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A typical two-hinged arch is shown 

in Figure. In the case of two-hinged 

arch, we have four unknown 

reactions, but there are only three 

equations of equilibrium available. 

Hence, the degree of statical 

indeterminacy is one for two-

hinged arch.

Civil Engineering
3



Figure shows a two-hinged arch hinged only

at the abutments A and B. The vertical 

reactions Ra and Rb ,of the course, may be 

determined by taking moments about either 

hinge.

The horizontal thrust at each support may be 

determined from the condition that the 

horizontal displacement of either hinge 

with respect to the other is zero.

Let M be the beam moment at any section X.

Actual bending moment at the section is given

by

Mx = (M-Hy)

Civil Engineering
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Therefore, total strain energy stored by the whole arch

is

Wi=∫Mx²ds/2EI

=∫(M-Hy)²ds/2EI

By the first theorem of castigliano the horizontal end

relative to other is given by ∂Wi/∂H.

Since such a relative horizontal displacement of one

end with respect to the other end is not possible in

two hinged arch.
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∂Wi / ∂H=0

∂Wi/∂H=∫2(M-Hy)(-y)ds/2EI

=∫Myds/2EI-H∫y²ds/2EI=0

H=∫Myds/2EI/∫y²ds/2EI

If the arch is of uniform flexural rigidity EI,
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Consider an unloaded two-hinged 

arch of span L. When the arch 

undergoes a uniform temperature 

change of T ° C , then its span would 

increase by α LT if it were allowed

to expand freely (Fig a). α is the co-

efficient of thermal expansion of the 

arch material. Since the arch is 

restrained from the horizontal 

movement, a horizontal force is 

induced at the support as the 

temperature is increased.
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Considering the end B as a roller end with an external horizontal force H applied at B, the 

bending moment at any section is given by

Mx= -Hy 

Strain energy stored by the arch =Wi= ∫ Mx²ds/2EI

=∫H²y²ds/2EI

By the first theorem of castigliano,

Inward horizontal movement of B =δ

δ =∂Wi/∂H

= ∫2H(y²ds/2EI)

δ =H ∫y²ds/EI
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The condition that H may represent the horizontal thrust for the two hinged arch subjected to the

rise of temperature is,

δ = αTI

H ∫y²ds/EI = αTI

H= αTI/∫y²ds/EI 

the arch section is of uniform flexural rigidity,

H=EI αTI/∫y²ds
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• Arch is a curved structure or humped beam, 

primarily bears the applied loads by 

compression.

• The hinge introduced anywhere in the arch

makes the structure determinate as

• Both supports are assumed to be hinged

• Hinge introduced in the arch provides a further

equation to analyze the arch i.e., moment of all

forces about hinge is equal to zero.

1

0
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1-- Span

• Normally the third hinge is introduced at the 

top most point on the arch curve known as 

crown.
Hinge at Crown
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• One can solve the arch as beam if we know
the horizontal reactions at various supports.

• With the help of third hinge, we can easily 

determine the horizontal reactions and hence 

the arch can be analyzed.

1
2
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• Consider an arch ACB, hinged at A, B and C.

• / is the horizontal span and yc is central rise.

1
3

C Hinge at Crown

l -- Span
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• Obtain the vertical reactions Vyand VB at the 

ends as usual. To find the horizontal thrust, 

MC the moment at central hinge must be 

zero.

1
4
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• To find H the horizontal

thrust, M the moment
at central hinge C must
be known.

• We can find moment at 

any cross-section X of 

the arch whose 

coordinates are (x, y).

1
5

3f, = y, + H.y, ——0

H — ————————(1) 
X.-

M, ——y, + H.y —— —(2)
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• The vertical and 
horizontal actions on 
the section, considering 
the portion AX arc,

• Vertical reaction can be 
find out by vertical 
shear force at the 
section as for a straight 
horizontal beam.

1
6

• Horizontal thrust at both 
ends is same.

JV2
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• Draw the tangent at X 
to the centre-line of the 
arch and let its 
inclination to the 
horizontal must be 6.

• Resolving V and H 
normally to the section 
and tangentially, i.e., 
along the tangent at X)

1

8

P C cosd+Vsink ————(3)

F ——// sin6—V cos6 —————(4)

T V2 +H2..or.. P2 + F ' ——(S)

• If the resultant T is

required, use eq.5
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• If the three hinged arch is parabolic in shape 

and if it carries a uniformly distributed load 

over the entire span,

• every action of the arch will be purely in

compression,

» resisting only a normal thrust;

• there will be no shear force nor B. M. at the 
section.

1

9
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• The linear arch for a given load system on an

arch represents the y-diagram.

x With a uniformly distributed load over the

entire span, the y-diagram is a parabola.

• The linear arch which is parabolic will, then,

have three points (at the hinges) in common

with the centre-line of the actual arch, which

is also parabolic.

