INTEGRAL TRANSFORMS AND MULTIPLE INTEGRALS

UNIT-IL LAPLACE TRANSFORMS
Objectives:
» To know the properties of Laplace transforms

> To know the Transform of one variable function to another variable function.

» To find the Laplace Transform of standard functions
Syllabus: Laplace transform of standard functions- Properties: Shifting Theorems, change of

scale, derivatives, integrals, multiplication and division — Unit step function — Dirac Delta

function, Evaluation of improper integrals.

Course Outcomes:

The students is able to

» Calculate the Laplace transform of standard functions both from the definition and

by using formulas

> Select and use the appropriate shift theorems in finding Laplace transforms.
» Evaluation of Improper integrals.

Introduction:

The Laplace Transformation

Pierre-Simon Laplace (1749-1827)



Laplace was a French mathematician, astronomer, and physicist who applied the Newtonian
theory of gravitation to the solar system (an important problem of his day). He played a leading
role in the development of the metric system.

The Laplace Transform is widely used in engineering applications (mechanical and
electronic), especially where the driving force is discontinuous. It is also used in process control.

Laplace Transform (LT) is a powerful technique to replace the operations of calculus by
operations of algebra.

Definition: Let f be a function defined for t > 0.We define Laplace transform of f ,denoted by
F(s) or L{f(t)) or ?(s) as F(s) = L{f(t)}= _[e‘“ f (t)dt for those s for which the integral exists is
0

called the Laplace Transform or one sided Laplace Transform.
Sufficient conditions for the existence of L.T:
1) fis piecewise continuous on the interval 0 <t <A for any A> 0.

2)f is of exponential order i.e., If f(t)is defined for all t > Oand there exists constants a. and M
such that |f (t) |£ Me* for all t.

> Note (1): One sided LTs are unilateral whereas two sided LTs are bilateral Laplace

Transforms.

> Note (2): Atwo sided LT obtained by setting the other limit of integral as — oo.

Laplace transforms of some elementary functions:
1

Let f(t)=1 then L{f(t)}= |_(1)=g, $s>0
1
1. Let f(t)=e* then L{f()}=L(e*)=——, s>a
S—a
2. Let f(t)=e* thenL{f(t)}= L(e-at):i, s>-a.
S+a
3. Let f(t)=t" then L{f(t)}= L(tn):%.
4. Let f(t) =sinat then L{f(t)} = L(sin at) = o ar s>0.
+
5. Let f(t)=cosat then L{f (t)}=L(sih at)=————,s>0.
S“+a
6. Let f(t)=sinh at then L{f (t)}=L(sihh at)=————, s >|a]
S°—a



7. Let f(t)=coshat then L{f(t)}=L(sin at)= ———, s>|a]
S°—a

Properties of Laplace transform:

1. Laplace transform operator L is linear. Laplace transform of a linear combination (sum)

of functions is the linear combination (sum) of Laplace transforms of the functions.

2. Change of scale property: When the argument t of f is multiplied by a constant k, sis
replaced by s/k in f(s)or F(s)and multiplied by1/ k.

3. First shift theorem proves that multiplication of f (t) by e* amounts to replacement of s
by s—ain f(s).

4. Laplace transform of a derivative f " amounts to multiplication of f(s) by s
(approximately but for the constant — f (0) ).

5. Laplace transform of integral of f amounts to division of (s) bys.
Laplace transform of multiplication of f (t) by t" amounts to differentiation of f(s) for
n times w.r.t. s (with (-1)" as sign).

7. Division of f(t) by t amounts to integration of f(s) between the limits s to o.

8. Second shift theorem proves that the L.T. of shifted function f (t — a)u(t — a) is obtained
by multiplying f(s) by e *.

Problems:

6,8,5

st §% g2

1) If f(t) = t3+4t2+5, then L[f(t)] = Fs(f) +4 FS )+s ngz) =

2) Find Laplace transform of sin tcos2t.

Solution: Let f(t) = sin tcos 2t
= 1(sin 3t —sint)
2
Apply LT on both sides, we have

L(sin tcos 2t) = L[L%(sin 3t —sin tﬂJ: 1EL(sin 3t) - 1EL(sin t) (Using linearity property of LT)



)3l
2(s>+9) 2\s?+1

3) Find the LT ofe*'sin 3t.
Solution: Let f (t) = sin 3t

3
s?+a

By the definition of LT, Lin 3t }=

2

3 ~ 3
(s+4)2+9 s2+85+25

Hence by first shifting theorem, L%““ sin StF

Laplace transforms of derivatives:

Statement: Let f (t) be a real continuous function which is of exponential order and f '(t) is

sectionally continuous and is of exponential order. Then L{f'(t)}z sf (s) — f (0) Where

f(s)=L{f®}.
In general,
L{FO @) f=s"f(5) - 5" f (0) = "2 ' (0) = 5"* f "(0) —...— f *2(0).

