
INTEGRAL TRANSFORMS AND MULTIPLE INTEGRALS

UNIT-I: LAPLACE TRANSFORMS

Objectives:

 To know the properties of Laplace transforms

 To know the Transform of one variable function to another variable function.

 To find the Laplace Transform of standard functions

Syllabus: Laplace transform of standard functions- Properties: Shifting Theorems, change of 

scale, derivatives, integrals, multiplication and division – Unit step function – Dirac Delta 

function, Evaluation of improper integrals.

Course Outcomes:

The students is able to

 Calculate the Laplace transform of standard functions both from the definition and 

by using formulas

 Select and use the appropriate shift theorems in finding Laplace transforms.

 Evaluation of Improper integrals.

Introduction:

The Laplace Transformation

Pierre-Simon Laplace (1749-1827)



Laplace was a French mathematician, astronomer, and physicist who applied the Newtonian

theory of gravitation to the solar system (an important problem of his day). He played a leading

role in the development of the metric system.

The Laplace Transform is widely used in engineering applications (mechanical and

electronic), especially where the driving force is discontinuous. It is also used in process control.

Laplace Transform (LT) is a powerful technique to replace the operations of calculus by 

operations of algebra.

Definition: Let f be a function defined for t ≥ 0.We define Laplace transform of f ,denoted by



F(s) or L{f(t)) or f (s) as F(s) = L{f(t)}=  est f (t)dt for those s for which the integral exists is

0

called the Laplace Transform or one sided Laplace Transform.

Sufficient conditions for the existence of L.T:

1) f is piecewise continuous on the interval 0 ≤ t ≤ A for any A > 0.

2)f is of exponential order i.e., If f (t) is defined for all t  0 and there exists constants  and M

such that f (t)  Met for all t.

 Note (1): One sided LTs are unilateral whereas two sided LTs are bilateral Laplace 

Transforms.

 Note (2): A two sided LT obtained by setting the other limit of integral as .

Laplace transforms of some elementary functions:

s
Let f (t)  1 then Lf (t) L(1) 

1
, s  0

1.   Let f (t)  eat then Lf (t) L(e at )  , s  a
s  a

1

2.   Let f (t)  eat  then Lf (t) L(eat )  , s  a .
s  a

1

3.   Let f (t)  t n then Lf (t) L(t n ) 
(n 1)

.

, s  0.
a

, s  0.
s 2  a 2

s 2  a 2

s

sn1

4. Let f (t)  sin at then Lf (t) L(sin at) 

5. Let f (t)  cos at then Lf (t) L(sin at) 

6.   Let f (t)  sinh at then Lf (t) L(sinh at)  , s  a .
s 2  a 2

a



7.   Let f (t)  cosh at then Lf (t) L(sin at) 

Properties of Laplace transform:

, s  a .
s 2  a 2

s

1. Laplace transform operator L is linear. Laplace transform of a linear combination (sum) 

of functions is the linear combination (sum) of Laplace transforms of the functions.

2. Change of scale property: When the argument t of f is multiplied by a constant k, s is

replaced by s / k in f (s) or F (s) and multiplied by1/ k.

3. First shift theorem proves that multiplication of f (t) by eat amounts to replacement of s

by s  a in f (s).

4. Laplace transform of a derivative f ' amounts to multiplication of f (s) by s

(approximately but for the constant  f (0) ).

5. Laplace transform of integral of f amounts to division of f (s) by s .

6. Laplace transform of multiplication of f (t) by t n  amounts to differentiation of f (s) for 

n times w.r.t. s (with (1)n as sign).

7. Division of f (t) by t amounts to integration of f (s) between the limits s to .

8. Second shift theorem proves that the L.T. of shifted function f (t  a)u(t  a) is obtained 

by multiplying f (s) by e  at .

Problems:

s4 s3 s2 s4 s3 s2


8


5
1) If f(t) = t3+4t2+5, then L[f(t)] = 

(4)
 4

(3)
 5

(2)


6

2) Find Laplace transform of  sin t cos2t .

