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I Load is defined as the set of external forces
acting on a mechanism or engineering structure
which arise from service conditions in which the
components work

~ Common loads in engineering applications are
tension and compression

~ Tension:- Direct pull. Eg:Force present in lifting
hoist

~ Compression:- Direct push. Eg:- Force acting on
the pillar of a building

~ Sign convention followed: Tensile forces are
positive and compressive negative




~ There are a number of different ways in which
load can be applied to a member. Typical loading
types are:

' A) Dead/ Static load- Non fluctuating forces
generally caused by gravity

~ B) Live load- Load due to dynamic effect. Load
exerted by a lorry on a bridge

~ C) Impact load or shock load- Due to sudden
blows

" D) Fatigue or fluctuating or alternating loads:
Magnitude and sign of the forces changing with
time




1.2 STRESS

~ When a material is subjected to an external
force, a resisting force is set up within the
component, this internal resistance force per unit
area is called stress. Sl unit is N/m?(Pa).
1kPa=1000Pa, 1TMPa=10%6 Pa, 1 Gp: ‘/'J‘ri““
Terra Pascal=10*2 Pa @

~ In engineering applications, we use th
the original cross section area of the ¢

and it iIs known as conventional stress Lr
Engineering stress




1.3 STRAIN

1 When a body is subjected to some external

force, there is some change of dimension of the body.
The ratio of change of dimension of the body to its
original dimension is known as strain

~ Strain is a dimensionless quantity

~ Strain may be:- a) Tensile strain b) Compressive
strain c) Volumetric strain d) Shear strain

~ Tensile strain- Ratio of increase in length to original
length of the body when it is subjected to a pull force

~ Compressive strain- Ratio of decrease in length to

original length of the body when it is subjected to a
push force

- Volumetric strain- Ratio of change of volume of the
body to the original volume

~ Shear strain-Strain due to shear stress




STRESS
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Tensile stress Compressive stress

Bending Stress




~ Direct stress may be normal stress or shear
stress

~ Normal stress (o) is the stress which acts in
direction perpendicular to the area. Normal stress
Is further classified into tensile stress

~ Tensile stress is the stress induced in a
body, when it is subjected to two equal and
opposite pulls (tensile forces) as a result of which
there is a tendency in increase in length

It acts normal to the area and pulls on the area




“Consider a bar subjected to a tensile force P at its
ends. Let

A= Cross sectional area of the body
L=COriginal length of the body

dL= Increase in length of the body due to its pull
F)

¢= Stress induced in the
body e= Tensile strain

Consider a section X-X which divides the body into
two halves




“The left part of the section x-x, will be in
equilibrium if P=R (Resisting force). Similarly the
right part of the section x-x will be in equilibrium if
P=l , T :
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~ Tensile stress (¢)= Resisting force/ Cross sectional
area= Applied force/Cross sectional area=P/A

~ Tensile strain= Increase in length/Original length= dL/L

- Compressive stress:- Stress induced in a body, when
subjected to two equal and opposite pushes as a
result of which there is a tendency of decrease in
length of the body

| It acts normal to the area and it pushes on the area

I In some cases the loading situation is such that the
stress will vary across any given section. In such
cases the stress at any given point is given by

~ ¢= Lt AA> 0 AP/ AA= dP/dA= derivative of force w.r.t
area
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~ Compressive stress=Resisting force/ cross sectional
area= Applied force/ cross sectional area

dL/L

~ Sign convention for direct stress and strain:- Tensile
stresses and strains are considered positive in sense
producing an increase in length. Compressive stresses
and strains are considered negative in sense producing
decrease in length

\_

~ Compressive strain= Decrease in length/ Original length= -




~ Shear stress :- Stress Induced in a body, when
subjected to two equal and opposite forces which
are acting tangentially across the resisting
section as a result of which the body tends to
shear off across that section

~ Consider a rectangular block of height h, length L
and width unity. Let the bottom face AB of the
block be fixed to the surface as shown. Let P be
the tangential force applied along top face CD of
the block. For the equilibrium of the block, the
surface AB will offer a tangential reaction force R
which is equal in magnitude and opposite in
direction to the applied tangential force P




~ Consider a section X-X cut parallel to the applied force
which splits rectangle into two parts
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~ For the upper part to be in equilibrium; Applied force
P=Resisting force R

~ For the lower part to be in equilibrium; Applied force
P=Resisting force R

- Hence, shear stress 1= Resisting force/Resisting area=P/L
x 1=P/L

~ Shear stress is tangential to the area on which it acts




~ As the face AB is fixed, the rectangular section ABCD
will be distorted to ABC1D1, such that new vertical
face AD1 makes an angle ¢ with the initial face AD

. Angle o is called shear strain. As ¢ is verysmall,
~ ¢=tan ¢=DD1/AD=dl/h
~ Hence shear strain=dl/h




1.5 ELASTICITY & ELASTIC
LIMIT

- The property of a body by virtue of which it undergoes
deformation when subjected to an external force and
regains its original configuration (size and shape)
upon the removal of the deforming external force is
called elasticity.

~ The stress corresponding to the limiting value of
external force upto and within which the deformation
disappears completely upon the removal of external
force is called elastic limit

~ A material is said to be elastic if it returns to its
original, unloaded dimensions when load is removed.

1 If the external force is so large that the stress exceeds
the elastic limit, the material loses to some extent its
property of elasticity. If now the force is removed, the
material will not return to its original shape and size
and there will be a residual deformation in the
material




" 1.6 HOOKE’S LAW & ELASTIC

MODULI

" Hooke’s law states that: “ When a body is loaded
within elastic limit, the stress is proportional to
strain developed” or “Within the elastic limit the
ratio of stress applied to strain developed is a
constant”

~ The constant is known as Modulus of elasticity or
Elastic modulus or Young’s modulus

~ Mathematically within elastic limit
Stress/Strain=¢/e=E
c= P/A; e
=AL/L E=PL/A

\ AL
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1.7 HOOKE’S LAW & ELASTIC
MODULI

~ Young's modulus (E) is generally assumed to be
the same in tension or compression and for most
of engineering applications has a high numerical
value. Typically, E=210 x 1029 N/m? (=210 GPa)
for steel

~ Modulus of rigidity, G= 1/¢p= Shear stress/ shear
strain

~ Factor of safety= Ultimate stress/Permissible
stress

~ In most engineering applications strains donot
often exceed 0.003 so that the assumption that
deformations are small in relation to orinal

\___ dimensionsisgenerallyvalid ~/



~ Standard tensile test involves subjecting a
circular bar of uniform cross section to a gradually
increasing tensile load until the failure occurs

~ Tensile test is carried out to compare the
strengths of various materials

~ Change in length of a selected gauge length of
bar is recorded by extensometers

~ A graph is plotted with load vs extension or stress
vs strain




" 1.8 STRESS-STRAIN CURVE

(TENSILE TEST)

Fig. 1.3. Typical tensile test curve for mild steel.




- A-> Limit of proportionality; It is the point where the
linear nature of the stress strain graph ceases

~ B-> Elastic limit; It is the limiting point for the condition
that material behaves elastically, but hooke's law does
not apply . For most practical purposes it can be often
assumed that limit of proportionality and elastic limits
are the same

' Beyond the elastic limits, there will be some
permanent deformation or permanent set when the
load is removed

1 C (Upper Yield point), D (Lower yield point)—> Points
after which strain increases without correspondingly
high increase in load or stress

| E=> Ultimate or maximum tensile stress: Point where
the necking starts

I F-> Fracture point
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RELATIONSHIPS BETWEEN
STRESS & STRAIN

' A) 1-Dimensional case (due to pull or push or shear
force)

¢=Ee
~ B) 2-Dimensional case

- Consider a body of length L, width B and height H. Let
the body be subjected to an axial load. Due to this
axial load, there is a deformation along the length of
the body. This strain corresponding to this
deformation is called longitudinal strain.

