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Introduction

®For the equilibrium of structures made of several

connected parts, the internal forces as well the externalforces are
considered.

®In the interaction between connected parts, Newton’s 314 aw states
that the forces of action and reaction between bodies in contact have
the same magnitude, same line of action, and opposite sense.

®Three categories of engineering structures are considered:

Frames: contain at least one one multi-force member, i.e., member acted upon by 3
or moreforces.

Trusses: formed from two-force members, i.e., straight members with end point
connections

Machines: structures containing moving partsdesigned to transmit and modify
forces.




Definition of a Truss

® A truss consists of straight members connected atjoints. No member is
continuous through a joint.

®Most structures are made of several trusses joinedtogether to form a space
framework. Each truss carries those loads which act in its plane and maybe
treated as a two-dimensional structure.

®Bolted or welded connections are assumed to be pinned together. Forces
acting at the member endsreduce to a single force and no couple. Only two-
force members are considered.

®When forces tend to pull the member apart, it is infension. When the forces
tend to compress the member, it is in compression.




Definition of a Truss

Stringers

Floor beams

Members of a truss are slender and not capable of supporting large lateral loads. Loads must
be applied atthe joints.
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SimpleTrusses

® A rigid truss will not collapse underthe application of a load.

® A simple truss is constructed by successively adding two members
a?done connection to the basic triangular truss.

?’In a simple truss, m =2n -3 wherem is the total number of
members and 7 is the number of joints.




Analysis of Trusses by the Method of frame

®The two forces exerted on each member areequal, have the same line of action, and opposite sense.
®Forces exerted by a member on the pins or joints at its ends are directed along the memberand equal and opposite.

®Conditions of equilibrium on the pins provide2n equations for 2z unknowns. For a simple truss, 2n = m + 3. May solve for m
member forces and 3 reaction forces at the supports.

®Conditions for equilibrium for the entire trussprovide 3 additional equations which are not independent of the pin equations.
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Joints Under Special Loading

C O *kre n pposite members intersecting in two straight lines at a joint are equal.

The forces in two opposite members are equal when a load is aligned
with a third member. The third member force is equalto the load
(including zero load).

The forces in two members connected at ajoint are equal if the
members are aligned and zero otherwise.

Recognition of joints under special loadingconditions simplifies a truss
analysis.




SpaceTrusses

® An elementary space truss consists of 6 members connected at 4 joints to
form a tetrahedron.

® A simple space truss is formed and can be extended when 3 new members
and 1 joint areadded at the same time.

®In a simple space truss, m = 3n - 6 where m is the number of members and n
is the number of joints.

®Conditions of equilibrium for the joints provide 3nequations. For a simple
truss, 3n

= m + 6 and the equations can be solved for m member forces and 6 support
reactions.

®Equilibrium for the entire truss provides 6 additional equations which are not
independent ofthe joint equations.




Sample Problem 6.1

/ SOLUTION:
2000 b 1000 1h

®Based on a free-body diagram of the entire truss, solve the 3 equilibrium
equations for the reactions at £ and C.

' I ®Joint A4 is subjected to only two unknown member forces. Determine these
8 ft from thejoint equilibrium requirements.

®In succession, determine unknown member forces at joints D, B, and E from
joint equilibrium requirements.

mber

® All member forces and support reactions are known at joint C.
However, the jointequilibrium requirements may be appliedto check
the results.




2000 1b
12 ft

1000 1b
~—1]2 ft —=

Sample Problem 6.1 SOLUTION:

®Based on a free-body diagram of the entire truss, solve the 3 equilibrium
equations for the reactionsat £ and C.
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Sample Problem 6.1
2000 1t 1000 1h

*—12 ft *—12 ft —=

® Joint 4 is subjected to only two unknown member forces.

.. g . Determine
these from thejoint equilibrium requirements.

l 2000 1b
A 20001 4B
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® There are now only two unknown memberforces at joint D.
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Sample Problem 6.1
2000 1b 1000 1h

-—12 ft ~—I12ft—f ®There are now only two unknown member forces at joint B. Assume both are
in tension.

4
4
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® There is one unknown member force at joint
E. Assume the member is in tension.
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Sample Problem 6.1

2000 1b 1000 1 ® All member forces and support reactions are

known at joint C. However, the joint equilibriumrequirements may be applied to
check the results.
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dree in only one member or the

forces in a very few members are desired, the
method of sections works well.

To determine the force in member BD, pass asection through the truss as
shown and createa free body diagram for the left side.

With only three members cut by the section,the equations for static
equilibrium may be applied to determine the unknown member forces,
including Fgp.




Truss

Trusses Made of Several Simple oo

es* Compound trusses are statically determinant, rigid, and completelyconstrained.
m=2n-3
0 d

®Truss contains a redundant member and is statically indeterminate.
m=2n-3

® Additional reaction forces may benecessary for a rigid truss.

® Necessary but insufficient conditionfor a compound truss to
be statically determinant, rigid, and completely constrained,

m=2n-3




Sample Problem 6.3

SOLUTION:

®Take the entire truss as a free body. Apply the conditions for static equilib-

Determine the force in members FH,GH, and G1. rium to solve for the reactions at 4 and L.

1 kN

1 kN F I kN ®Pass a section through members FH,GH, and GI and take the right-hand
section as a free body.

® Apply the conditions for static equilibrium to determine the desiredmember
forces.

G

5kN 5kN 5kN
6 panels @ 5m = 30 m




Sample Problem 6.3

SOLUTION:

®Take the entire truss as a free body. Apply the conditions for static equilib-
rium to solve for the reactions at 4 and L.

5kN 5kN 5kN
6 panels @ 5 m = 30 m
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Sample Problem 6.3

® Pass a section through members FH, GH, and GI
and take the right-hand section as a free body.

5kN 5kN 5kN
12.50 kN

Apply the conditions for static equilibrium todetermine the desired
member forces.

OMpy 10
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Sample Problem 6.3
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Analysis of Frames

® Frames and machines are structures with at least one multiforce member. Frames are designed to support
loadsand are usually stationary. Machines contain moving partsand are designed to transmit and modify
forces.

® A free body diagram of the complete frame is used todetermine the external forces acting on the frame.

®Internal forces are determined by dismembering the frame and creating free-body diagrams for each
component.

®Forces on two force members have known lines of action but unknown magnitude and sense.

®Forces on multiforce members have unknown magnitudeand line of action. They must be represented
"1 two unknown components.
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Frames Which Cease To Be Rigid When

Detached From Their Supports

Some frames may collapse if removed from their supports. Such frames
can not be treated as rigid bodies.

A free-body diagram of the complete frame indicates four unknown force
components whichcan not be determined from the three
equilibriumconditions.

The frame must be considered as two distinct, butrelated, rigid bodies.

With equal and opposite reactions at the contactpoint between members, the two
free-body diagrams indicate 6 unknown force components.

Equilibrium requirements for the two rigidbodies yield 6
independent equations.




.

60 mm 100 mm

Sample Problem 6.4
SOLUTION:

®Create a free-body diagram for the complete frame and solve for the
supportreactions.

®Define a free-body diagram for member BCD. The force exerted by the link DE
has a known line of action but unknown magnitude. It is determined by

summingmoments about C.
and by the

in link DE ® With the force on the link DE known, thesum of forces in the x and y
ber BCD. directions may be used to find the force components at C.

