Hall Ticket No.:

	$\overline{}$	_	_		
				FERRIS	
_					

Question Paper Code: MA201BS

NARSIMHA REDDY ENGINEERING COLLEGE

(UGC-AUTONOMOUS)

B.TECH I YEARD SEMESTER REGULAR EXAMINATIONS, SEPT-2021

(Regulation: NR20)

MATHEMATICS-II (Common to CIVIL, EEE, ME, ECE, CSE, CSE (CS), CSE (AI&ML), CSE (DS))

Time: 3 hours

Max. Marks: 75

Answer any Five Questions All Questions carry Equal Marks

		Marks	Bloom's Level
1.	a. Solve $\sec^2 y \frac{dy}{dx} + 2x \tan y = x^3$	8	3
	b. Solve $(y - xy^2) dx - (x + x^2y) dy = 0$.	7	2
	a. Solve $(D^2 + a^2)y = \sec ax$ by the method of variation of parameters.	7	. 4
2.	b. Solve $\frac{d^2y}{dx^2} + 2y = x^2e^{3x} + e^x \cos 2x$.	8	4
,	a. Evaluate $\int_0^{\frac{\pi}{2}} \int_{a\cos\theta}^a r^4 dr d\theta$.	7	3
3.	b. Evaluate $\int_0^1 \int_{x^2}^{2-x} xy dy dx$ by change the order of integration.	8	4
4.	a. Find the directional derivative of $\varphi = 4xy^2 + 2x^2yz$ at $A(1,2,3)$ in the direction of AB, $B = (5,0,4)$.	7	2
	b.Prove that $div(gradr^n) = n(n+1)r^{n-2}$.	8	3

100 M

n's

5.	Verify Greens theorem for $\int_c (3x^2 - 8y^2)dx + (4y - 6xy)dy$ where C is the region bounded by $y = \sqrt{x}$ and $y = x^2$.	15	4
6.	a. A body is originally at 80°C and cools down to 60°C in 20 minutes. If the temperature of the air is 40°C, then find the temperature of the body after 40 minutes.	8	3
	b. Solve $\sin px \cos y = \cos px \sin y + p$	7	3
7.	$Solve(x^2D^2 - 3xD + 1)y = \log x \left[\frac{\sin(\log x) + 1}{x} \right].$	15	4
8.	Verify Stokes theorem for $\vec{F} = (x^2 - y^2)\vec{i} - 2xy\vec{j}$ over the box bounded by the planes $x = 0$, $x = a$, $y = 0$, $y = b$.	15	3

01	Code	MA	1201	DC

Hall Ticket No.:	П		
	26 200	CO 100 100	

NARSIMHA REDDY ENGINEERING COLLEGE (UGC AUTONOMOUS)

1 B.Tech II Semester (NR20) Supplementary Examination, February 2023 MATHEMATICS-II

(Common to CE, EEE, ME, ECE, CSE, CSE (CS), CSE (AI&ML) & CSE (DS))

Time: 3 hours

Maximum marks: 75

- Note:

 This question paper contains two parts, A and B

 Part A is compulsory which carries 25 marks (1ª 5 sub questions are one from each unit carry 2 Marks each & Next 5 sub questions are one from each unit carry 3 Marks). Answer all questions in Part A

 Part B Consists of 5 Units. Answer one question from each unit. Each question carries 10 Marks and may have a, b sub questions

Part-A Answer all questions

(25 Marks)

Q.No	Question	· M	CO	BL
1) a	Solve $xdx + ydy = \frac{xdy - ydx}{x^2 + y^2}$	2	COI	L3
b	Define the Newton's law of cooling	2	COI	LI
C	Determine the solution of $(D^2 - 6D + 13) y = 0$	2	CO2	L5
d.	Find the PI of $(D^2+D+1)y = e^{-x}$	2	CO2	L3
e.	Evaluate $\iint_{0}^{2\pi} y dy dx$	2	CO3	L5
f.	Evaluate $\iint_{-1-2-3}^{1/2} dx dy dz$	3	CO3-	L5
2	Define the Gradient of a scalar	3	CO4	LI
h.	Define the Directional derivative of the vector	3	CO4	LI
i.	What is irrotational vector	3	CO4	LI
j.	State the Green's theorem	3	CO4	L2