~ Similarly there are deformations along directions
perpendicular to line of application of fore. The strains
corresponding to these deformations are called lateral
strains




RELATIONSHIPS BETWEEN
STRESS & STRAIN

8L = Increase in length,
ob = Decrease in breadth, and
O6d = Decrease in depth.

Then longitudinal strain = %

o
and Iﬂteralstrﬂin=ﬁ or —
h d
. b >
T ' [
d . l'l—ﬂﬂ} — —
be— (b - 6b) o o L >
- L+ &L »

Fig. 1.3. Typical tensile test curve for mild steel.




RELATIONSHIPS BETWEEN
STRESS & STRAIN

~ Longitudinal strain is always of opposite sign of
that of lateral strain. le if the longitudinal strain is
tensile, lateral strains are compressive and vice
versa

- Every longitudinal strain is accompanied by
lateral strains in orthogonal directions

~ Ratio of lateral strain to longitudinal strain is
called Poisson’s ratio (u); Mathematically,

| M=-Lateral strain/Longitudinal strain

~ Consider a rectangular figure ABCD subjected a
stress in ox direction and in o y direction




RELATIONSHIPS BETWEEN
STRESS & STRAIN

~ Strain along x direction due to ¢x= ¢ x/E
Strain along x direction due to ¢ y=-u x¢y/E
Total strain in x direction ex= ¢ X/E -y x

cy/E
Similarly total strain in y direction, ey= ¢ y/E - y x
cx/E

~ In the above equation tensile stresses are
considered as positive and compressive stresses
as negative

1 C) 3 Dimensional case:-

Consider a 3 D body subjected to 3 orthogonal
normal stresses in x,y and z directions




g RELATIONSHIPS BETWEEN

STRESS & STRAIN

~Strain along x direction due to ¢x= ¢ X/E
Strain along x direction due to ¢ y=-p x
cy/E Strain along x direction due to ¢ z=-
U xCz/E
Total strain in x direction ex= ¢ X/E - p x (Qy/E +
cz/E)
Similarly total strain in y direction, ey= ¢ y/E - u

(GXE + ¢z/E)

Similarly total strain in z direction, ez= ¢ z/E - p
x (CXE + ¢y/E)
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1.10 ANALYSIS OF BARS OF
VARYING CROSS SECTION

~ Consider a bar of different lengths and of different
diameters (and hence of different cross sectional
areas) as shown below. Let this bar be subjected to

_ Seclion 3
Section 2 |

Sectlon 1
— A A, | A, - »

P - P

b— L, —pie— L, —pie—— L,—|

| The total change in length will be obtained by adding
the changes in length of individual sections
~ Total stress in section 1: ¢1=E1 x AL1/L1

¢1 xL1/E1=AL1
¢1=P/A1; Hence AL1=PL1/A1E1
. Similarly, AL2=PL2/A2E2; AL3=PL3/A3E3
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1.10 ANALYSIS OF BARS OF

VARYING CROSS SECTION

~ Hence total elongation AL=Px (L1/ATE1+L2/A2E2 +
L3/A3E3)

~ If the Young's modulus of different sections are the
same, E1=E2=E3=E; Hence AL=P/Ex (L1/A1+L2/A2

+ L3/A3)

~ When a number of loads are acting on a body, the
resulting strain, according to principle of
superposition, will be the algebraic sum of strains
caused by individual loads

~ While using this principle for an elastic body which is
subjected to a number of direct forces (tensile or
compressive) at different sections along the length of
the body, first the free body diagram of individual
section is drawn. Then the deformation of each
section is calculated and the total deformation is
equal to the algebraic sum of deformations of
iIndividual sections




~ Consider a bar uniformly tapering from a diameter
D1 at one end to a diameter D2 at the other end

" Let

~ P-> Axial load acting on the bar

- L-> Length of bar

' E- Young’s modulus of the material

T\




-1 Consider an infinitesimal element of thickness dx, diameter Dx at
a distance x from face with diameter D1.
Deformation of the element d(Ax)= P x dx/ (AXE)
Ax=T11/4 x Dx?; Dx=D1 - (D1 -D2)/L xx
Let (D1-D2)/L=k; Then Dx= D1-kx
d(ALx)= 4 x P x dx/(1r x (D1-kx)*> X E)
Integrating from x=0 to x=L4PL/(TTED1D2)
L

L
%d{ﬂm)z [4:Padx/(m:(D1-kx)* : E)
0

Let D1-kx=A; then ax= -(d Nk)
When x=0, A=D1; When x=L, A=D2
L D2

Jd(ALx)= [#xPxdx/(Tlx\? k. E)
0 D1 '

ALx= 4PL/(TEED1D2)




C 1.12 ANALYSIS OF UNIFORMLY

TAPERING RECTANGULAR BAR

A bar of constant thickness and uniformly tapering in width from one end to the other
end is shown in Fig. 1.14.
Let P = Axial load on the bar
L = Length of bar
X = Width at bigger end
= Width at smaller end
= Young's modulus

ia
b
E
t = Thickness of bar

-

PL_,
Eta-b) B¢ 5
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1.13 ANALYSIS OF BARS OF
COMPOSITE SECTIONS

~ A bar, made up of two or more bars of equal
lengths but of different materials rigidly fixed with
each other and behaving as one unit for
elongation and shortening when subjected to
axial loads is called composite bar.

CALA L i i

o
]
s
=N

- Consider a composite bar as showi 1
7= ﬁ
P-> Applied load Z S

L-> Length of bar v
A1-> Area of cross section of Inner member
A2-> Cross sectional area of Outer member
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1.13 ANALYSIS OF BARS OF
COMPOSITE SECTIONS

~ Strain developed in the outer member= Strain
developed in the inner member

c1/E1 = ¢2/E2

~ Total load (P)= Load in the inner member (P1) +
Load in the outer member (P2)

¢l xA1+¢2 xA2=P

~ Solving above two equations, we get the values
of ¢1, ¢2 & el ande2




PRODUCED IN A BAR DUE TOITS |

SELF WEIGHT

- Consider a bar of length L, area of cross section A
rigidly fixed at one end. Let o be the density of the
material. Consider an infinitesimal element of
thckness ( oo -€Y from the bottom of the

ar.

dy
L |
Y

L

~ The force acting on the element considered= weight
of the portion below it=pAgy




PRODUCED IN A BARDUE TOITS
SELF WEIGHT

~ Tensile stress developed= Force acting on the
element/Area of cross section= pgy.

' From the above equation, it is clear that the
maximum stress at the section where y=L, ie at
the fixed end (pglL) and minimum stress is at the
free end(=0) ALy= {jég}-d}-...-_aE: oel:/2AF

"~ Elongation due to self weignt

~




( 1.15 STRESS IN BAR DUE TO

ROTATION

Consider a bar of length 1 rotating about the axis y at a constant angular velocdity . Consder
an infinitesimal element of thickmess dx at a distance x from the axis of rotation.