Solution: Let f (t)  sin t cos 2t


1 sin 3t  sin t
2

Apply LT on both sides, we have

2 22 
L(sin t cos 2t)  L

1 sin 3t  sin t  1
L(sin 3t) 

1
L(sin t) (Using linearity property of LT)






 
 




 
1 3 1


1 

222  s  9 2 s 1

 .

s 2  a 2

3) Find the LT ofe 4 t sin 3t .  

Solution: Let f (t)  sin 3t

By the definition of LT, Lsin 3t
3

3 3


(s  4) 2  9 s 2  8s  25
.Hence by first shifting theorem, Le4t sin 3t

Laplace transforms of derivatives:

Statement: Let f (t) be a real continuous function which is of exponential order and f ' (t) is

sectionally continuous and is of exponential order. Then Lf ' (t) sf (s)  f (0) Where

f (s)  Lf (t).  

In general,

Lf (n) (t) sn f (s)  sn1 f (0)  sn2 f ' (0)  sn3 f '' (0) ... f (n1) (0).

Laplace transforms of integrals:

t

Statement: Suppose f (t) is a real function and g(t)   f (u)du is a real function such that both

0

f (t), g(t) satisfy the conditions of existence of Laplace transform then

f (s) 

s



 0

 t

Lg(t) L f (u)du  Where f (s)  Lf (t).

Laplace transform of the function f (t) multiplied by t n :

Statement: If f (t) is sectionally continuous and is of exponential order and if Lf (t) f (s)

ds n

n
then L t

n d n f (s) f (t) (1) where n  1,2,....

Laplace transform of the function f (t) divided by t n :





  0
t

 f (t) 
If Lf (t) f (s) then L    f (s)ds provided f (t) satisfy the condition of existence of

LT and the right hand side integral exists.

4) Problem: Find the Laplace transform of f (t)  t cosh at , using LT of derivatives.

Solution: We are given f (t)  t cosh at .

It is known that f ' (t)  a cosh at  at sinh at and

f '' (t)  2a sinh at  a 2t cosh at

By applying LT on both sides, Lf '' (t) 2aLsinh at a2 Ltcosh at

 a 2 Lt cosh at
s 2  a 2

By the LT of derivatives, s 2 Lf (t) sf (0)  f ' (0)  2a
a

Since f (0)  0 and f ' (0)  1, on simplification, we have

(s 2  a 2 ) 2
Lt cosh at

2a 2

.






 
 t

u

 0

5) Problem: Find L ue sin 4udu .

Solution: Let f (t)  sin 4u

By LT, Lsin 4u
4 4


s 2  42 s 2 16

4 4


(s 1) 2 16 s 2  2s 17
By first shifting theorem, Leu sin 4u

2



4 


4

ds s  2s 17 (s 2  2s 17)

Then by LT of t n f (t) , Lueu sin 4u  d 
 f (s) .

Therefore, the LT of integrals, we have

2


s s(s   2s 17)

f (s) 4





 0 
L ue sin 4udu 
 t

u .


 t

6) Problem: Find L
 sin at cos bt 

.

Solution: Let f (t)  sin at cos bt




1 sin( a  b)t  sin( a  b)t
2

By applying LT on both sides,

 f (s)
1

.
2 s 2  (a  b) 2 2 s 2  (a  b)2

(a  b) (a  b)


1
.

2
Lsin at cosbt 1 Lsin( a  b)t Lsin( a  b)t

Now, by the LT of
t

(a  b)(a  b)




 s

ds 
s

ds
t

, L 
2 22   k    (a  b)

1

2 2  (a  b)2 k

1 
f (t) sin at cosbt 

2

1 

   

 2  2  




1
cot 1




1

cot 1


a  b
.

s 


a  b


2


a  b


s 


a  b

 2  2




1 
 tan 1

1 
 tan 1

 





 tan 1




 tan 1
 k1  k

2   a  b  s 2   a  b  s

s

s

Unit Step function:

Definition: Unit step function is defined as U (t  a)  0, t  a

 1, t  a i.e. this function jumps by1 at

t  a .

This function is also known as Heaviside unit function. 

Laplace transform of Unit step function U (t  a) is given by

aa

 a  

st st stst

  a

est 


eas

s
0

LU(t  a)  e U (t  a)dt   e .0dt   e .1dt   e dt    s 


0

.