Laplace transforms of integrals:
t

Statement: Suppose f (t) is a real function and g(t) = j f (u)du is a real function such that both
0

f(t), g(t) satisfy the conditions of existence of Laplace transform then

Lig(t)}= Lﬁ f (u)du}: LS) Where f(s) = L{f(t)}.

Laplace transform of the function f (t) multiplied by t":
Statement: If f () is sectionally continuous and is of exponential order and if L{f (t)}= f(s)

dn f(s)
ds"

where n=12,....

then L{"f (t) }=(-1) "

Laplace transform of the function f (t) divided by t":



o0

If L{f(t)}= f(s) then L( ()) I f(s)ds provided f (t) satisfy the condition of existence of

0

LT and the right hand side integral exists.

4) Problem: Find the Laplace transform of f (t) =tcosh at, using LT of derivatives.

Solution: We are given f (t) =tcosh at .
It is known that f (t) = acoshat+atsinh at and
f"(t) = 2asinh at + a?t cosh at

By applying LT on both sides, L{f " (t)}: 2al {sinh at}+a?L{tcoshat}

By the LT of derivatives, s2L{f (t)}-sf (0) - f (0) = 2a > aaz +a’L{coshat}

Since f (0) =0 and f (0) =1, on simplification, we have

2a’
L{t COSh at}: m .

t
5) Problem: Find L[J'ue‘“ sin 4uduj.
0

Solution: Let f(t) =sin 4u

4 4
By LT, Lssin 4u = =
y {S } s2+4%2 s?24+16

4
(s +1)2 116 % +25+17

By first shifting theorem, L% sin 4u}

n —U of d[ 4 — 4 £
Then by LT of t"f (t) , L{Je s 4U}:_ELSZ+ZS+17J_(SZ+28+17) = f(s).

Therefore, the LT of integrals, we have

. _
L(J' ue™ sin 4udu\= ) _ . 4 .
0 ) S s(s® +2s+17)

6) Problem: Find L(M).

Solution: Let f (t) =sin atcosbt



_ %[sin( a+b)t +sin(a—b)t]
By applying LT on both sides,

L{sin atcosbt} = %[L{s’n( a+b)t}+ L{sn(a—bt}]

(a+b) 1 _ (a=h)

. : = f(s)
s’ +(a+h)? 2 s?+(a-b)?

1
2

00

i 1
Now, by the LT of f(t)’ L{sn atcosbt}:_J- 2(a+b) _I 2(a b)
t t 23K +(a+b)? K +(a— b)

= %{tan -+ (%Hj + % {tan -+ (ﬁﬂ
= % {% —tan 1(%)} + % [% —tan (ﬁﬂ

=1cot‘1( > ]+lcot1(—s )
2 a+b) 2 a-b

o0

Unit Step function:
Definition: Unit step function is defined as U(t—a) =0, t<a

=1, t > a l.e. this function jumps byl at
t=a
This function is also known as Heaviside unit function.

Laplace transform of Unit step function U (t —a) is given by

© a 0 © —st |® —as
L{u(t—a)}zjeStu(t—a)dtzjeSt.Odt+jest.1dt=jeStdt{e } :es .
0 0 a a a

Unit impulse function:

Definition: The unit impulse function denoted by & (t — a) and is defined by
d(t—-a)=o, t=a

=0,t=a



Sothat[3(t-a)dt=1 (a>0).
0

If a moving object collide with another object then for a short period of time large force is acting
on the other body. To explain such mechanism we make use of unit impulse function, which is

also called Dirac Delta function.

Evaluation of improper integrals by Laplace transforms:

¢ cosat —cosbt

Problem: Evaluate the integral, If dt.
0
) ¥ cosat — cosht
Solution: Let | :Ifdt.

0

Tcosatd Icosbt

0

Clearly the given integral is in the form Ie‘“ ft(t)dt with f,(t) =cosat and f,(t) =cosbt

—dt= IL(cosat)ds = T

S

_ cosat

Y ds and

We observe that je
0

o0

SRt = j L(cosbt)ds = j oo

0 S

r t —cosbt T T T
! (cosa cos )dtzj;sziazds_lszibzds=,([

It is clear that the above integral reducesto | when s=0.

J‘e%t cosht

Therefore,

Tcosat cosht t:ﬂ s _ s lds=[1ig(s?+a?)— Log(s? +b?)]
o oLs?+a® s +Db? LZ 2

_ { (S ra W {bgl bg(a qz—bg( 2\

s |b? \b? )

0



1. The Laplace transform of f(t) =sin?2t is
2. If f(t)=e®(sin 2t +cos3t)then L{f(t)}=

8.

N f() =
If £(t) =tsintthen L{f(t)}=

. The value of Ie‘S‘tdt is

Assignment/Tutorial Questions
SECTION-A

2t 3t

then L{f(t)}=

0

L)
_at
. The Laplace transform of d te ) is
If L{f()}=T(s)=——, 7(0)=0then L{F () }=
s% +
9. Find the Laplace transform of t>%
15 15 9./n 15 ./n
@B g 18m OT @
8 - 8 = 4 - 4
S2 52 s2 s2

10. Laplace transform of f(t) is given by

11.