With member ACE as a free-body,check the solution
by summing moments about 4.




Sample Problem 6.4 SOLUTION:

® Create a free-body diagram for the complete frameand solve for the

support reactions.

0Fy D00 4y, D480N

Note:
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Sample Problem 6.4 .
60 mm 100 mm

hi 150 mm

®Define a free-body diagram for member i
BCD. The force exerted by the link DE has aknown line of action but 300 N B

unknown magnitude. It is determined by summing moments about C. & et
80 mm A 3 D

sin[C [ 1250mm[C C C300NC C60mml [ C480N 1] l'é@’mﬁ

000 OFDE
Mc 0poseN

0

FpE

®  Sum of forces in the x and y directions may be used to find the forcecomponents at C.
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Sample Problem 6.4

300 N
® With member ACE as a free-body, check the solution by summing
moments about A4.

C CFDE cosC CL300mmE C CFDE sinC CC300mmE C Cy £220 1y C
[ CC561cos 1300 mml C CC3561sin I 1003, C CC 795779220 mml L 0

(checks)




Machines

®Machines are structures designed to transmit
and modify forces. Their main purpose is totransform input forces into
output forces.

Given the magnitude of P, determine themagnitude of Q.
Create a free-body diagram of the complete machine, including
the reaction that the wireexerts.

The machine is a nonrigid structure. Useone of the components as
a free-body.

Taking moments about A4,

M4 000 aPUbO




Unit -2

Energy theorems &
Three Hinged Arches




Gravitational Potential
Energy Elastic Potential

Energy Work-Energy

Theorem Conservative and
Non-conservative Forces
Conservation of Energy

Potential Energy and Energy Conservation




Definition of Work W

The work, W, done by a constant force on an object is defined as the product of the component of the force along the direction
of displacement and the magnitudeof the displacement

— Fis the magnitude of the force

— Ax is the magnitude of theobject’ s
displacement
— L[ is the angle between




Work Done by Multiple Forces

If more than one force acts on an object, then the total work is equal to the algebraic sum of the workdone by
the individual forces

w O
W U by individual forces

net

= Remember work is a scalar, so

this is the algebraic sum

Uw Owg [ (Fcosl)r




Kinetic Energy and Work

Kinetic energy associated with the motion of anobject

Scalar quantity with the same unit as work

Work is related to kinetic energy 1 2

lmv2 — lmv . =(F cosO)Ax

2 2

_ j:fF-dr




Work done by a Gravitational Force

QGravitational Force
—  Magnitude: mg

—  Direction: downwards to theEarth’s center

Work done by GravitationalForce

w U plprcosd OO0y

Wg [] ngrCOSD

Negative
work done
by the
gravitational
torce

Positive
work done
by the

¥ gravitational
force




Potential Energy

Potential energy is associated with theposition of the object

Gravitational Potential Energy is the energy associated with the relative
position of an object in space near theEarth’s surface

The gravitational potential energy

PE =mgy

m 1s the mass of an object

g is the acceleration of gravity
yis the vertical position of the mass relativethe surface of the Earth
SI unit: joule (J)

{2 2006 Brooks/Cole - Thomaon




Reference Levels

A location where the gravitational potential energy is zero must be chosen for each problem
= The choice is arbitrary since the change in the potential

energy is the important quantity
— Choose a convenient location for the zero referenceheight

® often the Earth’s surface

® may be some other point suggested by the problem

= Once the position is chosen, it must remain fixed forthe entire problem




Workand Gravitational

PE =mgy
Potential Energy

w O FOycosU Umg(y Iy )cos180
g f i
0 Dmg(yf 0 yl-) U PE; L] PEf

Units of Potential Energy are the same asthose
of Work and Kinetic Energy

& 2006 Brooks/Cole - Thomson




Extended Work-Energy Theorem

The work-energy theorem can be extended to includepotential energy:

If we only have gravitational force, then

KE; U KE;  DPE O PEr

KE, +PE, = PE,+KE,

The sum of the kinetic energy and the gravitational potentialenergy remains constant at all time and hence is a conserved
quantity




Extended Work-Energy Theorem

- We denote the total mechanical energy by

F=KF+ PE

Since

The total mechanical energy is conserved and remains thesame at all times

U mgy; U mgys

f




Problem-Solving Strategy

Define the system

Select the location of zero gravitational potentialenergy

— Do not change this location while solving the problem

.Identify two points the object of interest movesbetween
— One point should be where information is given
— The other point should be where you want to find
outsomething




Platform Diver
A diver of mass m drops from aboard 10.0 m above [I:I
the water’s surface. Neglect airresistance. 10.0 m [

(a) Find is speed 5.0 m abovethe water surface

(b) Find his speed as he hitsthe water

5.00 m —

KE./ =1/ m.zlrj,g

-

‘8 2006 Brooks/Cole - Thomson




Platform Diver

(a) Find his speed 5.0 m above the

L oy 0 my ey -
10.0 m —]

II\’I‘:?‘ =)

3 T
PE;= mgy;

water surface

VfD

(]

J2g(3 - )

\/2(9.8m / s*)(10m — 5.00 m -
Sm)

water

*(b) Figd hjsspeed ag:h hie the
i

) / KE_’,- =Y mzlr,,-g

PE,=0
ve O f

HIIERERANEEENERNEERRNNNE
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Spring Force

= Block
Involves the spring constant, k = attached

Hooke’s Law gives the force to spring

(@)

- —>
X positive d
F negative 2

— Fis in the opposite direction ofdisplacement d, always back kmm&; h

towards the equilibrium point. I" el

— k depends on how the spring wasformed, the material it is —=%
made 0 _)l

from, thickness of the wire, etc. Unit:

N/m. x negative

F positive




Potential Energy in a Spring

Elastic Potential Energy:

= Sl unit: Joule (J)

— related to the work required to compress a spring from its equilibriumpositi,
to some final, arbitrary, position x

Work done by the spring

(c)

& 2007 Thomson Higher Educaticn




Extended Work-Energy Theorem

The work-energy theorem can be extended to includepotential energy:

If we include gravitational force and spring force, then

w o UOw . Uw
net gravity S

(KE; 0 KEl-)D(PEf O PEZ-)D(PESf U PE;) U0

KE, +PE, +PE, = PE,+ KE,+ KE




Extended Work-Energy Theorem

We denote the total mechanical energy by

I' — KK .1 DEF . DE

Since

The total mechanical energy is conserved and remains thesame at all times

lmszrm +lkx2—lmv2+m Jrlkx2
2 i 8 2 i 2 f gyf 2 f




A block projected up a incline

A 0.5-kg block rests on a horizontal, frictionless surface. Theblock is pressed back against a spring having a constant of
k

= 625 N/m, compressing the spring by 10.0 cm to point A.Then the block is released.
(a)Find the maximum distance d the block travels up thefrictionless incline if 6 = 30° .
(b)How fast is the block going when halfway to its maximumheight?