Y
L | & T M
[ 0
I —1—>FP
: L
-Plx | I-(-dt i
< I J >
I r ]
Y

Tensile force on element ST= Cenwifugal force on element TM

Centrifugal force on element TM= Mass of element TMxrx @*= {I/2—(xtdx)} xAxp

xrx

r= x + % x (1/2- (x+dx)

As dx is numerically very small, x + dx~x

Hence tensile force on element ST=1/2 —x)x Ax{x + Ve x (1/2-x)} x px ©*

—Axpx@*x(12/4-x2)/2




( 1.15 STRESS IN BAR DUE TO

ROTATION

Tensile stress developed= Tensile force /cross sectional area= Axpx @ x (1*/4-x%)/2A
Orod=pxw?x(1*/4-x2)/2

Orod =0, whenx=1/2

Orod =Maximum when d (Orod )/ dx=0;ie when x=0

Orodmax ==px®?*x]?/8

Extension of element= Orod xdx/E

|
Extension of entire bar=] p x w® x (/4 - »*)dx/2=px w® x F/12E
]

Extension of entire bar= px @?*x1*/12E




1.16 THERMAL STRESS

~ Thermal stresses are the stresses induced in a body due
to change in temperature. Thermal stresses are set up in a
body, when the temperature of the body is raised or
lowered and the body is restricted from expanding or
contracting

~ Consider a body which is heated to a certain temperature
Let
L= Original length of the body
A T=Rise in temp
E=Young's modulus
a=Coefficient of linear expansion
dL= Extension of rod due to rise of temp
. If the rod is free to expand, Thermal strain developed
et=AL/L=a xAT




1.16 THERMAL STRESS

~ The extension of therod, AL=Lx a xAT

 If the body is restricted from expanding
freely, Thermal stress developed is ¢t/et=E

S ct=ExaxAT

~ Stress and strain when the support yields:-
If the supports yield by an amount equal to
0, then the actual expansion is given by
the
difference between the thermal strain and 6
Actual strain, e= (Lx axAT-0)/L

Actual stress=Actual strain x E= (Lx a xAT —
O)/LxE




UNIT Il

SHEAR AND BENDING IN BEAMS



APPLIED AND REACTIVEFORCES

Forces that act on a Body can be divided into
two Primary types: applied and reactive.

In common Engineering usage, applied forces are
forces that act directly on a structure like, dead,
live load etc.)

Reactive forces are forces generated by the action
of one body on another and hence typically occur
at connections or supports.

The existence of reactive forces follows from
Newton’s third law, which state that to every
action, there is an equal and opposite reaction.



J HRIS

Tobear or hold up (a load, mass, structure, part, etc.);
serve as a foundation or base for any structure.

To sustain or withstand (weight, pressure, strain, etc.)
without giving way

It is a aid or assistance to any structure by preserve its load

Supports are used to connect structures to the ground or
other bodies in order to restrict (confine) their movements
under the applied loads. The loads tend to move the
structures, but supports prevent the movements by exerting
opposing forces, or reactions, to neutralize the effects of
loads thereby keeping the structures in equilibrium.



TYPES OF SUPPORTS

Supports are grouped into three categories,
depending on the number of reactions
(1,2,0r3) they exert on the structures.

1) Roller support
2) Hinge support
3) fixed support



ROLLER SUPPORT

Roller supports are free to rotate and
translate along the surface upon which the
roller rests.

The surface can be horizontal, vertical, or
sloped at any angle.

The resulting reaction force is always a
single force that is perpendicular to, and
away from, the surface



= T
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Restrains the structure from moving in one or two perpendicular directions.
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HINGE SUPPORT

A Hinge support can resist both vertical and
horizontal forces but not a moment. They will allow
the structural member to rotate, but not to translate
In any direction

Pin or hinge support is used when we need to
prevent the structure from moving or restrain its
translational degrees of freedom.

A hinge is a type of bearing that connects two solid
objects, typically allowing only a limited angle of
rotation between them. Two objects connected by an

iIdeal hinge rotate relative to each other about a
fixed axis of rotation
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FIXED SUPPORT

Fixed supports can resist vertical and
horizontal forces as well as a moment. Since
they restrain both rotation and translation,
they are also known as rigid supports.

Flied j ﬁb:

f







e




BHAM

A beam is a structural member(horizontal)
that is design to support the applied load
(vertical). It resists the applied loading by a
combination of internal transverse shear
force and bending moment.

It is perhaps the most important and widely
used structural members and can be
classified according to its support conditions.



Extremely common structural element

In buildings majority of loads are vertical and
majority of useable surfaces are horizontal

1/39



«  DBeams
T

devices for transferring
vertical loads horizontally

action of beams involves combination of
bending and shear

2/39



TYPES OF BEAMS

The following are the important types of
beams:

1. Cantilever

2. simply supported
3. overhanging

4. Fixed beams

5. Continuous beam



CANTILEVER BEAM

A beam which is fixed at one end andfree
at the other end is known as cantilever
beam.

AR







SIMPLY SUPPORTED BEAMS

A beam supported or resting freely onthe
supports at its both ends,

= et kgl




FIXED BEAMS

A beam whose both ends are fixed and is
restrained against rotation and vertical
movement. Also known as built-in beam or
encastred beam.

fixed end

o : / heam
3 AR L
I-._'_'




OVERHANGING BEAM

If the end portion of a beam is extended
outside the supports.

— T ——

heam

L




Contract 3 footbridge




CONTINUOUS BEAMS

Abeam which is provided with more than
two supports.




TYPES OF LOADS

Concentrated load assumed to act at a point
and immediately introduce an
oversimplification since all practical loading
system must be applied over a finite area.

l concentrated loads I

/N beam /l %

. sl L L




Point loads, from concentrated loads or other beams

Distributed loads, from anything continuous

1

Distributed Load

i Il

Point Load

Reactions

10/39



umnif ornly dhstiibuted load

heam




unformly varying load

.
heam




What the Loads Do

he loads (& reactions) bend the beam,
and try to shear through it

~eE
*

* K}

11/39



Bending

Shear

12/39



in architectural structures, bending
moment more important

importance increases as span increases

short span structures with heavyloads,
shear dominant

e.g. pin connecting engine parts

beams in building
designed for bending
checked for shear

13/39



HoW we calculate the Efects

First, find ALL the forces (loads and reactions)

Make the beam into a free body (cut it out and
artificially support it)

Find the reactions, using the conditions of equilibrium

\ 4
ﬁ &
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INTERNAL REACTIONS INBEAMS

At any cut in a beam, there are 3 possible
internal reactions required for equilibrium:
normalforce,
shearforce,
bending moment.

A




INTERNAL REACTIONS INBEAMS

At any cut in a beam, there are 3 possible
iInternal reactions required for equilibrium:

normalforce,

shear force,
bending moment. /— Positive Directions
Shown!!!
Left Side of Cut M
>

0) v/ N
Pb/L V

S 8 8 8 4 X 28 84




INTERNAL REACTIONS INBEAMS

At any cut in a beam, there are 3 possible
internal reactions required for equilibrium:

normalforce,

shearforce,
bending moment. Al Positive Directions
Shown!!!
M AV Right Side of Cut
<€
EVANEGEE \\ 1
| Pa/L
- L-X




SHEAR FORCES, BENDING MOMENTS -
SIGN CONVENTIONS

i right section
Shear forces: iefiseEtin

positive shear:

negative shear:

Bending moments:
Negative moment > <

positive moment > <

C.wW

ACW



olgn Gonventions
Bending Moment Diagrams (cont.]

Sagging bending moment is POSITIVE (happy)

O\

Hogging bending moment is NEGATIVE
(sad)

T

24/39



Consider cantilever beam with point load on end

W
Mr=-WL vertical reaction, R=-W
and moment reaction Mg = -WL

R=-W

e Use the free body idea to isolate part of the beam

e Add in forces required for equilibrium

15/39



Cantilever Beam
Point Load at Eml \

= -Wx
Take section anywhere at distance, x from end |

Add in forces, V = -W and moment M = - Wx

V=-W

Shear V =- W constant along length V =-W M“HH”M il

Shear Force Diagram

Bending Moment BM = -W.x BM = WL muﬂﬂmm
When X = L BM - _WL ||||||| T
when x =0 BM= 0

Bending Moment Diagram

16/39



Cantilever Beam
Uniformiy Distributed Load

S ¥ 2, ol e e
dpEdesiuatuanianan

For maximum shear V and bending moment BM

Total Load W =
Mrp = WL/2 lr
R=W=wL
vertical reaction, R=W =wL

and moment reaction Mgzg=-WL/2 =-wlL2/2

17/39



Example 2 - Cantilever Beam
Uniformly Distributed Load (cont )

For distributed V and BM

[ IR '::"::".-';;I
i . e 2
Take section anywhere at distance, x from end M = -wx2/2 I

Add in forces, V = w.x and moment M = - wx.x/2

V =wx

Shear
when x =L
whenx=0 V=

WX
W=wL
0 =W H]H[ﬂ]]]]]]]]][ﬂm

Shear Force Diagram

\'
V=

BM = wx /2

Bending Moment BM = w.x2/2
when x =L BM = wL2/2 =WL/2 BM=wLz2

when x =0 BM=0 = WL/2
(parabolic) Bending Moment Diagram

e
-sﬁiﬁhg“* i ETTT
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L=

Fig. 6.22 shows a cantilever of length L fixed at A and carryving a gradually varying load

from zero at the free end to w per unit length at the fixed end.