12.

a) F(s) = [ f(t)e~ dt
b) F(t) = [T f(t)e tdt
a) f(s) = [ f()e=tdt

b) f(8) = [ F®)e tdt
Laplace transform of sin(at)u(t) is
a) S/a%+s?
b) a/a?+s?
C) $?/a%+s?
d) a?/a2+s?
Find the laplace transform of y(t)=et u(t).




13. Find the Laplace transform of et Sin(t).
a) -

a*+(z+1)*

b)———

al+(s—1)
s+1

af+{z+1)

c)

s+1
a4 (s+1)%

d)

SECTION-B
Find L[tcosat] by multiplication t property.
Find L[cos(at+b)]
. Find L[sin2(2t)]
. Find L[sin2tcos3t]
eto<t<1
0 ,t>1
1

3
. Find the Laplace transform of (\/t_+_\/i)

Define Unit-step function and also write its Laplace transform.
Define Dirac Delta function.
9. Evaluate L[t?e~tcos?t]

10. Evaluate L[mm+mlrtf]

11. Evaluate L [f;e%intdt]
t

t t
12. Evaluate L[tsint] and hence find L[f, [, tsintdtdt]
13. Derive the Laplace transform of Unit Step function and hence find
Llet=3u(t — 3)]]

® _¢tsin“t
14.Evaluate [, e
w g—t_g—2t

15. Evaluate |,

Ul AW N

. Find the Laplace transform of f(t) = {

®N o

dt, using Laplace transform.

SECTION-C
CATE PREVIOUS QUESTIONS
1. The Laplace Transform of cos(wt) is — > - then L (et cosdt) is (GATE-2010)
S“+Wm®
(a) s—2 b) S+2 0) s—2 d S+2
(s—2)+16 (s-2F+16 (s+2) +16 (s+2) +16

2. The L.Toff(t) = — !

s?(s+1)

then f(t) is (GATE-2010)



(@ t-1+ et (b)t+1+et (c)-1+et (d) 2t + et
3. IfL.T of sinwtis then L.T of e sint is (GATE-2014)

s% + W2

(@) s-2 (b) S+2 ©) s-2 q S+2
(s—2) +16 (s—2) +16 (s+2) +16 (s+2) +16

t
4. If F(s) is the L.T of f(t) then. L.T of If(r)dr is (GATE-2007)
0

@@ O FOM  OFO @ [Fes

5. L.T of functions t.u(t) and u(t).sint are respectively. (GATE-1987)

1 S 1 1 1 1 S
a) — b) =, C) = d) s,

()32 s?2+1 ()s s?2+1 ()SZ s?2+1 (@ s?2+1
6. The L.T of i(t) is given by I(s) = (12 as t — oo the value of i(t) tends to
s(1+

(a) 0 (b) 1 (c)2 (d)
7. The unilateral Laplace transform of f (t)= 1 is (GATE-2012)
s?+s+1
@) - S c —(2s5+1) q 2s+1

2 2 (b) 2 2 2 2 2 2
(s +s+1) (s +s+1) (s*+s+1) (s*+s+1)



INVEROE L APIACE TRANSFORIVIS

Objectives:
» To understand the properties of Inverse Laplace transforms

» To solve Integral equations by using convolution theorem.
» To convert differential equations into algebraic equations using Laplace Transforms and

inverse Laplace transforms.

Syllabus:
Inverse Laplace Transforms — by partial fractions - Convolution theorem (without proof).
Application: Solution of ordinary differential equations.

Subject Outcomes/Unit Outcomes:

After learning this unit, students will be able to:
> Find inverse Laplace Transforms of the transformation f(s) to obtain f (t) .
> Apply convolution theorem to find the inverse Laplace
» Use the method of Laplace transforms to solve systems of linear ordinary differential
equations.

Definition: Suppose f (1) is a piecewise continuous function and is of exponential order. Let
L{f (t) }= Te*s‘f (t)dt = f(s) . The inverse Laplace Transform (ILT) of f(s) is defined as
L {i‘(s)}oz f (t), where L™ inverse operator of is L and vice-versa.

Inverse Laplace transforms of some elementary functions:

(D). L_li f_l (2). '-_1{ ia} e™  (3). L‘l{r(sn:zl)} =t" (4). Ll{sz jaz}zsin at

1 =cosat (6). L‘l[
g ’L

_ a i 7). L_l( S }
5) L % U_sinh at ( ——— ¢+ =cosh at, etc.
®). {s +a’ sz—az} isz—a2

Properties of Inverse Laplace transform:
Linear property:
If L2 F(s)}=f (1), L2 {g(s) }=a(t) , then L & f (s) +b g(s) }=a f () +b g (t)

Shifting Property:

If LF(s)}=f(t) then L2 {f(s—a) j=e™f(t), s>a.
Change of scale property:

IF LT (9)}=1(0) then Li{f(as)= 2 (—; \J and Ll{i f (i )} - f(at)



Problem: let f(s) = jz 2+ 49. Then by linearity property of inverse Laplace transforms (ILT),

|1 4s+4 _ L 4s NE 4
4s? -9 4s? -9 4s? -9
2

=L*1J; +L? ;lzcoshﬁu_shh 3t
s> -@/2) s’ —(3/2) | 2 3 2

. 4
Problem: Find the ILT of m

4

(s+D(s+2)

By applying partial fractions, we can rewrite f(s) as

f(s) = 4 __A N B _ As+2A+Bs+B
(s+1)(s+2) (s+1) (s+2) (s+1)(s+2)

Comparing like terms in the numerator, we obtain A=4and B =-4.

