
srinivascsedept@gmail.com

+91 9347556447

Department of CSE

Programming for ProblemSolving (PPS)

www.srinivas-materials.blogspot.com

1

mailto:srinivascsedept@gmail.com
http://www.srinivas-materials.blogspot.com/

🗸
Outline

• Introduction to components of a computer system:
⮩Compilers

⮩Creating, compiling and executing a programetc.,

• Introduction to Algorithms:
⮩Representation of Algorithm, Flowchart/Pseudo code with examples,

⮩Program design and structured programming.

• Introduction to C Programming Language:
⮩Simple input and output with scanf and printf, variables

⮩Syntax and Logical Errors in compilation, object and executable code,

⮩Operators, expressions and precedence, Expression evaluation,

⮩Type conversion, Command line arguments

• Conditional Branching and Loops:
⮩Writing and evaluation of conditionals and consequent branching with if, if-else,

switch-case,

⮩ternary operator, goto, break

⮩Iteration with for, while, do-while loops

2

Programming

3

Creating and Running Programs

⦁ Creating and running programs takes place in 4 steps.

1. Writing and Editing the program.

2. Compiling.

3. Linking the program with the required library functions.

4. Executing the program.

Creating Source Code
Press

F2 To

Save

Compiling Source Code
Press

Alt +

F9

Linking with Library

Step

Step

Step

1

2

3
Press

Ctrl +

F9
Executing Source CodeStep 4

Press

Alt +

F9

D.Srinivas, Asst. Professor,CSE Unit-1 Introduction to C Programming Language 4

C Program Execution Process

ab

c

Sample

.c

Source

Code

Compil

er

List of

ERRORS

ad

d

Link

er
Object

Code

Sample.o

bj

110

Executable

Code

Sample.e

xe

CP

U

User

Screen

Header

Files

stdio.h

ALT+

F9

CRTL+

F9

ALT+

F5

D.Srinivas, Asst. Professor,CSE Unit-1 Introduction to C Programming Language 5

C Program Execution Process

⦁ 1. Writing and Editing the program
⮩ Software used to write programs is known as a text editor, where you can type, edit and store the data.

⮩ You can write a C program in text editor and save that file on to the disk with “.c” extension. This file is
called source file.

⦁ 2. Compiling Program
⮩ Compiler is used to convert High Level Language instructions into the Machine Language instructions.

⮩ It could complete its task in two steps.

i) Preprocessor

ii) Translator
Preprocessor:





 It reads the source file and checks for special commandsknown as preprocessor commands(instructions which
starts with # symbols).
The result of preprocessor is called as translation unit.

Preprocessor processes the source file before compilation only.

Translator:



 It is a program which reads the translation unit and converts the program into machine language and gives
the object module.

This module is not yet ready to run because it does not have the required C and other functions included.

D.Srinivas, Asst. Professor,CSE Unit-1 Introduction to C Programming Language 6

C Program Execution Process

⦁ 3. Linking a program with required library functions
⮩ C program is made up of different functions in which some functions can be written by the programmer, other

functions like input/output functions and mathematical library functions, that exist elsewhere and
must be attached to our program.

⮩ The linker assembles all of these functions and produces the executable file which is ready to run on the
computer.

⦁ 4. Executing the program.
⮩ Once a program has been linked, it is ready for execution.

⮩ Now, you can execute the program by using the run command.

⮩ Loader is a program which is used to load the program from the disk to main memory.

1. Write a program (source code) using vi editor and save it with .c extension. Ex: $vi sample.c

2. Run the compiler to convert a program into to “binary” code. Ex: $cc sample.c

3. Compiler gives errors and warnings if any, then edit the source file, fix it, and re-compile.

4. Run it and see the output. Ex: $./a.out

D.Srinivas, Asst. Professor,CSE Unit-1 Introduction to C Programming Language 7

Translators

⦁ A program written in high-level language is called as source code. To convert the source code
into machine code, translators are needed.

⦁ A translator takes a program written in source language as input and converts it into a program in
target language as output.

⦁ It also detects and reports the error during translation.

⦁ Roles of translator are:
⮩ Translating the high-level language program input into an equivalent machine language program.

⮩ Providing diagnostic messages wherever the programmer violates specification of the high-level language
program.

⦁ Different type of translators

⦁ The different types of translator are as follows:
⮩ Compiler

⮩ Interpreter

⮩ Assembler

8D.Srinivas, Asst. Professor,CSE Unit-1 Introduction to C Programming Language

Translators

⦁ Interpreter

⦁ Compiler
⮩ Compiler is a translator which is used to convert programs in high-level language to low-level language.