Cubie curve B.M. diagram

o LN |

Fig. 6822

Take a section X at a distance x from the free end B.
Let F_ = Shear force at the section X, and



UNIT -3

Flexural and shear stresses
IN beams




Members Subjected to Flexural Loads
Introduction:

In many engineering structures members are required to resist forces that are applied
laterally or transversely to their axes. These type of members are termed as beam.

There are various ways to define the beams such as

Definition I: A beam is a laterally loaded member, whose cross-sectional dimensions
are small as compared to its length.

Definition I1: A beam is nothing simply a bar which is subjected to forces or couples
that lie in a plane containing the longitudinal axis of the bar. The forces are
understood to act perpendicular to the longitudinal axis of the bar.

Definition I11: A bar working under bending is generally termed as a beam.
Materials for Beam:

The beams may be made from several usable engineering materials such commonly
among them are as follows:

Metal
Wood
Concrete

Plastic
79




Geometric forms of Beams:
* The Area of X-section of the beam may take several forms some of them

have been shown below:

[ Rectangular section] [ T- section] [ I - section]

A @

[ Triangular section] [ Circulular [ Channel X - section]
X section]

80




Loading restrictions:
Concept of pure bending:

* As we are aware of the fact internal reactions developed on any cross-
section of a beam may consists of a resultant normal force, a resultant shear
force and a resultant couple. In order to ensure that the bending effects alone
are investigated, we shall put a constraint on the loading such that the
resultant normal and the resultant shear forces are zero on any cross-section
perpendicular to the longitudinal axis of the member,

That means F =0
since or M = constant.

Thus, the zero shear force means that the bending moment is constant or the
bending is same at every cross-section of the beam. Such a situation may be
visualized or envisaged when the beam or some portion of the beam, as been
loaded only by pure couples at its ends. It must be recalled that the couples are
assumed to be loaded in the plane of symmetry.
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Beam

Plane of Symmetry

Fig (1)

Fig (2)
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Bending Stresses in Beams or Derivation of Elastic Flexural formula :

In order to compute the value of bending stresses developed in a loaded beam, let us
consider the two cross-sections of a beam HE and GF , originally parallel as shown
in fig 1(a).when the beam is to bend it is assumed that these sections remain parallel
i.e. H'E' and G'F', the final position of the sections, are still straight lines, they then
subtend some angle

Consider now fibre AB in the material, at a distance y from the N.A, when the beam
bends this will stretch to A'B’

Therefare,
change inlength

strain in fibre AB = -

arginal length

_AR - AR
AB

But&AB = CDandCD =C'D°
refertofigl{a) andfigl{b)
AR -CDY
cD’

CLostrain =
Consider now fibre AB in the material, at a distance y from the N.A, when the beam
bends this will stretch to A'B'

Since CD and C'D' are on the neutral axis and it is assumed that the Stress on the
neutral axis zero. Therefore, there won't be any strain on the neutral axis

o]
@w




(R+y)8-RB _ FB +yH-RH -
FB FB R
stress

strain
Therefore equating the twostraing as

obtained frormthe tworelationsi.e,

However =E  whereE=Young'sModulus of elasticity

U_YEIFU_E 1
ERY TR @
O=E

ﬁ}"

if the shaded strip isof area'da)’
thenthe farce onthe strip is

F=o6A=C yaa
R

Mament about theneutralaxiswould be =F.y = g yEaa,

The toatl moment for the whole
cross-section istherefore equal to

_ —E 2 _ E z
Ml = —_ a8 = — G,
ERY REY




* Now the term is the property of the material and is called as a
second moment of area of the cross-section and is denoted by a
symbol I.

* Therefore M=EI D)
combining equation 1 and 2 we get

g_M_E

v T F

* This equation is known as the Bending Theory Equation.
The above proof has involved the assumption of pure bending
without any shear force being present. Therefore this termed as
the pure bending equation. This equation gives distribution of
stresses which are normal to cross-section i.e. in x-direction.




Consider an [ - section of the dimension shown below.

Flange

|:—_.\_

b V A b [Here flange and web
T thickness are same)]
] 22/‘_
I
o| N 4. - SR
D E— 1)
LFAY
The shear stress distribution for any arbitrary shape is givenas ~ Z1

Let us evaluate the quanlityAy , the Ay quantity for this case comprise the contribution
due to flange area and web area
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Areaoftheweb

o)

Distance of the centroid fromMN.A

Ds2 _1{d
=_|Z -y|+
d,2 y 2{2 Y] ¥
N A __1fd
I N
=3(3+)
Flange area Therefare,
ATl =b[ 2-y] 1 [ 2+
Area of the flange = B[¥ ¥ lwab 7 ¥ 717 Y
Distance of the centroidofthe flange fromtheN.A Hence,
-_1(D-d},d D+d
o A
y= [D:d) Thus,

Hence, — —lj2
" _.fD-d}{D-d AF|rota =B —'Y
AY lranae =B ——J| =~

Therefore shear stress,
- N G . @2
hI B

Web Area -2




_ =%[E (0% - &)+




-: 7 Parabolic

This distribution is known as the “top — hat” distribution. Clearly the web bears the most
of the shear stress and bending theory we can say that the flange will bear most of the
bending stress.

89




UNIT IV

DEFLECTION OF
BEAMS




CHAPTER FIVE - DEFLECTION OF BEAMS

is deformed into a curve, called the deflection curve @
displacement in the y direction of any point on the axis of the beam. See Figure 5.1

below.

> <




Deflection of Beams Contd.

part of structural an:

Deflections are essential for example in the =
analysis of statically indeterminate structures
and In dynamic analysis, as when
Investigating the vibration of aircraft or
response of buildings to earthquakes.

Deflections are sometimes calculated In *
order to verify that they are within tolerable
lImits.




5.1 RELATIONSHIP BETWEEN LOADING, SHEAR

FORCE, BENDING MOMENT, SLOPE AND
DEFLECTION.

\

Consider a beam AB which is initially horizontal when unloaded. If it deflects to

a new position A * B’ under load, the slope at any point C is:

I = dy/dx
dy
4 A\(
||
v =
A’l A ‘[ Il “
al —t——'8
| |
L ! -
o —.-‘dxl—*—

Fig. 5.2. Unloaded beam AB deflected to A’ B’ under load.



Basic Differential Equation For

Deflection

This is usually very small'in practice, and for smal /@
ds = dx = Rdi (Figure 5.2). | IL\V\\ B,
L\ 4
dildx = 1R /
y Za
But i= dy/dx TSN
al— H——Ja
!
o e
TherefOre dzy/ dX2 = 1/ R .................... Fig, 5.2. Unloaded beam ABdcﬁcc:cd 1o A'B under load.

Now from simple bending theory: M/l = E/R

1/R = M/EI
Therefore substituting in equation (1):
M= E| d2y/dx2 ..................................... (2)

This is the basic differential equation for the deflection of beams.



Recall that for a distributed load:

dV/dx = - w (loading function) and dM/dx = V (Shear force)
Differentiating once, El d’y/dx®> = dM/dx = V
Differentiating further: El d*y/dx* = dV/dx = -w

Yy

{a) Defilection y=8 positive upwords

v/

'{()Enhve dy
y ~ *ax
(b)) Slope - stope
X - /

2
+d "2 xEI
Poslhve dx
(c)}y BM

3
d’y {
S IxEx
(d) S F POSl‘hve\ l dx ___\
a
+d ?’ {x EXL
dx
(e} Loading Upward loading positive \——-—/

Fig. 5.4. Sign conventions for load, S.¥.. B.M., slope and deflection.