Therefore, f(5)= =~
erefore, _(s+1)(5+2)_(5+1) (s+2)

By applying linearity property, we have

L2 {f(s) p=aL {i} —aL {iz} = det —4e2,

Solution: Let f(s) =

s+1 S+
; 1
Problem: Find the ILT of 25 e
s°+s+1
: L 1
Solution: Consider f () = ————
s°+s+1

By the linearity property of ILT, we have

| !
L‘l( s+1 j:L_l 2 4L 1/2 ‘
s”+s+l (s4+1Y JEM || (s+1Y +q£\| ||
2 2)) U 2 (2)

V3 1 V3 —t/{cosﬁuisin Et—l

=et2c0s—2t+—sin—t=e
2 2 V32 ]

V3




Inverse Laplace Transforms of Derivatives:
d"(f(s)
ds"

Statement: If L'Y{f(s)}=f (t) then Ll( J: (=1)"t" f ().

Inverse Laplace Transforms of Integrals:
\ ()

Statement: If L™Y{f (s)}= f (t) then L"l(j f(s)ds)

Inverse Laplace Transform of type sf (s) : (Multiplication by s)
Statement: If L"{f (s)}=f (t) and f (0) = 0 then L™(sf(s))= f'(t)

f(s)
Inverse Laplace Transform of type S - (Division by s)

Statement: If L™{f (s)}= f (t) then LW(?J =j f (t)dt

Similarly, Lﬂ(?j = I f (t)dt and hence in general, Ll( fs(ns)} =[]..] f@dtdt.dt (n-
folded integral).

}' using derivative property of ILT.

S
6>+22))
) 2 aaz} =sin at , then by derivative property of ILT,

r — 25 —| t 71( S ] t
sm at, = sin2t,
(E+a?) | 1(32+22)2f 4
Convolution Theorem:-

This is used to find inverse Laplace transforms of product of transforms.
Definition: The convolution of two functions f (t) and g(t)is defined as:

Problem: Evaluate L‘l{

we have L*

t
f(t)*g(t) = j f(r)g(t—r)dr, provided the integral exists.

Note: the operation of convolution between two functions yields another function.
Convolution Theorem:-

If L{f(s)}=1(t) and L™{g(s)}=9(t) then L{f (s)g(s)}= () *q(t).

Example: Using convolution theorem find the inverse Laplace transform of

2

(s2+4)(s*+9)"




52
(s? +4)(s* +9)
The given function f(t) can be rewritten as,
52
F(t) = -5 8
(s2+4)(s?+9) (s?+4) (s*+9)

By applying inverse Laplace transform, we have,

s? s?
L) f=L" :

Gk {(sz+4) (sz+9)}

Hence by convolution theorem,

Solution: We are given f(t) =

s2 52 s
Lt = (cos2t)*(cos3t)  since, Ll(s

(s +4) (s*+9)

[cos2ucos3(t —u)]du =

I
O ) ~
o t——y~

_1fsn(3t-u) | +1[sh 5u—:ﬂt
2l -1 2 5 1
1,1

0

=sin 2t — =+ — |+sin 3t i+l :1(3sin 3t —2sin 2t).
2 10 10) 5

2

%[cos(?,t —u) + cos(5u — 3t)]du

Solution of Ordinary differential equation (An application):

d3
Problem: Solve the differential equation Fs}/—l_

and y' (0)=6.

):cos 2t and L‘l( > )20053'[
4 9
=~k 2t —sn 3t]+ L i 2t + s 3t]
2 10
2———-2y=0; given y(0)=y (0)=0

Solution: We are given the linear non-homogeneous differential equation with constant

coefficients:

d_3y+2d2y—ﬂ—2y=0 where y = y(t) or f(t)

d dt’ ot
Applying Laplace transform on both sides,

d3y d?y dy _
L(F} + ZL(F} - L[aj —2L(y)=L(0)

= [ f(s)-s2£(0)-sy (0) -y @ }+ 22 F(5) - sy(@) - y @) - [sf(s) - y(0) |2 F(s) = 0
= f(s)f*+2s2 —s—2} y)s2 + 25 -1} y (0)(s+2)- y'(0) =0

Substituting y(0) =y (0)=0and y (0) =6, we get,

f(s)(s®+2s2-s5s-2)—-6=0
6

= 1= (s®+2s?-s-2)