2

0
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linear

2

1

• The arch will therefore be identical with

x For any other loading on a parabolic arch, 

there will be three straining actions, P , F and 

M at any section.

• To obtain the bending moment, it will be 

necessary to calculate the rise at any section 

of the arch.
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x{l —x)

dx

d› - tan8= 4/.
(/ —2x)

It may also be noted 
that at quarter 
points, where z=//’4, 
the rize /̂4 y,
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• If the centre-line of the arch is a segment of a 

circle of radius R, it is more convenient to 

have the origin at D, the middle of the span. 

Let (x, y) be the coordinates of a section.
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AO OB R

AD ——DB —'—
2

DC ——y

OY ——OD + DY

Æ8

——(R —

y (2A —y, ) =

4

AD 1
sin o

AO 2A

OD (A —y)
)+ COST

•y =•
07€ 2 = OY 2 + XY

x=OX sin8 —/tsinØ

y = OY —OD ——R cosØ —Acoso

y’= /t(«o»B —coso)
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• A three hinged Parabolic arch, at the crown 

and springings has a horizontal span of 48ft. 

It carries UDL of .75 Ton/ft run over the left 

hand half of the span. Rise = 10’. Calculate 

the

• Reactions

• Normal Thrust

• Shear force and BMat 6, 12, 30ft from left hinge.

2

6
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0.7S ton/ft

2

7

• •

y = 10ft



x y 0 cos0 sin8 M V F

6 4.375 32º 0.848 0.529 -20.25 9 13.93 1.91

12 7.5 22O37' 0.923 0.348 -27 4.5 11.7 0

30 9.66 11°46’ 0.979 0.203 20.25 4.5 11.49 2.2

21

y = 5/288*x(48-x), 0 = 5/288*(48-2x)
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• Circular arch of span 80 ft with central rise 16 

ft is hinged at crown and supports. Carries a 

point load of 10 tons 20ft from left support.

• Reactions

• Normal Thrust

• Maximum and Minimum BM

2

9
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3

0

/4t

R2=x 2+{y1(R c)t2
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3

1

The three-hinRcd open-spaudrcl arch bridpc shown iii the figure bclou has a 
parabolic shape and supportsthe unifomi load . Show thatthe parabolic arch is 
subjected only to axial compressionat an intermediatepoint D along its axis.

Assume the load is iuiifoivily tmnsmitted to the arch ribs.

7.5 in 7.5 ni
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Entire arch :

C„(30)—210(15) 0

C ,——105IN

3

2

2t0 kN

—7.S”t

15 æ

+Î £P = 0: d ,—210+105= 0

At,——t05 kN
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Arch segment BC :

3
3

105kN

ZF,-0: BE—105 k.Y

+Î ZF› = 0: B› —105+105—0

B —0
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105 kN

26d•

105 - Np cos 26.6° - Kpsin 26.6e = 0

-52.5 + Np sin 26.6° - Kpcos 26 ,_go 0

MQ + 52.5(3.75) - 105(1.875) = 0

N ——117.40 kN. V ——0, I ——0 kN

'

Asection of the arch taken through point D.x —7.5 m y = -7.5(7.5*)/(t5)*= -1.875 m:

is shown in the figure.The slopeof the segment at D is

0= 26.6s

<f . —0:
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105 kN

3

5

52.5 kN

6 e
26.6°

26.d

3.75 m

Arch segment BD :

Asection of the arch taken throiigbpoint D. x - 7.5 m, y - -7.5(7.5*)/(15)2= -1.875 m,

iS s h o W n in t lle f ig u r e . T 6 e S lo p e Of t he S e g m e n t at D E

y y y y

7.5 iv = (7.5)(7)= 52.5 kN

T = Tg= (1 5) + ( 2 5)

15
= —0.5

D

6= 26.6°

Nq=25 kN

Notes : Since the arch is a parabola. their arc no

shear acidbending moment, oolyID E present
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3

6

🞂 The three-hinged tied arch is subjected to the 
loading shown in the figure below. Detemiine the 
force in members CA rind CB. Tbc dashed member 
GF of the trust is intended to carry no force.

🞂

20kN

🞂 15
kN
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Ot

0= SP+S1—07 —Sì—*& •0 - /”

M90Z
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25 kN

Cl—10 kN

3

8

20 kN

-+) - 0: N (5)—25(6)+15(3)= 0

F -- 21.0 kN

-Cg+ 21= 0

Cq- 21.0 kN

25 —15—20+ C' = 0

ZF,=0:
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20 kN

F - -26.88 kN (C)

3

9

F -- 20 kN (C)

18.4
18.4

-*ZF,=0:

-N cos18.43 - N

+Î ZF = 0:

20 kN

10 kN

kN

cos18.43 - 21= 0

N sinl8.43 - Ny cosl8.43 - 20

Thus,

F

10 = 0

-- 4.75 kN (T).
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1.2 Moment Distribution method
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Outline of the presentation

• Introduction to moment distribution method.