Part-B Answer all the Units All Questions carry equal Marks

(50 Marks)

Q.	No	Question		CO	BL
	100	· UNIT-I			
2)	a.	Solve $x \log x \frac{dy}{dx} + y = 2 \log x$	5	COI	L3
		If the temperature of a body is changing from 100°C to 70°C in 15 minutes, find when the temperature will be 40°C, if the temperature of air is 30°C.	5	COI	L3
		OP			

3)	a,	Solve $(x^2 - ay)dx = (ax - y^2)dy$	5	COI	L3
	b.	A bacteria culture growing exponentially increases from 100 to 400gms in 10 hrs. How much was present after 3more hours.	5	COI	L3
		UNIT-II			
4)	Sol	$ve(D^2 - 2D + 3)y = e^x + x^2 + cos2x$	10	CO2	L3
		OR			
5)	a.	Solve $(D^2 - 5D + 6)y = e^x \sin x$	5	CO2	L3
	b.	Solve $y'' + 4y = \tan 2x$ using variation of parameters	5	CO2	L3
		UNIT-III		A Delta La	
6)	a,	Evaluate $\int_{0}^{\sqrt{x}} \int_{0}^{\sqrt{x}} (x^2 + y^2) dy dx$	5	CO3	L5
	b,	Change the order of integration and evaluate $\int_{0}^{a} \int_{1/u}^{\sqrt{1/u}} (x^2 + y^2) dx dy$	5	CO3	L5
		OR			
7)	a.	Evaluate $\iint_R y dx dy$ where R is the region bounded R by the	5	CO3	L5
	b:	parabolas $y^2 = 4ax$ and $x^2 = 4ay$ Evaluate $\int_{0}^{\infty} \int_{0}^{\log x} \log x dx dy$.	- 5	CO3	L5
	30.00	UNIT-IV			
8)	a.	Find the directional derivative of $\emptyset = xy + yz + zx$ at point (1,2,0) in the direction of the vector $(1+2)^2 + 2k$	5	CO4	L3
	b.	Show that the vector $f = grad(x^3 + y^3 + z^3 - 3xyz)$ is irrotational	5	CO4	L3
		OR			
9)	a.	Evaluate the angle between the normals to the surface $xy = z^2$ at $(4,1,2)$ and $(3,3,-3)$	5	CO4	L5
	b.	Show that the vector $(x^2 - yz)\hat{i} + (y^2 - xz)\hat{j} + (z^2 - xy)\hat{k}$ is irrotational and find its scalar potential	5	CO4	L
		UNIT-V			
10)	1	aluate the line integral $\int_{\mathbb{R}} [(x^2 + xy)dx + (x^2 + y^2)dy]$ where C is	10) CO4	L
	the	square formed by the lines $x = \pm 1$ and $y = \pm 1$		34	
		OR			1000
11)	50	ing Greens theorem evaluate $2xy - x^2 dx + (x^2 + y^2)dy$ where C is the closed curve of the ion bounded by $y = x^2$ and $y^2 = x$		CO4	L

Page 1 of 2

Page 2 of 2

Q.P Coo	ic:	MA	1201	BS
---------	-----	----	------	----

	-
Hall Ticket No.:	

NARSIMHA REDDY ENGINEERING COLLEGE (UGC AUTONOMOUS)

I B.Tech II Semester (NR21) Supplementary Examination, February 2023 ADVANCED CALCULUS

(Common to CE, EEE, ME, ECE, CSE, CSE (CS), CSE (AI&ML) & CSE (DS))

Time: 3 hours

Maximum marks: 70

- Note:

 This question paper contains two parts, A and B
 Part A is compulsory which carries 20 marks (10 sub questions are two from each unit carry 2 Marks). Answer all questions in Part A
 Part B Consists of 5 Units. Answer one question from each unit. Each question carries 10 Marks and may have a, b sub questions