Unit impulse function:

Definition: The unit impulse function denoted by  (t  a) and is defined by

 (t  a)  , t  a

 0, t  a





So that  (t  a)dt  1 (a  0) .

0

If a moving object collide with another object then for a short period of time large force is acting 

on the other body. To explain such mechanism we make use of unit impulse function, which is 

also called Dirac Delta function.

Evaluation of improper integrals by Laplace transforms:

Problem: Evaluate the integral, 
0

t

 cosat  cosbt
dt .

t

 cos at  cosbt
Solution: Let I  

0

dt .

 
0

dt
t

 cosbt
dt  

0
t

 cosat

Clearly the given integral is in the form e
f (t)




0

st 

t
dt with f1(t)  cosat and f1(t)  cosbt

We observe that



 


st  

t s s  a

s
e




0

dt  L(cosat)ds 

s

cosat
2 2

ds and

 

 



s s  b

st  

t

s
e

2
ds

2

0

dt  L(cosbt)ds 

s

cosbt

s sss

t

 


st 





  0 s  a 0 s  b 0 s  a s  b 

 ds
2 2 dt   2

ds   2
ds   2 2 2 2

 e

0

 cosat  cosbt 

It is clear that the above integral reduces to I when s  0 . 

Therefore,







 0

2 2 2 2

1 ds  log( s 2  a2 )  log( s 2  b2 )
2   

0 s   a s   b  2

s s  1
dt   t

 cos at  cosbt
I  

0

 
 




 








22

 0 
2 2

 log log 1 log
2

 log
2

1  1 

2 b

1  a 2 

b

 a 2 

s   b

 s 2  a 2 


.



Assignment/Tutorial Questions 

SECTION-A

1. The Laplace transform of f (t)  sin 2 2t is .

2. If f (t)  e3t (sin 2t  cos3t) then Lf (t) .

t

e2t   e3t

3. If f (t)  then Lf (t) .

0

4. If f (t)  t sin t then Lf (t) .


5. The value of  e3t tdt is .

6. Leatt n .

7. The Laplace transform of
t

(1 e t )
is .

8.   If Lf (t) f (s) 
s 2 1

, f (0)  0 then Lf ' (t)s
.

9. Find the Laplace transform of t5⁄2

5

s 2
8

(a)
15 

(b)
15 

7

s 2
8 4

7

s 2

9 
(c)

4
7

s 2

15 
(d)

10. Laplace transform of f(t) is given by

11. Laplace transform of sin(at)u(t) is

a) s ⁄ a2+s2

b) a ⁄ a2+s2

c) s2 ⁄ a2+s2

d) a2 ⁄ a2+s2

12. Find the laplace transform of y(t)=e|t-1| u(t).



13. Find the Laplace transform of et Sin(t).

SECTION-B

1. Find L[tcosat] by multiplication t property.
2. Find L[cos(at+b)]
3. Find 𝑳[𝒔𝒊𝒏𝟐(𝟐𝒕)]
4. Find 𝑳[𝒔𝒊𝒏𝟐𝒕𝒄𝒐𝒔𝟑𝒕]

5. Find the Laplace transform of 𝒇(𝒕) = {
𝒆𝒕 , 𝟎 < 𝒕 < 𝟏
𝟎 , 𝒕 > 𝟏

√𝒕

𝟑

6. Find the Laplace transform of (√𝒕 + 𝟏 )

7. Define Unit-step function and also write its Laplace transform.
8. Define Dirac Delta function.
9. Evaluate 𝑳[𝒕𝟐𝒆−𝒕𝒄𝒐𝒔𝟐𝒕]

𝒕
10. Evaluate 𝑳[𝒄𝒐𝒔𝒂𝒕−𝒄𝒐𝒔𝒃𝒕]

𝒕

𝒕
11. Evaluate 𝑳 [∫

𝒕 𝒆 𝒔𝒊𝒏𝒕𝒅𝒕]
𝟎

12. Evaluate L[tsint] and hence find 𝑳[∫𝟎∫𝟎
𝒕 𝒕

𝒕𝒔𝒊𝒏𝒕𝒅𝒕𝒅𝒕]

13. Derive the Laplace transform of Unit Step function and hence find
𝑳[𝒆𝒕−𝟑𝒖(𝒕 − 𝟑)]]

𝒕

∞ −𝒕 𝒔𝒊𝒏
𝟐𝒕

∫𝟎 𝒆 𝒅𝒕1 4 . Evaluate

1 5 . Evaluate
𝒕

∞ 𝒆−𝒕−𝒆−𝟐𝒕

∫𝟎 𝒅𝒕, using Laplace transform.