• Important terms.

• Sign conventions.

• Fixed end moments (FEM)

• Examples;

• (A) example of simply supported beam

• (B) example of fixed supported beam with sinking of 
support.

41



• The moment distribution method was first introduced 
by Prof. Hardy Cross of Illinois University in 1930.

• This method provides a convinient means of analysing 
statically indeterminate beams and rigid frames.

• It is used when number of reduntants are large and 
when other method becomes very tedious.

42



Important terms

1. Stiffness

The moment required to produce a unit rotation (slope) 
at a simply supported end of a member is called 
Stiffness. It is denoted by 'K'.

A) Stiffness when both ends are hinged.

B) Stiffness when both ends are fixed.

43



A) Beam hinged at both ends:

44



B) Beam hinged at near end and fixed at far end:

45



A moment applied at the near end induces at a fixed far end a

moment equal to half its magnitude, in the same direction.

Half of moment applied at the near end is carried over to the fixed

far end.

Carry over factor is 1/2.

46



Cont..

● Figure:

Distribution factor (D.F.)

● The factor by which the applied moment is
distributed to the member is known as the
distribution factor.

- far-end pined (DF = 1)

●

- far-end fixed (DF = 0)

47



Cont..
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Cont....
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Sign Conventions

A) Support moments : 

clockwise moment = +ve 

anticlockwise moment = -ve

B) Rotation (slope): 

clockwise moment = +ve 

anticlockwise moment = -ve

50



Cont...

C) Sinking (settlement)

● The settlement will be taken as +ve, if it rotates the 
beam as a whole in clockwise direction.

● The settlement will be taken as -ve, if it rotates the 
beam as a whole in anti-clockwise direction.

51



Fixed End Moments

● The fixed end moments for the various load cases is 
as shown in figure;

● a) for centric loading;
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Cont..

b) for eccentric loading, udl,rotation,sinking of 

supports & uvl



Cont..
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Cont...

● Fixed end moment for sinking of supports :
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Example 

1

56



57



Cont..
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DRCFBY 

HDCRFY 

HBDCRF 

BTJ 3
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R/ 2OXÚ
=2O

›‹/2 3 82
-- -- k

12 12

2fł
6x2x200x10" x30

- —20-18.73 —38.75

10‘ 10*'“ X 1O X 10*’

x 200x 10’ x 50 x 106 x l0*12 10 x 10*’
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g2

=—lö+28l25=ł2ł25ÆVœ

12 L

$ 6 x 3 x 200 x 06 x 50 x 06 x 0*12 x 10 x10*’

= 1ò + 28.125 = 44.12364



1

-38.75

38.75

0.0

B

0.333 0.667

+1.25 12.125

19.375

20.625 12.125

-10.906 -21844

0

44.125 Fixed End Moments 
Release A, and 

carry over

44.125

0

M°

“stribution

°*^

*

-10.922

0.0 + 9.719 -9.719 +33.203 FinalMoments
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Introduction

⚫ Cables are used as temporarily guys during the erection and as permanent guys for 

supporting masts and towers.

⚫ Cables are used in the suspension bridges. A suspension bridge consists of two cables

with the number of suspenders (hangers) which support the roadway.

⚫ Figure 1 shows a typical suspension bridges in which the cable is supported over 

towers.

Figure 1: A typical suspension bridge
GCEK, Bhawanipatna268



⚫ To reduce the bending moment in the towers anchor cables are provided.

⚫ The central sag or dip of the cable varies from
1

10
th to

1

15
th of span.

⚫ The cables will be having either guided pulley support or roller pulley support 

as shown in Figure 2.

b) Roller pulley supporta) Guided pulley support

Figure 2: Support system

• In case of pedestrian suspension bridges, suspenders support the roadway

directly.

GCEK, Bhawanipatna369



⚫ For heavy traffic, large spans stiffening girders are provided to support the 

roadway as shown in Figure 3.

⚫ Laksman Jhula (Rishikesh) and Howrah bridge (Kalkata) are popular 

example of suspension bridges.

⚫ Since, the number of suspenders are very large, the load on the cable may

be taken as uniformly distributed load.

Figure 3: Equilibrium of CableGCEK, Bhawanipatna470



Equilibrium of Cable

⚫ A cable is a flexible structure which can not resist Bending Moment.

⚫ In deflected shape of cable, the bending moment at any point of cable is

zero which is achieved by developing horizontal thrust at the support.

Figure 4: Equilibrium of Cable

• Consider the cable shown in Figure 4, which is subjected to various loads.