Now by applying inverse Laplace transform on both sides,



6 J: L_l|( 6
s2+2s2-5-2 \s*(s+2)-(s+2))
f(t)= L’l( 6

\(s+2)(s+1)(s-1) )

6 _ A N B N C
(s=D(s+D(s+2) (s-1) (s+1) (s+2)
On simplification we obtain A=1, B=-3, C=2

O P e e
s-1

LY(f(9) = L‘l(

Consider f(s) =

s+1 S+2
=e' -3 +2¢*
Hence, the solution of the given differential equation is y(t) =e' —3e™ +2e™2.

d? d ,
Problem: Solve the differential equation thy +(1- 2t)d—)t/ —2y =0 where y(0)=1, y (0)=2.
Solution: We are given the linear differential equation with variable coefficients:

d?y
dt?

Applying Laplace transform on both sides,
d?y) ( dyj
L(t +L (1-2t)— [-2L(y)=0
o 1-2t) ot (y)

t

dy
+(1-2t)—-2y=0
( )dt y

t2
= -9 (@)=t (0)— ')+ (F(s)- f(0))+ 29 (sf(s) - F(0))-2F(s) =0
ds ds

= f'(s)(2s—s2)—sf(s) =0
N f_ (s)__ 1
f(s) s—2
Integrating on both sides, we have,
log f(s)=-log(s—2)+lgc

- c
= f(s)=——
(s) -

By applying inverse Laplace transform on both sides,

Li(F(9) - L(L)
s—-2

= f(t) = ce?

By using the initial condition, we have ¢ =1.

Therefore, the particular solution of the differential equation is f (t) = e* .



=

9.

10. If F(s)=L[f(t)], then the formulae for (i) L=1[F'(s)] is

Assignment/Tutorial Questions

SECTION-A
L—l( 1 j:
(sera2
(a) sin at (b) cosat (c) %sin at
S 1 )_
- (33—6}
(a) e6t (b) %eZt (C) eZt
I G S
\(s+a)(s+b) )
eat _ebt b e—at +e—bt e—at_e—bt
@ ——, 0 ——— ©
LA 5+2 )
\(s-2)*)
(@) e*(1+2t) (b) te* (1+2t) (c) (@+2t)

L S+2 _
' s2-2s5+5

1
d) =cosat
@

(d) does not exist

(d) t(+2t)

(@) c032t+%sin 2t (b) sin 2t+%c032t (c) e cosZtJrget sin 2t (d) cos2t

L‘(jje_at f(u)duY=

\1-e | )
(@ f() (b) e f(t) (c) e f(t)
. Lj(w f_(s)ds)z

o)
@) @ ® [fOd  (© j@dt

Time domain function of ——— is given by
s“t+a
a) Cos(at)
b) Sin(at)
c) Cos(at)Sin(at)
d) None of the above
If F(s)=L[f(t)], then the formula for L~1[[ F(s)ds]is

(d) none of the above

(d) f@©




11. As per the convolution theorem, L*{f (s)g(s)}=

-1 N _
12.1 [(s+3)2+4]_
S
=17 1=
B L yearyel®
SECTION — B
1. Find the inverse Laplace transform of —==
. . 2555 S 1
2. Find the inverse Laplace transform of -——=+ o—
3. Find the inverse Laplace transform of _ 3t
(52—25—32
4. Find the inverse Laplace transform of %log[z;rﬂabz
. . 1 s2
5. Using convolution theorem to evaluate L [—(52+a2)(52+b2)]
. . 1 s2
6. Using convolution theorem to evaluate L [—(52+a2)2]
: . 1
7. Using convolution theorem, evaluate L [52(s+1)2]
8. Find the inverse Laplace theorem ofm.
9. Solve the differential equation (D? +2D +5)y =e'sint; y(0)=0, y (0) =1.
10. Apply “Method of Laplace transforms” ,
Solve the differential equation (D? +2D +5)y =e'sint; y(0)=0, y (0) =1.
11. Apply Laplace transform to the initial value problemy "’ +y' — 2y = sint,
y(0) = 0,y'(0) =0.
12. Apply “Method of Laplace transforms™ , Solvex” + 2x + 5x = e'sint, x(0) = 0,
x(0) =1.
13. Apply “Method of Laplace transforms” , Solvex” —3x + 2x =1 —e?t,x(0) =
1,x(0) = 0.
14. Using Laplace transform, solve x + 9x = cos2t,ifx(0) = 1,x () = —1.
15. Solve, by Laplace transform method, the following initial value problem:
(D? + 1)x = tcos2t,suchthatx =Dx=0att =0
CATE PREVIOUS QUESTIONS
2
7. The function f(t) satisfies the differential equation e + f=0 and the auxiliary
conditions,f(0)=0, %(0): 4 . The Laplace transform of f(t) is given by (GATE-2009)
2 4 4 2
— b) — d
(a)s+1 (b) s+1 © s?+1 ()sz+1
1
8. The inverse Laplace transform of the function F(S)=m is given by (GATE-2007)