⮩ It translates the entire program and also reports the errors in source program encountered during the
translation.

Source Code Compiler Machine Code Output

Error Message

⮩ Interpreter is a translator which is used to convert programs in high-level language to low-level language.
Interpreter translates line by line and reports the error once it encountered during the translation process.

⮩ It directly executes the operations specified in the source program when the input is given by the user.

⮩ It gives better error diagnostics than a compiler.

Source Code Interpreter Output

Input

9D.Srinivas, Asst. Professor,CSE Unit-1 Introduction to C Programming Language

Translators

⦁ Assembler
⮩ Assembler is a translator which is used to translate the assembly language code into machine language code.

Symbolic Code Assembler Machine Code

10D.Srinivas, Asst. Professor,CSE Unit-1 Introduction to C Programming Language

1

1

Program Development

⦁ It is a multistep process that requires that:
⮩ 1. Understand the problem

⮩ 2. Develop Solution
 1. Structure Chart

 2. Algorithm / Pseudo code

 3. Flowchart

⮩ 3. Write the program

⮩ 4. Test the program

⦁ 1. Understand the Problem
⮩The first step in solving any problem is to understand it.

⮩To solve any problem first you must understand the problem by reading the requirements of the
problem.

⮩Once you understand it, review with user(customer) and system analyst.

D.Srinivas, Asst. Professor,CSE Unit-1 Cyber SecurityUnit-1 Introduction to C Programming Language 12

Program Development

⦁ 2. Develop the Solution
⮩ To develop a solution to a problem the following tools are needed.

1. Structure Chart:

⮩ It is also known as a hierarchy chart, shows the functional flow through your program.

⮩ It shows how the problem is broken into logical steps, each step will be a separate module.

⮩ It also shows the interaction between all the parts of your program.

⮩ It is like the architect’s blueprint.

The below two are used to design the individual parts of the program.

1. Algorithm / Pseudo Code

2. Flowchart

D.Srinivas, Asst. Professor,CSE Unit-1 Introduction to C Programming Language 13

Example Structure Chart

Buy a

Computer

DELL

LaptopDesktop

Print ReportCalculateGet

Configuration

HPDELLHP

D.Srinivas, Asst. Professor , CSE Unit-1 Introduction to C Programming Language 14

Algorithm

⦁ Algorithm: It is an ordered sequence of unambiguous and well-defined instructions
that performs some task and halts in finite time.

⦁ Let's examine the four parts of this definition more closely.

.

Performs some task

Halts in finite time: Algorithm must terminate at some point

Properties of an Algorithm:-

1. Ordered Sequence: You can number the step.

2. Unambiguous and well defined instructions: Each instruction should be clear,well understand.

3.

4.

🞂

1. Finiteness: An algorithm must terminate in a finite number ofsteps.

2. Definiteness: Each step of an algorithm must be precisely and unambiguously stated.

3. Effectiveness: Each step must be effective, and can be performed exactly in a finite amount of

time.

4. Generality: The algorithmmust be complete in itself.

5. Input/Output: Each algorithm must take zero, one or more inputs and produces one or more output.
D.Srinivas, Asst. Professor,CSE Unit-1 Introduction to C Programming Language 15

Algorithm

⦁ Three Categories of Algorithmic Operations

⮩An algorithm must have the ability to alter the order of its instructions. An instruction that alters the
order of an algorithmis called a control structure.

⦁ Three categories of an algorithmic operations:

1. Sequential operations: Instructions are executed in order

2. Conditional/Selection ("question asking") Operations: A control structure that asks a
true/false question and then selects the next instruction based on the answer.

3. Iterative Operations (loops): Acontrol structure that repeats the execution of a block of

instructions.

D.Srinivas, Asst. Professor,CSE Unit-1 Introduction to C Programming Language 16

Pseudo Code

⦁ Definition: English-like statements that follow a loosely defined syntax and are used to convey
the design of an algorithm.

⦁ Example1: To determine whether a student is passed or not

Pseudo Code:

1. If student's grade is greater than or equal to 60

1. Print "passed"

2. else

1. Print "failed"

Algorithm:

Begin

1. If grade >= 60

1. Print

"passed"

2. else

1. Print

"failed”

End

D.Srinivas, Asst. Professor,CSE Unit-1 Introduction to C Programming Language 17

Pseudo Code

⦁ Example 2: Write analgorithm to determine astudent’s final grade and indicate whether it is passing or
failing. The final grade is calculated as the average of four marks.