• Let the horizontal force developed at support is H

• Let the vertical reactions at supportA and B is VA and VB respectively.
GCEK, Bhawanipatna5



At section X-X, let the deflection be ‘y’

⚫ Moment at section x-x = Mx = VA x – W1 (x-a1) – W2 (x-a2) – H y

⚫ Since the cable is flexible, Mx = 0

⚫ Therefore, H y = VA x – W1 (x-a1) – W2 (x-a2)

⚫ H y = Beam Moment

⚫ The loaded cable can be analyzed by using above equation at any segment of

cable.

GCEK, Bhawanipatna6



Cable Subjected to Concentrated Loads

• Consider the cable of length L spanning over a horizontal gap l subjected to the 

concentrated loads as shown in Figure 5.

• Let VA and VB be the vertical reactions and H be the horizontal reactions at

supports.

Figure 5: Cable subjected to concentrated loads

GCEK, Bhawanipatna7



⚫ The equilibrium condition is H y = Mbeam

or y = 𝑴𝐛𝐞𝐚𝐦

𝑯

⚫ Hence, the deflected shape is similar to the beam moment diagram.

⚫ If M1, M2 and M3 are the beam moments at load points 1, 2 and 3 respectively.

⚫ y1, y2 and y3 are the deflections at 1, 2 and 3 respectively

⚫ y1, y2 and y3 can be found using above equation i.e. y1 = 1
𝑀 𝑀

2
2 3, y = and y =

𝑀
3

𝐻 𝐻 𝐻

⚫ If the horizontal thrust is known or position of cable at any one point is known, the 

deflections at all points can be calculated.

⚫ The actual length of the cable is the sum of lengths of each segments.

⚫ After finding the deflections, slope of the various segments can be found.

⚫ Using equilibrium equations of load points 1, 2 and 3, forces in the various segment

of cable can be found.

GCEK, Bhawanipatna8



Cable Subjected to a Uniformly Distributed Load

⚫ Let a cable of length L be supported at points A and B which are at a 

horizontal distance l and are at the same level as shown in Figure 6.

⚫ The cable is subjected to a uniformly distributed load w/unit horizontal 

length.

Figure 6:A typical cable subjected to udl
GCEK, Bhawanipatna975



⚫ The vertical reactions at A and B is VA and VB.

VA = VB
= 𝑤𝑙

2

or

⚫ Taking moment at central point and equate to zero (Though the bending 

moment is zero at all points in the cable)

H h - 𝑤𝑙 × 𝑙 + 𝑤𝑙 × 𝑙 = 0
2 2 42

2

H = 𝑤𝑙

8ℎ

Figure 7: Free body diagram of cableGCEK, Bhawanipatna1076



⚫ If V is shear force at any section X-X distance x from A as shown in Figure 7.

Then, T = 𝑉2 + 𝐻2

2
Vmax = 𝑤𝑙 at support

maxTherefore, T =
𝑤 2

+
8ℎ

𝑤𝑙2 2
= 𝑤𝑙

2

𝑙21 +
16ℎ2

2

Vmin = 0 at centre

Tmin = 0 +𝐻2 = H

⚫ At any point, since cable can not resist shear

V = T sin θ

⚫ Now to find the shape of the cable, consider the portion on left side of section X-

X. Let θ be the slope. Then,

∑H = 0, T cos θ = H

∑V = 0, T sin θ = VA – w x
GCEK, Bhawanipatna1177



or
2

T sin θ = 𝑤𝑙 – w x

Therefore, tan θ =
2

𝑤𝑙 − 𝑤𝑥 × 1

𝐻

i.e.
𝑑𝑦 =
𝑑 2

𝑤𝑙 −𝑤𝑥 × 1

𝐻

Therefore, y =

2

𝑤𝑙 𝑥 − 𝑤𝑥 × 1

2 2 𝐻

or y = 𝑤𝑥(𝑙−𝑥)

2𝐻

8ℎ

2

Substituting the value of H = 𝑤𝑙 , we get

2 𝑤𝑙2
y = 𝑤𝑥(𝑙−𝑥) × 8ℎ = 4ℎ𝑥(𝑙−𝑥)

𝑙2

⚫ Which is a parabola. Thus the shape of the cable is a parabola.

⚫ To find the length of the cable in any curve (L)

1 +
𝑑

𝑑𝑥

2

= 1 + 1𝑑𝑠 =
𝑑 2 𝑙2

4ℎ(𝑙−2𝑥) 2

0

2

Therefore, Length of the cable = L = ∫𝑙 𝑑𝑠 = l + 8ℎ
3𝑙

GCEK, Bhawanipatna12



Forces on Anchor Cables and Towers

⚫ The forces on anchor cable and towers depends upon the type of support given 

to cables.

There are two types of support:

⚫ Guided Pulley Support

⚫ Roller Support

Guided Pulley Support:

• Let the inclination of main cable to horizontal be 

‘θ’.

• Inclination of anchor cable to horizontal be ‘α’

• Assuming the pulley as friction less.

