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Introduction

•For the equilibrium of structures made of several
connected parts, the internal forces as well the externalforces are 
considered.

•In the interaction between connected parts, Newton’s 3rdLaw states 
that the forces of action and reaction between bodies in contact have 
the same magnitude, same line of action, and opposite sense.

•Three categories of engineering structures are considered:
a) Frames: contain at least one one multi-force member, i.e., member acted upon by 3 

or moreforces.
b) Trusses:  formed from two-force members, i.e., straight members with end point 

connections

c) Machines:  structures containing moving partsdesigned to transmit and modify 
forces.



Definition of a Truss

•A truss consists of straight members connected atjoints.   No member is 
continuous through a joint.

•Most structures are made of several trusses joinedtogether to form a space 
framework. Each truss carries those loads which act in its plane and maybe 
treated as a two-dimensional structure.

•Bolted or welded connections are assumed to be pinned together.  Forces 
acting at the member endsreduce to a single force and no couple. Only two- 
force members are considered.

•When forces tend to pull the member apart, it is intension. When the forces 
tend to compress the member, it is in compression.



Definition of a Truss

Members of a truss are slender and not capable of supporting large lateral loads. 
be applied atthe joints.

Loads must



Definition of a Truss



SimpleTrusses

•A rigid truss will not collapse underthe application of a load.

•A simple truss is constructed by successively adding two members 
andone connection to the basic triangular truss.

•In a simple truss,   m = 2n - 3   wherem is the total number of 
members and n is the number of joints.



Analysis of Trusses by the Method of frame

•The two forces exerted on each member areequal, have the same line of action, and opposite sense.

•Forces exerted by a member on the pins or joints at its ends are directed along the memberand equal and opposite.

•Conditions of equilibrium on the pins provide2n equations for 2n unknowns. For a simple truss, 2n = m + 3. May solve for m 
member forces and 3 reaction forces at the supports.

•Conditions for equilibrium for the entire trussprovide 3 additional equations which are not independent of the pin equations.



Co
Joints Under Special Loading

•Foresc i n poposite members intersecting in two straight lines at a joint are equal.

• The forces in two opposite members are equal when a load is aligned 
with a third member.  The third member force is equalto the load 
(including zero load).

• The  forces  in  two  members  connected  at  a joint  are  equal  if  the 
members are aligned and zero otherwise.

• Recognition of joints under special loadingconditions simplifies a truss 
analysis.



SpaceTrusses

•An elementary space truss consists of 6 members connected at 4 joints to 
form a tetrahedron.

•A simple space truss is formed and can be extended when 3 new members 
and 1 joint areadded at the same time.

•In a simple space truss, m = 3n - 6 where m is the number of members and n 
is the number of joints.

•Conditions of equilibrium for the joints provide 3nequations. For a simple 
truss, 3n
= m + 6 and the equations can be solved for m member forces and 6 support 
reactions.

•Equilibrium for the entire truss provides 6 additional equations which are not 
independent ofthe joint equations.



Sample Problem 6.1

SOLUTION:

•Based on a free-body diagram of the entire truss, solve the 3 equilibrium 
equations for the reactions at E and C.

•Joint A is subjected to only two unknown member forces.   Determine these 
from thejoint equilibrium requirements.

•In succession, determine unknown member forces at joints D, B, and E from 
joint equilibrium requirements.

U
of

sing the method of joints, determinethe force in each me 
the truss.

mber

• All  member  forces  and  support  reactions are  known  at  joint  C. 
However, the jointequilibrium requirements may be appliedto check 
the results.



Sample Problem 6.1 SOLUTION:

•Based on a free-body diagram of the entire truss, solve the 3 equilibrium 
equations for the reactionsat E and C.

MC 0
ft ft E ft

Fx 

Fy

0 Cx

0 lb-1000 lb lb Cy

Cy   7000 lb

E  10,000 lb

Cx   0



FDA
2  3  FDA

5

Sample Problem 6.1

• Joint A is subjected to only two unknown member forces. 
these from thejoint equilibrium requirements. Determine

2000 lb

4

FAB

3
F  AD 

5

• There are now only two unknown memberforces at joint D.

FDB

FDE FDB  2500 lb T 
FDE   3000 lb  
C

FAB   1500 lb T
F  2500 lb  CAD



5
lb

5

5 5

Sample Problem 6.1

•There are now only two unknown member forces at joint B.  Assume both are 
in tension.

Fy 

FBE

0 4
4 FBE

lb

Fx 0
FBC 3

FBC
5 5

lb

• There is one unknown member force at joint
E.  Assume the member is in tension.

Fx

FEC

0
3 FEC 3000 3

F  8750 lb  CEC

F  5250 lb TBC

B3EF  3750 lb  C



5

5

Sample Problem 6.1

•All member forces and support reactions are
known at joint C. However, the joint equilibriumrequirements may be applied to 
check the results.

Fx 

Fy

5250 3 0

4 0



Se  ct ion Analysis of Trusses by the Method of  •  Whenteh force in only one member or the

forces in a very few members are desired, the
method of sections works well.

s

• To determine the force in member BD, pass asection through the truss as 
shown and createa free body diagram for the left side.

• With only three members cut by the section,the equations for static 
equilibrium may be applied to determine the unknown member forces, 
including FBD.



Truss
Trusses Made of Several Simple

es•  Compound trusses are statically determinant, rigid, and completelyconstrained.

m=2n-3

•Truss contains a redundant member and is statically indeterminate.
m=2n-3

•Additional reaction forces may benecessary for a rigid truss.

non-rigid

• Necessary but insufficient conditionfor a compound truss to 
be statically determinant, rigid, and completely constrained,

m=2n-3
m 2n 3 m 2n 4



Sample Problem 6.3

SOLUTION:

•Take the entire truss as a free body. Apply the conditions for static equilib- 
rium to solve for the reactions at A and L.

•Pass a section through members FH,GH, and GI and take the right-hand 
section as a free body.

•Apply the conditions for static equilibrium to determine the desiredmember 
forces.

Determine the force in members FH,GH, and GI.



Sample Problem 6.3

SOLUTION:

•Take the entire truss as a free body. Apply the conditions for static equilib- 
rium to solve for the reactions at A and L.

M A 0 kN kN kN

kN kN L

L 7.5 kN
Fy

A 12.5 kN

kN L A



Sample Problem 6.3

• Pass a section through members FH, GH, and GI
and take the right-hand section as a free body.

• Apply the conditions for static equilibrium todetermine the desired 
member forces.

MH 0
kN kN

kN

FGI 0
FGI

FGI  13.13 kN T



HI
2
3

Sample Problem 6.3

tan FG 8 m

GL 15 m

MG 0

kN



0.5333

kN kN

FFH 
FFH

0
kN

tan
GI 5 m 0.9375

ML 0
kN

FGH

k

N 

kN

FGH cos 0



FFH   13.82 kN  C

FGH   1.371 kN  C



Analysis of Frames

•Frames and machines are structures with at least one multiforce member. Frames are designed to support 
loadsand are usually stationary.   Machines contain moving partsand are designed to transmit and modify 
forces.