Direct Integration Method

5.2. Direct integration method

If the value of the B.M_at any point on a beam is known in terms of x, the distance along th

beam, and provided that the equation applies along the complete beam, then integration o
eqn. {(5.4a) will yield slopes and deflections at any point,

d?y dy M
M=FEISY and 2= | dx+a
- dx? " ax T JEr T

M Y
or )’=ff(k7dx dx + Ax+ B

where 4 and B are constants of integration evaluated from known conditions of slope an
deflection for particular values of x.

(a) Cantilever with concentrated load at the end (Fig. 5.5)

wW

i
: =
1 =
— T —c-I '//-
L % -~
L -

I




Elz_\' .
AN = l’l‘h’_i = — 'x
£l dy 11'x2 b A
dx 2
assuming KT 1s constant.
. o
Ely = — - + Ax+ B
6
N | dy 0 4= 1712
ow when x = [, e .. =
d wi / 0 B 13 H'Lzl _ W3
and when x =1,y = . = 5 L= 3
1 x> WLIx  WL?
= =} - = 4+ = 5.5
d El[ 6 2 3 ] (>-)

This gives the deflection at all values of x and produces a maximum value at the tip of the
cantilever when x = 0,

' M deflect __wL (5.6)
t.c. aximum deflection = Y .= 3E] .
The negative sign indicates that deflection is in the negative y direction, l.e. downwards.
dy i Bx? WL?
S. ilarl S Em e - e o 57
imilarly de = Ei [ 5 + oy _l (5.7)

and produces a maximum value again when x = 0.

Maximum slope = ( )m= EE}— (positive) (5.8)



(b) Cantilever with uniformly distributed load (Fig. 5.6)

"
- X ! w /metre

- XL 7
- I
Fig. 5.6
d?y wx?
~E1S2 = -
M x dx? 2
dy wx3
E1%Y = - A
dx 6
wx4
= =" L Ax+B
Ely >4 + Ax +
d L3
x = L, ,,)_J,=0 and A=h
dx 6
wl* wl? wi*
=L, y=0 and B=* — - = —
* ) an 24 6 8
i wx® wilx wl?
- — | — — 59
Y EI[ 24 T 6 g (>:2)

wili* dy wili?
. 10
Y max = SEI and ( ) N (5.10)




Slmply supported beam with uniformly distributed load (Fig. 5.7)

L

x
l w/metre

b x —-——! 3
wi | 1% L wil
2 -2
Fig. 5.7.
M — EI d?y  wlx wx* 2
xx d_\‘z - 2 2
Fld‘,——“l" u\ A
dx 4 6
wix? wxd
Ely = ——— — =— B
I {5 5a + AX +
x =0, y=0 .. B=0
/ 0 ) o wi? wil.? + A7
xX == . L—— . . o e = . _
- 12 24 7
wi 3
A= —
24
y= Ml ot wi’x (5.11)
El i2 24 24
In this case the maximum deflection will occur at the centre of the beam where x = [./2.
- . wi L wi. 3 (
Ymax™= g T 24
Swil*
_-— 2 (5.12)
~ 38B4EI]

. dy wlil.?3
o i el g ds - a - ) S13
?mularly (dx) . -+ > AET 1t the ends of the beam ( )



f
-

(d) Simply supported beam with central concentrated load (Fig. 5.8)

W
Lse J‘X !
Fig. 5.8

In order to obtain a single expression for B.M. which will apply across the complete beam
in this case it is convenient to take the origin for x at the centre, then:

d?y

1 = —
e dx?

RRY I‘J
(i }
‘L l =

dx

Ely =

and

WL WL Wx
T 2\2 77 )T a=7 2

= 0,

13770 Hx2 y
PR o
i f.x? 13 4 Ax 4+ B
8 12 x
dy .
= = 0 - . A == O
o x
L -0 . o — 1772 13 B
2 Y= " = 732 96
1573
B = —
48
o1 17x2 1Hx3 13 514
Y= EI 8 12 48 (5-14)
wi?2
Ymax = ~ Z8ET at the centre (5.15)
dy wi?2
e = 4+ -~ at th ds .
(dx . * YeET 1t e ends (5.16)



Direct Integration Method

Contd.
\‘

In Some cases, it is not convenient to commence the =
integration procedure with the bending moment
equation since this may be difficult to obtain. In such
cases, it is often more convenient to commence with
the equation for the loading at the general point XX
of the beam. A typical example follows:



) Cantilever subjected to non-uniform distributed load (Fig. 5.9) L/r
__,_—/’f‘.’/ T 3w -
x ,Jx R ~ ")(.'
[ :

1 H- i 4

¥

Fig. 5.9
e Ll - o 6+ 20

The loading at section X X is

d*y x 2x
=Eld—x~;=—[»\'+(3\v—w)z =—u(l+'}:-
d3y x
Elix3-=—w x—l—f—— + A
erd’y + A B
dx? » 72 '31, + x+
dy x3 RS Ax?
el = — w ‘e - B x C
dx “(6+121_)+ 2 Hext
x* x3 Ax3 Br
Ely = —wi o oo o g
A “(24—*—6()1‘)4— o —+ > + Cx + D

HOE O Y .
hus, before the slope or deflection can be evaluated,

itherefore four conditions are required. They are:

x = 0, S.F. is zero
from (1) A =0
x = 0O, B.M. 1s zero
from (2) B =0
x = L, slope dy/dx = 0O (slope normally assumed zero at a built-in support)
from_ (3) O = _\v(__ _"_‘)-i-C
w il 3
C = -——-
4
x =L, y =0
L. 1.4 w .

0O = N s - D
from (4) w (24 -+ 6()) a *

p— _ 23wil?

120
. et wx s wi 3x 23w /r.*
Ely = — .- — .- 4 —
- 24 6O L 4 120
Then, for example. the deflection at the tip of the cantilever, where x = O, is

. 23w 7.2
Vo= 120ET

(L)

2)

3

4)

four constants have to be determined;



Macaulay’s Method

e

The Macaulay’s method involves
the general method of
obtaining slopes and deflections
(i.e. integrating the equation for
M) will still apply provided that
the term, W (x — a) is integrated
with respect to (x — a) and not
X.



Example ot Using Macaulay’s Methoc
for Concentrated loads

Ry 19 kN o kN ; R

Fig. 5.t1.

As an illustration of the procedure consider the beam loaded as shown in Fig. 5.11 for which
the central deflection is required. Using the Macaulay method the equation for the B.M. at
any general section X X is then given by '

B.M. ¢y = 15x — 20[ (x —3)] + 10[(x — 6)] = 30[(x — 10)]

Care is then necessary to ensure that the terms inside the square brackets (Macaulay terms)

are treated in the special way noted on the previous page.

Here it must be emphasised that all loads in the right-hand side of the equation are in units
of kN (i.e. newtons x 10%). In subsequent working, therefore, it is convenient to carry through
this factor as a denominator on the left-hand side in order that the expressions are dimensionally

correcl.



Example Contd.

