m,

IS shoWn in tlle figure. T6e Slope Of the Segment at D E

dv. =15

tan@=""="""4 .. =05 6= 26.6
gax @3)"
75iv = (7.5)(7)= 52.5kN B.
T =Tg= (15)+(25) Ng=25 kN

Notes : Since the arch is a parabola. their arc no
e 7._=1174kN shear acidbending moment, oolyl, E present
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The three-hinged tied arch is subjected to the
loading shown in the figure below. Detemiine the
force in members CA rind CB. Tbc dashed member
GF of the trust is intended to carry no force.

-~
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NIsT="F
0= SP+51—07 —Si—*& 0- 7
NYsT="7

0=)s1-(0)0z-(E)s1-ZNT  0="NI

|'mg i mg'l'tug"'mg"l

-
w

S

NOILI'TOS




o w

25KkN

A -0 N (5)—25(6)+15(3)=0
F —2L0kN
ZF,=0: Cg+21=0
Cq- 21.0KkN
4 3F =0 2515 20+C' =0
Cl—10kN
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20 kN
' —
F.‘-.{‘ Fe 0
FC‘L
Joint G :
:' ZFI =0 FHG - 0
L F =0 F,.-20=0
F --20kN (C)

20 kN
Fry
18.4
Feg
10 kN
Joint C :
-*7ZF,=0:
-N  c0s18.43-N
+1 ZF =0:
N sinl8.43 - Ny
Thus,

F —475kN (T).
F - -26.88kN (C)

cos18.43-21=0

cosl8.43-20 10=0



1.2 Moment Distribution method




Outline of the presentation

Introduction to moment distribution method.
Important terms.

Sign conventions.

Fixed end moments (FEM)

Examples;

(A) example of simply supported beam

(B) example of fixed supported beam with  sinking of
support.



The moment distribution method was first introduced
by Prof. Hardy Cross of lllinois University in 1930.

This method provides a convinient means of analysing
statically indeterminate beams and rigid frames.

It is used when number of reduntants are large and
when other method becomes very tedious.



Important terms

1. Stiffness

The moment required to produce a unit rotation (slope)
at a simply supported end of a member is called
Stiffness. It is denoted by 'K'.

A) Stiffness when both ends are hinged.

B) Stiffness when both ends are fixed.



A) Beam hinged at both ends:

(Applied
moment)

M, 3EI
O L
. _ _ . _ - 3ET
i.e., the moment required at A to induce a unit rotation at A is 7

(when the ftar end B is free to rotate)

This moment, i.e.,, moment required to induce a unit rotation,
is called stitfness (denoted by k).




B) Beam hinged at near end and fixed at far end:

M
(Applied
moment)
2ET M, 4EI
M =T(29.43+0) — 0, L
4ET
i.e., the moment required at A to induce a unit rotation at A is 7

(when the far end B is fixed against rotation)



A moment applied at the near end induces at a fixed far end a
moment equal to half its magnitude, in the same direction.

Half of moment applied at the near end is carried over to the fixed
farend.

Carry over factoris 1/2.




Cont..

Distribution factor (D.F.)

"he factor by which the applied moment is
distributed to the member is known as the
distribution factor.

| - far-end pined (DF = 1)
. Figure: - far-end fixed (DF = 0)



Cont..

Several members meetinge at a joint

3E,7,

M, = & =i 6
M, =2t o
. -
a, =L oo
L,
AE,T
j\r‘ff;l_ — 4- 4 H: ;"F-fl-H
4

MM, AL - MG AT, <

fo -

o Dl D iy



Cont....

- “ L R M =5 ar
k+k +k+k >k >k

M,

A moment applied at a joint, where several members meet, will be
distributed amongst the members in proportion to their stiffness.

M, AL

distribution factor




Signh Conventions

A) Support moments :
clockwise moment = +ve

anticlockwise moment = -ve

B) Rotation (slope):
clockwise moment = +ve

anticlockwise moment = -ve



Cont...

C) Sinking (settlement)

. The settlement will be taken as +ve, if it rotates the
beam as a whole in clockwise direction.

. The settlement will be taken as -ve, if it rotates the
beam as a whole in anti-clockwise direction.



Fixed End Moments

. The fixed end moments for the various load cases is
as shown in figure;

. a) for centric loading;




Cont..

b) for eccentric loading, udl,rotation,sinking of
supports & uvl

l r
el 2 / 7, '-',
o C ;,f,; /é ) a 0
. 77 ZZ ~

| t b |
b j

£/ e L

L 33T
— C Z Z ) o 4 :,

12
- z >




Cont..

Yo

M,

L* a * b L*
-



Cont...

. Fixed end moment for sinking of supports : 6EIS

T >




Example
1

il 60N R0V

20/N/m ;

Fixed end moments

wi> Pl 20x6° 40x6
+— = +

~FEM o —FEM_ — =60+30=90kNm

12 8 12 8
—FEM,. =FEM,, = ‘Ii + ]; L 201’;6- + 60; ® — 60+45=105kNim

_FEM,_, = FEM,, = }; [ _80x6

= 60/Nm

-






A B C D
0.429 | 0.571 0.571 | 0.429
-90 +90 | -105 +105 | -60 +60
+90 +45 -30 -60
0 +135 | -105 +105 | -90 0
-12.87 | -17.13 -8.565 | -6.435
-4.283 -8.565
+1.837 | +2.445 4.89 | 3.674
+2.445 1.223
-1.049 | -1.396 -0.698 | -0.524
0 +122.92 | -122.92  +93.29 | - 93.29 0

Distribution ftactors
Fixed End Moments

Release A& D,
and carry over

Initial moments
Distribution
Carrv over
Distribution
Carry over
Distribution

Final Moments



216 ~nt distributi
by TMOoIne on m
Example-5 : Analysce the beam shown in fgure (G.U., Dec. ;:;;.:‘
and draw SFD and BMD.
Solution :
25KN \‘
15KkN
} . S =
1Tm 2m
? 2 2m M 3>m %’
S gard 2
FIG. 3.21
(a) Fixed End Moments (FEM) :
My AB = . N _15x 4 - —7.5 KN.m
8 8
M BA — +-%’i 7.5 kKN.m
MeBC = - W - -8 222 _ 12 kN.m

My CIB s 7 S 12 kN.m

MeCD = — 2

M DC = +




() Moment i) -

o o.27 O. 7 ' O.

Sum

-7.5 7.5 - YAy 12

O 1.21 3.28 ~0.59 | —0.30 o

Balance

o 0.08 0.22 ~1.170 | -0.54

o.eo: —~ o _0.30% —a1 .64 of><:=fo.,5

C.O.