(@) f(t)=sint (b) f(t) = et sint (c) et (d) 1- et



9. The inverse Laplace transform of F(s) = s+1/(s>+4) is (GATE-2011)
(a) cos2t+ sin2t (b) cos2t-(1/2) sin2t  (c) cos2t+(1/2)sin2t  (d) cos2t-sin2t



Vector Differentiation

If  represents the position vector of an object which is moving along a curve (', then the position

vector will be dependent upon the time, £. We write 1 = r({) to show the dependence upon time.
Suppose that the object is at the point P, with position vector r at time f and at the point (), with
position vector r(f + dt), at the later time ¢ + dt,

YA

yA

|~




YA

——
Then P() represents the displacement vector of the object during the interval of time d7. The leny
of the displacement vector represents the distance travelled, and its direction gives the direction
motion. The average velocity during the time from # to f + 4f is defined as the displacement vec

divided by the time interval ¢, that is,

PQ _ r(t+3t) — r(t)
ot ot

average velocity =

If we now take the limit as the interval of time 4f tends to zero then the expression on the right
hand side is the derivative of r with respect to {. Not surprisingly we refer to this derivative as
the instantaneous velocity, ©. By its very construction we see that the velocity vector is always

tangential to the curve as the object moves along it. We have:

r(t +0t) —r(t) dr

£ 5o ot dt

* z(t) =z(®)i+y(t)j + z(Hk

then the velocity vector is
(t) = a(t)i+ y(t)] + 2(Hk

1_?:

'-o

The magnitude of the velocity vector gives the speed of the object.



We can define the acceleration vector in a similar way, as the rate of change (i.e. the derivative) of
the velocity with respect to the time:

=> Example : If w = 371 + cos2tj. find

@Z ®F oI
Solution
(a) If w = 3t% + cos 2tj, then differentiation with respect to t yields: ditl- = 6ty — 2sin 2§
(b) I% = /(61)% + (—2sin 2¢)% = V3612 + 4sin® 2t
(c) e i — 4 cos2ty



DIFFERENTIATION FORMULAS. 1If A, B and C are differentiable vector functions of a scalar u, and
¢ is a differentiable scalar function of u, then

d  dA 4B
ol LR R b v

i - @ d_.A 3. i(AxB) = Axil! + ‘*l-éxB
2. du(A B) = A.du + . B du du du

- pih L 4,
4,'__d (PA) = ¢ du *du

g j‘f—‘ms X C) =ABxd—C+AdB c+di‘nxc

du de __  du

d & dC dB dA
6. o {Ax(BxC)} = Ax(Bxdq) _*‘_f"‘(du xC) + de X (BxC)



Example : fw =21 — Ttk and 2z=(2+4t)i+1t°j — 2k

(a) find w-z,  (b) find i-‘-;’—-, (c) find %

d
h —(w-z
= . (d) show that dt(i z)



SPACE CURVES. If in particular R(uz) is the position vector r(u) joining the origin O of a coordinate
system and any point (x,y, z), then

r(u) = x(u)i + y(w)j + z(u)k

As u changes, the terminal point of r describes
& space curve having parametric equations

x =x(u), ¥y =y(u), z = z(u)

Ar _ r(u+Ou) — r(w) <
Then F A is a vector in the di

Ar dr

recti f Ar (see acent figure). If —_—= =

on o ( adj n gure) Aluh-’o'o R -z

exists, the limit will be a vector in the direction of

the tangent to the space curve at (x,y,z) and is giv-
en by

dr dx glj ” dz
du du du du

If u is the time ¢, :—;5 represents the velocity v with

which the terminal point of r describes the curve. Bimuarly, d' = g represents its acceleration a
along the curve.



. A particle moves along a curve whose parametric equations are x = "o y =2cos 3¢, z = 2s8in 3¢,

where t is the time.
{a) Determine its velocity and acceleration at any time.

() Find the magnitudes of the velocity and acceleration at ¢t = 0.



A particle moves along the curve z =2, y =¢" = 4t, z =3t -5, wheret is the time, Find the
components of its velocity and acceleration at time ¢t =1 in the direction i - 3§ + 2Kk,



0x2 ~ '3
PR
dxdy  Ox Oy
L 2am
2. %(AXB)
3. aya;x(A'B)

Partial Differentiation

A-B)}

, 9A ?_E
3y " Oz

¥A _ 2 24
922 0z Oz
Y. __A
dx 0z° 3: az
JA
{A 3: T oz ‘B}
2A OB A
Y ox '3y T 9yox

B
'

etc.
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2.6 Gradients and Directional Derivatives

Key Points in this Section.

1. Thegradient of a differentiable function f: U C R* — R is

. Of, ('f. 0f
V= (‘);‘1:1 + ()1/ ¥ ()/,

2. The dwrectional derivative of f in the direction of a unit vector v

at the point x is

d

wfx+tv)) =Vf(x)-v

=0

3. The direction in which f is increasing the fastest at x is the direc-
tion parallel to V f(x). The direction of fastest decrease is parallel to

-V f(x).