W

i

@ 2006 Brooks/Cole - Thomson




A block projected up a incline
Point A (initial state):

Point B (final state): V, = 09 yi — O, Xi = _locm — _O lm

=0,y, =h=dsinB,x, =0
lmv2+mgy +1kx2v=_m\J//‘f—|-mgy +_k;€2f
2 l l 2 2 f f 2 f

l

lkx2 =mgy

2 5 ;= mgd sin0
R
~ mg sin0
__0.5(625N / m)(=0.1m)"
(0.5k2)(9.8m / s?) sin

30¢
= 1.28m




A block projected up a incline
Point A (initial state): . . . .
Point B (final state): Vi= 07 Vi = O) Xi = _1 Ocm — _O lm

lmv2+mgy +lkxzvf j?.hyf .:.ﬁé}:dii.rive/z’xf =

2 L R A A B

lkxzzl_mv2+mg(h) k

1

— —x’=v2 +gh

h=d sin® = (1.28m) sin 30° = 0.64m

vfz\/lcxl-z—gh




Types of Forces

Conservative forces

— Work and energy associated with the force can be recovered
— Examples: Gravity, Spring Force, EMforces
Nonconservative forces

— The forces are generally dissipativeand work done against it
cannot easily be recovered

— Examples: Kinetic friction, air dragforces, normal forces, tension
forces, applied forces ...

2008 Brooks/Cole - Thomsan
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Conservative Forces

A force is conservative if the work it does on an object moving between two points is independent ofthe path the objects
take betwe

— The work depends only upon the initial and final positions e
of the object

— Any conservative force can have a potential energy functionassociated with it
— Work done by gravity

— Work done by spring force




Nonconservative Forces

A force is nonconservative if the work it does on anobject depends on the path taken by the object between its final
and starting points.

—  The work depends upon the movement path
— Foranon-conservative force, potential energy can NOTbe defined
—  Work done by a nonconservative force

W = Z F_')d =—fid + Z Wetherforces

— Itis generally dissipative. The-dispersal of energy takes the form of heat or sound




Extended Work-Energy Theorem

The work-energy theorem can be written as:

oW Ow
Wnet ne c

— Wy represents the work done by nonconservative forces

— W, represents the work done by conservative forces

Any work done by conservative forces can be accounted for by

changes in potential energy
—  Gravity work Wg = PEl —PEf =mgy; — mg:)/f

—  Spring force work 1 1
W,=PE,~PE, = kx -

;= kg
5 /




Extended Work-Energy Theorem

Any work done by conservative forces can be accounted forby changes in potential energy

W, = AKE + APE = (KE, - KE,) +(PE, — PE,)

W, =KE,+PE,)—(KE; + PE})

Mechanical energy includes kinetic and potential energy




Problem-Solving Strategy

Define the system to see if it includes non-conservative forces(especially friction, drag force ...)
Without non-conservative forces

! i ) 1
With non-conservative forces mv +mgy + kx 1 " 1

/73 anc _(KEf +PEf) (KE + PE,)
Select the location of zero potential energy

- ﬁifﬁ_ ang location %%Wq}y@ 4 4 kxz ) ( mv + mgy + _kxz)

Identify two poi ¢ objeetotinterest )yoves between f o) A 0 i o)
—  One point should be where informftion is given
—  The other point should be where you want to find out something




Conservation of Mechanical Energy

block of mass m = 0.40 kg slides across a horizontal frictionless counter with a speed of v = 0.50 m/s. It runs into and
compresses a spring of spring constant £ = 750 N/m. When the block is momentarilystopped by the spring, by what distance
d is the spring compressed?,

W, =(KE,+ PE,)—~(KE, + PE,)

0+0+ k2 ="m?+0+

0 _ _
2 2

mv2=1.15cr)|k




Changes in Mechanical Energy for conservative forces

A 3-kg crate slides down a ramp. The ramp is 1 m in length and inclined at an angle of 30° as shown. The crate starts from rest
at thetop. The surface friction can be negligible. Use energy methods to determine the speed of the crate at the bottom of the ramp.

:(lmijrmgyf +lkx;)—(1_mv? +mgy + 1_kx2_)
2 2 2 )
(imv2 + mgy +ilcx2) =(1_mV? +mgy + l_kxz')
2 R
d=1m,y,=dsin 30 =0.5m, v, =
0

1

— fd + Z Wotherforces

yf :O,Vf :‘?

(L mv? £040)=(0+mgy +0)
2 f i . - 0.500 m )

v, =+/2gy,=3.1m/s




Changes in Mechanical Energy for Non-conservative forces

A 3-kg crate slides down a ramp. The ramp 1s 1 m in length and inclined at an angle of 30° as shown. The crate starts from rest
at the top. The surface in contact have a coefficient of kinetic friction of 0.15.Use energy methods to determine the speed of the
crate at the bottomof the ramp.

:(lmv2 +mgy +lkx2)—(1_mv2+mgy + l_kxz)

—fd+> W
f Z otherforces o) f S 2 f )

—U Nd+0=(lm\/2 +0+0)—(0+mgy +0)
k f i

2
W =0.15,d=1m,y,=d sin 30c =0.5m, N="1?

N —mgcos =0

— 1 dmgcos = lmv2 —mgy -
k 2 f i 0.500 m

Vr = \/28(% —wdcosO) =2.7m/s




Changes in Mechanical Energy for Non-conservative forces

A 3-kg crate slides down a ramp. The ramp is 1 m in length and inclined at an angle of 30° as shown. The crate starts from rest at
the top. The surface in contact have a coefficient of kinetic friction of 0.15.How far does the crate slide on the horizontal floor if it
continues to experience a friction force.

=(lmv2 +mgy —klkxz)—(l_mv2 +mgy + l_kxz)
— fd —I—ZWotherfarces 9 f f 5 f 5 ‘ ‘ 5 i
—p Nx+0=(0+0+0)—(Lm?+0+0)
k 2 i
W, =0.15,v, =2.7Tm/s,N =?

1 1

N-mg=0

— M mgx = —_mv2 - 1.00 m
k

2 i 1 0.500 m

2
Vi
X = =2.5m

21 g




Block-Spring Collision

. A block having a mass of 0.8 kg is given an initial velocity va = 1.2 m/s to theright and collides with a spring whose mass is

negligible and whose force constant is k = 50 N/m as shown in figure. Assuming the surface to be frictionless, calculate the
maximum compression of the spring after the collision.

lmv2 +mgy +ikx2 = l_mv2 +mgy + l_kx2
2 S "2

1

e L D
= 5 MUE

1

m? +0+0="m? +0+0
2 A

o b B g B
E= gmug + 2kx

08K 1 am/sy=0.15m

@ 2007 Thomson Higher Education




Block-Spring Collision

. A block having a mass of 0.8 kg is given an initial velocity va = 1.2 m/s to the right and collides with a spring whose mass is

negligible and whose force constant is k = 50 N/m as shown in figure. Suppose a constant force of kinetic friction acts between the
block and the surface, with pg = 0.5, what isthe maximum compression X in the spring.