Part-A Answer all questions

(20 Marks)

	Question	M	CO	BL
Q.No	Solve $xdx + ydy = a^2 \left[\frac{xdy - ydx}{x^2 + y^2} \right]$.	2	COI	L2
b.	Find the integrating factor of $x \frac{dy}{dx} + y = \log x$.	. 2	COI	Ll
c.	Solve $\frac{d^4 y}{dx^4} + 4y = 0.$	2	COI	L2
d.	Find the PI of $\frac{d^2y}{dx^2} + \frac{dy}{dx} + y = e^x$.	2	coi	LI
c.	Evaluate $\int_{1}^{2} \int_{1}^{1} xy dx dy$.	2	CO2	L3
f.	Evaluate $\int_{-\infty}^{\infty} y dy dx$.	2	CO2	L3
-	Define the irrotational vector	2	CO3	L1
B	Find div P, where P=xI+yJ+zk	2	CO3	L1
h.	P. C. and done by the force	2	CO4	LI
i.	Define work done by the force. State the Stokes theorem.	2	CO4	LI

Part-B . Answer all the Units All Questions carry equal Marks

(50 Marks)

Q.	No	Question	M	CO	BL
8		UNIT-I	16	COI	13
2)	a.	Solve $\frac{dy}{dx} + \frac{y \cos x + \sin y + y}{\sin x + x \cos y + x} = 0$	3	COI	LJ