• Tension in anchor cable = tension in main cable.

• Let the tension be T

Figure 8: Guided PulleySupport
GCEK, Bhawanipatna13



Vertical load transmitted to tower = T sin θ + T sin α

Vertical load transmitted to tower = T (sin θ + sin α)

Horizontal load transmitted to tower = T cos θ – T cos α 

Horizontal load transmitted to tower = T (cos θ – cos α)

Bending moment on the tower = Horizontal force on tower × Height of tower

Bending moment on the tower = T (cos θ – cos α) × h1

Roller Support:

• In this case, the suspensible cable

and the anchor cables are

connected to a saddle resting on a

tower.

Figure 9: Roller SupportGCEK, Bhawanipatna1480



⚫ In this arrangement, the two cables need not have the same tension.

⚫ Let T be the tension in main cable and T1 in the anchor cable.

⚫ Assume saddle have frictionless rollers

T1 cos α = T cos θ

1T = T
cos θ

cos α

⚫ Since, saddle is having frictionless rollers, there is no horizontal force and 

hence, no bending moment on tower,

Vertical force on the tower = T1 sin α + T sin θ

GCEK, Bhawanipatna15
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Cables and Suspension Bridge 
(Solved Problems)
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Q1. A bridge cable is suspended from towers 80 m apart and carries a load of 30 kN/m on

the entire span. If the maximum sag is 8 m, calculate the maximum tension in the cable. If

the cable is supported by saddles which are stayed by wires inclined at 30̊ to the

horizontal, determine the forces acting on the towers. If the same inclination of back stay

passes over pulley, determine the forces on the towers.

A B 2 2
⚫ Reaction at both ends = V = V =

𝑤𝑙
=

30×80
= 1200 kN

Figure 1(a): Example 1

⚫ For horizontal reaction, taking moment about central point ‘C’

GCEK, Bhawanipatna284



2 2 2 4
H × 8 - 𝑤𝑙×𝑙 + 𝑤𝑙×𝑙 = 0

2 2

or H = 𝑤𝑙 = 30×80 = 3000 kN
64 64

⚫ Maximum tension occurs at support

Tmax = 𝑉2 + 𝐻2 = 12002 + 30002

Tmax= 3231.1 kN

H = Tmax cos θ

θ = cos−1 𝐻

𝑇
= cos−1 3000

3231.1
= 21.80̊

Figure 1(c) : Pulley support

Figure 1(b): saddle support

GCEK, Bhawanipatna385



If the cable is supported by saddle (Figure 1b)

The anchor cable tension T1 can be found by equating horizontal tension

T1 cos α = Tmax cos θ

T1 × cos 30̊ = 3231.80 × cos 21.80̊

T1 = 3464.1 kN

There is no horizontal force on the tower.

The vertical force on the tower = T1 sin α + Tmax sin θ

Vertical force = 3464.1 sin 30̊ + 3231.1 sin 21.80̊ = 2931.98 kN

If the cable is supported over pulley (Figure 1c) 

The vertical force on tower = Tmax (sin α + sin θ)

Vertical force = 3231.1 (sin 30 +̊ sin 21.80 )̊ = 2815.48 kN

Horizontal force on the tower = Tmax (cos θ – cos α)

Horizontal force = 3231.1 (cos 21.8 ̊ - cos 30 )̊ = 201.82 kN
GCEK, Bhawanipatna4



Q2. A cable of span 120 m and dip 10 m carries a load of 6 kN/m of horizontal span.

Find the maximum tension in the cable and the inclination of the cable at the support.

Find the forces transmitted to the supporting pier if the cable passes over smooth

pulleys on top of the pier. The anchor cable is at 30 ̊ to the horizontal. Determine the

maximum bending moment for the pier if the height of the pier is 15 m.

A B 2 2
V = V = 𝑤𝑙 = 6×120 = 360 kN

Figure 2 (a): Example 2

GCEK, Bhawanipatna5

Figure 2 (b): Forces on pier

⚫ Due to symmetry, Reaction atA and B is



Taking moment about central point C,

H × h - 𝑤𝑙×𝑙 + 𝑤𝑙×𝑙 = 0
2 2 2 4

8ℎ 8×10

2

H = 𝑤𝑙 = 6×120×120 = 1080 kN

Tmax = 𝑉2 + 𝐻2 = 3602 + 10802 = 1138.42 kN

𝑇𝑚𝑎𝑥
cos θ = =

𝐻 1080

1138.42

θ = 18.435

Horizontal force transferred to pier = Tmax (cos 18.435 ̊ - cos 30 )̊

Horizontal force transferred to pier = 1138.42 (cos 18.435 ̊ - cos 30 )̊ = 94.099 kN

Maximum bending moment in the pier = H h1 = 94.099 × 15 = 1411.49 kNm

Vertical force on the pier = T (sin θ + sin α) = 1138.42 (sin 18.435 ̊ + sin 30 )̊

= 929.21 kN
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Q3. A light flexible cable 18 m long is supported at two ends at the same level.