•A free body diagram of the complete frame is used todetermine the external forces acting on the frame.

•Internal forces are determined by dismembering the frame and creating free-body diagrams for each 
component.

•Forces on two force members have known lines of action but unknown magnitude and sense.

•Forces on multiforce members have unknown magnitudeand line of action. They must be represented 
with two unknown components.

•Forces between connected components are equal, have thesame line of action, and opposite sense.



Frames Which Cease To Be Rigid When

Detached From Their Supports

• Some frames may collapse if removed from their supports.   Such frames 
can not be treated as rigid bodies.

• A free-body diagram of the complete frame indicates four unknown force 
components whichcan not be determined from the three 
equilibriumconditions.

• The frame must be considered as two distinct, butrelated, rigid bodies.

• With equal and opposite reactions at the contactpoint between members, the two 
free-body diagrams indicate 6 unknown force components.

• Equilibrium requirements for the two rigidbodies yield 6 
independent equations.



Sample Problem 6.4

SOLUTION:

•Create a free-body diagram for the complete frame and solve for the 
supportreactions.

•Define a free-body diagram for member BCD. The force exerted by the link DE 
has a known line of action but unknown magnitude.   It is determined by 
summingmoments about C.

M e 
link 
and

mbers ACE and BCD are connected by a pin at C 
DE. For the loading shown, determine the force 
thecomponents of the force exerted at C on mem

and by the
in link DE •
ber BCD.

With the force on the link DE known, thesum of forces in the x and y
directions may be used to find the force components at C.

• With member ACE as a free-body,check the solution 
by summing moments about A.



B  300 N  

Sample Problem 6.4 SOLUTION:

• Create a free-body diagram for the complete frameand solve for the 
support reactions.

Fy 0 Ay 480 N

MA 0 B

Fx 0 B Ax

Note:

80
150

Ax   300 N  

Ay   480 N  

  tan



FDE   561 N  C

Sample Problem 6.4

•Define a free-body diagram for member
BCD.   The force exerted by the link DE has aknown line of action but 
unknown magnitude. It is determined by summing moments about C.

MC 

FDE

0 FDE
N

mm mm mm

• Sum of forces in the x and y directions may be used to find the forcecomponents at C.

Fx 0 Cx
0 Cx

FDE
561

300 N

300 N

Fy 0 Cy

0 Cy

FDE
561

480 N

480 N
Cy   216 N

C  795 Nx



Sample Problem 6.4

• With member ACE as a free-body, check the solution by summing 
moments about A.

M A FDE mm FDE mm Cx mm 
mmmm mm 0

(checks)



Machines

•Machines are structures designed to transmit
and modify forces.  Their main purpose is totransform input forces into 
output forces.

• Given the magnitude of P, determine themagnitude of Q.

• Create a free-body diagram of the complete machine, including 
the reaction that the wireexerts.

• The machine is a nonrigid structure.   Useone of the components as 
a free-body.

• Taking moments about A,

M A 0 aP bQ Q
a

P

b
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Potential Energy and Energy Conservation

•
•
•
•

Gravitational Potential 
Energy Elastic Potential 
Energy Work-Energy 
Theorem Conservative and
Non-conservative Forces 
Conservation of Energy•



Definition of Work W

• The work, W, done by a constant force on an object is defined as the product of the component of the force along the direction 
of displacement and the magnitudeof the displacement

– F is the magnitude of the force

–
–

Δ x is the magnitude of theobject’s 
displacement

is the angle between
F and   x

W  (F cos )x



Work Done by Multiple Forces

•

W
net

If more than one force acts on an object, then the total work is equal to the algebraic sum of the workdone by 
the individual forces
W

by individual forces

– Remember work is a scalar, so 
this is the algebraic sum

Wnet
Wg WN WF (F r



KE  mv
2

1 2

Kinetic Energy and Work

• Kinetic energy associated with the motion of anobject

•

•
Scalar quantity with the same unit as work

Work is related to kinetic energy

Units: N-m or J

W
net

KE
f  KE

i

KE

1 1
2

mv2   mv 2   (F cos )x
2 0 net

 
x f

xi
F  dr



W  1 mv2   1 mv 2
net 0

2 2

Work done by a Gravitational Force

• Gravitational Force
– Magnitude: mg
– Direction: downwards to theEarth’s center

• Work done by GravitationalForce

W F   r F r

Wg mg   r



Potential Energy

•
•

Potential energy is associated with theposition of the object
Gravitational Potential Energy is the energy associated with the relative 
position of an object in space near theEarth’s surface
The gravitational potential energy•

– m is the mass of an object

– g is the acceleration of gravity
– y is the vertical position of the mass relativethe surface of the Earth
– SI unit: joule (J)

PE  mgy



Reference Levels

• A location where the gravitational potential energy is zero must be chosen for each problem

– The choice is arbitrary since the change in the potential

energy is the important quantity
– Choose a convenient location for the zero referenceheight

• often the Earth’s surface

• may be some other point suggested by the problem
– Once the position is chosen, it must remain fixed forthe entire problem



• PE = mgy

Workand Gravitational

Potential Energy

• W F y mg(y y )cos180
i

PEf

g f

mg(yf yi ) PEi

• Units of Potential Energy are the same asthose 
of Work and Kinetic Energy

Wgravity
KE PE PEi PEf



Extended Work-Energy Theorem

Wnet  KEf  KEi  KE

• The work-energy theorem can be extended to includepotential energy:

Wgravity
PEi PEf

• If we only have gravitational force, then Wnet
Wgravity

KEf KEi PEi PEf

• The sum of the kinetic energy and the gravitational potentialenergy remains constant at all time and hence is a conserved 
quantity

KE f  PE f  PEi  KEi



Extended Work-Energy Theorem

i f

The total mechanical energy is conserved and remains thesame at all times

1
mv2

2

mgyi
1

mv2

2

mgyf

E  KE  PE
KE f  PE f  PEi  KEi

• We denote the total mechanical energy by

• Since

•



Problem-Solving Strategy• Define the system

•
Select the location of zero gravitational potentialenergy

– Do not change this location while solving the problem

•Identify two points the object of interest movesbetween– One point should be where information is given– The other point should be where you want to find 
outsomething



Platform Diver
• A diver of mass m drops from aboard 10.0 m above 

the water’s surface. Neglect airresistance.