:(lmv2 + mgy +lkx2)—(l_mv2+mgy + l_kxz)
2 7 A R R )

1

— fd + Z Wotherforces

e L. 9
L= 5 MUE

— W, Nd +0=(0+0+ %kxf)—(%mvi +0+0)

N — mg and d — XC ( p L= émvhr ék}c2

1 1
k=" mv? =—u mgx
A k
2 ‘ 2 ‘ ) 1': = %kx?n'dx

25x2 +3.9x —0.58=0  x —0.093m

~_ 1 9 _1 32
k= TMUE = 5 My

®2007 Thamson Higher Education




Energy Review

Kinetic Energy

—  Associated with movement of members of a system
Potential Energy

—  Determined by the configuration of the system

—  Qravitational and Elastic

Internal Energy

— Related to the temperature of the system



Conservation of Energy

Energy is conserved

—  This means that energy cannot be created nordestroyed

— If the total amount of energy in a system changes,it can only be due to the fact that energy has crossed the boundary
of the system by some method of energy transfer




Ways to Transfer Energy Into or Out of A System

Work — transfers by applying a force and causing a displacement of the point of application of the force
Mechanical Waves — allow a disturbance to propagate

through a medium

Heat — is driven by a temperature difference between tworegions in space

Matter Transfer — matter physically crosses the boundary of

the system, carrying energy with it
Electrical Transmission — transfer is by electric current

Electromagnetic Radiation — energy is transferred byelectromagnetic waves




Connected Blocks in Motion

Two blocks are connected by a light string that passes over a frictionless pulley. The block of mass m:1 lies on a horizontal
surface and is connected toa spring of force constant k. The system is released from rest when the spring is unstretched. If the
hanging block of mass m> falls a distance / before coming to rest, calculate the coefficient of kinetic friction between the
block of mass m1 and the surface.

k
APE =APE +APE =(0—m gh)+() kx®—0) m my |
g s 21 o) l

—b

N=mg and x=h 1
m2g—§kh

e =
mg

—Uwmgh=-m gh+lkh2
ko1 2 2




Work does not depend on time interval

The rate at which energy is transferred is importantin the design and use of practical device

The time rate of energy transfer is called power

The average power is given by

w

] aansfer is work
PO

— when the method o




Instantaneous Power

Power is the time rate of energy transfer. Power isvalid for any means of energy transfer

Other expression p — W — F Ax —
JAVARNVAY

Fv_

A more general definition of instantaneous power

P=lim¥ =W _p. & _p.

At—0 At dt dt

P=F-v=FycosO




Units of Power

The ST unit of power is called the watt
— 1 watt=1joule/second=1kg m?/s’

A unit of power in the US Customary system ishorsepower
—1hp=550ft - lb/s=746 W

Units of power can also be used to expressunits of work or energy
—1 kWh = (1000 W)(3600 s) =3.6 x10°J



FORM ACTIVE STRUCTURESYSTEM

> Non rigid, flexible matter, shaped in a certain way & secured at the ends
which can support itself and span space.

» Form active structure systems develop at their ends horizontal stresses.

» The bearing mechanism of a form active systems rests essentially on the
material form.




&irded structure designed to carry loads across a gap mainly by compression.

prisdipraeehariaalh is precisely the same as that of the portal frame. The straight pieces of material joined by sharp bends are
smoothened into a continuous curve. This increases the cost of construction but greatly reduces the stresses.

[J The geometry of the curve further affects the cost and stresses.
The circular arch iseasiest to construct, the catenary arch is the most
efffsiehes can be three pinned, two pinned or

rigid.




Arch Terminology

CROWN
ARCH AXIS EXTRADOS

DEPTH (d)

SKEWBACK

SOFFIT INTRADOS

|
SPRING LINE SPRING LINE BUTMENTA~
(MINOR ARCH) (MAJOR ARCH) T T—LZ
|

|
SPAN (S) o o2 i e
SPAN (L) I"“[ =




It is important to minimize the arch THRUST so as to reduce the dimensions of the tie rod, or to ensure that the soil will not
move under the pressure of the abutments.

The THRUST is proportional to the total LOAD & to the SPAN, and inversely proportional to the RISE of the arch.

In arches rise to span ratio should not be less than 1/8

3I‘d

Riser minimum should be 1/8 of the span & 2/3™® maximum.

Lesser rise takes compression but not tensile load.




In masonry design the arch is heavy & loaded by the weight of walls, its
shape is usually the funicular of the dead load, & some bending is
introduced in it by liveloads.

In large steel arches, the live load represents a greater share of the total
load & introduces a large amount of bending but it is seldom in view of
the tensile strength of steel.

The SHAPE of the arch may be chosen tobe as close as possible to
the FUNICULAR of the heaviest loads, so as to minimize BENDING.




The arch thrust is absorbed by a tie-rod whenever the foundation material
1s not suitable to resist it.

When it must allow the free passage of traffic under it, its
thrust is asorbed either bybuttresses or by tie-rods buried under ground.

The stationary or moving loads carried by the arch
are usually supported on a horizontal surface.

This surface may be above or below the arch, connected to it
by compression strutsor tension hangers.




MATERIALS USED

CONCRETE-takes more compression




LOADAPPLICATIONS

FUNICULAR ARCHES - CONCENTRATED LOADS

o . .
%4 The sum total of all rotational effects produced about any such location by the external and internal forces must be zero. In
three hinged arch having a non-funicular shape, this observation is true only at three hinged conditions.

N¢ .. . . .
*¢* The external shear at a section is balanced by an internal resisting shear force that is provided by vertical component of the
internal axial force.




DESIGN OFARCH STRUCTURES

The first important consideration when designing a brick arch is whether the arch is structural or non-structural. That is,
will the arch be required totransfer vertical loads to abutments or will it be fully supported by a steel angle. While this
may seem obvious, confusion often develops because ofthe many configurations of arch construction. To answer this
question, one must consider the two structural requirements necessary for a brick arch to adequately carry
vertical loads. First, vertical loads must be carried by the arch and transferred to the abutments. Second, vertical loadand
lateral thrust from the arch must be resisted by the abutments.




If either the arch or the abutment is deficient, the arch must be considered as non-structural and the arch and its tributary load must
be fully supported by a steel angle or plates. Alternately, reinforcement may be used to increase the strength of either or both the
arch and the abutments.

[A] DESIGNING FOR LOAD VARIATIONS

deSdnscalichagnontstgniisanimspechahiba madaem arch is that it can be
without either changing shape or experiencing damage.
respogsshapctoipamarshiéadiipiatbhdietermgagd: asatabolic for uniformly
distributed loads)

oading

Collapse tendency

L.OlejS rer‘vd"er‘

HhAarninechag
“{ f___"i_,‘-r‘,kl.‘\""




[B] SUPPORT ELEMENTS

[JA basic issue is that whether or not to absorb the horizontal thrusts by someinterior element (a tie rod or by the foundations).

When it is functionally possible the rods are frequently used.
[The rod is a tension element and highly efficient to take up the outward archthrusts.
[JUsually there is less need to support an arch on the top of vertical elements, the use of buttressing elements is generally

preferable as head room has to be maintained.

T:ﬂt:;te:d Engsad acr;h rs,"rlelaiwel' The two-hinged arch is relatively The fixed-ended arcn is severely
1 twoyar:fmpqe :e fment: unaffected by vertical settiaments affected by any type of foundation
ot ilh fespect o ?Jne e ’t':'e" by sincs the hinges allow the structure  setfement, The absencal hinges
Wi ingss o r stru:m t"f o simply roate a5 a uni. Hori does ot allow the structure fo flex
flee frghy pirelo zontal spreading of the foundations,  freely, and destructive bending

il however, induce” destructive bending  moments are consequently induced

at the crown of It arch, in the structure,
; .*




[C] CHOICE OF END CONDITIONS

¥ There are 3 primary types of arches used that are normally described interms of end conditions :-

Three hinged arch

Two hinged arch

end conditions are preferable with respect to different
phenomenon.
[OThe presence of hinges is very important when supports, settlements andthermal expansions are considered.