Integrating,
EI dy x2 (x — 3)? (x — 6)* (x —10)?
103 dx = 15—-*2 — 20 —5 + 10 35 30 > - |+ A
El x3 (x — 3)3 (x — 6)3 (x —10)3
— sy = — - e I+ —_— = —_ A B
and 163 h% 15 6 20[ & 10 3 30 6 + Ax +

where 4 and B are two constants of integration.
Now when x =0, y =0 B =0
and when x = 12, y =0 ‘

15 < 123 93 63 23
o=->""2= _ 20| =~ 2_ | —-30} =- 124
5= 2[6]+10[6] 3[6]+

= 4320 — 2430 + 360 —40 + 124
12A4 — 4680 + 2470 = — 2210
A — 184.2
The deflection at any point is given by

EI x3 (x — 3)° (x — 6)3 (x —10)3
103) = 15?—20[—-——6-———]4—10[——-—6——— -— 30 e — 184.2x

The deflection at mid-span is thus found by substituting x — 6 in the above equation,]
bearing in mind that the dimensions of the equation are kN m3. O
N.B.— Two of the Macaulay terms then vanish since one becomes zero and the other,

" .
i ﬂ:‘lmw'ﬁ"o&ncm;‘:-.g,m_-m‘.r;»u.ww e e e

negative and therefore neglected. ’ §
103 15 63 20 33 3
) -c:entral deflection = El [ : —_ Z — 184.2 x 6] 1‘
. 655.2 < 103
o EI

\; th typical values of E = 208 GN/m?2 and I = 82 x 107°m*

central deflection = 38.4 x 107’ m = 38.4 mm



W/2 X W/2

L/2

A A
\/
\ 4

Mx =W/2x -W [x - L/2]
E | d®y/dx® = W/2x - W [x—L/2]

Eldy/dx = W/4x*- W [x—=L/I2]° + A
2

Ely = Wx* - W[xX-L2P + Ax + B
12 6




Boundary Conditions

A= WL? - WL = -WL?
48 12 16

Ely = Wx® - W][x—-L/2]? - WL*x
12 6 16

Ymax occurs at x = L/2
ie. Ely = W _[L% - WL® [L]
12 8 16 2




Macaulay’s Method for u.d.l.s

Example: Determine the deflection of the beam a dd
210 kN mm™. The Cross-Section is given as below. 50 mm‘

X & |
i 15kN 5 kN/m 10

X T
<My RA=36kN  5m RB =9 kN
«

Taking Moment about B: 15 x6 -5RA + (5x6)x3 =0
RA = 36 kN

RB=15+ (5x6) -36 = 9kN

El d?y/dx® = -15 x + 36 [x—1] -5x%2

El dy/dx = -15/2%* + 36/2[x—1]°— 5/6 x>+ A

Ely = -15/6 X° + 36/6 [x—1]° -5/24x* + Ax + B

Ely = -25x*+ 6[x-1]® - 0.2083x* + Ax + B



ie. A +B =25+ 02083 = 271 .......... (1)

Also: Atx =6,y =0

le. 0 = -540 + 750 -272.16 + 6 A + B

.e. 6A + B = 60 ------------- (2)

From Equations (1) and (2), A = 11.45and B = -8.75

ie. Ely=-25x + 6[x—1]° - 0.2083 x* + 11.46 x - 8.75
At x = 3, Ely = (-25 x 27) + 48 - 16.87 + 34.38 - 8.75

= -10.74



Solution Concluded

Moment of Inertia of given section about the ne

10° ] 3
. 2N|50x Oy 500 x 4% 0x80" _ 5 465107 m*

12 12
_ -1074 kNm® -1074  kNm’
Y E 1 210 x 10°KN /> x  246x10° m*

= 0.02079 m = 20.79 mm




CASE 1: Uniform Load Not Sta

15 kN 5 kN/m
+ AN /\V@ \__~

RA =30.5 kN X RB

1m
<+“—>
< >m >

Taking Moment about B: 15x6 -5RA + 5 x5 x25 =0
RA = 30.5kN

RB = 15 + 25 -30.5 = 9.5 kN

El d?y/dx? = -15x + 30.5 [x- 1] -5[x—1]. [x = 1]
2
El d%/dx® = -15x + 30.5 [x- 1] -5 [x—1]?

2

Eldy/dx = -15/2 x> + 30.5/2 [x- 1 - 5[x-1} + A
6

Ely = -15/6 x* + 30.5/6 [x- 1? - 5[x—1]' + Ax + B
24



Solution of Case 1 Concluded

Boundary Cond

Atx =1, y=0 ie.0=-25+ A+ B i
ie. A+ B =25 and 6A + 6B = 15............. (1)

At x =6,y =0

le. 0 = -540 + 635.42 - 130.21 + 6A + B

ie. 6A + B = 3479 ........... (2)

From Equations (1) and (2): A = 6.46 and B = -3.96

ie. Ely =-25 x* + 5083 [x- 1]’ - 0.2083[x-1]* +
6.46 x -3.96

At x = 3 (mid-span)
Ely = -67.5 + 40.66 - 3.33 + 19.38 - 3.96 = -14.75kNm?®

1475 kNm® 1475  kNm®
Y E I 210 x 10°kN /m> x 246 x 10° m

= 28.55 mm




Case 2: Uniform Load Not reachin

l 15 kN WNmo
| N AN N AN N\ /\/\/\v//’\
A
1m T RA ‘ RB
<«—> 4m
< > « M 5

Taking Moment aboutB: 15 x 6 - 5 RA+5x4x3 =0

RA
RB

30 kN
15 + (5x4) - 30 = 5 kN

Since the 5 kN/m load did not reach the end, [x - 1] does not represent the

actual loading.



Solution to Case 2 Contc

Loading is equivalem

5 kN5 kN/m
A AWV/WVMA/
|
1m TRA ‘ RB
<+—> 4m
< > 1m
<«—>
Eld’y/dx* = -15x + 30 [x- 1] -5[x—1].[x=1] + 5 [x—=5][x—5]
2 2
Eld%/dx?* = -15x + 30 [x- 1] -5[x=1]> + 5 [x—5]2
2 2
Eldy/dx = -15/2 x* + 15 [x- 1]* -5[x=1]* + 5 [x=5]° + A
6 6
Eldy/dx = -15/6 x> + 5 [x- 1* -5[x—-1]* + 5 [x-5]"+ A

24 24

Continue as usual to obtain y at 3 m.



Mohr’s Area-Moment Method

The Mohr area-moment proceEMn be

summarised as:

If A and B are two points on the deflection
curve of a beam, El is constant and B is a point
of zero slope, then the Mohr’s theorems state

that:

(1) Slope at A = 1/El x area of B.M. diagram *
between A and B

(2) Deflection at A relative to B = 1/EI x first
moment of area of B.M diagram between A
and B about A.



'fiCantilever with concentrated load at the end

e gln this case B is a point of zero slope and the simplified form of the Mohr theorems stated
B7above can be applied.

{ -
Slope at A = Fi [area of B.M. diagram between A and B (Fig. 5.20)]

1| L i 2
— WL -—-WL
TEI| 27| 2
W
/
Y ?B
A...__,.,.__._.___L______..._ﬁ
tg—— 2 /3 ———]

. L ] ¢
B.MN "

Fig. 5.20.

Deflection at A (relallve to B)

——

irst moment of area of B.M. diagram between A and B about 4]

E"[
1 _WL3
T“"E"—[( ) ]_351




(b) Cantilever with u.d.l.

w/metre
Apmmmammmga
N
- L /,
je———3L/4 —]

Cep. ai ,Text b))

8.M. diogram

Fig. 5.21.

Again B is a point of zero slope.

1
slope at 4 = I {area of B.M. diagram (Fig. 5.21)]

Deflection at A = £ {moment of B.M. diagram about 4]

a 1 leLz 3L __wL‘
TEIN\3T 2 )4 | BEI



Simply supported beam with u.d.l.

g w/metre

¥ Afmcnmmnmm.la

: f ~~~~~~~ L |

x v

E_:' Zero siope point

~ -

b B.M. diagram g '

g Gm wTLE ZZ\"‘L = Paw(re;a
3 * .o, C -
: . 5 L .| PPX‘}‘; m“"k")
8 2

; Fig. 5.22.

b

Jere the point of zero slope is at the centre of the beam C. Working relative to C,

1
& slope at A = El [area of B.M. diagram between A and C (Fig. 5.22)]

53! 1 [2wLrL)  wld

1 " EI|3 8 2| 24EI

Bl

thction of A relative to C ( = central defiection relative to AY)

. |

gggf = El [ moment of B.M. diagram between A and C about A]
fos” L rrawl? LN\ /SLY\ ] _ SwL*

3 T EI{\3 8 2)\16 ]| 384EI



Again working relative to the zero slope point at the centre C,
I ' .
slope at 4 = El fareca of B.M. dijagram between 4 and C (Fig. 5.23)]

- 1 1L WL WL?