O Balance

O 0.15 0.40 —0.07 -0 .04
—

— — -—
0.043 S LO.55 e« —=0.11 o _0.27| c.o.

O Balance

" === —
0.075 o |-o.03s~ —=o0.20 o _0.02 O,

o 0.009] 0.026 —0D.13 -0 .07 (8] Balance
—65.79 8.95 —-8.95 12.06 | -12.06 5.11 l Final moments
R o
Mpp = —6.79 kN.m. \_-3 - N

MBA = 8.95 kN.m. MBC = — 8.95 KN.m




Structural .

—_—
— -

16.67

B.M.DIAGRAM

FIG. 3.22



DF,, = =0:333 DFy. =

DRCFBY
HDCRFY

Support B settles by 10 mm. E =200GPa, I=50x10°mm*

20 kN

3 kKN/m

3EI

4 m 4 m 8 m

3(2EI/8) 4(3EI/8)

3(2EI/8) +4(3EI/8)

3(2EI/8) +4(3EI/8)



R/ ZOXG ></2 3 82
Q 3 12 12

. _E'f {5.

6 X2 x200 x10" x30 10° 10*“X10X10%*

- —20-18.73 —38.75

6x2x200x10" x50x10° x10*'?

10x 10*

=20— -
S_.
—20—18.75—1.25 kNm..



e 1

| 6x3%200x10° <S50=<10° <107 %x10%10~
——16+ -
=—18+28125=12125FVee

wi®  OEIS
12 L

¢ 6x3x200 x 0°x50 x 0°x 0*?x10 x10*

=10+ 28.125=44.123



A C

1] \m 0667 5

-38./5 +1.25 12125 44 125 | Fixed End Moments
Release A, and
38.75 19.375 carry
0.0 20.62512.125 44125 Mo
-10906| -21 844 0 «Stribution
-10.922 O*N
0.0 + 9.719] -9.719 +33.203 | Final Moments
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/" Introduction N

® Cables are used as temporarily guys during the erection and as permanent guys for

supporting masts and towers.

e Cables are used in the suspension bridges. A suspension bridge consists of two cables
with the number of suspenders (hangers) which support the roadway.

® Figure 1 shows a typical suspension bridges in which the cable is supported over
towers.

Anchor cable
Suspender Cable

Suspender
™ . i1 \’ /
' wa
[~ Tower N Roadway Road ¥
mé ' —Span — l

o+ River - . y
TUTY TR Cross-section

Elevation

GCEK, Bhawani . : b
AR Eigure 1: Atypical suspension bridge -




e

® Toreduce the bending moment in the towers anchor cables are provided.
® The central sag or dip of the cable varies from (%) th to (%) th of span.

® The cables will be having either guided pulley support or roller pulley support
as shown in Figure 2.

Anchor cable

Suspension Suspension
cable | Q

Tower

7

a) Guided pulley support b) Roller pulley support

Anchor cable

Figure 2: Support system

* In case of pedestrian suspension bridges, suspenders support the roadway
directly.

GCEK, Bhawanipatna




e For heavy traffic, large spans stiffening girders are provided to support the

roadway as shown in Figure 3.

® Laksman Jhula (Rishikesh) and Howrah bridge (Kalkata) are popular

example of suspension bridges.

® Since, the number of suspenders are very large, the load on the cable may

be taken as uniformly distributed load.

/\ T T T

TN

| t———- Stiffening girder

@ GCEK Bhawanipatna - Figure 3: Equilibrium of Cable




" Equilibrium of Cable

® Acable is a flexible structure which can not resist Bending Moment.

® In deflected shape of cable, the bending moment at any point of cable is
zero which is achieved by developing horizontal thrust at the support.

i ",

o
Y
Se

Figure 4: Equilibrium of Cable

» Consider the cable shown in Figure 4, which is subjected to various loads.

 Let the horizontal force developed at supportis H

 Let the vertical reactions at supportAand B is V and Vg respectively.

@ GCEK, Bhawanipatna
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At section X-X, let the deflection be ‘y’
® Moment at section X-X = My = Vax —W; (X-a;) — W, (X-a,) —HYy
® Since the cable is flexible, My, =0
® Therefore, Hy =Vax—W; (x-a;) — W, (X-a,)
® Hy=Beam Moment

® The loaded cable can be analyzed by using above equation at any segment of

cable.

@ GCEK, Bhawanipatna




4 Cable Subjected to Concentrated Loads

» Consider the cable of length L spanning over a horizontal gap | subjected to the

concentrated loads as shown in Figure 5.

« Let Vapand Vg be the vertical reactions and H be the horizontal reactions at

supports.

Figure 5: Cable subjected to concentrated loads

@ GCEK, Bhawanipatna
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° GCEK, Bhawanipatna
. /

® The equilibrium conditionis HY = Mpeam

- M
r - beam
or Yy —

® Hence, the deflected shape is similar to the beam moment diagram.
e If My, M, and M3 are the beam moments at load points 1, 2 and 3 respectively.

® Yy, Y, and y; are the deflections at 1, 2 and 3 respectively

® Y, Y, and y; can be found using above equation i.e. y; = % Y, = % and y, = %

e If the horizontal thrust is known or position of cable at any one point is known, the
deflections at all points can be calculated.

® The actual length of the cable is the sum of lengths of each segments.

e After finding the deflections, slope of the various segments can be found.

® Using equilibrium equations of load points 1, 2 and 3, forces in the various segment

of cable can be found.




e

Cable Subjected to a Uniformly Distributed Load

® Let a cable of length L be supported at points A and B which are at a

horizontal distance | and are at the same level as shown in Figure 6.

® The cable is subjected to a uniformly distributed load w/unit horizontal

length.

Fa Fp
b\t\ X h ot T
1‘ e
X
AI_\A\ s B o, 5 w
= w/unit length

@ GCEK, Bhawanipatna

Figure 6: A typical cable subjected to udl




® The vertical reactionsat Aand B isVaand Vg

VA:VB =M;—l

e Taking moment at central point and equate to zero (Though the bending

moment is zero at all points in the cable)

Hh-"xl+wxl=0

2 2 2 4
2
or H=%
8h

Va

@ GCEK, Bhawanipatna Figure 7: Free body diagram of cable
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@ GCEK, Bhawanipatna

® If Vis shear force at any section X-X distance x from A as shown in Figure 7.
Then, T=+V2 + H2

Voo = Vgl at support

merstore. o= (5 () <% (% 1)

2
Vmin = 0 at centre

T . =v0+ H2=H

® At any point, since cable can not resist shear

V=Tsin0O

e Now to find the shape of the cable, consider the portion on left side of section X-
X. Let 0 be the slope. Then,

YH=0, Tcos6=H
V=0, Tsin®=Va—WX

™~




or Tsinez‘?—wx
1
Therefore, tan@= [‘gf _ Wx] X
i dy = [wl _ ] x 1
I.€. 7 [ i
2

Therefore, y= [Wl x — WX J x 1

2 2l H
or y= wx(l—x)

2H

Substituting the value of H = % we get

y = wx(l—x) X 8h — 4hx(l—x)
2 wl2 12

® Which is a parabola. Thus the shape of the cable is a parabola.

e Tofind the length of the cable in any curve (L)

e s
dx

Therefore, Length of the cable=L = [(ds =1+80
GCEK, Bhawanipatna




Forces on Anchor Cables and Towers

® The forces on anchor cable and towers depends upon the type of support given

to cables.