Lateral Behavior OfArches

Toldeal with behaviour of arch in the lateral direction, there are two methods-

Provide fixed base connections

Odmmonly used is by relying on membersplaced transversely to the arch.

# a pair of arches is stabilized through use of diagonal elements.

# interior arches are stabilized by being connected to the end
arches by connectingtransverse members

[l Lateral buckling can be solved by laterally bracing arches with otherelements.




Flashing

[ residential construction, the presence of eaves, overhangs and small wall areas above openings will reduce the potential
for water penetrationat arch locations. However, flashing at an arch is just as important as over any other wall opening.

Flashing an arch can be difficult, depending on the type of arch and the type of flashing material. Jack arches are the easiest to
flash because they are flat.

Flashing may be placed below the arch on the window framing for structural arches or above the steel lintel for
non-structural arches.

keystisaarelacHasbing many heshiaget ithélsagrarar joint above the arch or

and end dams should follow standard procedures.

LEife sBgmeantakohss@ificult to flash properly. This is because flashing materials such as metal flashings are very rigid and may
be hard to work around a curved arch.




Construction Concerns

Both structural and non-structural arches must be properly supported throughout construction. Premature removal of the
temporary support for a structural arch may result in a collapse of the arch. This is most often due to the introduction of lateral
thrust on the abutment before proper curing has occurred. Out-of-plane bracing is required for all arches. In veneer construction, it
is provided by the backup material through the wall ties. Arches that are not laterally braced may require increased
masonry thickness or reinforcements to carry loads perpendicular to the arch plane. Arches may be constructed of special shapes
or regular units. Mortar joints may be taperedwith uncut regular units.

Alternately, regular units may be cut to maintain uniform joint thickness. In general, use of specially shaped brick that result
in uniform joint thickness will be more aesthetically pleasing. Many brick manufacturers offer such specially-shaped arch units.




FAILURE MODES

1 « Rotation of the arch about the abutment-

Rotation occurs when tension develops in the arch. Tension can be
reduced by increasing the depth or rise of the arch. If tension
develops in the arch, reinforcement can be added to resist the
tensileforces.

Sliding of the arch at the skewback-

Sliding of the arch will depend on the angle of skewback (measured

Crushing Wil ocgyt, D YBHEA) arfHe VerliEalTBad Satilsc By AR reech of the brick masom
If compressive streResj ffoOcigh theati Beryddesdredrusrsdd it diny 4t the skewback, as the
reinforcement acts as a shear key.

Crushing of the masonry-




CORRECTIVE MEASURESANDDESIGN CHANGES

havékiekEsontal restraints and these are responsible for their superior structural performance.

elonbatdng Sheimghyrsbeeaishasborienscndywivigtie dadvdent in concrete as the concreteabsorbs water and then dries out
again. The stresses caused by temperatureand moisture movement in arches are often much greater than the stresses caused by
the live load, and thus they cannot be ignored.




EARLY CURVED ARCHES

Structure was often made more stable by the superimposition of additional
weight on its top, thus firming up the arch.

SHAPE OF ARCH is not chosen for purely structural reasons. The HALF
CIRCLE,used by the Romans, has convenient construction properties that justify
its use.

Similarly, the POINTED gothic arch has both visual & structural
advantages, while the arabic arch, typical of the mosques & of some
venetian architecture is ‘incorrect’from a purely structural viewpoint.




Notre-Dame Cathedral- Fine example of Gothic architecture, built
in mid-13th century. Ornate west entrance shows theuse of arches in
early building construction. (Chartres, France)

King's College Chapel-
O England. Built in 1446-
15 pointed arches that
require (Cambridge,

England)




APPLICATIONS & ADVANTAGES

Roman & romanesque architecture are immediately recognized by the circular arch motif. Romans were pioneers in the use of
arches for bridges, buildings, and aqueducts. This bridge, the Ponte Fabricio in Rome, spans between the bank of the River Tiber
and Tiber Island. Built in 64 B.C. (Rome, Italy.)

The gothic high rise arch & the buttresses required to absorb its thrust are typical of one of the greatest achievements
in architectural design.

Roman circular arches spanned about 100’ & medieval stone bridges up to 180°.




Ll The NEW RIVER GORGE BRIDGE in west virginia, the longest steelarch spans 1700’ (1986).
[ The largest single arch span in reinforced concrete built to date is thel280feet span KRK BRIDGE , yugoslavia.




Unit-3

ProppedCantileverand Fixed Beams




Structural member that carries a load that isapplied transverse to its length

Used in floors and roofs

May be called floor joists, stringers, floorbeams, or girders




Chasing the Load

The loads are initially applied to a building surface
(floor or roof).

Loads are transferred to beams which transfer theload
to another building component.




Static Equilibrium
The state of an object in which the forcescounteract each other so that the object remains

stationary A beam must be in static equilibrium tosuccessfully carry loads

G-




Static Equilibrium

The loads applied to the beam (from the roofor floor) must be resisted by

forces from the beam supports. The resisting forces are called reaction

forces.

l Applied Load

ReactionForce

Reaction
Force




Reaction Forces

Reaction forces can be linear or rotational.
= A linear reaction is often called a shear reaction (F or R).
— A rotational reaction is often called a moment reaction(M).
The reaction forces must balance the applied forces.




Beam Supports

The method of support dictates the types of

reaction forces from the supporting members.




Roller:

Pin
Connection

Fixed
Support:




Beam Types

ContinuousCantilever
Moment (fixed at one

end)




Beam Types

Moments at each end Propped — Fixed at one eiyl} supported at

Overhang




Simple Beams

Applied Load

BEAM DIAGRAM

Applied Load

LEETED> =

FREE BODY
DIAGRAM

Note: When

there is no
may ignore the horizontal reaction at the pinned  appliedhorizo
ntal load, you

connection.




Fundamental Principles of Equilibrium

The sum of all vertical forces actingon a body must equal zero.

The sum of all horizontal forces acting on a body must equal zero. The sum of all moments
(about any

point) acting on a body must equal




Moment

*A moment is created when a force tends torotate an object.

*The magnitude of the moment is equal to the force times the perpendicular distance to
theforce (moment arm).

F

M F d |
1 d=moment arm |




Calculating Reaction Forces

Sketch a beam diagram.

F = 40c0*




Calculating Reaction Forces

Sketch a free body diagram.




Calculating Reaction Forces

Use the equilibrium equations to find the magnitude of the reactionforces.
—Horizontal Forces
—Assume to the right is positive

FxAZD




Calculating Reaction Forces

* Vertical Forces

* Assume up is positive T
+

Equivalent

Equivalent e
/Concentrated
P= goo™® b




Calculating Reaction Forces

Moments

Assume counter clockwise rotation is positive

£2)0(13,000 BO10  f1)0(Fyy 00)00
E MA —_ 0 _|_

(Fyp 120 f1)T(4000 Y6

fiFyp 124,000 f01p0130,000 £0BO0O0

V= 40C0"
(20/i)F,5 154,000 #D1b

154,000 #01b 3 13,000 Ib

Fyp O 2077

FyB: 7,700 lb




Calculating Reaction Forces

. Now that we know
equation to find

Fya + F,5 = 17,0001b

F,o+ 7700 (b = 17,000 b

F,a = 9300 Ib [0 =4 m==vs

4g="77001b

N

3001b="?,tw, |




Shear Diagram

'P‘:. 4COO“° b
/‘bJ (( O—;
L L

—
93::0 l=b _F‘J‘A A | f = =7700 1b
1y - JB

'
FEE.. --L«

Shear at a point along the
beam is equal to the
reactions (upward) minus
the applied loads
(downward) to the left of
that point.