•
• (a) Find is speed 5.0 m abovethe water surface

(b) Find his speed as he hitsthe water



Platform Diver

2g( yi   y f  )

• (a) Find his speed 5.0 m above the 
water surface

1 mvi mvf   1  mgyf 2
2

2mgyi
2

0 gy mgy
1

v2

vf
i f

2
f

9.9m/ s

0 mgy 
i

mv2 0
f

v f
2

14m/ s2gyi

2(9.8m / s2 )(10m  
5m)
•(b) Find his speed as he hits the 
water

1



Spring Force

F  kd→ →

•
•

Involves the spring constant, k
Hooke’s Law gives the force

– F is in the opposite direction ofdisplacement d, always back 
towards the equilibrium point.

–  k depends on how the spring wasformed, the material it is 
made

from, thickness of the wire, etc. Unit:

N/m.



Potential Energy in a Spring

PEs  
1

on 2
kx2

Ws   x (kx)dx 
x f 1

2
1kx  kx2 2

i
i 2 f

Ws   PEsi   PEsf

• Elastic Potential Energy:

– SI unit: Joule (J)

– related to the work required to compress a spring from its equilibriumpositi
to some final, arbitrary, position x

• Work done by the spring



Extended Work-Energy Theorem

Wnet  KEf  KEi  KE

• The work-energy theorem can be extended to includepotential energy:

Wgravity
PEi PEf Ws PEsi PEsf

• If we include gravitational force and spring force, then

W Wnet gravity Ws

(KEf KEi ) (PEf PEi ) (PEsf PEsi ) 0

KE f  PE f  PEsf  PEi  KEi  KEsi



Extended Work-Energy Theorem

s

1
2

mv  mgy  kx 2 1
2

2 1
2

mv  mgy  kx2 1
i i i f f 2

2
f

The total mechanical energy is conserved and remains thesame at all times

E  KE  PE  PE
(KE  PE  PEs ) f  (KE  PE  PEs )i

• We denote the total mechanical energy by

• Since

•



A block projected up a incline
•

A 0.5-kg block rests on a horizontal, frictionless surface. Theblock is pressed back against a spring having a constant of 
k
= 625 N/m, compressing the spring by 10.0 cm to point A.Then the block is released.
(a)Find the maximum distance d the block travels up thefrictionless incline if θ = 30°.
(b)How fast is the block going when halfway to its maximumheight?

•
•



A block projected up a incline

1 mv2   mgy  1 kx2   mv2   mgy
2 2

1 1

2
 kx2

i i i f f 2 f

•
•

Point A (initial state): 
Point B (final state):

1 kx2   mgy
2

 mgd sini f

d  2 i

1  kx2

mg sin

   0.5(625N / m)(0.1m) 2

(0.5kg)(9.8m / s2 ) sin 
30∘

 1.28m

v f  0, y f  h  d sin , xf  0
vi  0, yi   0, xi   10cm  0.1m



A  block  projected up  a  incline

1 mv2   mgy  1 kx  mv  mgy  kx
2 2

2 1 2 1 2

2i i i f f 2 f

h  d sin  (1.28m) sin 30∘   0.64m

•
•

Point A (initial state): 
Point B (final state):

k x 2

m
 v2   ghi f

1 kx2   1 mv2   mg( h )
22 2i f

v f   k 
m

x  gh2
i

 ......  2.5m / s

v f  ?, y f  h / 2  d sin / 2, x f  0
vi  0, yi   0, xi   10cm  0.1m



Types of Forces

• Conservative forces

– Work and energy associated with the force can be recovered
– Examples: Gravity, Spring Force, EMforces

• Nonconservative forces

– The forces are generally dissipativeand work done against it 
cannot easily be recovered

– Examples: Kinetic friction, air dragforces, normal forces, tension 
forces, applied forces …



Conservative Forces

n the pointseWg  PEi   PEf    mgyi   mgyf

• A force is conservative if the work it does on an object moving between two points is independent ofthe path the objects 
take betwe

– The work depends only upon the initial and final positions
of the object

– Any conservative force can have a potential energy functionassociated with it

–
–

Work done by gravity

Work done by spring force W   PE    PE  1 kx2   1 kx2

s si sf 2 2i f



Nonconservative Forces
• A force is nonconservative if the work it does on anobject depends on the path taken by the object between its final 

and starting points.
– The work depends upon the movement path
– For a non-conservative force, potential energy can NOTbe defined
– Work done by a nonconservative force

– It is generally dissipative. The dispersal of energy takes the form of heat or sound

Wnc   F  d   f k d  Wotherforces

→

→



Extended Work-Energy Theorem

Wnet  KEf  KEi  KE
• The work-energy theorem can be written as:

Wnet
Wnc Wc

– Wnc represents the work done by nonconservative forces
– Wc represents the work done by conservative forces

Any work done by conservative forces can be accounted for by
•

changes in potential energy

– Gravity work

– Spring force work

Wc PEi PEf

Ws   PEi   PE f  kx  kx1 12

2 i 2
2
f

Wg    PEi   PE f  mgyi  mgyf



Extended Work-Energy Theorem

• Any work done by conservative forces can be accounted forby changes in potential energy
Wc PEfPEi PEf PEi ) PE

• Mechanical energy includes kinetic and potential energy

E KE PE KE PEg PEs
1

mv2

2

mgy
1

kx2

2

Wnc   E f  Ei

Wnc   (KE f   PE f  ) (KEi   PEi )

Wnc  KE  PE  (KE f    KEi )  (PE f    PEi )



1 mv2   mgy  1 kx2

2 2
 mv2   mgy   kx2

2 i i 2 i
1 1

f f

222 2

f  Wnc

f i i i otherforces f f
 1 kx2 )  ( 1 mv2   mgy   1 kx2 )DofdnotchangeWthis location whil(e 1solmvinvg 2theprmobglemy

 (KE f    PE f  ) (KEi   PEi )

Problem-Solving Strategy

•
•

Define the system to see if it includes non-conservative forces(especially friction, drag force …)
Without non-conservative forces

• With non-conservative forces

• Select the location of zero potential energy
–

• Identify two points the object of interest moves between
– One point should be where information is given
– The other point should be where you want to find out something



0  0  1 kd2   1 mv2   0  0 d 
2 2

Wnc   (KE f   PE f  ) (KEi   PEi )

0  0  1 kd2   1 mv2   0  
0
2 2

m v2  1.15cm k

1
2

mv  mgy f  kx  mv  mgy   kx2 1 2 1 2 1 2
f 2 f 2 i i i2

Conservation of Mechanical Energy

A block of mass m = 0.40 kg slides across a horizontal frictionless counter with a speed of v = 0.50 m/s. It runs into and 
compresses a spring of spring constant k = 750 N/m. When the block is momentarilystopped by the spring, by what distance 
d is the spring compressed?



Changes in Mechanical Energy for conservative forces

 fd  W
 ( 1 mv2   mgy  1 kx2 )  ( 1 mv2   mgy   1 kx2 )

otherforces 2 f f 2 2 2f i i i

A 3-kg crate slides down a ramp. The ramp is 1 m in length and inclined at an angle of 30° as shown. The crate starts from rest 
at thetop. The surface friction can be negligible. Use energy methods to determine the speed of the crate at the bottom of the ramp.