Pseudo Code:

1. Input set of 4 marks

2. Calculate their average by summing and
dividing by 4

3. if average is below 50

Print “FAIL”4.

5. else

6. Print “PASS”

Algorithm:

Begin

Step 1: Input M1,M2,M3,M4

Step 2: GRADE
(M1+M2+M3+M4)/4

if (GRADE < 50) then

Print “FAIL”

else

Print “PASS”

endif

Step 3:

Step 4:

Step 5:

Step 6:

Step 7:

End

D.Srinivas, Asst. Professor,CSE Unit-1 Introduction to C Programming Language 18

Flow chart

⦁ Flowchart: Pictorial representation of an algorithm is called flowchart.
or

⦁ Adiagram that uses graphic symbols to depict the nature and flow of the steps in a process.

D.Srinivas, Asst. Professor,CSE Unit-1 Introduction to C Programming Language
19

Flow chart

⦁ Example: Addition of two numbers Algorithm

Start

Accept a, b

c = a + b

Display C

Start:

Step 1: Read a, b values

Step 2: Sumof a,b

Step 3: Print “C”.

Stop:

D.Srinivas, Asst. Professor,CSE Unit-1 Introduction to C Programming Language

End

20

Flow chart

Algorithm

Start:

Step 1: Read no.

Step 2: If no is greater than equal zero, go
to step 4.

Step 3: Print no is a negative number, go to
step 5.

Step 4: Print no is a positive number.

Step 5: Stop.

Stop:

⦁ Example: Number is positive or negative

Start

Read

Is no >= 0

Print no is

Positive

Print no is

Negative

True False

D.Srinivas, Asst. Professor,CSE Unit-1 Introduction to C Programming Language

End

21

Flow chart

Is a>b
False

Print c is largest

⦁ Example: Largest number from3 numbers (Flowchart)

Start

True

Stop

Print b is largest

Read a, b, c

Is b>cIs a>c

Print c is largestPrint a is largest

True TrueFalse False

D.Srinivas, Asst. Professor,CSE Unit-1 Introduction to C Programming Language 22

Algorithm

⦁ Example: Largest number from3 numbers

(Algorithm)

Start:

Step 1: Read a, b, c.

Step 2: If a>b, go to step 5.

Step 3: If b>c, go to step 8.

Step 4: Print c is largest number, go to step 9.

Step 5: If a>c, go to step 7.

Step 6: Print c is largest number, go to step 9.

Step 7: Print a is largest number, go to step 9.

Step 8: Print b is largest number.

Stop:

D.Srinivas, Asst. Professor,CSE Unit-1 Introduction to C Programming Language 23

Flow chart

⦁ Example: Print 1 to 10 Algorithm

Is a<=10

Print a

Start

Stop

a=1

a=a+1

Start:

Step 1: Initialize a to 1.

Step 2: Print a.

Step 3: Repeat step 2 until a<=10.

Step 3.1: a=a+1.

Stop:

D.Srinivas, Asst. Professor,CSE Unit-1 Introduction to C Programming Language 24

Differences between Flowchart and Algorithm

Flowchart Algorithm

Flowchart is a pictorial or graphical representation of a

program.

Algorithm is a finite sequence of well

defined steps for solving a

problem.

It is drawn using various symbols. It is written in the natural language

like English.

Easy to understand. Difficult to understand.

Easy to show branching and looping. Difficult to show branching and looping.

Flowchart for big problem is impractical. Algorithm can be written for any problem.

D.Srinivas, Asst. Professor,CSE Unit-1 Introduction to C Programming Language 25

26

C History

⦁ ALGOL was the first computer language.

⦁ In 1967, Martin Richards developed a language called BCPL(Basic Combined
Programming Language) at University of Cambridge primarily, for writing system software.

⦁ In 1969, language B was developed by Ken Thompson.

⦁ ‘B’ was used to create early versions of UNIX operating system at Bell Laboratories.

⦁ In 1972, C was developed by Dennis M. Ritchie at Bell Labs(AT&T) in USA.

⦁ In 1988 C language was standardized by ANSI as ANSI C (ANSI-American National Standards
Institute).

⦁ UNIX operating system was coded almost entirely in C.