(S7 |

For f: U Cc R? - R a C! function, with Vf(x,y0,20) # 0, the
vector Vf(xo,y0,20) is perpendicular to the level set f(x,y,2) =

f (0,90, 20). Thus, the tangent plane to this level set is
V f(zo,Y0,20) - (T — 20,¥ — Yo,2 — 20) = 0.

The gravitational force field

GMm GMm
F=-——r=-——3n
l"'l, /"l
(the inverse square law), where n = r/r, r = zi+yj+zk and r = ||r
is a gradient. Namely,
F=-VV,
where i
s Vim
V=-—————.

/,‘l

bl



DEFINITION: The Gradient If f: U c R® — Ris differentiable, the gra-
dient of f at (x, v, z) i1s the vector in space given by

df df adf
V - . ; . : . :
/ (ax dy 0z )

This vector is also denoted V/f(x, v, z). Thus, V/ is just the matrix of the deriva-
tive D/, written as a vector.




tv translated

X + v
R4

AY

//
e e

2
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DEFINITION: Directional Derivatives If f: R® — R, the directional
derivative of f at x along the vector v is given by

d |
Ef(X"l‘fV)

=0

if this exists.

In the definition of a directional derivative, we normally choose v to be a
unit vector. In this case we are moving in the direction v with unit speed and we
refer to V/(x) - v as the directional derivative of | in the direction v.




THEOREM 12 If f: R? — R is differentiable, then all directional derivatives
exist. The directional derivative at X in the direction v 1s given by

of ) B
Df(x)v = gradf(x)-v=Vf(x)-v= [a‘—f(x)]vl + [%(x)] vy + [‘—f(x)] V3,

X Az

where v = (v, v, 13).



THEOREM 13 Assume Vf(x) # 0. Then V/(x) points in the direction along
which f is increasing the fastest.



THEOREM 14: The Gradient is Normal to Level Surfaces Let
fiR*—>RbeaC map and let (xo, vo, zo) lie on the level surface S defined
by f(x,v,z) =k, for k a constant. Then Vf(x¢, vo, zo) 1s normal to the level
surface in the following sense: If v is the tangent vector at 1 = 0 of a path ¢(7) in
S with C(O) = (X(V), Yo, Z()), then Vf(X(), Yo, Z(V)A) v=20 (see Figure 262)




P N

V/ (X0, Y05 Z0)

v translated

(

V/(x0,¥0, 2¢)
parallel translated so

that 1t begins
at (x09y09 Z())



DEFINITION: Tangent Planes to Level Surfaces Let S be the surface
consisting of those (x, v, z) such that f(x, vy, z) = k, for k a constant. The tan-
gent plane of S at a point (xg, Vo, z¢) of S is defined by the equation

V£ (xo, Yo, 20)* (x — X0, Y — Y0,2—20) =0 (1)

if V£ (xo, vo, z0) # 0. That 1s, the tangent plane is the set of points (x, y, z) that
satisfy equation (1).




V/f translated

> Tangent line to C

J/

e






A curve of Contour map of a hill

steepest ascent 250 feet high
up the hill

(@) (b)
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A curve of Contour map of a hill

steepest ascent 250 feet high
up the hill
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The Divergence Theorem
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! Divergence Theorem

We write Green’s Theorem In a vector version as

[ Fnds = [ divF(xy) dA

D

where C Is the positively oriented boundary curve of the
plane region D.

If we were seeking to extend this theorem to vector fields
on R*, we might make the guess that

1

H F-nds= m div F(x, y, z) dV
S E

where S is the boundary surface of the solid region E.



““Fhe Divergence Theorem

It turns out that Equation 1 is true, under appropriate
hypotheses, and is called the Divergence Theorem.

Notice its similarity to Green’s Theorem and Stokes’
Theorem in that it relates the integral of a derivative of a
function (div F in this case) over a region to the integral of
the original function F over the boundary of the region.

We state the Divergence Theorem for regions E that are
simultaneously of types 1, 2, and 3 and we call such
regions simple solid regions. (For instance, regions
bounded by ellipsoids or rectangular boxes are simple solid
regions.)



! Divergence Theorem

The boundary of E is a closed surface, and we use the
convention, that the positive orientation is outward; that is,
the unit normal vector n is directed outward from E.

The Divergence Theorem Let E be a simple solid region and let S be the boundary
surface of E, given with positive (outward) orientation. Let F be a vector field
whose component functions have continuous partial derivatives on an open region
that contains E. Then

| F-as = (|| divFav
), )

Thus the Divergence Theorem states that, under the given
conditions, the flux of F across the boundary surface of E is
equal to the triple integral of the divergence of F over E.



!mple 1

Find the flux of the vector field F(X,y,z) =zi+y| +xKk
over the unit sphere x? + y2 + z2 = 1.

Solution:
First we compute the divergence of F:
J J 0

divF=—(@¢)+— () +—x) =1

0x Jay -~ 0z

The unit sphere S is the boundary of the unit ball B given
by X2 +y? + 722 < 1.