Moment Diagram

' = 'R
p I\ ") o3 A - -
) o) I o0 ¢

Kink in

moment B e
curve Mmﬁ‘ﬁ : .. 02.15f¢




Moment Diagram

4000 1b

i

0 =

9300 1b = g‘,lfh.

M (40000b)(2.15ft) D(650@ )8.150) 04 )0(93000b)(8.15/) 0
f

M=M,_ =45608 fi-Ib




Moment Diagram

S

Ty

 Mypa = 45,608 ft - 1b

N




Moment Diagram

9 %Cc‘b

i- | L
S ~

7
g

/f){f

M ey |—

]ﬂx.r"ﬂ'\(j MENT ./ |

M, = Area A + Area B + Area C
= 2(6 ft)(3900 1) + (6 f)(5400 Ib) + 2(2.15 ft)(1400 Ib)
= 45,605 ft-Ib




Beam Analysis

Example : simple beam with a uniform load,wi= 1090 Ib/ft

Span = 18 feet

H
(fty 0

Load Diagram

Test your understanding: Draw the shear and momentdiagrams for this beam and loading condition.




Shear and Moment Diagrams

Load Diagram

If‘t Ll I Loads E‘ I Reactions

Click on an area for more details

9,810.00

8.0

Shear Diagram

44, 145,00

Moment

0.00

"
() 9.0
III:u-ft TI Moment Diagram

Max. Moment = 44,1451 ft-1b Max. Shear = 9,810 1b
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Slope Deflection & Moment Distribution Method




MOMENT DISTRIBUTION METHOD - AN OVERVIEW

. MOMENT DISTRIBUTION METHOD - AN OVERVIEW
. INTRODUCTION

. STATEMENT OF BASIC PRINCIPLES

. SOME BASIC DEFINITIONS

. SOLUTION OF PROBLEMS

7.6 MOMENT DISTRIBUTION METHOD FOR STRUCTURES

HAVING NONPRISMATIC MEMBERS




7.2 MOMENT DISTRIBUTION METHOD - INTRODUCTION AND BASIC PRINCIPLES

Introduction

(Method developed by Prof. Hardy Cross in 1932)

The method solves for the joint moments in continuous beams andrigid frames by successive
approximation.

Statement of Basic Principles

Consider the continuous beam ABCD, subjected to the given loads,as shown in Figure below.
Assume that only rotation of joints occurat B, C and D, and that no support displacements occur at
B, C and

D. Due to the applied loads in spans AB, BC and CD, rotations occur at B, C and D.

150 kN

15 kN/m 1/10 kN/m
Vv

y

N




In order to solve the problem in a successively approximating manner,it can be visualized to be made up of a continued two-
stage problems viz., that of locking and releasing the joints in a continuous sequence.

Step I

The joints B, C and D are locked in position before any load isapplied on the beam ABCD; then given
loads are applied on the beam. Since the joints of beam ABCD are locked in position, beams AB, BC and CD acts as
individual and separate fixed beams, subjected to the applied loads; these loads develop fixed end moments.

15 kKN/m 10 kN/m
-S0kN.m  _112.5kN.m 125KN.m 5333 kNm
= A 3m |_» * ] |
N N 7 A
/ | A
B BT \ - C

//
e 6 m

A




In beam AB

Fixed end moment at A = -wl%/12 = - (15)(8)(8)/12 = - 80 kN.m Fixed end moment at B = +wl2/12 =
+(15)(8)(8)/12 =+ 80 kN.m

In beam BC

Fixed end moment at B = - (Pab2)/12 = - (150)(3)(3)%/62
—_112.5kN.m

Fixed end moment at C = + (Pab2)/12 = + (150)(3)(3)2/62

=+ 112.5kN.m

In beam AB

Fixed end moment at C = -w12/12 = - (10)(8)(8)/12 = - 53.33 kN.mFixed end moment at D = +wl12/12 =
+(10)(8)(8)/12 = + 53.33kN.m




Step 11

Since the joints B, C and D were fixed artificially (to compute the the fixed- end moments), now the
joints B, C and D are released and allowed to rotate. Due to the joint release, the joints rotate maintaining the
continuous nature ofthe beam. Due to the joint release, the fixed end moments on either side of joints B,
C and D act in the opposite direction now, and cause a net unbalanced moment to occur at the joint.

15 kN/m

_ __3m
y

N

! N ; ! AN
VW 2 \
Released moments -80.0 +112.5 -112.5 +53.33
Net unbalanced moment

Y V V

-59.17

—_— (+32.5 _




Step 111

These unbalanced moments act at the joints and modify the joint moments at B, C and D, according to their relative
stiffnesses at the respective joints. The joint moments are distributed to either side of the joint B, C or D, according
totheir relative stiffnesses. These distributed moments also modify the moments at the opposite side of the beam span,
viz., at joint A in span AB, at joints B and C in span BC and at joints C and D in span CD. This modification is
dependent on the carry-over factor (which is equal to 0.5 in this case); when this carry over is made, the joints on
opposite side are assumed to be fixed.

Step IV

The carry-over moment becomes the unbalanced moment at the jointsto which they are carried over. Steps
3 and 4 are repeated till the carry- over or distributed moment becomes small.

Step V

Sum up all the moments at each of the joint to obtain the joint moments.




SOME BASIC DEFINITIONS

In order to understand the five steps mentioned in section 7.3, some wordsneed to be defined and relevant derivations made.

Stiffness and Carryv-over Factors

Stiffness = Resistance offered by member to a unit displacement or rotation at apoint, for given support constraint conditions

A clockwise moment M is applied at A to

produce a +vebending in beam AB. Find [

aand Mp.

s

E, I — Member properties




Using method of consistent deformations

My
{F___ e e e

L MLZ

A

4E]

Stiffness factor = k7 = 4EI/L




Considering moment ME«.

Mp +MA +RAL=0Mp = MA/2= (1/2)M

Carry - over F%ctor = 1/2 Distribution Factor

Distribution factor is the ratio according to which an externally appliedunbalanced moment M at a joint
is apportioned to the various membersmating at the joint

+ ve moment M !M
B >Mc

At joint B
M - Mga-M Bc-MBD =0

f e e — —————

\
W\




M=Mpga + Mgc + MBD

U041 O O4Ey1p O  0O4p313 OU

DDD—L—DDD_L—DDDB
Ogy booo oz 3 00

UJkps “Kpc YKpp Up
M
0 M
B — KB4 [0 KBC =
0 KBD U K

H Kpa H
=Og—7
L)

SimilarlyKBC [

Il

M
B4 0 KpqOB M O (D.F)gy M

pr— M
Mpc O Z O((D.F)pc M
E 3 E

Mpp 0O Kkgp 0

=la_ o
L)

M U (D.F)pp M




Modified Stiffness Factor

The stiffness factor changes when the far end of the beam is simply-supported.