D.Srinivas, Asst. Professor,CSE Unit-1 Introduction to C Programming Language 27

C Features

The increasing popularity of C is due to its various features:

⦁ Robust: C is a robust language with rich set of built-in functions and operators to write any complex

programs.

⦁ C compilers combines the capabilities of low level languages with features of

high level language. Therefore it is suitable for writing the system software, application

software and most of the compilers of other languages also developed with C language.

⦁ Efficient and Fast: Programs written in C are efficient and fast. This is due to its variety of data

types.

⦁ Portable: C program written on one computer can also run on the other computer with small or no

modification.

Example: C program written in windows can also run on the Linux operating system.

⦁ Structured Programming: Every program in C language is divided into small modules or functions

so that it makes the program much simple, debugging, and also maintenance of the program is easy.

⦁ Ability to extend itself: A C program is basically a collection of various functions supported by

C library (also known as header files). We can also add our own functions to the C library.

These functions can be reused in other applications or programs.

D.Srinivas, Asst. Professor,CSE Unit-1 Introduction to C Programming Language 28

Structure of C Program
Include

information

about standard

library

Main calls

library function

printf to print

this message.

D.Srinivas, Asst. Professor,CSE Unit-1 Introduction to C Programming Language 29

Preprocessor directives

⦁ The preprocessor directives provide instructions to the preprocessor, to include functions from
the system library, to define the symbolic constants and macro.

⦁ The preprocessor command always starts with symbol #.

⦁ Example: #include<stdio.h>

⦁ Header file contains a collection of library files.

⦁ #include<stdio.h> includes the information about the standard input/output library.
⦁ The variables that are used in common by more than one function are called Global Variables and

are declared in global declaration section.

⦁ Every C program must have one main() function.All the statements of main are enclosed in braces.

⦁ The program execution begins at main() function and ends at closing brace of the main function.

⦁ C program can have any number of user-defined functions and they are generally placed
immediately after the main () function, although they may appear in any order.

D.Srinivas, Asst. Professor,CSE Unit-1 Introduction to C Programming Language 30

Preprocessor directives

⦁ All sections except the main () function may be absent when they are not required.

⦁ In the previous program, main() function returns an integer value to the operating system.

⦁ Each statement in C program must end with ; specifies that the instruction is ended.

⦁ A function can be called by it’s name, followed by a parenthesized list of arguments and

ended with semicolon.

⦁ In previous program main() function calls printf() function.
⦁ Example: printf(“Hello World!”);

D.Srinivas, Asst. Professor,CSE Unit-1 Introduction to C Programming Language 31

Comments

⦁ To make the program more readable use the comments.

⦁ They may used to make the program easier to understand.

⦁ Two types of comments
⮩ 1. Block comment

⮩ 2. Line comment

1.Block comment :

⮩ Any characters between /* and */ are ignored by the compiler.

⮩ Comments may appear anywhere in a program.

⮩ /* and */ is used to comment the multiple lines of code which is ignored by the compiler.

⮩ Nested block comments are invalid like /* /* */

⮩ Ex:/* Write a program to add two integer numbers */

2. Line comment

⮩ To comment a single line use two slashes //

int

a=10,b=20,c;

c=a+b;

// Variables declaration & initialization

// Adding two numbers

D.Srinivas, Asst. Professor,CSE Unit-1 Introduction to C Programming Language 32

C Token

⦁ In a passage of text, individual words and punctuation marks are called as tokens.

⦁ The compiler splits the program into individual units, are known as C tokens. C has six types of
tokens.

D.Srinivas, Asst. Professor,CSE Unit-1 Introduction to C Programming Language 33

C Token

⦁ Characters are used to form words, numbers and expressions.

⦁ Characters are categorized as

⮩ Letters

⮩ Digits

⮩ Special characters

⮩ White spaces.

⦁ Letters(26+26): (Upper Case and Lower Case) A B C
D E F G H I J K L M N O P Q R S T UV W X YZ a b c d e
f g h i j k l mn o p q r s t u v w x y z

⦁ Digits(10): 0 1 2 3 4 5 6 7 8 9

⦁ Special Characters(36):
’ " () * + -/ : = ! & $; < > % ? , . ˆ # @ ˜ ‘ { } [] \ |

⦁ White Spaces(5): Blank Space, Horizontal Space, Carriage Return, New Line.

D.Srinivas, Asst. Professor,CSE Unit-1 Introduction to C Programming Language 34

A. Identifiers

⦁ Identifiers are names given to various programming elements suchasvariables, constants, and
functions.