( 1 mv2   mgy  1 kx2 )  ( 1 mv2   mgy   1 kx2 )
2 2 2f f f i i 2 i

( 1 mv2   0  0)  (0  mgy   0)
2 f i

v f     2gyi   3.1m / s

y f     0, vf  ?

d  1m, yi   d sin 30∘   0.5m, vi   
0



Changes in Mechanical Energy for Non-conservative forces
A 3-kg crate slides down a ramp. The ramp is 1 m in length and inclined at an angle of 30° as shown. The crate starts from rest 

at the top. The surface in contact have a coefficient of kinetic friction of 0.15.Use energy methods to determine the speed of the 
crate at the bottomof the ramp.

  dmg cos  1 mv2   mgy
k f2 i

N

fk
ik f2

   Nd  0  ( 1 mv2   0  0)  (0  mgy   0)

i i i2 2f f f2 2 otherforces
 1 kx2 )  ( 1 mv2   mgy   1 kx2 ) ( 1 mv2   mgy fd  W

v f     2g( yi   k d cos )  2.7m / s

N  mg cos  0

k    0.15, d  1m, yi   d sin 30∘   0.5m, N  ?



Changes in Mechanical Energy for Non-conservative forces

 fd  W
 ( 1 mv2   mgy  1 kx2 )  ( 1 mv2   mgy   1 kx2 )

otherforces 2 2 2 2f f f i i i

   Nx  0  (0  0  0)  ( 1 mv2   0  0)
k i2

 mgx   1 mv2

k i2
 2.5mx  vi

2

2k g

N  mg  0

k   0.15, vi    2.7m / s, N  ?

A 3-kg crate slides down a ramp. The ramp is 1 m in length and inclined at an angle of 30° as shown. The crate starts from rest at 
the top. The surface in contact have a coefficient of kinetic friction of 0.15.How far does the crate slide on the horizontal floor if it 
continues to experience a friction force.



Block-Spring Collision

1 mv2   mgy  1 kx2    1 mv 2   mgy   1 kx2

2 2 2 2f f f i i i

1 mv2

2
 0  0  1 mv2   0  0

max 2 A

xmax  m 
k

v A  
0.8kg (1.2m / s)  0.15m

50N / m

• A block having a mass of 0.8 kg is given an initial velocity vA = 1.2 m/s to theright and collides with a spring whose mass is
negligible and whose force constant is k = 50 N/m as shown in figure. Assuming the surface to be frictionless, calculate the 

maximum compression of the spring after the collision.



Block-Spring Collision

 fd  W
 ( 1 mv2   mgy  1 kx2 )  ( 1 mv2   mgy   1 kx2 )

otherforces 2 2 2 2f f f i i i

25x2   3.9x  0.58  0
c c xc  0.093m

• A block having a mass of 0.8 kg is given an initial velocity vA = 1.2 m/s to the right and collides with a spring whose mass is
negligible and whose force constant is k = 50 N/m as shown in figure. Suppose a constant force of kinetic friction acts between the 

block and the surface, with µk  = 0.5, what isthe maximum compression xc in the spring.

1 kx2   1 mv2      mgx
2 2c A k c

and d  xcN  mg

A2 2k c
21 12   Nd  0  (0  0  kx  )  ( mv  0  0)



Energy Review

• Kinetic Energy
– Associated with movement of members of a system

• Potential Energy
– Determined by the configuration of the system

– Gravitational and Elastic

• Internal Energy
– Related to the temperature of the system



Conservation of Energy

• Energy is conserved
– This means that energy cannot be created nordestroyed

– If the total amount of energy in a system changes,it can only be due to the fact that energy has crossed the boundary 
of the system by some method of energy transfer



Waysto Transfer Energy Into or Out of A System

• Work – transfers by applying a force and causing a displacement of the point of application of the force

• Mechanical Waves – allow a disturbance to propagate

through a medium

Heat – is driven by a temperature difference between tworegions in space•

• Matter Transfer – matter physically crosses the boundary of

the system, carrying energy with it
Electrical Transmission – transfer is by electric current
Electromagnetic Radiation – energy is transferred byelectromagnetic waves

•
•



PE  PE  PE  (0  m gh)  ( 1 kx2   0)
g s 2

 fd  Wotherforces   KE  PE
Nx  0  m  gh  1 kx2

k 2

2

N  mg and x  h
2

k   
m2 g  2 kh

1

m1g

Connected Blocks in Motion

• Two blocks are connected by a light string that passes over a frictionless pulley. The block of mass m1 lies on a horizontal 
surface and is connected toa spring of force constant k. The system is released from rest when the spring is unstretched. If the 
hanging block of mass m2  falls a distance h before coming to rest, calculate the coefficient of kinetic friction between the 
block of mass m1 and the surface.

  m gh  m  gh  1 kh2

k 1 2 2



f energy t

Power

• Work does not depend on time interval

•
•
•

The rate at which energy is transferred is importantin the design and use of practical device

The time rate of energy transfer is called power

The average power is given by

P

–  when the method o

W

transfer is work



P  lim W  dW  F   F 
t0 t dt dt

→ dr
→ →→

P  F  v  Fv cos
→→

Instantaneous Power

• Power is the time rate of energy transfer. Power isvalid for any means of energy transfer

•
•

Other expression

A more general definition of instantaneous power

P  W  Fx  Fv
t t



Units of Power

• The SI unit of power is called the watt
– 1 watt = 1 joule / second = 1 kg .  m2  / s3

A unit of power in the US Customary system ishorsepower
– 1 hp = 550 ft .  lb/s = 746 W

Units of power can also be used to expressunits of work or energy
– 1 kWh = (1000 W)(3600 s) = 3.6 x106  J

•

•



FORM ACTIVE STRUCTURESYSTEM

Non rigid, flexible matter, shaped in   a certain way & secured at the ends 
which can support itself and span space.

Form active structure systems develop at their ends horizontal stresses.

The bearing mechanism  of a form active systems rests essentially on the 
material form.



Arch

curved structure designed to carry loads across a gap mainly by compression.
principle of the arch is precisely the same as that of the portal frame. The straight pieces of material joined by sharp bends are 
smoothened into a continuous curve. This increases the cost of construction but greatly reduces the stresses.

geometry  of  the  curve  further  affects  the  cost  and  stresses.  
The circular arch iseasiest to construct, the catenary arch is the most 
efficient.

rigid.



Arch Terminology



 It is important to minimize the arch THRUST so as to reduce the dimensions of the tie rod, or to ensure that the soil will not 
move under the pressure of the abutments.

 The THRUST is proportional to the total LOAD & to the SPAN, and inversely proportional to the RISE of the arch.







In arches rise to span ratio should not be less than 1/8

Riser minimum should be 1/8 of the span & 2/3rd  maximum.