SECTION-C

GATE PREVIOUS QUESTIONS

1. The Laplace Transform of cos(ωt) is
s 2  2

s
then L(e-2t cos4t) is (GATE-2010)

(a)


s  2

s  22 16 s  22 16 s  22 16 s  22 16
(b)

s  2
(c)

s  2
(d)

s  2

2. The L.T of f(t) =
1

s2 s 1
then f(t) is (GATE-2010)



(a) t-1 + e-t

3. If L.T of sin wt is

(b) t + 1 + e-t (c) -1 + e-t (d) 2t + et

s2  w2

s
then L.T of e-2t .sint is (GATE-2014)

(a)
s  2s  2

s  22
16 s  22

16
(b) (c)

s  2

s  22
16

(d)
s  2

s  22
16

t

4.   If F(s) is the L.T of f(t) then. L.T of  f ( )d is

0

(GATE-2007)

(a) 
1

F (s)
s

(b)
1

F (s) -f(0) (c)sF(s)-f(0)
s

(d) F (s)ds.

5.  L.T of functions t.u(t) and u(t).sint are respectively. (GATE-1987)

(a)
1

,
s

s2
s2 1 s s 2 1

(b)
1

, (c)
1 1

,
1

s2
(d) s,

s2 1 s2 1

s

6. The L.T of i(t) is given by I(s) =
2

s1 s
as t  the value of i(t) tends to

(d) (a) 0 (b) 1 (c) 2

17. The unilateral Laplace transform of f (t)= is (GATE-2012)
s 2  s 1

(a )
(s 2  s 1)2 (s 2  s 1)2

(b) (c) (d)
(s 2  s 1)2 (s 2  s 1)2

 s s  (2s 1) 2s 1



INVERSE LAPLACE TRANSFORMS

(3). (4).

Shifting Property:

Objectives:

 To understand the properties of Inverse Laplace transforms

 To solve Integral equations by using convolution theorem.

 To convert differential equations into algebraic equations using Laplace Transforms and 

inverse Laplace transforms.

Syllabus:

Inverse Laplace Transforms – by partial fractions - Convolution theorem (without proof). 

Application: Solution of ordinary differential equations.

Subject Outcomes/Unit Outcomes:

After learning this unit, students will be able to:

 Find inverse Laplace Transforms of the transformation f (s) to obtain f (t) .

 Apply convolution theorem to find the inverse Laplace

 Use the method of Laplace transforms to solve systems of linear ordinary differential 

equations.



0

Definition: Suppose f (t) is a piecewise continuous function and is of exponential order. Let

Lf (t) e st f (t)dt  f (s) . The inverse Laplace Transform (ILT) of f (s) is defined as

L1f(s) f (t), where L1inverse operator of is L and vice-versa.

Inverse Laplace transforms of some elementary functions:

 


s  a


(1). L11
 1 (2). L1


s


nL  t






sn1

11 (n 1) a
2 2 


 sin at

 


s  a


 e at L1

s
(5). L1 a



 sinh at

 


 cos at (6). L1

2 2 2 2 2 2

s


 cosh at , etc.

     s  a s  a s  a

(7). L1



Properties of Inverse Laplace transform:

Linear property:

If L1{ f (s)} f (t), L1g (s) g(t) , then L1a f (s)  b g (s) a f (t) b g(t)

If L1{ f (s)} f (t) then L1f (s  a) eat f (t), s  a .

Change of scale property:

a


a


 
If L1{ f (s)} f (t) then L1f (as 1

f 
t  and

 


a


a



L11

f
 s 

 f (at)



By applying linearity property, we have

Comparing like terms in the numerator, we obtain A  4 and B  4 .