There are two types of support:
® Guided Pulley Support
® Roller Support

Guided Pulley Support:

* Let the inclination of main cable to horizontal be
‘9.

* Inclination of anchor cable to horizontal be ‘o’

« Assuming the pulley as friction less.

* Tension in anchor cable = tension in main cable.

e Letthetensionbe T

@ GCEK, Bhawanipatna

/(l\/r 0
T

Anchor
3/'} C?\khl:‘ ™~ Main cable

T

W7 ot M

Tower

ANNANNNANNNNNRRNANNANANNNNNNY

Figure 8: Guided Pulley Support

™~

/




Vertical load transmitted to tower = Tsin O + T sin o,

Vertical load transmitted to tower =T (sin 0 + Sin o)

Horizontal load transmitted to tower = T cos 0 — T cos o,

Horizontal load transmitted to tower = T (cos 6 — c0S )

Bending moment on the tower = Horizontal force on tower x Height of tower

Bending moment on the tower =T (cos 0 — cos a) X h;

Roller Support:

 In this case, the suspensible cable
and the anchor cables are
connected to a saddle resting on a

tower.

GCEK, Bhawanipatna

a 0
Q Q)

T,

Anchor . T
cable Main cable

Tower

RO
Figure 9: Roller Support




e

® In this arrangement, the two cables need not have the same tension.
@ Let T be the tension in main cable and T, in the anchor cable.
® Assume saddle have frictionless rollers

T,coso=Tcos0

T1 =T (cos 9)

cos

® Since, saddle is having frictionless rollers, there is no horizontal force and

hence, no bending moment on tower,

Vertical force on the tower =Ty sina+ T sin 6

@ GCEK, Bhawanipatna
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/ Q1. A bridge cable is suspended from towers 80 m apart and carries a load of 30 kN/m on\
the entire span. If the maximum sag is 8 m, calculate the maximum tension in the cable. If
the cable is supported by saddles which are stayed by wires inclined at 30" to the
horizontal, determine the forces acting on the towers. If the same inclination of back stay
passes over pulley, determine the forces on the towers.

"’,\ VB
H '__t {0 m J fiIT., H

A ™~ 83m ]

-

“~N TN = L AN\ A

36 kN/m

Figure 1(a): Example 1

® Reaction at both ends =V, =V = W7l = @ = 1200 kN

@ For horizontal reaction, taking moment about central point ‘C’

94 GCEK, Bhawanipatna
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HX8_WLXZ+WLXl:O
2 2 2 4

2 2
or H=Ww =30x80" - 13900 kN
64 64

® Maximum tension occurs at support

T .. =V2 + HZ = /12002 + 30002
Tomax= 3231.1 kN

H =T,y COS 6

6 =cos™! (?) =cos~! (33;(;01(_)1> =21.80°

@ GCEK, Bhawanipatna

,/“\‘/ N
Tl =

Tinax

Figure 1(b): saddle support

Figure 1(c) : Pulley support




e

If the cable is supported by saddle (Figure 1b)
The anchor cable tension T, can be found by equating horizontal tension
T, €0S 0 = Thax COS O
T, x cos 30°=3231.80 x cos 21.8(
T, =3464.1 kN
e There is no horizontal force on the tower.
@ The vertical force on the tower = T, Sin o + Tax SIN O
Vertical force = 3464.1 sin 30°+ 3231.1 sin 21.80°= 2931.98 kN
If the cable is supported over pulley (Figure 1c)

e The vertical force on tower = Ty (SiN o + Sin 0)

Vertical force = 3231.1 (sin 30+ sin 21.80 y=2815.48 kN

e Horizontal force on the tower = Tmax (cos 6 — cos o)

Horizontal force = 3231.1 (cos 21.8°- cos 30°) = 201.82 kN
GCEK, Bhawanipatna
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/ Q2. A cable of span 120 m and dip 10 m carries a load of 6 kN/m of horizontal span. \
Find the maximum tension in the cable and the inclination of the cable at the support.
Find the forces transmitted to the supporting pier if the cable passes over smooth
pulleys on top of the pier. The anchor cable is at 30 ° to the horizontal. Determine the
maximum bending moment for the pier if the height of the pier is 15 m.

o = 30° 0 A
L T=T .
H‘_f 120 m t max -
1 hl =15m
6y
AN NI AN s ~
= 6 kN/m
. R : 1
Figure 2 (a): Example 2 ARRRRRRRRRRR

Figure 2 (b): Forces on pier
® Due to symmetry, Reaction atAand B Is

Vp=Vg =" =220 =360 kN

° GCEK, Bhawanipatna
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e

e Taking moment about central point C,

Hx h-wixt +wlxl =
2 2 2 4

H = le — 6X120%x120 — 1080 kN
8h 8x10

T = VV2 + H2 =+/3602 + 10802 = 1138.42 kN

H _ 1080
T 1138.42

max

0=18.435

CoS 0 =

e Horizontal force transferred to pier = Tp,ax (C0s 18.435° - cos 30°)
e Horizontal force transferred to pier = 1138.42 (cos 18.435°- cos 30 ¥ = 94.099 kN

e Maximum bending moment in the pier = H h; =94.099 x 15 = 1411.49 KkNm
e Vertical force on the pier =T (sin 6 + sin o) = 1138.42 (sin 18.435°+ sin 30°)

=929.21 kN

@ GCEK, Bhawanipatna




/ Q3. A light flexible cable 18 m long is supported at two ends at the same Ievel.\
The supports are 16 m apart. The cable is subjected to uniformly distributed
load of 1 kN/m of horizontal length over its entire span. Determine the
reactions developed at the support.