Lesser rise takes compression but not tensile load.



 In masonry design the arch is heavy & loaded by the weight of walls, its 
shape  is  usually  the  funicular  of  the  dead  load,  &  some  bending  is 
introduced in it by liveloads.

 In large steel arches, the live load represents a greater share of the total 
load   & introduces a large amount of bending but it is seldom in view of 
the tensile strength of steel.

 The  SHAPE  of  the  arch  may  be  chosen  tobe as close as possible to 
the FUNICULAR of the heaviest loads, so as to minimize BENDING.



 The arch thrust is absorbed by a tie-rod whenever the foundation material 
is not suitable to resist it.

 When  it  must  allow  the  free  passage of  traffic  under  it,  its  
thrust  is asorbed either bybuttresses or by tie-rods buried   under ground.

 The stationary or moving loads carried by the  arch  
are  usually supported on   a horizontal surface.

 This  surface  may  be  above  or  below the  arch,   connected   to   it   
by compression  strutsor tension hangers.



MATERIALS USED

STEEL-takes more tension

WOOD-both evenly

CONCRETE-takes more compression



LOADAPPLICATIONS

FUNICULAR ARCHES – CONCENTRATED LOADS

The sum total of all rotational effects produced about any such location by the external and internal forces must be zero. In 
three hinged arch having a non-funicular shape, this observation is true only at three hinged conditions.

The external shear at a section is balanced by an internal resisting shear  force that is provided by vertical component of the 
internal axial force.



DESIGN OFARCH STRUCTURES

The first important consideration when designing a brick arch is whether the arch is structural or non-structural. That is, 
will the arch be required totransfer vertical loads to abutments or will it be fully supported by a steel angle. While this 
may seem obvious, confusion often develops because ofthe many configurations of arch construction. To answer this 
question, one  must  consider  the  two  structural  requirements  necessary  for  a  brick  arch  to  adequately  carry  
vertical  loads.  First, vertical loads must be carried by the arch and transferred to the abutments. Second, vertical loadand 
lateral thrust from the arch must be resisted by the abutments.



If either the arch or the abutment is deficient, the arch must be considered as non-structural and the arch and its tributary load must 
be fully supported by a steel angle or plates. Alternately, reinforcement may be used to increase the strength of either or both the 
arch and the abutments.

[A] DESIGNING FOR LOAD VARIATIONS

designed to sustain some amount of variation in load
without either changing shape or experiencing damage.
response  to  its  primary  loading  condition  (e.g.:  parabolic  for  uniformly
distributed loads)



[B] SUPPORT ELEMENTS

interior element (a tie rod or by the foundations).
When it is functionally possible the rods are frequently used.

rod is a tension element and highly efficient to take up the outward archthrusts.
the  use  of  buttressing  elements  is  generally

preferable as head room has to be maintained.



[C] CHOICE OF END CONDITIONS

 There  are  3  primary  types  of  arches  used  that  are  normally  described  interms of end conditions :-

Three hinged arch

Fixed end arch

Two hinged arch

end conditions are preferable with respect to different
phenomenon.

presence  of  hinges  is  very  important  when  supports,  settlements  andthermal expansions are considered.



Lateral Behavior OfArches

To deal with behaviour of arch in the lateral direction, there are two methods- 
Provide fixed base connections

Commonly used is by relying on membersplaced transversely to the arch.
# a pair of arches is stabilized through use of diagonal elements.
#   interior   arches   are  stabilized   by being   connected   to   the   end   
arches   by connectingtransverse members

Lateral   buckling can be solved by laterally bracing arches with otherelements.



Flashing

In residential construction, the presence of eaves, overhangs and small wall  areas  above  openings  will  reduce  the  potential 
for water  penetrationat arch locations. However, flashing at an arch is just as important as over any other wall opening.

Flashing an arch can be difficult, depending on the type of arch and the type of flashing material. Jack arches are the easiest to 
flash because they are flat.

Flashing   may   be   placed   below   the   arch   on   the   window   framing   for structural arches or above the steel lintel for 
non-structural arches.

keystone. Attachment of the flashing to the backing
and end dams should follow standard procedures.

-circular arch is more difficult to flash properly. This is because flashing materials such as metal flashings are very rigid and may 
be hard to work around a curved arch.



Construction Concerns

Both  structural  and  non-structural  arches  must  be  properly  supported  throughout  construction.  Premature  removal  of  the 
temporary support for a structural arch may result in a collapse of the arch. This is most often due to the introduction of lateral 
thrust on the abutment before proper curing has occurred. Out-of-plane bracing is required for all arches. In veneer construction, it 
is  provided  by  the  backup  material  through  the  wall  ties.  Arches  that  are  not  laterally braced  may  require  increased  
masonry thickness or reinforcements to carry loads perpendicular to the arch plane. Arches may be constructed of special shapes 
or regular units. Mortar joints may be taperedwith uncut regular units.

Alternately, regular units may be cut to maintain uniform joint thickness. In general,  use  of  specially  shaped  brick  that  result  
in  uniform  joint thickness will be more aesthetically pleasing. Many brick manufacturers offer such specially-shaped arch units.



FAILURE MODES

1. Rotation of the arch about the abutment-

• Rotation occurs when tension develops in the arch. Tension can be 
reduced by increasing the depth or rise of the arch. If tension 
develops in the arch, reinforcement can be added to resist the 
tensileforces.

2. Sliding of the arch at the skewback-

• Sliding of the arch will depend on the angle of skewback (measured 
from horizontal) and the vertical load carried by the arch. 
Reinforcement can be added to avoid sliding at the skewback, as the 
reinforcement acts as a shear key.

3.Crushing of the masonry-

Crushing   will   occur   when   compressive   stresses   in   the   arch   exceed the  compressive  strength  of  the  brick  masonry.  

If compressive stresses  are  too  large,  the  arch  must  be  redesigned  with  a  shorter



CORRECTIVE MEASURESANDDESIGN CHANGES

have horizontal restraints and these are responsible for   their superior structural performance.

elongates.  Similar problems  are  created  by moisture  movement  in concrete as the concreteabsorbs  water  and  then  dries  out  
again.  The  stresses  caused  by  temperatureand moisture movement in arches are often much greater than the stresses caused by 
the live load, and thus they cannot be ignored.



EARLY CURVED ARCHES

Structure was  often  made more  stable  by the  superimposition  of  additional 
weight on its top, thus firming up the arch.

SHAPE  OF  ARCH  is  not  chosen  for  purely  structural  reasons.  The  HALF 
CIRCLE,used by the Romans, has convenient construction properties that justify 
its use.

Similarly,   the   POINTED   gothic    arch    has  both    visual    &    structural 
advantages,    while the  arabic  arch,  typical  of  the  mosques  &  of  some 
venetian architecture is   ‘incorrect’from a purely structural viewpoint.