!mple 1 — Solution

Thus the Divergence Theorem gives the flux as

cont’d

H F-dS = M div F dV
S B
— m 1 dV
B

= V(B)

= iﬂ(1)3



- Divergence Theorem

Let’s consider the region E that lies between the closed
surfaces S; and S,, where S, lies inside S,. Let n; and n,
be outward normals of S; and S..

Then the boundary surfaceof EiIsS =S, U S, and its
normal nis given by n =—-n, on S; and n =n, on S,.
(See Figure 3.)

Figure 3



“ Divergence Theorem

Applying the Divergence Theorem to S, we get

7 m div F dV = H . dS

E

‘ndS

t-—;
wt x J‘

fF (—n,)dS + jF n, dS

S

:—HF ds+ﬂF ds



!mple 3

We considered the electric field:

eQ
|3

E(x) = X

| x
where the electric charge Q is located at the origin and

x = (x,y,2)is a position vector.

Use the Divergence Theorem to show that the electric flux
of E through any closed surface S, that encloses the origin

IS
H E - dS = 470
'S

10



!mple 3 — Solution

The difficulty is that we don’t have an explicit equation for
S, because it is any closed surface enclosing the origin.
The simplest such surface would be a sphere, so

we let S; be a small sphere with radius a and center the
origin. You can verify that div E = 0.

Therefore Equation 7 gives

”‘ E-dS = H E-dS + W divE dV = H E = H £ W
< ) E Si S

11



!mple 3 — Solution

The point of this calculation is that we can compute the
surface integral over S, because S, is a sphere. The
normal vector at x is x/[x].

cont’d

Therefore

eQ <X) eQ eQ eQ
E-n= =X |— ] = X*X = s —

x|/ [x[

since the equation of S, Is | x| = a.

12



!mple 3 — Solution

Thus we have

cont’d

[E-ds=[|E-nas = 2 [ as = B Al = s = ang
'S, s, a < a a

This shows that the electric flux of E is 4n€Q through any
closed surface S, that contains the origin. [This is a special
case of Gauss’s Law for a single charge. The relationship
between € and &, Is € =1/(4ne,).]

13



- Divergence Theorem

Another application of the Divergence Theorem occurs in
fluid flow. Let v(X, y, z) be the velocity field of a fluid with

constant density p. Then F = pv is the rate of flow per unit
area.

14



! Divergence Theorem

If Py(Xos Yor Zo) IS @ point in the fluid and B, is a ball with
center P, and very small radius a, then div F(P) = div F(P,)
for all points in B, since div F Is continuous. We
approximate the flux over the boundary sphere S_ as
follows:

[ F - as = (|| divFav = ||| div F(Po)dV = div F(Po)V(B,)

S( { Bt { B( i

This approximation becomes better as a — 0 and suggests
that

| 1 qr

8 div F(Po) = lim || F - as
a—0 V(B”) s

15



- Divergence Theorem

Equation 8 says that div F(P,) is the net rate of outward flux
per unit volume at P,. (This is the reason for the name
divergence.)

If div F(P) > 0O, the net flow is outward near P and P is
called a source.

If div F(P) < 0O, the net flow is inward near P and P is called
a sink.

16



“ Divergence Theorem

For the vector field in Figure 4, it appears that the vectors
that end near P, are shorter than the vectors that start
near P;.

Figure 4

The vector field F = x2i + y?j

17



! Divergence Theorem

Thus the net flow is outward near P,, so div F(P,) > 0 and
P, is a source. Near P,, on the other hand, the incoming
arrows are longer than the outgoing arrows.

Here the net flow Is inward, so div F(P,) <0 and P, is a
sink.

We can use the formula for F to confirm this impression.
Since F = x?1 +y?j, we have div F = 2x + 2y, which is
positive when y > —x. So the points above the line y = —x
are sources and those below are sinks.

18






Green’s Theorem

Let R be a closed bounded region in the xy-plane whose
boundary C consists of finitely many smooth curves. Let

Fi(xz,y) and F5(z,y) be functions that are continuous and

0 F: 0F
have continuous partial derivatives —1 and —2 every-

Jy ox

where in some domain containing R. Then

oF, O0F; _){
//(3:1: — 8y)da:dy— C(Flda:Jngdy)
R

here we integrate along the entire boundary C' of R such

that R is on the left as we advance in the direction of inte-
gration. :




Example

Evaluate

f[(egjg y) dx + (2 +sin™' y?) dy]
C

for C' the rectangle with vertices (1,2), (4, 2), ;5, |
(4,3), and (1, 3).

e ? / /



Example

Verity Green’s Theorem for

j{(l + 10xy + y?) dz + (6xy + 5x?) dy
C

where C' 18 the square with vertices

(0,0), (a,0), (a,a), (0, a)




Area Formulas

o VPR

§ <
; B—— T l P : . :
= e . p / /
A



Example

Show that the area of the region {2 enclosed
by the ellipse

a2

-,fief:,/o;,/':' 2