As per earlier equations for deformation, given in Mechanics of Solidstext-books.
YLt
3y
K = _3EI _ _3__4F] _

AB - -0
O, L D400L O
3

1 (K ixed
AB

4




SOLUTION OF PROBLEMS -

7.4.1 Solve the previously given problem by the momentdistribution method

: Fixed end moments

wi2 (15)(8)
Myp ODOMB4 [ 00

12 12

0 080 kN.m

Mpe 0oMce 0o— 0o P2O g oismm
8 8

12 (10)(8)*
Mcp OOMDC - %—0p

12 12

0 053.333 kN.m

Stiffness Factors (Unmodified Stiffness)

4E1 4)(ET
O (4)ED) 1 0.5E1

K 0K O
AB L 8

B 4EI 4)(EI
A mp - BDED  10.667E16

4
EI [J0.5EI



Distribution Factors

stiffness)

0.50 0 (wall

EI

[10.667EI B aks

0.5EI

0.667EI
[10.5716

0.5EI L 0.667EI
0.667EI

[10.5716
0.667EI L1 0.500EI

0.500EI
[10.4284

0.667EI L! 0.500EI




7.4.1.4 Moment Distribution Table

Joint
Member

Distribution Factors

Cycle 1 |Computed end moments

Distribution

Carry-over moments

Distribution

Carry-over moments

Distribution

Carry-over moments

Distribution

Carry-over moments

Distribution

Summed up moments




7.4.1.5 Computation of Shear Forces

10 kN/m

15 kN/mx

VY VY VY N\

8 m

Simply-supported

reaction

End reaction
due to left hand FEM

End reaction
due to right hand FEM

Summed-up moments




7.4.1.5 Shear Force and Bending Moment Diagrams

52.077

N

|

S.F.D.

63.77

Max=+ 35.59 kN.m
126.704

-69.806




Simply-supported bending moments at center of span

Mcenter in AB = (15)(8)2 /8 =

(150)(6)/4 = +225 KN.mM_epter in AB = (10)(8)2/8 = +80 kN.m




7.5 MOMENT DISTRIBUTION METHOD FORNONPRISMATIC MEMBER (CHAPTER 12)

The section will discuss moment distribution method to analyze beams and frames composed of
nonprismatic members. First the procedure to obtain the necessary carry-over factors, stiffness
factors and fixed-end moments will be outlined. Then the use of values given in design tables will be
illustrated. Finally the analysis of statically indeterminate structures using the moment distribution

method will be outlined




Stiffness and Carry-over Factors

Use moment-area method to find the stiffness and carry-over factors ofthe non-prismatic beam.

My 0K
Py L(Ky JAB 14 4 H )ABDA
Mp 0CaBMy

CAB= Carry-over factor of moment MA from A to B




(2)

Use of Betti-Maxwell’s reciprocal theorem requires that the work done by loads in case (a) acting through
displacements in case (b) isequal to work done by loads in case (b) acting through displacements incase (a)

My (0) Mg ()~ My (LO)D MG —000- O-
CaBK4 O CBAKB




Tabulated Design Tables

Graphs and tables have been made available to determine fixed-end moments, stiffness factors
and carry-over factors for common structural shapes used in design. One such source is the
Handbook of Frame constants published by the Portland Cement Association, Chicago, Illinois, U. S.
A. A portion of these tables, is listed here as Table 1 and 2

Nomenclature of the Tables

ap ap = ratio of length of haunch (at end A and B to the of span length

b = ratio of the distance (from the concentrated load to the length of span

h, hg= depth of member at ends A and B, respectivelyhc = depth of member end A)to
at

minimum section




I = moment of inertia of section at minimum section = (1/ 12)B(hc)3,with B as width of

beam kaRg, kg = stiffness factor for rotation at end A and B, respectivelyL = Length of member

MAR, MpBA = Fixed-end moments at end A and B, respectively; specified in tables for

uniform load w or concentrated force P




Table 12-1 Straight Haunches—Constant Width

Note: All carry-over factors are negative and
el Trghe all stiffness factors are positive.

‘ anB

Concentrated Load FEM—Coef. X PL Haunch Load ot

Unif: Load b Left Right

FEM _ FEM FEM
Coef. X wl’ G 03 0.3 e ' Coef. X wol? | Coef. X wel?

Right | Carry-over Stiffness
Haunch|  Factors Factors

ag 1z | Cas  Coa | kas ks | Maz Mg My Mpy | Mg Maa | Mg Mpa | Mz M / My Mpa | Mg Mpa

a, =03 ap= variable ry=10 rg = variable

0.4 10543 [ 0.766 | 9.19 0.1194 10,0791 | 0.0935 | 0.0034 | 0.2185 | 0.0384 | 0.1955 | 0.1147 | 0.088 | 0.1601 0.0133 | 0.0008 | 0.0006 | 0.0058
0.6 105760758 | 9.53 0.1152 [0.0851 | 0.0934 | 0.0038 | 0.2158 | 0.0422 | 0.1883 | 0.1250 | 0.0798 | 0.1729 0.0133 1 0.0009 | 0.0005 | 0.0060
1.0 {0,622 | 0.748 | 10.06 0.1089 |0.0942 { 0.0931 | 0.0042 [ 0.2118 {0.0480 | 0.1771 | 0.1411 | 0.0668 | 0.1919 0.0132 | 0.0011 | 0.0004 | 0.0062
1.5 | 0.660 | 0.740 | 10.52 0.1037 | 0.L018 [ 0.0927 | 0.0047 | 0.2085 | 0.0530 | 0.1678 | 0.1550 | 0.0559 | 0.2078 0.0130 | 0.0012 | 0.0002 | 0.0064
20(0684 | 0.734 | 10.83 0.1002 {0.1069 | 0.0924 { 0.0050 | 0.2062 | 0.0565 | 0.1614 § 0.1643 | 0.0487 | 0.2185 0.0129 1 0.0013 | 0.0001 | 0.0065

040579 {0741 | 947 0.1175 |0.0822 | 0.0934 | 0.0037 | 0.2164 | 0.0419 | 0.1909 | 0.1225 | 0.0856 | 0.1649 0.0133 | 0.0009 | 0.0022 | 0.0118
0.6 [0.629 | 0.726 | 9.98 0.1120 |0.0902 | 0.0931 | 0.0042 | 0.2126 | 0.0477 | 0.1808 | 0.1379 | 0.0747 | 0.1807 0.0132 [ 0.0010 | 0.0018 | 0.0124
L0 | 0.705 | 0.705 | 10.85 0.1034 10.1034 | 0.0924 | 0.0052 | 0.2063 | 0.0577 | 0.1640 | 0.1640 | 0.0577 | 0.2063 0.0131 | 0.0013 | 0.0013 | 0.0131
15| 0.771 | 0.689 | 11.70 0.0956 |0.1157 | 0.0917 | 0.0062 ] 0.2002 | 0.0675 | 0.1483 | 0.1892 | 0.0428 | 0.2294 . 0.0129 | 0.0013 | 0.0008 | 0.0137
2.0 0817 [ 0.678 | 1233 0.0901 [0.1246 | 0.0913 | 0.0069 | 0.1957 | 0.0750 | 0.1368 | 0.2080 | 0.0326 | 0.2455 0.0128 | 0.0017 | 0.0006 | 0.0141