Notre-Dame Cathedral- Fine example of Gothic architecture, built 
in mid-13th century. Ornate west entrance shows theuse of arches in 
early building construction. (Chartres, France)

Notre-Dame  Cathedral-  (South  entrance) Note  the  use  of  he 
pinnacles  to  increase  the  stability  of  the  piers  against  overtu 
horizontal thrust component of the arch. (Chartres, France)

avy ornate 
rning  
from

King's  College  Chapel-  
O England. Built in 1446-
15 pointed  arches  that  
require (Cambridge, 
England)

ne of the  finest examples of medieval architecture in 15, 
Fan vaulting in the ceiling isessentially a series of external  

buttresses  to  react  to  the  horizontal  thrust.



APPLICATIONS & ADVANTAGES

Roman & romanesque architecture are immediately recognized by the circular arch motif. Romans were pioneers in the use of 
arches for bridges, buildings, and aqueducts. This bridge, the Ponte Fabricio in Rome, spans between the bank of the River Tiber 
and Tiber Island. Built in 64 B.C. (Rome, Italy.)

The  gothic  high  rise  arch  &  the  buttresses  required  to  absorb  its  thrust  are  typical  of  one  of  the  greatest  achievements  
in architectural design.
Roman circular arches spanned about 100’ & medieval stone bridges up to 180’.



The  NEW  RIVER  GORGE  BRIDGE  in  west  virginia,  the  longest  steelarch spans 1700’(1986).
The  largest  single   arch   span   in   reinforced   concrete  built   to   date  is   the1280feet span KRK BRIDGE , yugoslavia.

Combinations of trussed arches with cantilevered half arches connected by trusses  were  built  to  span  as  much  as  1800feet  in 
THE  QUEBEC  BRIDGEin 1917.

To this day no other structural element is as commonly used to spanlarge distances as the arch.



Unit – 3

ProppedCantileverand Fixed Beams



Beam

• Structural member that carries a load that isapplied transverse to its length

•
•

Used in floors and roofs

May be called floor joists, stringers, floorbeams, or girders



Chasing the Load
•

The loads are initially applied to a building surface 
(floor or roof).
Loads are transferred to beams which transfer theload 
to another building component.

•



Static Equilibrium
•

•
The state of an object in which the forcescounteract each other so that the object remains 

stationary A beam must be in static equilibrium tosuccessfully carry loads



Static Equilibrium
The loads applied to the beam (from the roofor floor) must be resisted by 
forces from the beam supports. The resisting forces are called reaction 
forces.

•
•

ReactionForce

Applied Load

Reaction 
Force



Reaction Forces
• Reaction forces can be linear or rotational.– A linear reaction is often called a shear reaction (F or R).– A rotational reaction is often called a moment reaction(M).

The reaction forces must balance the applied forces.

•



Beam Supports
The method of support dictates the types of

reaction forces from the supporting members.



Beam Supports



Beam Types

Simple

ContinuousCantilever

Moment (fixed at one 

end)



Beam Types
Fixed

Moments at each end Propped – Fixed at one end; supported at 

other

Overhang



Simple Beams

Applied Load

BEAM DIAGRAM

Applied Load

FREE BODY 
DIAGRAM
Note: When 
there is no 
appliedhorizo
ntal load, you

may ignore the horizontal reaction at the pinned 

connection.



Fundamental Principles of Equilibrium

F 0y

F 0x

The sum of all vertical forces actingon a body must equal zero.
The sum of all horizontal forces acting on a body must equal zero. The sum of all moments 
(about any

point) acting on a body must equal

zero.

M
p

0



Moment

•A moment is created when a force tends torotate an object.

•The magnitude of the moment is equal to the force times the perpendicular distance to 
theforce (moment arm).

F
M

M   F d

 d  moment arm



Calculating Reaction Forces
Sketch a beam diagram.



Calculating Reaction Forces
Sketch a free body diagram.



Calculating Reaction Forces
Use the equilibrium equations to find the magnitude of the reactionforces.
–Horizontal Forces
–Assume to the right is positive

+

F 0x



Calculating Reaction Forces

Concentrated Load

Equivalent 
Concentrated

• Vertical Forces
• Assume up is positive

+

F 0
y

Equivalent

Load



Calculating Reaction Forces

+
lb   6

•
•

Moments
Assume counter clockwise rotation is positive

(FyB 20 ft )   (4000

ft )   (13,000 lb ft ) ( FyA 0) 0

(20 ft )FyB 24,000 ft lb ,000 ft lb 0 0

(20 ft )FyB 154,000 ft lb

154,000
A

ft lb

FyB 20 ft
0 =

= 7700 lb

FyB   7,700 lb

B



Calculating Reaction Forces

can

0  =
9300 lb = = 7700 lb

• Now that we know 
equation to find

, we previous
.

use the



Shear Diagram

0   =

9300 lb =
= 7700 lb

Shear at a point along the 
beam is equal to the 
reactions (upward) minus 
the applied loads 
(downward) to the left of 
that point.



Moment Diagram

lb
ft

Kink 
moment 
curve

in

x
1400lb

2.15 ft

650



Moment Diagram

ft

2

M  Mmax  45608 ft lb

9300 lb = 2.15’

M (4000lb)(2.15 ft )   (650 lb )(8.15 ft )   (  8.15ft )   (9300lb)(8.15 ft ) 0

4000 lb

P
M

0   =



Moment Diagram



Moment Diagram
A

B

C

= 2.15 ft



Beam Analysis
•

•
Example :   simple beam with a uniform load,w1= 1090 lb/ft 

Span = 18 feet

Test your understanding: Draw the shear and momentdiagrams for this beam and loading condition.



Shear and Moment Diagrams

Shear

Moment

Max. Moment = 44,145l ft-lb Max. Shear = 9,810 lb



Unit – 4

Slope Deflection & Moment Distribution Method



MOMENT DISTRIBUTION METHOD - AN OVERVIEW

•
•
•
•
•

1. MOMENT DISTRIBUTION METHOD - AN OVERVIEW
2. INTRODUCTION
3. STATEMENT OF BASIC PRINCIPLES
4. SOME BASIC DEFINITIONS
5. SOLUTION OF PROBLEMS

• 7.6 MOMENT DISTRIBUTION METHOD FOR STRUCTURES

HAVING NONPRISMATIC MEMBERS



7.2 MOMENT DISTRIBUTION METHOD - INTRODUCTION AND BASIC PRINCIPLES

Introduction
(Method developed by Prof. Hardy Cross in 1932)
The method solves for the joint moments in continuous beams andrigid frames by   successive 

approximation.

Statement of Basic Principles

Consider the continuous beam ABCD, subjected to the given loads,as shown in Figure below. 
Assume that only rotation of joints occurat B, C and D, and that no support displacements occur at 
B, C and
D. Due to the applied loads in spans AB, BC and CD, rotations occur at B, C and D.