VA VB
A [\’\h\ h=? _,A/‘44 B
B = v ? i
& L=18m

\&A\x /J /\/\‘/'\ Z A
| kN/m

Figure 3: Example 3

® The length of thecable=L =1+ %x’i
where, | = span, h = central dip

h2

e Applying this we get, 18 = 16 + %x =

or h=3.464m

G GCEK, Bhawanipatna
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@ Let H = horizontal force, and V = vertical reaction at A

—wl — 1x16 _—
VA_W7‘ - =8 kN

H x 3.464 = W = 1x162
8 8

H =9.237 kN

Toax = VV2 + H2 ==+/82 4+ 9.2372 = 12.220 kN
@ Inclination ‘0’ with horizontal

Tmax COSO =H

0 = cos™1 (L> =cos~! (%) =40.89%

max
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" Introduction

Figure 1.

e Consider the suspension cable stiffened with a three-hinged girder as shown in

e The girder can be a heavy beam or a truss which has three hinges two at the
ends and one at the centre.

e The cable and the girder are connected by a number of hangers/suspenders.
e Since the number of suspenders are very large, the load on cable or girder, due

to the forces in the suspenders, may be taken as uniformly distributed load.

A : B
‘\\R . AA
N
2l C //‘/‘
R — ——— ~ —
Al § * v Cl v EBI
Wy W W,

Figure 1: Typical suspension bridge with three-hinged stiffening girder
GCEK, Bhawanipatna




/ VB
g l . -
H -
Al _I A |2
1
C
A A
we/unit length

ARRRARRFENRRRRARR
Lot L70 femek

® Let the uniformly distributed load = w, per unit horizontal length
® Let C’is the central hinge of girder
® Let the uniformly distributed load w, exerted by suspender on the girder

® The beam may be analyzed for the given load along with w,

@ GCEK, Bhawanipatna




Due to w, alone,

e The bending moment at section x-x = Vléi(l — X)

wl2

® Maximum bending moment at C = : (Hogging moment)

® The shear force at section X-x = -W, (7 — x)

® The cable can be analyzed for the uniformly distributed load w,

@ GCEK, Bhawanipatna




/ Q. A three-hinged stiffening girder of a suspension bridge of span 100 m is subjected to \
two point loads of 200 kN and 300 kN at the distance of 25 m and 50 m from the left
end. Find the shear force and bending moment for the girder at a distance 30 m from

the left end. The supporting cable has a central dip of 10 m. Find also the maximum
tension and its slope in the cable.

N RE
HI 100 m > H
"R M o B
10 m
C

YYY \ YVYY

wo/unit length

AT,
R A

Figure 3

° GCEK, Bhawanipatna
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4 N

o Let the suspenders exert a uniformly distributed load of w, per unit horizontal
length as shown in Figure 3.

e Reactions at A and B due to a given loading only be denoted as R"4 and R'g,
respectively.

e Tofind out the reactions in the girder, take Y M'A =0
R’z x 100—-200 x 25-300 x50=0
R’s =200 kN
o Using>V=0,FindR's
R'A+ R’z =200 + 300
R’A =300 kN
e Moment at the central hinge of girder (C) =0 (3> M. =0)

e Bending moment due to given loading + Bending moment due to w, =0

° GCEK, Bhawanipatna
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a I wl?
14 L e :O
RBZ :

200 x 190 = wex1002 (After simplification)
2 8

w, = 8 KN/m

e Shear Force and Bending moment at a distance 30 m from the left end,

e SF = SF due to given loading + SF due to w,

SF=R" -200 - We(ﬂ_ 30)

A 2
=300 — 200 — 8(50-30)
=-60 kN =60 kN (4)

e BM = Moment due to given loading + Moment due to w,

BM =300 x 30— 200 x 5 - %X (] — x)

BM =300 x 30 —200 x 5 - %311(100—30):-400kNm

GCEK, Bhawanipatna




/ e BM =400 kN (Hogging)
e For the analysis of cable
e First finding vertical reactionatAand B i.e. Vaand Vg, Take YV =0

vA:v =w xi{=8x190=400kN
e

B 2 2

® For getting horizontal reaction, taking moment about C, we get

HXh:Welxi-Wexixizwel
2 2 2 4 8
H x 10 =" 8’“800 = 10000
or H=1000 kN

e Maximum Tension in the cable = Ty = VV24 + H2

Trax = V4002 + 10002 =1077.033 kN
@ Its slope to horizontal is Ty cOS 6 = H

1000

GCEK, Bhawanipat = -1( ):21.80’
wanipama 0 = COS 033
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Introduction

 What is statically DETERMINATE structure?

— When all the forces (reactions) in a structure can be determined from
the equilibrium equations its called statically determinate structure

— Structure having unknown forces equal to the available equilibrium

equations
/
/
No. of unknown =3 No. of unknown =6
No. of equilibrium equations = 3 No. of equilibrium equations = 6

3 = 3 thus statically determinate 6 = 6 thus statically determinate



Introduction

* What is statically INETERMINATED structure

— Structure having more unknown forces than available
equilibrium equations
— Additional equations needed to solve the unknown reactions

M

No. of unknown = 4 No. of unknown = 10

No. of equilibrium equations = 3 No. of equilibrium equations = 9

10 > 9 thus statically

4 > 3 thus statically Indeterminate ,
Indeterminate



Indeterminate Structure

Why we study indeterminate structure

— Most of the structures designed today are statically
indeterminate

— Reinforced concrete buildings are considered in most cases
as a statically indeterminate structures since the columns
& beams are poured as continuous member through the
joints & over the supports

— More stable compare to determinate structure or in
another word safer.

— In many cases more economical than determinate.
— The comparison in the next page will enlighten more



Contrast

Indeterminate Structure

Determinate Structure

Considerable compared to
Indeterminate structure

Generally smaller than determ
structure

Inate

C
O
g
(@)
Q
94—
Q
Q |
48E| ] 192EI
High moment caused thicker Less moment, smaller cross sec| tion
member & more material nee| ded & less material needed
wn 2
(Vp)]
L 1
m | PL\/




Contrast

Indeterminate Structure Determinate Structure
* Support will not develop the *xWill develop horizontal force &
horizontal force & moments|that moment reactions that will hold
necessary to prevent total cgllapse the beam
° *No load redistribution * Has the tendency to redistribute
O its load to its redundant supports
Y *When the plastic hinge formed *When the plastic hinge formed
O certain collapse for the system the system would be a
8 determinate structure
G P P
O :
=
>
=
f" Plastic Hinge Plastic Hinge
Vg




Contrast

Indeterminate Structure

Determinate Structure

Temperature

No effect & no stress would be
developed in the beam

Serious effect and stress would
developed in the beam

W N

be

Differential

Displacement

No effect & no stress would be
developed

Serious effect and stress would
developed

be




ANALYSIS OF STATICALLY INDETERMINATE
STRUCTURES

MATRIX STIFFNESS METHOD OF ANALYSIS



MATRIX STIFFNESS METHOD OF ANALY SIS

N &-.
rf~lrg:' v{‘-.,‘-’ff‘ ST -
3% 5 f-“’,v."'.'c":'.' b AAETN

F =KD {'F}H}:l = [K]ﬂxﬂ{ﬂ}ﬂxl

D =F/K {D} = [K]"'{F}



LOCAL COORDINATE SYSTEM

O,', Vi

. M;;, 0;;, = bending moments and corresponding
rotations at ends i, j, respectively; N;; u;; are axial forces and
corresponding axial deformations at ends i, j, respectively; and Q;
v;; are shear forces and corresponding transverse displacements at
ends i1, j, respectively. The directions of the actions and movements
are positive when using the stiffness method.