//	b.	Solve $x \log x \frac{dy}{dx} + y = 2 \log x$	5	CC	1 L	.3
21		dx dx				
1	1	OR	5	CC	01 1	13
3)	a.	Solve $(1-x^2)\frac{dy}{dx} + xy = y^3 \sin^{-1} x$.				L4
	b.	The number N of bacteria in a culture grew at a rate proportional to N. The value of N was initially 100 and increased to 332 in one hour. What was the value of N after $1\frac{1}{2}$ hour.	5	CC	01	L4
		2 UNIT-II				
	_		5	C	:01	L3
4)	a.	Solve $(D^2+4D+3)y = e^{2x}$ Solve $(D^2-4D+4)y = 8x^2e^{2x}sin2x$.	5	C	01	L3
	b.	Solve (D* - 4D+4)y = 8x e sin2x.				
	-	Solve $(D^2 - 2D + 3) y = e^x + x^2 + Cos2x$	5	1	COL	L3
. 5)	b.	Apply the method of variation of parameters to solve (D-+1)		(001	L3
		= cosecx UNIT-III			1	
	_		5	(CO2	L5
6)	a.	Evaluate $\int_{0}^{1} \int_{0}^{\sqrt{x}} x^{2} y^{2}(x+y) dy dx.$				
	b	Evaluate $\iint xy dx dy$ where R is the region bounded by x-axi	s, :	5	CO2	L
		R			7	
		ordinate $x = 2a$ and the curve $x^2 = 4ay$.	-			
100		· OR	1	0	CO2	L
7)		Change the order of Integration in $\int_{u}^{\infty} xy dx dy$ and hen Evaluate the double integral.	ce	.0	CO2	
_		UNIT-IV				
0		Find the directional derivative of $\emptyset = xy + yz$	+	5	CO3	1
8) a	zx at the point (1,2,0) in the direction of the vector	+			
		(2) (2) (2) (2) (2) (2) (2) (2) (2)	T	5	CO3	1
	L		K			1
	t		lk			
	t	is irrotational and find its scalar potential.	k			
		is irrotational and find its scalar potential. OR	lk	5	CO3	1
9		is irrotational and find its scalar potential. OR Find the angle between the surfaces x²+y²+z²=9 and	lk		CO3	
9) [is irrotational and find its scalar potential. OR Find the angle between the surfaces $x^2+y^2+z^2=9$ and $z=x^2+y^2-3$ at the point $(2,-1,2)$	lk	5		
9		is irrotational and find its scalar potential. OR Find the angle between the surfaces $x^2+y^2+z^2=9$ and $z=x^2+y^2-3$ at the point $(2,-1,2)$. Prove that curl $(r^{op})=\overline{0}$	lk		CO3	
9) [is irrotational and find its scalar potential. OR Find the angle between the surfaces x²+y²+z²=9 and z= x²+y²-2 at the point (2,-1,2) Prove that curl (r*P)=0 UNIT-V	k	5	CO3	
) 4	is irrotational and find its scalar potential. OR Find the angle between the surfaces x²+y²+z²=9 and z= x²+y²-2³ at the point (2,-1,2) Prove that curl (r²p²)=0 UNIT-V Find the work done in moving particle in the force field $\overline{f}=3x^2\overline{t}+(2xz-y)\overline{f}+z\overline{k}$ along the straight line from (0,0,0) to		5		
	0)	is irrotational and find its scalar potential. OR Find the angle between the surfaces x²+y²+z²=9 and z= x²+y²-3 at the point (2,-1,2) Prove that curl (re?)=0 UNIT-V Find the work done in moving particle in the force field f=3x²+(2xz-y)f+zk along the straight line from (0,0,0) to (2,13)		5 5	CO3	
	0)	is irrotational and find its scalar potential. OR Find the angle between the surfaces x²+y²+z²=9 and z= x²+y²-3 at the point (2,-1,2) Prove that curl (r*P)=0 UNIT-V Find the work done in moving particle in the force field f=3x²+(2xz-y)/2+zk along the straight line from (0,0,0) to (2,1,3) Evaluate fx (x² + 2y)dx + (4x + y²) dy by Green's the	orem	5	CO3	
	0)	is irrotational and find its scalar potential. OR Find the angle between the surfaces x²+y²+z²=9 and z= x²+y²-2³ at the point (2,-1,2) Prove that curl (r²p²)=0 UNIT-V Find the work done in moving particle in the force field f=3x²I+(2xz-y)J+zk along the straight line from (0,0,0) to (2,1,3) Evaluate \(\frac{6}{2}(x^2+2y)dx + (4x+y^2)dy \) by Green's the where C is the boundary of the region bonded	orem	5 5	CO3	
	0)	is irrotational and find its scalar potential. OR Find the angle between the surfaces x²+y²+z²=9 and z=x²+y²-3 at the point (2,-1,2) Prove that curl (r³p)=0 UNIT-V Find the work done in moving particle in the force field f=3x²t+(2xz-y)f+zk along the straight line from (0,0,0) to (2,1,3) Evaluate \(\frac{4}{C}(x^2+2y)dx+(4x+y^2)dy \) by Green's the where C is the boundary of the region bonded y = 0, y = 2x and x + y = 3.	orem	5 5	CO3	
	0)	is irrotational and find its scalar potential. OR Find the angle between the surfaces $x^2+y^2+z^2=9$ and $z=x^2+y^2-3$ at the point $(2,-1,2)$. Prove that $curl(r^np)=0$ UNIT-V Find the work done in moving particle in the force field $\overline{f}=3x^2t+(2xz-y)\overline{f}+z\overline{k}$ along the straight line from $(0,0,0)$ to $(2,1,3)$ Evaluate $\oint_C (x^2+2y)dx+(4x+y^2)dy$ by Green's the where C is the boundary of the region bonded $y=0$, $y=2x$ and $x+y=3$. OR	orem by	5 5	CO4	
. 10	0)	is irrotational and find its scalar potential. OR Find the angle between the surfaces x²+y²+z²=9 and z=x²+y²-3 at the point (2,-1,2) Prove that curl (r³p)=0 UNIT-V Find the work done in moving particle in the force field f=3x²t+(2xz-y)f+zk along the straight line from (0,0,0) to (2,1,3) Evaluate \(\frac{4}{C}(x^2+2y)dx+(4x+y^2)dy \) by Green's the where C is the boundary of the region bonded y = 0, y = 2x and x + y = 3.	orem by	5 5	CO4	

-00000-