A

15 kN/m
150 kN

10 kN/m
3 m

I

8 m

B I

6 m

C I

8 m

D



BA B D

In order to solve the problem in a successively approximating manner,it can be visualized to be made up of a continued two-
stage problems viz., that of locking and releasing the joints in a continuous sequence.

Step I

The   joints   B,   C   and   D   are   locked   in   position   before   any   load   isapplied on the beam ABCD; then given 
loads are applied on the beam. Since the joints of beam ABCD are locked in position, beams AB, BC and CD acts as 
individual and separate fixed beams, subjected to the applied loads; these loads develop fixed end moments.

-80 kN.m 15 kN/m -80 kN.m -112.5kN.m

3 m
150 kN

112.5 kN.m
10 kN/m

53.33 kN.m-53.33 kN.m

C
C8 m 8 m6 m



In beam AB

Fixed end moment at A = -wl2/12 = - (15)(8)(8)/12 = - 80 kN.m Fixed end moment at B = +wl2/12 =
+(15)(8)(8)/12 = + 80 kN.m

In beam BC

Fixed end moment at B = - (Pab2)/l2 = - (150)(3)(3)2/62

Fixed end moment at C = + (Pab2)/l2 = + (150)(3)(3)2/62
= -112.5 kN.m

= + 112.5 kN.m

In beam AB

Fixed end moment at C = -wl2/12 = - (10)(8)(8)/12 = - 53.33 kN.mFixed end moment at D = +wl2/12 =
+(10)(8)(8)/12 = + 53.33kN.m



Step II

Since  the  joints  B,  C  and  D  were  fixed  artificially  (to  compute  the  the  fixed-  end  moments),  now  the  
joints  B,  C  and  D  are released and allowed to rotate. Due to the joint release, the joints rotate maintaining the 
continuous nature ofthe beam. Due to the joint  release,  the  fixed  end  moments  on  either  side  of  joints  B,  
C  and  D  act  in  the  opposite  direction  now,  and  cause  a  net unbalanced moment to occur at the joint.

15 kN/m
150 kN

3 m
10 kN/m

A
I B I C I

D

8 m 6 m 8 m

Released moments
Net unbalanced moment

-80.0 +112.5 -112.5 +53.33 -53.33

+32.5 -59.17 -53.33



Step III

These unbalanced moments act at the joints and modify the joint moments at B, C and D, according to their relative 
stiffnesses at the respective joints. The joint moments are distributed to either side of the joint B, C or D, according 
totheir relative stiffnesses. These distributed moments also modify the moments at the opposite side of the beam span, 
viz., at joint A in span AB, at joints B and C in span BC and at joints C and D in span CD. This modification is 
dependent on the carry-over factor (which is equal to 0.5 in this case); when this carry over is made, the joints on 
opposite side are assumed to be fixed.

Step IV

The  carry-over  moment  becomes  the  unbalanced  moment  at  the  jointsto which they are carried over. Steps 
3 and 4 are repeated till the carry- over or distributed moment becomes small.

Step V

Sum up all the moments at each of the joint to obtain the   joint moments.



A

SOME BASIC DEFINITIONS

In order to understand the five steps mentioned in section 7.3, some wordsneed to be defined and relevant derivations made.

Stiffness and Carry-over Factors

Stiffness = Resistance offered by member to a unit displacement or rotation at apoint, for given support constraint conditions

MA
MB

A B
A

RA RB

A clockwise moment MA is applied at A to
produce a +vebending in beam AB. Find

Aand MB.

L
E, I – Member properties



Using method of consistent deformations

A

A

M  L2

fAA

B  B

A L

1 L3

A

A 2EI

fAA
3EI

Applying the principle ofconsistent deformation,
3M

R   f
A  AA

M L
A

0 R A

A 2L
M  L R L2 4EI MA

 
4EI

 A      A   A MA A; hence k
A EI 2EI 4EI L A L

Stiffness factor = k = 4EI/L

MA

L



I1 

L1

B
I3 

L3

D

I2

L2

Considering moment MB,

MB  + MA + RAL = 0 MB  = MA/2= (1/2)MA

Carry - over Factor = 1/2 Distribution Factor

Distribution factor is the ratio according to which an externally appliedunbalanced moment M at a joint 
is apportioned to the various membersmating at the joint

+ ve moment M
A

A
C

MB 
A

B

MB 
D

M

MBC C

At joint B 
M - MBA-M BC-MBD  = 0

D



  


   K  
M

 





    

i.e., M = MBA + MBC  + MBD

4E1I1 4E2  I2

 L 
2

4E3  I3

1
L

K BA K BC K BD B

L B
3

B K BA
 M 

K BC
M

KBD K

M BA KBA B
K BA M (D .F )B A  M

SimilarlyK B C

K

M  BC (D .F )B C   M

M BD K BD
M (D .F )B D   M

K





MA A

A B

L
RA RB

As per earlier equations for deformation, given in Mechanics of Solidstext-books.

M ALA

Modified Stiffness Factor

The stiffness factor changes when the far end of the beam is simply-supported.

3EMI A
K 3EI 3 4EI

AB
L 4 LA

3
      (K

AB
4

) fixed



SOLUTION OF PROBLEMS -

7.4.1 Solve the previously given problem by the momentdistribution method

: Fixed end moments

M AB MBA
wl2 (15)(8)2

MBC
8

MCD MDC

12
wl

8

wl2

12
kN.m

MCB
(150)(6)

kN.m

12

(10)(8)2

12
kN.m

Stiffness Factors (Unmodified Stiffness)

K K
AB 
A

B

K K
BC 
B

C

4EI

4EI
L

4EI
L

(4)(EI )

8
(4)(E I ) 0.667EI 6

0.5EI

K
4

EI 0.5EI

CD 8 8
0.5EIK

4EI
 

8D C



Distribution Factors

0.5EI

K
 BA DF

AB K BA

K

K
wall

0.5 (wall stiffness)

DF
BA

BA

K K
BA

K
BC 0.5EI

EI
0.667EI 0.4284

DF BC

K K

0.667EI
 

0.5EI 0.667EI

0.5716
BC

BA
K

BC

DF CB
0.667EI

 0.5716
CB K K

CB
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7.4.1.4 Moment Distribution Table

Joint A B C D
Member AB BA BC CB CD DC

Distribution Factors 0 0.4284 0.5716 0.5716 0.4284 1

Cycle 1 Computed end moments -80 80 -112.5 112.5 -53.33 53.33

Distribution 13.923 18.577 -33.82 -25.35 -53.33
Cycle 2 Carry-over moments 6.962 -16.91 9.289 -26.67 -12.35