The supports are 16 m apart. The cable is subjected to uniformly distributed

load of 1 kN/m of horizontal length over its entire span. Determine the

reactions developed at the support.

⚫ The length of the cable = L = l +
8
×

ℎ2

3

where, l = span, h = central dip

Applying this we get, 18 = 16 +
8
×

ℎ2

3 16

or h = 3.464 m

Figure 3: Example 3
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⚫ Let H = horizontal force, and VA = vertical reaction at A

VA
= 𝑤𝑙 = 1×16 = 8 kN

2 2

2

H × 3.464 = 𝑤𝑙 = 1×162

8 8

H = 9.237 kN

Tmax = 𝑉2 + 𝐻2 = = 82 + 9.2372 = 12.220 kN

⚫ Inclination ‘θ’with horizontal

Tmax cos θ = H

θ = cos−1 𝐻

𝑇𝑚𝑎𝑥
= cos−1 9.237

1.220
= 40.898̊
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Suspension bridge with three-
hinged stiffening Girder

92



Introduction

Consider the suspension cable stiffened with a three-hinged girder as shown in

Figure 1.

The girder can be a heavy beam or a truss which has three hinges two at the 

ends and one at the centre.

The cable and the girder are connected by a number of hangers/suspenders.

Since the number of suspenders are very large, the load on cable or girder, due 

to the forces in the suspenders, may be taken as uniformly distributed load.

Figure 1: Typical suspension bridge with three-hinged stiffening girder

GCEK, Bhawanipatna2



Figure 2: Free Body Diagram of cable and girder

⚫ Let the uniformly distributed load = we per unit horizontal length

⚫ Let C’ is the central hinge of girder

⚫ Let the uniformly distributed load we exerted by suspender on the girder

⚫ The beam may be analyzed for the given load along with we
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Due to we alone,

8
The bending moment at section x-x = 𝑤e𝑥 (𝑙 − 𝑥)

8

2

⚫Maximum bending moment at C =
𝑤

e
𝑙

(Hogging moment)

⚫The shear force at section x-x = -we 2 − 𝑥

⚫ The cable can be analyzed for the uniformly distributed load we

GCEK, Bhawanipatna4



Q. A three-hinged stiffening girder of a suspension bridge of span 100 m is subjected to

two point loads of 200 kN and 300 kN at the distance of 25 m and 50 m from the left

end. Find the shear force and bending moment for the girder at a distance 30 m from

the left end. The supporting cable has a central dip of 10 m. Find also the maximum

tension and its slope in the cable.

Figure 3
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Let the suspenders exert a uniformly distributed load of we per unit horizontal

length as shown in Figure 3.

Reactions at A and B due to a given loading only be denoted as R´A and R´B,

respectively.

To find out the reactions in the girder, take ∑M´A = 0

R´B × 100 – 200 × 25 – 300 × 50 = 0

R´B = 200 kN

Using ∑V = 0, Find R´A

R´A + R´B = 200 + 300

R´A = 300 kN

Moment at the central hinge of girder (C´) = 0 (∑Mc´ = 0)

Bending moment due to given loading + Bending moment due to we = 0
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2

8
R´B 2

𝑙
-
𝑤𝑒𝑙 = 0

200 × 100 = 𝑤𝑒×1002 (After simplification)
2 8

we = 8 kN/m

Shear Force and Bending moment at a distance 30 m from the left end, 

SF = SF due to given loading + SF due to we

SF = R´ – 200 - w
A e 2

100 − 30

= 300 – 200 – 8(50-30)

= - 60 kN = 60 kN ( )

⚫ BM = Moment due to given loading + Moment due to we

8
BM = 300 × 30 – 200 × 5 - 𝑤e𝑥 (𝑙 − 𝑥)

8
BM = 300 × 30 – 200 × 5 - 8×30 (100 − 30) = - 400 kNm
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⚫ BM = 400 kN (Hogging)

⚫ For the analysis of cable

⚫ First finding vertical reaction atA and B i.e. VA and VB, Take ∑V = 0

V = V = w × 𝑙 = 8 × 100 = 400 kN
A B e 2 2

⚫ For getting horizontal reaction, taking moment about C, we get

2 2
H × h = 𝑒

e× - w × ×
2 4

= 𝑒𝑤 𝑙 𝑙 𝑙 𝑙 𝑤 𝑙2

8

H × 10 = 𝑒 =
𝑤 𝑙2 8×1002

8 8
= 10000

or H = 1000 kN

Maximum Tension in the cable = Tmax = 𝑉2
𝐴 +𝐻2

Tmax = 4002 + 10002 = 1077.033 kN

Its slope to horizontal is Tmax cos θ = H

1000

1077.033
= 21.80̊GCEK,Bhawanipatna θ = cos-1

899
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Introduction

• What is staticallyDETERMINATE structure?