By the linearity property of ILT, we have

4s 2  9
Problem: let f (s) 

4s  4
. Then by linearity property of inverse Laplace transforms (ILT),

s 1
222 2

cosh
3

t 
2

sinh
3

t
2 3 2

222







s   3 / 2 
 

s   3/ 2


 L1 L1








4s  9


4s  9
  

4s  9

  L1L1 4s  4   L1 4s 4

4
Problem: Find the ILT of 

(s 1)(s  2)
.

(s 1)(s  2)
Solution: Let f (s) 

4

By applying partial fractions, we can rewrite f (s) as

f (s)   
B


As  2A  Bs  B4 A

(s 1)(s  2) (s 1) (s  2) (s 1)(s  2)

44 4
 

(s 1)(s  2) (s 1) (s  2)
Therefore, f (s) 

1 1

 


s  2


 

Problem: Find the ILT of


s 1

L1f(s) 4L1 
 4L1 

 4et  4e2t .

.
s 1

s 2  s 1

s 1
Solution: Consider f (s) 

s 2  s 1

2

3 
2

 2 
4

3

2


 


2 

 1 
2




2





 s  

 s 
1  

1




=  1 
2

 s  
2




2




 s 
1  

1

32

3

32 2

1/ 2
2


2



3 



 3
t 

1
sin t.

2

t / 2 et / 2 cos
3

t 
1

sin t  e cos











3  

  


   

2

1 
2

  

 



 
 

3  

  


   

2

1 
2

  

 


 
1


11

 s  
2

  L
2

  s  
2

s 
1

2  L
 s   s 1

s 1 
L



Inverse Laplace Transforms of Derivatives:

Inverse Laplace Transforms of Integrals:

f (t)dt dt...dt (n-

using derivative property of ILT.

1Statement: If L { f (s)} f (t) then L
dsn

n  n

  (1) t f (t).





1 d n ( f (s) 

.
f (t)

t



 s 
Statement: If L1{ f (s)} f (t) then L 1  f (s)ds 

 


Inverse Laplace Transform of type sf (s) : (Multiplication by s)

Statement: If L1{ f (s)} f (t) and f (0)  0 then L1sf (s) f (t)

s

f (s)
Inverse Laplace Transform of type : (Division by s)

t

s  0

Statement: If L1{ f (s)} f (t) then L 1    f (t)dt
  f (s) 

 

folded integral).

t t

s
0 0

Similarly, L 1
  f (s) 

 

t  t t

ns

2  
  f (t)dt and hence in general, L1    ...

 f (s) 

0 0 0


 2 2 2

1

s  2  
 s 

Problem: Evaluate L

a 
sin at , then by derivative property of ILT, s2  a2 

Solution: We know that L1

22 2


s  a 
2 2 2

  a (s  2 ) 4

  2s  t 1 s  t
we have L1

  sin at , L    sin 2t .

Convolution Theorem:-

This is used to find inverse Laplace transforms of product of transforms.

Definition: The convolution of two functions f (t) and g(t) is defined as:
t

f (t) * g(t)   f (r)g(t  r)dr , provided the integral exists.
0

Note: the operation of convolution between two functions yields another function.

Convolution Theorem:-

If L1{ f (s)} f (t) and L1{g(s)} g(t) then L1{ f (s)g(s)} f (t) * g(t) .

s 2

Example: Using convolution theorem find the inverse Laplace transform of
(s 2  4)(s 2  9)

.



By applying inverse Laplace transform, we have,

Hence by convolution theorem,

Solution of Ordinary differential equation (An application):

given y(0)  y ' (0)  0

Solution: We are given the linear non-homogeneous differential equation with constant 

coefficients:

Applying Laplace transform on both sides,

Now by applying inverse Laplace transform on both sides,

s 2

Solution: We are given f (t) 
(s 2  4)(s2  9)

The given function f (t) can be rewritten as,

.
s s

(s 2  4)(s2  9) (s 2  4) (s 2  9)

s 2

f (t)  





 .

2 2

11

(s  4) (s  9)

s 2 s 2

L f (t) L

s2 s2 1

(s2  4) (s2 9)  s 2  4 

  s 
  cos 3t

 s 

 s 2  9 
L  .   (cos2t)*(cos3t) since, L 1

   cos 2t and L1


t 1
t

 cos 2u cos3(t  u)du   2
cos(3t  u)  cos(5u  3t)du


1sin 2t  sin 3t 1 sin 2t  sin 3t
2 10

2 10


10


5
 

2

0

0 0

   
 sin 2t




1


1 
 sin 3t

 1


1 


1
(3sin 3t  2sin 2t).