22 4 ~ 16EI

Deflection of A4 relative to C ( = central deflection of C)

l
== [moment of B.M. diagram between 4 and C about A4]

G865



Principal stresses and
strains

2 What are principal stresses.

» Planes that have no shear stress are
called as principal planes.

> Principal planes carry only normal
stresses




Stresses in oblique plane

== > In real life stresses does not act in normal
| direction but rather in inclined planes.

Normal Plane Oblique Plane




E G
P P
. <= — 9 — g = B
== 4 A
S F P = Axial forces
| A = cross
Unit depth sectional area
5 \G G- &0




» Member subjected to direct
stress in one plane

» Member subjected to direct
stress in two mutually
perpendicular plane.

& > Member subjected to simple
! shear stress.

= > Member subjected to direct
d stress in two mutually
perpendicular directions +
simple shear stress.

=——"




> Member subjected to direct stress in two
mutually

= perpendicular directions + simple shear stress

on = ”1—+§2+ ”1‘299529+Tsin26

—_01-0)

o, = sin20-T1cos20

2




% &
> Member subjected to direct stress in two
mutually
perpendicular directions + simple shear stress
<«  POSITION OF PRINCIPAL PLANES
j <«  Shear stress should be zero

o, = 21222 §in26-1c0526=0

2
tan28 = 2o - @)




@ &

» Member subjected to direct stress in two mutually
perpendicular directions + simple shear stress .

~ Major principal Stress= 22+ "2+ T
! 2 2

Minor principal Stress = 72+ 724 T

2 2




% &
> Member subjected to direct stress in two

mutually perpendicular directions + simple
shear stress

<+ MAX SHEAR STRESS
. d
; 2 6,)=0

-~ [tan20sin26-T00s28] = 0

tan20 = =2

2T




% &
» Member subjected to direct stress in two
mutually perpendicular directions + simple

shear stress
< MAX SHEAR STRESS

o, = q—;?sinZO—TCOSZG

tan20 = 22
2T

1
Ottmax ) 3 (01 — @)? +4r17




< Member subjected to direct stress in one plane

< Member subjected to direct stress in two
mutually

perpendicular plane
< Member subjected to simple shear stress.

» Member subjected to direct stress in two
mutually

perpendicular directions + simple shear stress




@ &

< Member subjected to direct stress in one plane

0, = =2+ " 2e6526+1siN20

o, = q—_SZSiHZG—TCOSZG

Stress in one direction and no shear stress 02
=0,1=0

— Ol 2
oy, 2 gosZG o1 cos<6

=2 sin26



» Member subjected to direct stress in two mutually
perpendicular plane

— Op = 01—22-" UlﬂgeSZGHSinze

o, = 01—;7—sin26—T00326

Stress in two direction and no shear stress 1=0

Op = 01—+§2+ 01299526

o, = Ul—zzsinZG




< Member subjected to simple shear stress.

0, = 24+ "260520+T5in20

o, = 01—;7—sin26—T00326

No stress in axial direction but only shear stress 01=02

g= TSin20

g= -—TC0S20




THEORIES OF FAILURE




In case of material subjected to simple state of stress (tension
or compression), failure occurs when the stress in the material
reaches the elastic limit stress.

In case of material subjected to complex stresses, the stage of
failure is determined either to practically or theoretically.

Non-applicability of any one theory to all states of stresses
and to all materials has resulted in propagation of different
theories relating the complex stresses to elastic limit in simple
tension or compression.

Since the complex stress system can be simplified into three
principal stresses, the problem reduced to linking the three
principal stresses to the stresses at elastic limit in case of
simple stresses.



 The common most theories are

a bk~ O

Maximum principal stress theory
Maximum Principal strain theory
Maximum shear stress theory
Maximum strain energy theory

Maximum shear strain energy theory



1. Maximum Principal stress theory
or
Maximum normal stress theory



This theorv was proposed by Rankine.

It states that failure will occur when the maximum principal stress (o) inthe
complex system reaches the value of maximum stress (&, ) at the elastic limit

simple tension or the minimum principal stress (i.e. maximum principal

compression stress) reaches the elastic limit (o ) in simple compression.

c, =0

. in simple tension

| 053 |= o, 1n simple compression

For the design, the maximum principal stress shouldnot exceed the working

stress ¢ forthe material. o, = o,

a

1
o

Working stress. G = =

F : Factor of safety
This theory is valid for brittle metals such as cast iron.

Maximum principal stress theory is valid for thin walled tubes.



The maximum principal stress theory is contradicted in the following cases.

1. Failure in simple tension is caused by sliding at 45° with the axis of the specimen,
there by failure occurred due to maximum shear stress and not due to direct
tensile stress.

i1. The material which is weak in simple compression can sustain large hydrostatic

pressure in excess of the elastic limit in simple compression.



Maximum principal strain theory

+ This theory was proposed by Saint Venant.

» It states that the failure of a material occurs when the major principal tensile
strain reaches the strain at the elastic limit in simple tension or when the minor
principal strain (i.e maximum principal compressive strain) reaches the strain at
elastic limit in simple compression.

+ This theory is more appropriate for ductile materials, brittle materials and
materials under hydrostatic pressure.

+ It does not fit well with the experimental results.



!

! [0, 4o +0,)

Principal strain in the direction of principal stress o;, €, =

Principal strain in the direction of principal stress o, e, = %[53 - (o, + o, )]

According to maximum principal strain theory, the conditions to cause failure are

. 0,
6> [o-uo,40)]> == 0-ploy+0)>0, o

1 o,
> E[crg - (0, +0,)]> — = G0 +0)>0

e



To prevent failure
o, — (o, +0,) < o,
o, — (o, +0,) < G
At the point of failure

o, —t(o,+0,)= o

oy, —p(o,+0,)|= c,.
For the design purposes
o, — (0, +0,) =0,

a; _#(G-l +G_l) — G-L'.

a

Where o, and o, are the safe stresses.



Maximum shear stress theory

+ This theory is also called Coulomb Guest’s or Treasca’s theory
« It states that the material will fail when the maximum shear stress (7_,, ) in the

complex system reaches the value of maximum shear stress in simple tension at

the elastic limit.

— O, —0; Oy
max -
2 2

0, —-03=0

0, —03 =0,



» This theory gives good correlation with the results of experiments on ductile
materials.

o It gives satisfactory results for ductile materials particularly in case of shafts.

» The theory does not give accurate results for the state of stress of pure shear.

» The theory is not applicable in the case where the state of stress consists of

triaxial tensile stresses of nearly equal magnitude.



4. Maximum strain energy theory

« This theory was proposed by Beltrani-Haigh.

« It states that the failure of a material occurs when the total strain energy in the
material reaches the total strain energy of the material at the elastic limit in
simple tension.