DEGREES OF FREEDOM




MEMBER STIFFNESS MATRIX

The structure stiffness matrix [K| is assembled on the basis of the
equilibrium and compatibility conditions between the members. For
a general frame, the equilibrium matrix equation of a member is

{P} = [Ke]{d} (1.9)

where {P} is the member force vector, [K,| is the member stiffness
matrix, and {d} is the member displacement vector, all in the mem-
ber’s local coordinate system. The elements of the matrices in Equa-
tion (1.9) are given as

r]\’,' y PK]] O O K14 0 O i 'u,~‘
Q; 0 Kun Kiz 0 Ky Ky Vi
M; Kz Kizz3 0 Kz Kz 0;

Pr=9n (iKI=|g, 0 0 ku 0 o0 =1y

=
oo
3
N
R
o
'S
S

2



ELEMENS OF MEMBER STIFFNESS MATRIX
AXIAL LOADING

A member under axial forces N; and N, acting at its ends produces
axial displacements u; and u; as shown in Figure 1.10. From the
stress-strain relation, it can be shown that

EA

N,‘ :T(uj—u,-) (llOa)
N,' :%(ui—ui) (llOb)
where E is Young’'s modulus, A is cross-sectional area, and L is length
of the member. Hence, Ky} = —Kjy = —Ky4; = Kyy = %
llj \
N,
Original position\ \//\V i
J ,:;:—‘
T " N Displaced position

-
”:d'
- 5

/ l {” 6
M \M\ ) i 4
i

3
FIGURE 1.10. Member under axial forces. M



BENDING MOMENTS AND SHEAR

For a member with shear forces Q; Q; and bending moments
M;, M; acting at its ends as shown in Figure 1.11, the end displace-
ments and rotations are related to the bending moments by the
slope-detlection equations as

Displaced position

Original position

FIGURE 1.11. Member under shear forces and bending moments.



BENDING MOMENTS AND SHEAR

C2EIf[,. . 3(vi—vi)]
M; === |20+0; ~ =
2FI [ 3(vi—vi)]
M,' — T -29,'—:‘91' = L
6GEI 2E]
Hence, K¢ = —Kgs = T K¢z = ik

Displaced position




BENDING MOMENTS AND SHEAR
By taking the moment about end j of the member in Figure 1.11,

we obtain
]M,‘ l ]M,-
= 7 ==

Q; (1.12a)

Original position

Also, by taking the moment about end i of the member, we obtain

i _(Mi+Mf)= 1 (1.12b)

L

12EI GEI
L3 and Klfgz Klﬁ: —K53: —Kﬁ.ﬁ — F‘

K= Kss= —Kas= —Ks =



STIFFNESS MATRIX

In summary, the resulting member stiffness matrix is symmetric
about the diagonal:

- EA EA ]
7z 9 o -7 0 0
0 12E] GEI 0 12EI  G6EI
I3 12 NE 12
0 GET 4E] 0 GET 2ET
12 L 12 L
A o 0 0
0 12ET GET 0 12E] GET
2 I3 12
0 6EI 2l GEI  4El
I2 L I2 L




COORDINATES TRANSFORMATION

In order to establish the equilibrium conditions between the member
torces in the local coordinate system and the externally applied loads
in the global coordinate system, the member forces are transformed
into the global coordinate system by force resolution. Figure 1.12
shows a member inclined at an angle « to the horizontal.

FIGURE 1.12. Forces in the local and global coordinate systems.



LOAD TRANSFORMATION

The forces in the global coordinate system shown with superscript “g”
in Figure 1.12 are related to those in the local coordinate system by

= N;cosa— Q;sinu« (1.14a)
AD/ = N; sinx+ Q; cos« (1.14b)
ue /
(1.14c)
Similarly,
H = Nj cosz — Q; sinu (1.14d)

XD/ Vi = Njsina + Q; cosx (1.14¢)
/ { (1.14f)

In matrix form, Equations (1.14a) to (1.14f) can be expressed as

{E} = [T]{P} (1.15)



LOAD TRANSFORMATION

In matrix form, Equations (1.14a) to (1.14f) can be expressed as

{E¢} = [TI{P} (1.15)

where{F; } is the member force vector in the global coordinate system
and [T] is the transformation matrix, both given as

[ HE ) rcosaz —sina O 0 0 0
Ve sinx cosxz O O 0 0
M 0 0 1 0 0 0
FEY — d [T] = .
{ 6} ] Hf ¢ ot ] 0 0 0 cosx —sina O
Vi 0 0 O sinz cosz O
| ME 0 0O 0 0 B )




DISPLACEMENT TRANSFORMATION

The displacements in the global coordinate system can be related to
those in the local coordinate system by following the procedure simi-
lar to the force transformation. The displacements in both coordinate
systems are shown in Figure 1.13.

From Figure 1.13,

u; = uf cosx + v sinu (1.16a)

FIGURE 1.13. Displacements in the local and global coordinate systems.



DISPLACEMENT TRANSFORMATION

Vi = —U; sino+ vV coso (1.16Db)
0; =6; (1.16c¢)
l; = U7 Cos o+ vy sino (1.16d)
v, = —U; sin« + V; COS« (1.16e)

0; = 6% (1.16f)



DISPLACEMENT TRANSFORMATION

In matrix form, Equations (1.16a) to (1.16f) can be expressed as
{d} = [T] {D§} (1.17)

where {D:} is the member displacement vector in the global coordi-
nate system corresponding to the directions in which the freedom

codes are specified and is given as

ug
V}
0;
{D§} =1 uf 5
vi
6

and [T]' is the transpose of [T).



Member Stiffness in Global Coordinate System

From Equation (1.15),
{E3} = [T{P}
= [T|[K |{d} from Equation (1.9)
= [T|[K.|[T]"{D%} from Equation (1.17)

= [KE{Dg}

where [Kf| = [T][K,)[T]" = member stiffness matrix in the global coor-
dinate system.