1 sin( 5u  3t 
t

 
2  5


  0

1 sin( 3t  u) 
t

 
2 (1)

 2   2y  0;
dt 3 dt 2 dt

d 3 y d 2 y dy
Problem: Solve the differential equation

and y '' (0)  6 .

2
2

dt 3 dt

d 3 y


d 2 y dy  2y  0 where  y  y(t) or f (t)
dt

3 2
 
 


   

 2L(y)  L(0)
dt

  2L   L
dt dt

 d 3 y   d 2 y   dy 
L

 s3 f (s)  s 2 f (0)  sy ' (0)  y '' (0) 2s2 f (s)  sy(0)  y ' (0)sf (s)  y(0) 2 f (s)  0

 f (s)s3  2s 2  s  2 y(0)s2  2s 1 y ' (0)(s  2)  y '' (0)  0

Substituting  y(0)  y ' (0)  0 and y '' (0)  6 , we get,

f (s)(s3  2s 2  s  2)  6  0

(s3  2s 2  s  2)

6
 f (s) 



On simplification we obtain A  1,

Solution: We are given the linear differential equation with variable coefficients:

Applying Laplace transform on both sides,

By applying inverse Laplace transform on both sides,



6 1 
(s  2)(s 1)(s 1)

f (t)  L






 






11

s3  2s 2  s  2
L ( f (s))  L
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2

1

s (s  2)  (s  2)
L 



  
B C6 A

(s 1)(s 1)(s  2) (s 1) (s 1) (s  2)
Consider f (s) 

B  3, C  2


 L1 3   

 L1 2 1

     


s 1
 

s 1
 

s  2
 L1( f (s))  f (t)  L1

 e t   3et   2e2t

Hence, the solution of the given differential equation is y(t)  et  3et  2e2t .

dy  

dt
 (1 2t)

dt 2

d 2 y
Problem: Solve the differential equation t  2y  0 where y(0)  1, y ' (0)  2 .

 (1 2t)  2y  0
dt 2 dt

d 2 y dy
t

2





  2L( y)  0
dtdt

 d 2 y   dy 
Lt   L (1 2t)

 
d s2 f (s)  sf (0)  f ' (0) sf (s)  f (0) 2

d sf (s)  f (0) 2 f (s)  0
ds ds

 f ' (s)(2s  s 2 )  sf (s)  0
'


f (s)

 
1

f (s) s  2

Integrating on both sides, we have,

log f (s)   log( s  2)  log c

s  2
 f (s) 

c

c 

 


s  2
L1( f (s))  L1

 f (t)  ce2t

By using the initial condition, we have c 1.

Therefore, the particular solution of the differential equation is f (t)  e2t .



Assignment/Tutorial Questions 

SECTION-A

(a) sin at (b) (c) (d)

(a) (b) (c) (d) does not exist

(a) (b) (c) (d)

(a) e2t (1 2t) (b) te2t (1 2t) (c) (d)

(d) cos2t

(a) (c)  e st f (t) (d) none of the above

(a) (b) (c) (d)

8. Time domain function of

a) Cos(at)

b) Sin(at)

c) Cos(at)Sin(at)

d) None of the above

𝒔

𝒔𝟐+𝒂𝟐
is given by

9.   If F(s)=L[f(t)], then the formula for 𝐿−1[∫
𝑠

∞
𝐹(𝑠)𝑑𝑠] is 

10. If F(s)=L[f(t)], then the formulae for (i) 𝐿−1[𝐹′(𝑠)] is 




2 2

1  
s  a

1. L1



cosat 1
sin at 

a

1 
cos at  

a

 

1  
3s  6

2. L1

e6 t 1
e2t

3
e2 t



1 13. L   
(s  a)(s  b)

eat  ebt

b  a

eat  ebt

b  a

eat  ebt

b  a

eat  ebt

 


b  a

s  2 



2

1

(s  2)
4. L

(1  2t) t(1 2t)