In a 3D stress system, the strain energy per unit volume is given by

U= cr+crﬁ+cr - u(o,0, + 0,0, + 0,0
EE[ 1 3 ( 3 3 1):|
At the point of failure
! [cr +0+ 07 2u({co, +0,0 —|—G-'D':J:| G':
2E 1 2 3 1~ 2 243 31 2E

O, +0, +0; —2(0,0,+ 0,0, +0C;0,) =0,

In 2D stresssystem (o, =0). the above equation reduce to
Gy +0; — 20,0, =0,

For the design

o, +0; — 200, L0



v 115 applicable or ductle materals particularly in case of pressure vessel

 The theory docs notaplicableto mateialsor which g, 1 diterent rom 0,

+ The theory dogs not gve results exactly equal to the experimental resultseven

for ductile materials



If a bodvis subjected to high hvdrostatic pressure equal compressive stress on all the

three faces, then based on the strain energv theorv, the maximum compressive stress

will be

e S

3(1—p)

Yield stress of the material =&,

Strain energv stored, I' = %-51 & +E::F1 e, + 5 O, e,
O, =0,=0;=0
21=e:=e_=—g—lug=g[l— 1)

E E E
Ir—3 3

El )= ?(1 —2u)

Also U =stress = strain

o, O
=g, —L=_
g E
307 ; T,
29 q-2uy="2 = g9
E E 30— 2)



5. Maximum shear strain energy theory
or
Distortion energy theory

o This theory was proposed by Von Mises-Henky

o It states that the elastic faiture occurs when the shear stram energy per unit
volume m the stressed material reaches a value equal to the shear strain energy
per unit volume at the elastic Imit point m tenston.

o The theory gives best results for ductile matertal particularly m case of pure

shear or 0,=0

8



Shear stram energy per unit volume due to principal stresses 6,,0, and o,

l
DT +/ll

S BE[ 0. +0, +0, (0'10'2+0'30'2+0'10'3)}

i l-l-ﬂ 2 2
Us =] 01-0.) +(0,-0.) +(0,-0)|

l
12G

U, =

.—

[(0' -0,

f+(0,-0,) +(0,-0,) |



For the simple tension at the elastic limit powt, (6, =0

"

0, =0, =0), the shear

strain energy per unit volume 1s given by

iy

o 1 2 2 2| _ " ol
DS—@[(JH— Y +(0-0)+(0-0,) }— — 20"

2 2 2

. . . 7
Equating the two stram energies, (0, -0,) +(0,-0,) +(0,-0,) =2.0,

[n 2D stress system (o, =0), the above equation reduce to

22 2
O'1 +O'3 —0'10'3 —(')'I



Design conditions for various failure theory

Failure theory Proposed by Condition for design
Maximum principal stress theory | Rankine, Lame o, <0
Maximum principal strain theory | Saint Venants 1
—(o,—puo,) = —

Maximum shear stress theory Coulomb Guest. | 5 —o, o,

Tresca 5 = 5
Maximum strain energy theory Beltrami-Haigh (crf +or -2 LO,0,) < G
Distortion energy theory Huber-Henky-Von (crf +of — 0,0,)< o

Mises ) ) ’

e When one of the principal stresses at a point is large in comparison to the
other, all the failure theories gives nearly the same result.
e When a member is subjected to umi-axial tension, all the failure theories

gives the same result.



GATE
PREVIOUS QUESTIONS
AND
SOLUTIONS



01. A small element at the critical section of a componentis in a bi-axial state of

stress with the two principle stresses being 360 MPa and 140 MPa.The maximum

working stress according to distortion energy theorv is: GATE ME 1997
a.220 MPa b. 110 MPa c. 314 MPa d. 330 MPa
01.C.

o, : Major principal stress =360 MPa

o, : Minor principal stress =140 MPa

f : working stress in the element according to distortionenergy theory
ocl+0;-0,0,2f°
360° +140° —360x140 = f°

f =314.3N/mm?



02. According to Von-Mises distortion energy theory, the distortion energy under
three dimensional stress state is represented by GATE ME 2006

2 2 2
a. E[o‘l +o, +o, —2u(o,0, + 0,0, +G'IG'3)]

1-2pur 2 2
b. H[Jl +0, +o; +2(o,0, + 0,0, +o'lo'3)]

1+ u
3E

o

2 2 2
[crl +0, +0o; — (0,0, + 0,0, +o'lo'3)]

2 2 2
d. E[m‘l +o, +o, - u(oc, + 0,0, +o'lo'3)]



04. The homogenous state of stress for a metal part undergoing plastic deformation

18

10 5 0
I'=5 20 O
0 0 -10

Where the stress component values are in MPa . Using Von-Mises yield

criterion, the value of estimated shear yield stress, in MPa is GATE ME 2012

a. 9.50 b. 16.07 c. 28.52 d. 49.41

04.B



04.B

10 5 0
Stateof Stress. T=| 5 20 0
0 0 -10]

c, T, T.

T T, O,

c,= 10 MPa, o, =20 MPa, o_=-10MPa

r,=5MPa, 7_=0.7_=0

s

o c,+0,
Principal stresses. o, ; = ,\/(CF a:'r) +4r
10+20 - - 1
&L= ; ig\/{lﬂ—lﬂj‘+4x5‘=l =—+/100+100 =15+7.07

o, =15+7.07=22.07 MPa

o,=15-7.07=7.93 MPa



o . . Yield stressin tension

o Yield stress in shear

According to Von-Mises vield criterion,

= ]. | = "
(o) 2 E[(Jl —0,) +(oy,—0;)" +(0;— 'j'lj‘]

A ]. A A A
(6,) 2 E[(zz.m‘ ~793)* +(7.93+10)% +(~10 —22.:::7)*}

(6,)'2774.9 = 5, >27.84MPa

o, 2784
r _ =16.07 MPa

J3 3

El'f
e
w



05. A machine element is subjected to the following bi-axial state of stress: o _=80 ;
o, =20 ;7 =40 . If the shear strength of the material is 100 MPa, the factor of

safety as per Tresca’s maximum shear stress theory is GATE ME 2015

a.1.0 b. 2.0 c. 2.5 d.3.3

05.B

Biaxial state of stress for an element:

c,=80MPa .o, =20MPa and 7, =40MPa

Shear strength of the material, r =100 MPa

: , , 1 - -
Maximum shear stress induced in an element, 7__ = — \/(crx —-0,) +4r°
2 o

1 ; ﬁ
- E\/(ED ~20)% +4(40)* = 50 MPa

shear strength 100
Factor of safety, F = — = =2
shear stressinduced 50




06. The uniaxial yield stress of a materials 1s 300 MPa. According to von Mises

criterion, the shear yield stress (in MPa) of the material 1s GATE ME 2015
Ans: 171 to 175

06.173.2
Uniaxial yield stress of material, o, =300MPa

. G, 300
Shear yield stress, 0 =—==—=173.2 MPa
T B




(07. The principal stresses t a point in a critical section of a machine component are

g,=60 MPa, ¢,=5 MPa and ;= -40 MPa. For the material of the component,

the tensile yield strength is o, = 200MPa . According to the maximum shear

stress theory, the factor of safetv is GATE ME 2017
al67 b. 2.00 b. 3.60 d. 4.00
07.B

Principal stresses at a point in machine component

g, =60MPa, ¢, =5MPa and o, =—<40MPa

Tensile yield strength, ¢, =200MPa

. a.,. 200
Permissible shear stress, 7= j =—= 100 MPa
Maximum shear stress, 7, = % : 95
= 0-H0 _ 5 mpa
Factor of safety, F = Permissible shear stress _ 100 _9

Maximum shear stress induced 5



42.At a critical point in a component, the state of stress 1s given as o, =100MPa,

a.

yield strength of the material is 468 MPa. The factor of safety on the basis of

maximum shear stress theory 1s.... (round off to one decimal place).
GATE ME 2019

=220MPa, o,, = 6, = 80 MPa and all other stress components are zero. The

42.1.8

State of stress at a critical point:

c,=100MPa, &, =220MPaand r=80 MPa
Yield strength of the material, o, =468 MPa

Factor of safety, F =7



o, +0,
2

.. 1
Principal stresses are, o, , = + > \/(crx -0, ) + 417

100+ 220
O, = 2

=160+100
o, =160+100=260MPa

+ % J(100-220)* + 4x 807

o,=160-100=60MPa

g, -G,

2

 260-60

Maximum shear stress, 7, = =100MPa

According to maximum shear stress theory,

ag o, —0, O .
Y :max{ L 2 —Land 2

T =

2 F 2 2 2
468 _ 260 =18

2xF 2
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