Member Stiffness in Global Coordinate System

An explicit expression for (K3 is

[ JEA  ,12E EA 12E GEI EA ,12EI EA 12EI
Q=48 €| —=="=]| =S— -~|C~ 2 -SC|—==="=
L v I3 S(1_ Ls) 3 ( T L-*) S(L LS)
EA _,12E _6EI EA 12 EA 4 12EI
pea | plakl 6zl of8A 1R e 2 -
St P O sc(L LS) (SL4CL3) c
4FI 6EI GEI
L 18 o
K- |
JEA o 12E] [EA 1261
ey Y S e B
EA _,12EI
4 ] 2 -2
Symmetric \ T +C I3

where C = cos o; S = sin «.




Assembly of Structure Stiffness Matrix

Consider part of a structure with four externally applied forces, F1, F2,
F4, and F5, and two applied moments, M3 and M6, acting at the
two joints p and g connecting three members A, B, and C as shown in
Figure 1.14. The freedom codes at joint p are {1, 2, 3} and at joint g are
(4, 5, 6}. The structure stiffness matrix [K] is assembled on the basis of
two conditions: compatibility and equilibrium conditions at the joints.

FIGURE 1.14. Assembly of structure stiffness matrix [K].



Compatibility Condition

At joint p, the global displacements are D1 (horizontal), D2 (vertical),
and D3 (rotational). Similarly, at joint g, the global displacements are
D4 (horizontal), D5 (vertical), and D6 (rotational). The compatibility
condition is that the displacements (D1, D2, and D3) at end p of mem-
ber A are the same as those at end p of member B. Thus,
(uf), = (uf), = D1, (V§), = (v§)z = D2, and (6), = (6¢)z = D3. The
same condition applies to displacements (D4, D5, and D6) at end g
of both members B and C.

The member stiffness matrix in the global coordinate system
given in Equation (1.19) can be written as

-kll klZ k13 kl4 le klﬁq

ko ks ki Kay kis K
2] _ 2 : 20
K= |k By Ry Eu Rae By IL.20)
ks1 ksy ksz KRsa Kss Ksg
(ka1 key ks kes Kes  Kes |
JEA  , 12EI

where kll =(C"—=+ 8§

I I etc.



Compatibility Condition

For member A, from Equation (1.18),

(Hf?)A = oot oot oo+ (Kaa) o D1 + (Kas) 4 D2 + (kag) ,D3  (1.21a)
(V;g)A =Lt = TP -+ (k54)AD1 + (kgs)ADQ_ — (kSG)ADS (IZIb)
(M,X)A = oveF eeiet oo+ (Kea) 4 D1 + (Kes) 4Dz + (Kes) D3 (1.21¢)

Similarly, for member B,
(HY) p = (ki1)gD1 + (Ky2)gDa + (k13)gD3 + (k14) gDy + (k15 )3Ds + (ki) gD
(1.21d)
(VF) = (ka1)gD1 + (kaz)gDa + (ka3) g D3 + (Kaa) gDy + (ks ) gDs + (kag )z D
(1.21e)

(M%), = (ka1)gDy + (k32) g Da + (kaa) 3 D3 + (kas) yDa + (kas )3 Ds + (kag) g D
(1.21f)



Compatibility Condition

(Hf)B = (ka1)gD1 + (ka2) g D2 + (ka3)yDa + (kas)gDa + (kas ) Ds + (kas) 3 De

(1.21g)

(Vf) o = (Ks1)pD1 + (ks2)gDa + (ks3)pD3 + (ks4) gD + (kss) s Ds + (kss ) gD
(1.21h)

(M’f)g = (kg1 )gD1 + (Kea) gD + (Kea) g D3 + (Kea) gD4 + (kes)gDs + (kes )5 Ds
(1.21i)

Similarly, for member C,

(HY) o = (ki1)eDr + (kia) gDy + (k13) D3 + cooe + oo+ e (1.214)
(V¥) e = (ka1) D1 + (ka2) oDy + (K23) e D3 + e + e + e (1.21k)

(W)C = (ksl)ch — (ksz)CDz - (](33)CD3 + ... + + ... (1.211)



Equilibrium Condition

Any of the externally applied forces or moments applied in a certain
direction at a joint of a structure is equal to the sum of the member
forces acting in the same direction for members connected at that
joint in the global coordinate system. Therefore, at joint p,

Fl = (Hf)A + (HE), (1.22a)
F2.= (V;?)A+(V§)B (1.22b)
M3 = (M;-.‘)A + (M), (1.22¢)

Also, at joint q,

(1.224)
5= (V) +(V¥)a (1.22¢)

M6 = (Mf) + (M), (1.22f)



Equilibrium Condition

[/ @) "» L L L . . . .
Fl o (kas)g+(Kyy)g (Rasla+ (Kl (Kagy + (Kys)e (Kia)g (kyslg (K1) .
F2 o (kgg)y+(kyylp (kes)y+ (kaa)p  (keg)y + (Kaalg (kys) g (Kag)y (Ko g .

j M3 _|® (kashy + (Ka1)g (Ras)y + (Ka)g  (Kea)q + (Kas)g (kas)g (kas)g (k2 . +
Fa . (ka1 g (ksalp (keslp (Kasip + (Ryy)pe (Ksslpg +(kinle (kaslpg+ (Kis)e o
F5 . (Rey)g (ks (kss)e (Ksa)g + (kat ) (Resdp + (Ran)e (Rag)p+ (Kas)o @
M6 . (ke )g (kax)g (ka3 g (Kealg + (Kat)p (Kes)g + (kaajp (keslg + (K)o o
&0 . . . . . . . .
|

where the “e” stands for matrix coefficients contributed from the
other parts of the structure. In simple form, Equation (1.23) can be
written as

{F} = [K|{D}

which is identical to Equation (1.7). Equation (1.23) shows how the
structure equilibrium equation is set up in terms of the load vector
{F}, structure stiffness matrix (K|, and the displacement vector {D}.




Assembly of Structure Stiffness Matrix

[KZ] of member A

__________ —

——————————————————————————————————————

[KZ] of member B

1 [K ] of structure

[K9] of member C””ﬂ

FIGURE 1.16. Assembly of structure stiffness matrix.



ASSEMBLY OF LOAD VECTOR

/ Freedom codes

F1
F2
F3
Fa
F5
Fé

(= 4 | B 7 S R

FIGURE 1.17. Assembly of load vector.