Distribution 7.244 9.662 9.935 7.446 12.35

Cycle 3 Carry-over moments 3.622 4.968 4.831 6.175 3.723

Distribution -2.128 -2.84 -6.129 -4.715 -3.723

Cycle 4 Carry-over moments -1.064 -3.146 -1.42 -1.862 -2.358

Distribution 1.348 1.798 1.876 1.406 2.358

Cycle 5 Carry-over moments 0.674 0.938 0.9 1.179 0.703

Distribution -0.402 -0.536 -1.187 -0.891 -0.703

Summed up moments -69.81 99.985 -99.99 96.613 -96.61 0



7.4.1.5 Computation of Shear Forces

15 kN/m 150 kN
10 kN/m

B C
A D

I I I
8 m8 m 3 m 3 m

Simply-supported 

reaction

60 60 75 75 40 40

End reaction
due to left hand FEM

8.726 -8.726 16.665 -16.67 12.079 -12.08

End reaction
due to right hand FEM

-12.5 12.498 -16.1 16.102 0 0

Summed-up moments 56.228 63.772 75.563 74.437 53.077 27.923



7.4.1.5 Shear Force and Bending Moment Diagrams

52.077

56.23

27.923

Max=+ 35.59 kN.m

35.08

S. F. D.

126.704 31.693

Mmax=+38.985 kN.m

-69.806 3.74 m 84.92
98.297

48.307

2.792 m

-99.985 B. M. D -96.613

75.563

2.792 m

3.74 m 74.437
63.77



Simply-supported bending moments at center of span

Mcenter  in  AB  =  (15)(8)2 /8  =  +120  kN.m  Mcenter  in  BC  =

(150)(6)/4 = +225 kN.mMcenter in AB = (10)(8)2/8 = +80 kN.m



7.5 MOMENT DISTRIBUTION METHOD FORNONPRISMATIC MEMBER (CHAPTER 12)

The  section  will  discuss  moment  distribution  method  to  analyze   beams  and  frames   composed  of 
nonprismatic  members.  First  the  procedure  to  obtain  the  necessary  carry-over  factors,  stiffness  
factors and fixed-end moments will be outlined. Then the use of values given in design tables will be   
illustrated. Finally the analysis of statically indeterminate structures using  the moment distribution 
method will be outlined



Stiffness and Carry-over Factors

Use moment-area method to find the stiffness and carry-over factors ofthe non-prismatic beam.

MA
MB

AB
MB CAB M A

CAB= Carry-over factor of moment MA from A to B

A

B


PA (KA )AB A
MA K

A

PA

A 



A

MA=CBAMB

A (= 1.0)

MA MB
B (= 1.0)

A

B B

MA A)

(a)

MB=CABMA
=CABKA

=CBAKB B B)

(b)

Use of Betti-Maxwell’s reciprocal theorem requires that the work done by loads in case (a) acting through 
displacements in case (b) isequal to work done by loads in case (b) acting through displacements incase (a)

M A   (0) M B   (1) M  A   (1.0) MB (0.0)
CAB KA CBA KB



Tabulated Design Tables

Graphs  and  tables  have  been  made  available  to  determine  fixed-end  moments,  stiffness  factors  
and  carry-over factors  for  common  structural  shapes  used  in  design.  One  such  source  is  the  
Handbook  of Frame  constants published by the Portland Cement Association, Chicago, Illinois, U. S. 
A. A portion of these tables, is listed here as Table 1 and 2

Nomenclature of the Tables

aA ab  = ratio of length of haunch (at end A and B to the of span
b = ratio of the distance (from the concentrated load to the length of span
hA, hB= depth of member at ends A and B, respectivelyhC  = depth of member 
at
minimum section

length

end A)to



hA

Ic = moment of inertia of section at minimum section = (1/12)B(hc)3,with B as width of 
beam kAB, kBC  = stiffness factor for rotation at end A and B, respectivelyL = Length of member

MAB, MBA = Fixed-end moments at end A and B, respectively;  specified in tables for 

uniform load w or concentrated force P

hA hC r
hB  h

C

r B
hC

C

Also K A
kAB EIC

,
L

KB
kBA  EIC

L
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3. INFLUENCE LINES FOR STATICALLY DETERMINATE

STRUCTURES - AN OVERVIEW

•

•

•

•

•

•

•

•

Introduction - What is an influence line? Influence lines for 

beams

Qualitative influence lines - Muller-Breslau Principle Influence 

lines for floor girders
Influence lines for trusses

Live loads for bridges
Maximum influence at a point due to a series ofconcentrated 

loads Absolute maximum shear and moment
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INTRODUCTION TO INFLUENCE LINES

• Influence  lines  describe  the  variation  of  an  analysis  variable  (reaction, shear  force,  bending  moment,  twisting  
moment, deflection, etc.) at a point (say atC in Figure 6.1) ..
… …

C
A B

• Why do we need the influence lines? For instance, when loads pass over a structure,
say a bridge, one needs to know when the maximum values of shear/reaction/bending-moment will occur at a point so 
that the section may bedesigned

• Notations:

– Normal Forces -  +ve forces cause +ve displacements in +ve directions
– Shear Forces - +ve shear forces cause clockwise rotation & - ve shear forcecauses anti-clockwise rotation

– Bending Moments: +ve bending moments cause “cup holding water” deformed shape 144



INFLUENCE LINES FOR BEAMS

•Procedure:

(1)Allow a unit load (either 1b, 1N, 1kip, or 1 tonne) to move over beam from left to right

(2)Find the values of shear force or bending moment, at the point underconsideration, 
as the unit load moves over the beam from left to right

(3)Plot the values of the shear force or bending moment, over the length ofthe beam, 
computed for the point under consideration
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MOVING CONCENTRATED LOAD

Variation of Reactions RA and RB as functions of 
load position

1
xA B

C
10 ft

3 ft

x 1

A
C

A  =0
(RB)(10) – (1)(x) = 0

RB  = x/10RA

= 1-RB

= 1-x/10

B

RA=1-x/10 RB = x/10

x

A C

RA=1-x/10 RB = x/10 146



RA  occurs only at A; RB  occurs only at B

1
Influence 
line for RA

1-x/10

x 10-x

Influence line 
for RB

x/10 1.0

x 10-x
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3.3.2 Variation of Shear Force at C as a function of load position

0 < x < 3 ft (unit load to the left of C)

x 1.0

A
C B

3 ft

RA = 1-x/10 RB = x/10

10 ft

C

x/10

Shear force at C is –ve, VC  =-x/10
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3 < x < 10 ft (unit load to the right of C)

x

C B
A

RA  = 1-x/10 RB = x/10

RA  = 1-x/10 C

1

0.7

Shear force at C is +ve = 1-x/10

+ve

Influence line for shear at C
-ve 0.3

1

3 ft
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3.3.3 Variation of Bending Moment at C as a function of load position

0 < x < 3.0 ft (Unit load to the left of C)

x

A
C B

3 ft

RA = 1-x/10 RA = x/10

10 ft

x/10 x/10

(x/10)(7) (x/10)(7)
C

x/10 x/10

Bending moment is +ve at C
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