a, =02 ap = variable ra=135 rg = variable

0.569 197 0.1166 0.0799 | 0.0966 { 0.0019 | 0.2186 | 0.0377 | 0.1847 | 0.1183 | 0.0821 | 0.1626 0.0064 | 0.0001 0.0058
0.603 8.26 0.1127 [0.0858 | 0.0965 | 0.0021 | 0.2163 | 0.0413 [ 0.1778 | 0.1288 | 0.0736 | 0.1752 0.0064 | 0.0001 0.0060
0.652 870 0.1069 |0.0947 | 0.0963 | 0.0023 | 0.2127 | 0.0468 | 0.1675 | 0.1449 | 0.0616 | 0.1940 0.0064 | 0.0002 0.0062
0.691 9.08 0.1021 [0.1021 | 0.0962 | 0.0025 | 0.2097 | 0.0515 | 0.1587 | 0.1587 | 0.0515 | 0.2097 0.0064 | 0.0002 0.0064
0.716 9.34 0.0990 {0.1071 | 0.0960 | 0.0028 | 0.2077 | 0.0547 1 0.1528 | 0.1681 | 0.0449 | 0.2202 0.0064 ; 0.0002 0.0065

0.607 8.21 0.1148 | 0.0829 | 0.0965 | 0.0021 | 0.2168 | 0.0409 | 0.1801 | 0.1263 | 0.0789 | 0.1674 0.0064 | 0.0002 0.0118
0.659 8.63 0.1098 |0.0907 | 0.0064 | 0.0024 | 0.2135 | 0.0464 | 0.1706 | 0.1418 | 0.0688 | 0.1831 0.0064 | 0.0002 0.0123
0.740 9.38 0.1018 101037 | 0.0961 | 0.0028 | 0.2078 | 0.0559 | 0.1550 | 0.1678 | 0.0530 | 0.2085 0.0064 | 0.0002 0.0130
0.809 10.09 0.0947 [0.1156 | 0.0958 | 0.0033 | 0.2024 | 0.0651 |0.1403 | 0.1928 | 0.0393 ; (0.2311 0.0063 | 0.0003 0.0137
0.857 10.62 0.0897 |0.1242 | 0.0955 | 0.0038 | 0.1985 1 0.0720 | 0.1296 | 0.2119 | 0.0299 | 0.2469 0.0063 | 0.0003 0.0141




Table 12-2 Parabolic Haunches—Constant Width

Note: All carry-over factors are negative and
all stiffness factors are positive.

Concentrated Load FEM—Coef. X PL Haunch Load at
b Left Right

Unif. Load

Carry-over Stiffness FEM 03 05 0.7 FEM FEM
Factors Factors Coef. X wl? ' : ‘ ‘ ¢ Coef. X wal? | Coef. X wyl?

CAB CBA kAB kBA MAB MBA MAB MBA MAB MBA MAB MBA ) MAB MBA MAE MB'A

5 = variable ry =10 tg = variable

0.558 | 0,627 | 6.08 0.1022 {0.0841 0.1891 | 0.0302 10.1572 | 0.1261 | 0.0715 | 0.1618 10.0032 | 0.0001 0.0030
0.582 1 0.624 | 621 0.0995 |0.0887 0.1872 10.0535 |0.1527 [0.1339 | 0.0663 | 0.1708 0.0032 | 0.0001 0.0031
0.619 | 0.619 | 6.41 0.0956 |0.0956 0.1844 | 0.0584 |0.1459 |0.1459 | 0.0584 | 0.1844 0.0032 | 0.0001 0.0032
0.649 | 0.614 | 6.59 0.0921 10.1013 0.1819 | 0.0628 |0.1399 [0.1563 j0.0518 | 0.1962 0.0032 | 0.0001 0.0032
0.671 {0.611 | 671 0.0899 |0.1056 0.1801 | 0.0660 |0.1358 | 0.1638 | 0.0472 | 0.2042 0.0032 | 0.0001 0.0033

0.588 | 0.616 | 6.22 0.1002 | 0.0877 0.1873 10.0537 10.1532 | 0.1339 | 0.0678 | 0.1686 0.0032 1 0.0001 0.0063
0.625 1 0.609 | 6.41 0.0966 (0.0942 0.1845 | 0.0587 | 0.1467 | 0.1455 | 0.0609 | 0.1808 0,0032 | 0.0001 0.0065
0.683 | 0.598 | 6.73 0.0011 10.1042 0.1801 [ 0.0669 | 0.1365 |0.1643 | 0.0502 | 0.2000 0.0031 | 0.0001 0.0068
0.735 1 0.589 | 7.02 0.0862 | 0.1133 0.1760 | 0.0746 10.1272 10.1819 | 0.0410 [ 0.2170 0.0031 | 0.0001 0.0070
0.772 { 0.582 [ 7.25 0.0827 |0.1198 0.1730 | 0.0805 |0.1203 |0.1951 | 0.0345 | 0.2293 0.0031 } 0.0001 0.0072

= variable ra =10 ry = variable

0.488 | 0.807 0.0753 0.2131 | 0.0371 |0.2021 {0.1061 10.0979 | 0.1506 0.0171 | 0.0017
0.515 | 0.803 0.0795 02110 L0.0404 |0.1969 |0.1136 | 0.0917 | 0.1600 0.0170 { 0.0018
0.547 1 0.796 0.0865 0.2079 | 0.0448 |0.1890 |0.1245 | 0.0809 | 0.1740 0.0168 | 0.0020
0.571 | 0.786 0.0922 0.2055 | 0.0485 | 0.1818 10.1344 1 0.0719 | 0.1862 0.0167 | 0.0021
0.590 | 0.784 0.0961 0.2041 10,0506 | 0.1764 |0.1417 | 0.0661 | 0.1948 0.0166 ;0.0022

0.554 1 0.753 00811 0.2087 | 0.0442 {0.1924 |0.1205 | 0.0898 | 0.1595 0.0169 1 0.0020
0.606 | 0.730 0.088% 0.2045 | 0.0506 | 0.3820 j0.1360 | 0.0791 1 0.1738 0.0167 | 0.0022
0.694 | 0.694 0.1025 0.197G | 0.0626 | 0.1639 |0.1639 | 0.0626 | 0.1970 0.0164 | 0.0028
0.781 | 0.664 0.1163 0.1891 | 0.0759 {0.1456 |0.1939 | 0.0479 | 0.2187 0.0160 | 0.0034
0.850 | 0.642 0.1275 0.1825 | 0.0877 |0.1307 |0.2193 | 0.0376 | 0.2348 0.0157 | 0.0039
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Introduction - What is an influence line? Influence lines for
beams

Qualitative influence lines - Muller-Breslau Principle Influence
lines for floor girders

Influence lines for trusses

Live loads for bridges

Maximum influence at a point due to a series ofconcentrated

loads Absolute maximum shear and moment



INTRODUCTION TO INFLUENCE LINES




INFLUENCE LINES FOR BEAMS

®Procedure:

(l)Allow a unit load (either 1b, 1N, 1kip, or 1 tonne) to move over beam from left to right

(Z)Find the values of shear force or bending moment, at the point underconsideration,
as the unit load moves over the beam from left to right

(3)Plot the values of the shear force or bending moment, over the length ofthe beam,
computed for the point under consideration



