METHODS OF SOLUTION

The displacements of the structure can be found by solving Equation
(1.23). Because of the huge size of the matrix equation usually encoun-
tered in practice, Equation (1.23) is solved routinely by numerical
methods such as the Gaussian elimination method and the iterative
Gauss-Seidel method. It should be noted that in using these

numerical methods, the procedure is analogous to inverting the struc-
ture stiffness matrix, which is subsequently multiplied by the load

vector as in Equation (1.8):

{D} = [K]"'{F} (1.8)



METHODS OF SOLUTION

The numerical procedure fails only if an inverted K| cannot be
found. This situation occurs when the determinant of (K] is zero,
implying an unstable structure. Unstable structures with a degree of
statically indeterminacy, f,, greater than zero (see Section 1.2) will
have a zero determinant of [K|. In numerical manipulation by compu-
ters, an exact zero is sometimes difficult to obtain. In such cases, a
good indication of an unstable structure is to examine the displace-
ment vector {D}, which would include some exceptionally large
values.



CALCULATION OF MEMBER FORCES

Member forces are calculated according to Equation (1.9). Hence,
{P} = [Ke|{d}
= [K] [T{Dg}

where {Df} is extracted from {D} for each member according to its
freedom codes and

(1.24)
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SUMMARY

1. Assign freedom codes to each joint indicating the displace-
ment freedom at the ends of the members connected at that
joint. Assign a freedom code of “zero” to any restrained
displacement.

2. Aséign an arrow to each member so that ends i and j are
defined. Also, the angle of orientation « for the member is
defined in Figure 1.18 as:

FIGURE 1.18. Definition of angle of orientation for member.



SUMMARY

3. Assemble the structure stiffness matrix [K| from each of the
member stiffness matrices.

4. Form the load vector {F} of the structure.

5. Calculate the displacement vector {D} by solving for
{D} = [K]"'{F}.

6. Extract the local displacement vector {DF} from {D} and cal-
culate the member force vector {P} using {P} = [K,|[T|"{D%}.



Sign Convention for Member Force

Positive member forces and displacements obtained from the stiffness
method of analysis are shown in Figure 1.19. To plot the forces in con-
ventional axial force, shear force, and bending moment diagrams, it is
necessary to translate them into a system commonly adopted for
plotting.

D .

/

FIGURE 1.19. Direction of positive forces and displacements using stiffness
method.



Axial Force

For a member under compression, the axial force at end 7 is positive
(from analysis) and at end j is negative (from analysis), as shown in
Figure 1.20.

Compressive t §
[

FIGURE 1.20. Member under compression.



Shear Force

A shear force plotted positive in diagram is acting upward (positive
from analysis) at end i and downward (negative from analysis) at
end j as shown in Figure 1.21. Positive shear force is usually plotted
in the space above the member.

A

FIGURE 1.21. Positive shear forces.



Bending Moment

A member under sagging moment is positive in diagram (clockwise
and negative from analysis) at end i and positive (anticlockwise and pos-
itive from analysis) at end j as shown in Figure 1.22. Positive bending
moment is usually plotted in the space beneath the member. In doing
so, a bending moment is plotted on the tension face of the member.

¢ .j
\\I

FIGURE 1.22. Sagging moment of a member.
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Topics

Introduction to Influence lines
Influence lines for Beams

Qualitative Influence lines

Maximum Influence at a point due to Series of
concentrated Loads

Absolute maximum shear and moment



Introduction

Influence lines offer a quick and easy way of
performing multiple analyses for a single structure.
Response parameters such as shear force or bending
moment at a point or reaction at a support for several
load sets can be easily computed using influence lines



Influence Lines

If Structure is subjected to moving load, the variation of the shear and
bending moment in the member is best described using the Influence
line.

Once the IL constructed, one can tell at glance where the moving load
should be placed on the structure so that it creates the greatest
influence.

Further more, magnitude of the associated reaction, shear, moment or
deflection at the pt can be calculate from the ordinates of the ILD.

So, that its play an important part in the design of bridges, industrial
crane rails, conveyors and other structure where loads moves across
the span.



Construction IL using Equilibrium Methods

» The most basic method of obtaining influence line is described below.

— For a particular location of the unit load, solve for the equilibrium of the
whole system and if required, as in the case of an internal force, also for a
part of the member to obtain the response parameter for that location of the
unit load. This gives the ordinate of the influence line at that particular
location of the load.

— Repeat this process for as many locations of the unit load as required to
determine the shape of the influence line for the whole length of the
member. It is often helpful if we can consider a generic location (or several
locations) x of the unit load.

— Joining ordinates for different locations of the unit load throughout the
length of the member, we get the influence line for that particular response
parameter.



Example 8.1

Construct the influence line for the vertical reaction at A
of the beam in Fig.




Example 8.2

Construct the influence line for the vertical reaction at B
of the beam in Fig.




Example 8.3

Construct the influence line for the shear and moment at C
of the beam in Fig.




Influence Lines for Beams

* Loading: Once the Influence line for a
function (reaction, shear or moment) has been
constructed, then it will be possible to position
the live load on the beam which will produce
the maximum value of the function. Two types
of loadings will be considered.

— concentrated force
— uniform load



Example 8.4

Determine the maximum positive live shear that can be
developed at point C in the beam shown in fig. due to a
concentrated moving load of 4kN and a uniform moving

load of 2 kN/m.




Homework 8.1

Find the maximum shear force at C for the moving load
combination in fig. (Ans: 58.75 kN)




Qualitative Influence Lines

 In 1886, Muller Breslau developed a technique
for rapidly constructing the shape of an IL.
* Muller Breslau Principle: The IL for a function is to

the same scale as the deflected shape of the beam when
the beam is acted upon by the function.

. PP deflected shape

-

—
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influence line for Vo influence line for M-
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Example 8.5

Determine the maximum positive moment that can be
developed at point D in the beam shown in fig. due to
concentrated moving load of 16 kN, a uniform moving load
of 3 kN/m and beam weight of 2 kKN/m.




Maximum Influence at a point due to
Series of concentrated Loads

(427 m) -—(9.15 m)
(17.8 kN) (71.2 kN) (71. "kN)

Z1_1
2
x_i + ) £
Lk B —_—
[:4.88 m—i |
12.2 m 183 m i
0.6
0.4
| Q.15 m I ' 1
1
-4 88 m -! 1 30.5 &
A 130.5 : B } 122 m |
—0.16 :
0.3

-— %o |
—0.4
Influence Line for Sp kKN/KN

Sp = —17.8(0.16) — 71.2(0.3) + 71.2(0.3) = 4.272 kN



Example 8.6

/3 B
Lk
f—--5Sm f 10m
0.667
1
15
A B
15
1

44.5 kN 22.25 kN

35.6 kN I 66.75 kKN |
3

(a)

(b) Influence Line for Sz (KN/KN)