– When all the forces (reactions) in a structure can be determined from
the equilibrium equations its called statically determinate structure

– Structure having unknown forces equal to the available equilibrium
equations

No. of unknown = 3

No. of equilibrium equations = 3

3 = 3 thus statically determinate

No. of unknown = 6

No. of equilibrium equations = 6 

6 = 6 thus statically determinate

10
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• What is statically INETERMINATED structure
– Structure having more unknown forces than available

equilibrium equations

– Additional equations needed to solve the unknown reactions

No. of unknown = 4

No. of equilibrium equations = 3

4  3 thus statically Indeterminate

No. of unknown = 10

No. of equilibrium equations = 9

10  9 thus statically 
Indeterminate

Introduction

10
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Indeterminate Structure

Why we study indeterminate structure

– Most of the structures designed today are statically 
indeterminate

– Reinforced concrete buildings are considered in most cases 
as a statically indeterminate structures since the columns
& beams are poured as continuous member through the 
joints & over the supports

– More stable compare to determinate structure or in
another word safer.

– In many cases more economical than determinate.

– The comparison in the next page will enlighten more

10
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Indeterminate Structure Determinate Structure
St

ab
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ty
in

ca
se

o
f

o
ve

r
lo

ad

P

Plastic HingePlastic Hinge

✶Support will not develop the 

horizontal force & moments that 

necessary to prevent total collapse

✶No load redistribution

✶When the plastic hinge formed

certain collapse for the system

✶Will develop horizontal force & 

moment reactions that will hold

the beam

✶Has the tendency to redistribute

its load to its redundant supports

✶When the plastic hinge formed

the system would be a

determinate structure

P

Contrast
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Indeterminate Structure Determinate Structure
T

em
p
er

at
u
re
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fe
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m
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t

PP

No effect & no stress would be

developed in the beam

P

No effect & no stress would be

developed

Serious effect and stress would be

developed in the beam

P

Serious effect and stress would be

developed

Contrast
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ANALYSIS OF STATICALLY INDETERMINATE 

STRUCTURES

MATRIX STIFFNESS METHOD OF ANALYSIS



MATRIX STIFFNESS METHOD OF ANALYSIS
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Member Stiffness in Global Coordinate System
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Sign Convention for Member Force
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Topics

• Introduction to Influence lines

• Influence lines for Beams

• Qualitative Influence lines

• Maximum Influence at a point due to Series of 

concentrated Loads

• Absolute maximum shear and moment

14

6



Introduction

Influence lines offer a quick and easy way of
performing multiple analyses for a single structure.
Response parameters such as shear force or bending
moment at a point or reaction at a support for several
load sets can be easily computed using influence lines

14
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Influence Lines

• If Structure is subjected to moving load, the variation of the shear and

bending moment in the member is best described using the Influence

line.

• Once the IL constructed, one can tell at glance where the moving load

should be placed on the structure so that it creates the greatest

influence.

• Further more, magnitude of the associated reaction, shear, moment or

deflection at the pt can be calculate from the ordinates of the ILD.

• So, that its play an important part in the design of bridges, industrial

crane rails, conveyors and other structure where loads moves across

the span.

14
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Construction IL using Equilibrium Methods

• The most basic method of obtaining influence line is described below.

– For a particular location of the unit load, solve for the equilibrium of the

whole system and if required, as in the case of an internal force, also for a

part of the member to obtain the response parameter for that location of the

unit load. This gives the ordinate of the influence line at that particular

location of the load.

– Repeat this process for as many locations of the unit load as required to

determine the shape of the influence line for the whole length of the

member. It is often helpful if we can consider a generic location (or several

locations) x of the unit load.

– Joining ordinates for different locations of the unit load throughout the

length of the member, we get the influence line for that particular response

parameter.

14
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Example 8.1

Construct the influence line for the vertical reaction at A 

of the beam in Fig.



Example 8.2

Construct the influence line for the vertical reaction at B 

of the beam in Fig.



Example 8.3

Construct the influence line for the shear and moment at C 

of the beam in Fig.



Influence Lines for Beams

• Loading: Once the Influence line for a

function (reaction, shear or moment) has been

constructed, then it will be possible to position

the live load on the beam which will produce

the maximum value of the function. Two types

of loadings will be considered.

– concentrated force

– uniform load

15
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Example 8.4

Determine the maximum positive live shear that can be

developed at point C in the beam shown in fig. due to a

concentrated moving load of 4kN and a uniform moving

load of 2 kN/m.

15
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Homework 8.1

Find the maximum shear force at C for the moving load 

combination in fig. (Ans: 58.75 kN)



Qualitative Influence Lines

• In 1886, Muller Breslau developed a technique

for rapidly constructing the shape of an IL.