2s   2s  5

s  2  5. L1

2
(a)  cos 2t 

3
sin 2t (b)

2
sin 2t 

3
cos 2t

2
(c) e t cos 2t 

3
e t sin 2t

 
t

6. L 1
st  e f (u)du 

at

0

1

1 e

f (t)



(b) est f (t)



 


 s

7. L 1  f (s)ds 

t

f (t)
t

 f (t)dt

0

t


0

dt
t

f (t)
f (t)



12. 𝐿−1[
𝑠

(𝑠+3)2+4
]=

((𝑠)2+𝑎2)2

𝑠
13. 𝐿−1 [ ]=

𝑺𝑬𝑪𝑻𝑰𝑶𝑵−𝑩
𝒔+𝟐

𝒔𝟐−𝟒𝒔+𝟏𝟑
2𝑠−5  + 4𝑠−18

4𝑠2+25 9−𝑠2

3𝑠+7

(𝑠2−2𝑠−3)

2 𝑠2+𝑏2

𝑠2

(𝑠2+𝑎2)(𝑠2+𝑏2)
]

𝑠2

(𝑠2+𝑎2)2
]

1. Find the inverse Laplace transform of

2. Find the inverse Laplace transform of

3. Find the inverse Laplace transform of
2 2

4. Find the inverse Laplace transform of
1 𝑙𝑜𝑔[𝑠 +𝑎 ]

5. Using convolution theorem to evaluate 𝐿−1[

6. Using convolution theorem to evaluate 𝐿−1[

7. Using convolution theorem, evaluate 𝐿−1[
1

𝑠2(𝑠+1)2
]

2

15. Solve, by Laplace transform method, the following initial value problem:

(𝐷2 + 1)𝑥 = 𝑡𝑐𝑜𝑠2𝑡, 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑥 = 𝐷𝑥 = 0 𝑎𝑡 𝑡 = 0

9. Solve the differential equation (D2  2D  5)y  et sin t; y(0)  0, y ' (0)  1.

10. Apply “Method of Laplace transforms” ,

Solve the differential equation (D2  2D  5)y  et sin t; y(0)  0, y ' (0)  1.

11. Apply Laplace transform to the initial value problem𝑦 ′ ′ +𝑦 ′ − 2𝑦 = 𝑠𝑖𝑛𝑡, 
y(0) = 0, y′(0) = 0.

12. Apply “Method of Laplace transforms” , Solve x ′ ′ + 2x′ + 5x = etsint, x(0) = 0, 

x′(0) = 1.

13. Apply “Method of Laplace transforms” , Solve x ′ ′ − 3x′ + 2x = 1 − e2t, x(0) =
1, x′(0) = 0.

14. Using Laplace transform, solve x ′ ′ + 9x = cos2t, if x(0) = 1, x′ (
𝜋
) = −1.

GATE PREVIOUS QUESTIONS

7.  The function f(t) satisfies the differential equation 0 and the auxiliary

(a) (b) (c) (d)

8. The inverse Laplace transform of the function

(a) f(t)=sint (b) f(t) = e-t sint (c) e-t (d) 1- e-t

11. As per the convolution theorem, L1{ f (s)g(s)}

1
8.   Find the inverse Laplace theorem of

s(s  a)(s  b)
.

dt 2

d 2 f
 f 

dt
conditions,f(0)=0,

df 0 4 . The Laplace transform of f(t) is given by (GATE-2009)

2 4

s 1 s 1 s 2 1

4

s 2 1

2

  is given by (GATE-2007)
s s 1

1
F(s)



9. The inverse Laplace transform of F(s) = s+1/(s2+4) is (GATE-2011)

(a) cos2t+ sin2t (b) cos2t-(1/2) sin2t (c) cos2t+(1/2)sin2t (d) cos2t-sin2t
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16.9
The Divergence Theorem
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The Divergence Theorem

We write Green’s Theorem in a vector version as

where C is the positively oriented boundary curve of the 

plane region D. 

If we were seeking to extend this theorem to vector fields 

on we might make the guess that 

where S is the boundary surface of the solid region E.



44

The Divergence Theorem

It turns out that Equation 1 is true, under appropriate 

hypotheses, and is called the Divergence Theorem. 