445kN 22,25 kN

356 kN I 66.75 kN |

A (&)
= ri 'y
| | |
| Sm " 2m ll ﬁml 25m ! 4m | (c)Loading Position |

0.667
i
is
A B <
5
|
—0.333

Sp=35.6(10) (1—15> + 44.5(8) (IIE) + 66.75(6.5) (11_5) +22.25(4) (11—5)
= 82.32 kN



445 kN 2225 kN

35.6kN | 66.75kN
A

C
| | |
I 3m | 2m || Snl 25m | 6m I (d) Loading Position 2
0.667
1
i5
A B <
s
1
—0.333

Rp==315(3) (%5) +44.5(10) (1—15) +66.75(8.5) (%) +22.25(6) (%)
= 69.28 kN
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Sp=—35.6(1.5) (li) —44.5(3. 5)( )+66 75(10)( )+22 25(7. 5)( )

= 41.68 kN
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0.667
1
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A B (S
s
I
—0.333

Sp=—44.5(1) (%) — 66.75(2.5) (%) +22.25(10) (%) =0.742 kN



Homework 8.2

* Determine the maximum positive moment
created at point B in the beam shown In Fig.
due to wheel loads of the crane.




Homework 8.3

 Determine the maximum moment at C on the

single girder caused by the moving dolly that
has a mass of 2 Mg and a mass center at G.

Assume A is a roller.

L7
o :" % A (\- B &2 _S‘m 1'.5 m
b : e W
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Absolute maximum shear and moment




- 2 L

For maximum M, we require

sz _ "ZFR.t o FRI' _
dv L L,

or




Example 8.7

« Determine the absolute maximum moment In
the simply supported bridge deck shown in fig.




Homework 8.4

 Determine the absolute maximum shear and
moment in the simply supported beam shown
in fig.




Project Problem

The chain hoist on the wall crane can be
placed anywhere along the boom (0.1m <x<
3.4m) and has a rated capacity of 28 kN. Use
an Impact factor of 0.3 and determine the
absolute moment iIn the boom and the
maximum force developed in the tie rod BC.




@ Influence line diagrams are drawn for various stress resultants like reaction,
shear force, bending moment at specified points.

® Influence line diagram for a stress resultant is the one in which ordinate
represent the value of the stress resultant for the position of unit load at the
corresponding abscissa.

® For example If Figure 1 represents ILD for moment at section ‘C’ in the
beam AB, then the ordinate ‘O’ represents the value of bending moment at
‘C’when a unit load is acting at section 1-1.

().6.37
ll
A7£>77 XC . 4
o
L

0y

Figure 1: ILD for moment at ‘C’




Sign Convention

® Sign convention followed for shear force and bending moment

A t &
P L
positive shear force

A5

positive movement

Figure 2: positive sense of SF and BM




Construction of Influence Lines

® The construction of influence lines can be done by using any one of the two
approaches, one can construct the influence line at a specific point ‘P’ in a
member for any parameter (Reaction, Shear or Moment). In the present
approaches it is assumed that the moving load is having dimensionless
magnitude of unity.

e Classification of the approaches for construction of influence lines is given in
Figure 3.

Construction of Influence Lines

Tabulate Values Influence Line-Equation

Figure 3: Classification of approach




® Let the unit load be at a distance x from support A as shown in
Figure 4.
e By taking moment about B, find out the reaction
Rax L=1x(L-X)

WL —x
pn 122

when x =0, Ra= |
whenXx = L,[Ra=0 ° &

® Hence, ILD?)ﬁéac.thn at A (Rp) Is as shown in Figure 4.

0.3

= (1—%), linear variation with x

Figure 5: ILD for Rp




ILD for reaction at B (Rg):

@ By taking moment about A, find out the reaction
Rg x L=1xX

% s &
Ry = —, linear variation

whenx=0,Rg =0
whenx=L,Rg=1

® Hence, ILD for reaction at B (Rg) is as shown in Figure 6.

Figure 6: ILD for Rg




ILD for Shear Force at C (F¢):

® Let C be the section at a distance z from A as shown in Figure 4.
® \When x <z

Shear force at CFc = —Rg= _2 linear variation,

when x = 0, F = ¢ * B

whenx=z, p_ _2
® When x >z -

Shear force at C - Fo=Ry= L=X  |inear variation

— pum—

when x = z, oo Loz
WhenX:L, I C—UL
Hence, ILD for shear force at C (F¢) is as shown in Figure 7.

L-2
L

+ ve

p Figure 7: ILD for F,

—ve
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ILD for Moment at C (M):

® Let C be the section at a distance z from A as shown in Figure 4.

e \When x <z

Mc=Rg (L-2)_ X

T (L - 2) linear variation with x,

whenx=0,Mc=0

when x =z, i (Z(L—Z)]

i
eWhen x>z

L—x : ;
Mc = Rz = ( 7 )z : linear variation with x

z(L—2z)
L.

whenx=z, Mc=

Whenx =L, Mc=0

12



Hence, ILDfor moment at C (Mc) Is as shown in Figure 8.

z(L-2)

C
Figure 8: ILD for Moment at Mc
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Influence Line Diagrams for
Cantilever Beams

® Consider a cantilever beam of span L as shown in Figure 9.

® Influence line diagram for shear force and bending moment at fixed end A and at
C are to be determined.

® Let a unit load act at a distance X from the free end B.
1
a | x >
C .
A X% B
| z :l
, —T.

Figure 9: Cantilever with unit load
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ILD for Shear Force at
A (FL):

Shear force at A= F5 =1, Constant

Hence, ILD for F4 is as shown in Figure 10.

+ ve

N
AN

Figure 10: ILD for Fa
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ILD for moment at A (Mp):

Moment at A = M, = - (L-x), Linear variation
when x=0, M, = -L p £ l‘_x——ﬁa
whenx=L, M, =0 = -

Hence, ILD for M, 1s shown in Figure 11.

Figure 11: ILD for moment Mp
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ILD for Shear Force at C (F¢):

* Whenx<7z? :

SONNNNNNNNNNNNNS
lal

Shear force at C =F- = 1 (Constant)

when x = 0, F- =1 and when x = z, F- =1
* Whenx >z

Shear force at C = F-=0

whenx =z, Fr=0,whenx=L, F-=0

Hence, ILD for shear force (F¢) is shown in Figure 12.

+ve

A
AANAMANAN

C B
Figure 12: ILD for shear force at C (Fc)




ILD for Moment at C (I\gI v

e When x<z g v : i
Moment at C = M¢ = -1 (z-x), Linear variation
whenx=0,Mc=-2
whenx =2z, Mc=0

e \When x >z
Moment at C = Mc = 0, Constant
Hence, ILD for moment at C (Mc) is shown in Figure 13.

C | B

A

?

Figure 13: ILD for moment at C (Mc) A
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