• Muller Breslau Principle: The IL for a function is to

the same scale as the deflected shape of the beam when

the beam is acted upon by the function.

15
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Example 8.5

Determine the maximum positive moment that can be

developed at point D in the beam shown in fig. due to

concentrated moving load of 16 kN, a uniform moving load

of 3 kN/m and beam weight of 2 kN/m.

15
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Maximum Influence at a point due to 

Series of concentrated Loads

15
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Example 8.6
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Homework 8.2

• Determine the maximum positive moment

created at point B in the beam shown in Fig.

due to wheel loads of the crane.

16
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Homework 8.3

• Determine the maximum moment at C on the

single girder caused by the moving dolly that

has a mass of 2 Mg and a mass center at G.

Assume A is a roller.

16
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Absolute maximum shear and moment
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Example 8.7

• Determine the absolute maximum moment in 

the simply supported bridge deck shown in fig.

16
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Homework 8.4

• Determine the absolute maximum shear and

moment in the simply supported beam shown

in fig.
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Project Problem

• The chain hoist on the wall crane can be

placed anywhere along the boom (0.1m <x<

3.4m) and has a rated capacity of 28 kN. Use

an impact factor of 0.3 and determine the

absolute moment in the boom and the

maximum force developed in the tie rod BC.

17
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⚫ Influence line diagrams are drawn for various stress resultants like reaction,
shear force, bending moment at specified points.

⚫ Influence line diagram for a stress resultant is the one in which ordinate
represent the value of the stress resultant for the position of unit load at the
corresponding abscissa.

⚫ For example If Figure 1 represents ILD for moment at section ‘C’ in the
beam AB, then the ordinate ‘O’ represents the value of bending moment at
‘C’when a unit load is acting at section 1-1.

Figure 1: ILD for moment at ‘C’
4
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Sign Convention
⚫Sign convention followed for shear force and bending moment

Figure 2: positive sense of SF and BM
5

17

3



Construction of Influence Lines
⚫ The construction of influence lines can be done by using any one of the two

approaches, one can construct the influence line at a specific point ‘P’ in a
member for any parameter (Reaction, Shear or Moment). In the present
approaches it is assumed that the moving load is having dimensionless
magnitude of unity.

⚫ Classification of the approaches for construction of influence lines is given in

Figure 3.

Figure 3: Classification of approach
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⚫Let the unit load be at a distance x from supportA as shown in 

Figure 4.

⚫By taking moment about B, find out the reaction

RA × L = 1× (L-x)

when x = 0, RA = 1 

when x = L, RA = 0

⚫Hence, ILD for reaction at A (RA) is as shown in Figure 4.

Figure 5: ILD for RA
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⚫By taking moment about A, find out the reaction

RB × L = 1× x

when x = 0, RB = 0 

when x = L, RB = 1

⚫Hence, ILD for reaction at B (RB) is as shown in Figure 6.

ILD for reaction at B (RB):

Figure 6: ILD for RB10
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=

=

= 0

⚫ Let C be the section at a distance z from A as shown in Figure 4.

⚫When x < z

Shear force at C

when x = 0, F

when x = z,

⚫ When x > z 

Shear force at C 

when x = z,

when x = L, CF = 0

Hence, ILD for shear force at C (FC) is as shown in Figure 7.

ILD for Shear Force at C (FC):

Figure 7: ILD for Fc
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ILD for Moment at C (MC):

)

⚫ Let C be the section at a distance z from A as shown in Figure 4.

⚫When x < z

MC = RB (L-z

when x = 0, MC = 0 

when x = z,

⚫When x > z

when x = z,

When x = L, MC = 0
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Figure 8: ILD for Moment at MC

Hence, ILDfor moment at C (MC) is as shown in Figure 8.
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Influence Line Diagrams for 

Cantilever Beams

⚫ Consider a cantilever beam of span L as shown in Figure 9.

⚫ Influence line diagram for shear force and bending moment at fixed end A and at
C are to be determined.

⚫ Let a unit load act at a distance x from the free end B.

Figure 9: Cantilever with unit load
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ILD for Shear Force at

A (FA):

Shear force at A = FA = 1, Constant

Hence, ILD for FA is as shown in Figure 10.

Figure 10: ILD for FA
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Figure 11: ILD for moment MA

ILD for moment at A (MA):
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Figure 12: ILD for shear force at C (FC)

Hence, ILD for shear force (FC) is shown in Figure 12.

ILD for Shear Force at C (FC):

17



ILD for Moment at C (MC):

⚫When x ≤ z

Moment at C = MC = -1 (z-x), Linear variation 

when x = 0, MC = - z

when x = z, MC = 0

⚫When x > z

Moment at C = MC = 0, Constant

Hence, ILD for moment at C (MC) is shown in Figure 13.

Figure 13: ILD for moment at C (MC)
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