Notice its similarity to Green’s Theorem and Stokes’ 

Theorem in that it relates the integral of a derivative of a 

function (div F in this case) over a region to the integral of 

the original function F over the boundary of the region.

We state the Divergence Theorem for regions E that are 

simultaneously of types 1, 2, and 3 and we call such 

regions simple solid regions. (For instance, regions 

bounded by ellipsoids or rectangular boxes are simple solid 

regions.)
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The Divergence Theorem

The boundary of E is a closed surface, and we use the 

convention, that the positive orientation is outward; that is, 

the unit normal vector n is directed outward from E.

Thus the Divergence Theorem states that, under the given 

conditions, the flux of F across the boundary surface of E is 

equal to the triple integral of the divergence of F over E. 
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Example 1

Find the flux of the vector field F(x, y, z) = z i + y j + x k   

over the unit sphere x2 + y2 + z2 = 1.

Solution:

First we compute the divergence of F:

The unit sphere S is the boundary of the unit ball B given 

by x2 + y2 + z2  1. 
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Example 1 – Solution

Thus the Divergence Theorem gives the flux as

cont’d
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The Divergence Theorem

Let’s consider the region E that lies between the closed 

surfaces S1 and S2, where S1 lies inside S2. Let n1 and n2

be outward normals of S1 and S2. 

Then the boundary surface of E is S = S1 U S2 and its 

normal n is given by n = –n1 on S1 and n = n2 on S2.       

(See Figure 3.)

Figure 3
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The Divergence Theorem

Applying the Divergence Theorem to S, we get
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Example 3

We considered the electric field:

where the electric charge Q is located at the origin and 

is a position vector.

Use the Divergence Theorem to show that the electric flux 

of E through any closed surface S2 that encloses the origin 

is
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Example 3 – Solution

The difficulty is that we don’t have an explicit equation for 

S2 because it is any closed surface enclosing the origin. 

The simplest such surface would be a sphere, so

we let S1 be a small sphere with radius a and center the 

origin. You can verify that div E = 0.

Therefore Equation 7 gives
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Example 3 – Solution

The point of this calculation is that we can compute the 

surface integral over S1 because S1 is a sphere. The 

normal vector at x is x/|x |. 

Therefore

since the equation of S1 is |x | = a.

cont’d
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Example 3 – Solution

Thus we have

This shows that the electric flux of E is 4εQ through any 

closed surface S2 that contains the origin. [This is a special 

case of Gauss’s Law for a single charge. The relationship 

between ε and ε0 is ε =1/(4ε0).] 

cont’d
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The Divergence Theorem

Another application of the Divergence Theorem occurs in 

fluid flow. Let v(x, y, z) be the velocity field of a fluid with 

constant density . Then F = v is the rate of flow per unit 

area. 



1515

The Divergence Theorem

If P0(x0, y0, z0) is a point in the fluid and Ba is a ball with 

center P0 and very small radius a, then div F(P) ≈ div F(P0)  

for all points in Ba since div F is continuous. We 

approximate the flux over the boundary sphere Sa as 

follows: 

This approximation becomes better as a  0 and suggests 

that
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The Divergence Theorem

Equation 8 says that div F(P0) is the net rate of outward flux 

per unit volume at P0. (This is the reason for the name 

divergence.)

If div F(P) > 0, the net flow is outward near P and P is 

called a source. 

If div F(P) < 0, the net flow is inward near P and P is called 

a sink. 
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The Divergence Theorem

For the vector field in Figure 4, it appears that the vectors 

that end near P1 are shorter than the vectors that start 

near P1.

Figure 4

The vector field F = x2 i + y2 j
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The Divergence Theorem

Thus the net flow is outward near P1, so div F(P1) > 0 and 

P1 is a source. Near P2, on the other hand, the incoming 

arrows are longer than the outgoing arrows. 

Here the net flow is inward, so div F(P2) < 0 and P2 is a 

sink. 

We can use the formula for F to confirm this impression. 

Since F = x2 i + y2 j, we have div F = 2x + 2y, which is 

positive when y > –x. So the points above the line y = –x

are sources and those below are sinks.



Green’s Theorem in the Plane



Green’s Theorem



Example



Example



Area Formulas



Example