⦁ It should start with an alphabet or underscore, followed by the combinations of alphabets and
digits.

⦁ No special character is allowed except underscore.
⦁ An Identifier can be of arbitrarily long. Some implementation of C recognizes only the first 8

characters and some other recognize first 32 Characters.

⦁ The following are the rules for writing identifiers in C:
⮩ First character must be alphabetic character or underscore.
⮩ Must consist only of alphabetic characters, digits, or underscore.
⮩ Should not contain any special character, or white spaces.
⮩ Should not be C keywords.
⮩Case matters (that is, upper and lowercase letters). Thus, the namescount and Count

refer to two different identifiers.

D.Srinivas, Asst. Professor,CSE Unit-1 Introduction to C Programming Language 35

A. Identifiers Cont…

Identifier Legality

Percent Legal

y2x5 fg7h Legal

annual profit Illegal: Contains White space

_1990_tax Legal but not advised

savings#account Illegal: Contains the illegal character #

double Illegal: It is s a C keyword

9winter Illegal: First character is a digit

D.Srinivas, Asst. Professor,CSE Unit-1 Introduction to C Programming Language 36

Variables

⦁ Variable is a valid identifier which is used to store the value in the memory location, that value varies
during the program execution.

Types of variables:

⮩ Global Variables

⮩ Local Variables

⦁ Global Variable: The variables which are declared at the starting of the program are called as
global variable. They are visible to all the parts of the program.

⦁ Local Variable: The variables which are declared in a function are called local variables to that
function. These variables visible only within the function.

⦁ Variable Declaration & Definition:

A variable’s type can be any of the data types, such as character, integer or real except void.

⮩ Each variable in your program must be declared and defined.

⮩ In C, a declaration is used to namean object, such as a variable. Definitions are used to create the object.

⮩ Whenyou create variables, the declaration gives them a symbolic nameand the definition reserves memory for them.

⮩

⮩

⮩

C allows multiple variables of the same type to be defined in one statement.

Example: int a, b;

D.Srinivas, Asst. Professor,CSE Unit-1 Introduction to C Programming Language 37

VariableCont..

⦁ Variable Initialization:
⮩ You can initialize a variable at the same time that you declare it by including an initializer.

⮩ To initialize a variable when it is defined, the identifier is followed by the assignment operator and then the initializer.

⮩ Example: int count = 0;

⦁ When you want to process some information, you can save the values temporarily in variables.

Variable declaration and
definition:

Example: int a;

Variable declaration and

definition: Example: int a;

23456

a

1000

Variable name

Garbage value

Address of the variable

23456

Variable initialization:

datatype identifier = initial value;

Examples:

int a=10;

float b=2.1;

float pi=3.14;

char ch=‘A’;

D.Srinivas, Asst. Professor,CSE Unit-1 Introduction to C Programming Language 38

Variables Cont…

There are some restrictions on the variable names (same

as identifiers):
⮩ First character must be alphabetic character or underscore.

⮩ Must consist only of alphabetic characters, digits, or underscore.

⮩ Should not containany special character, or white spaces.

⮩ Should not be C keywords.

⮩ Case matters (that is, upper and lowercase letters).

⮩ Thus, the names count and Count refer to two different identifiers.

⦁ Note: Variables mustbe declared before they are used, usuallyat the beginning of the

function.

#include<stdio.h>

main()

{

int

a=10,b=20,c;

c=a+b;

printf(“sumof a and b=%d\n”,c);

return 0;

}
Variable Name Legality

annual_profit Legal

_1990_tax Legal but not advised

savings#account Illegal: Contains the illegal character #

double Illegal: It is a C keyword

D.Srinivas, Asst. Professor,CSE Unit-1 Introduction to C Programming Language 39

B.Keywords

⦁ C word is classified as either keywords or identifiers.

⦁ Keyword are reserved words or predefined words

⦁ Keywords have fixed meanings, these meanings cannot be changed.

⦁ Keywords must be in lowercase.

⦁ There are 32 keywords in C.

D.Srinivas, Asst. Professor,CSE Unit-1 Introduction to C Programming Language 40

C.Constants

⦁ Constants are data values that cannot be changed during the program execution.

⦁ Like variables, constants have a type.

⦁ Types of constants:

⮩ Boolean constants:

 A Boolean data type can take only two values true and false.

⮩ Character constants

 Single character constants

 string constants.

⮩ Numeric constants.

 integer constant

 real constants.

⦁ Type qualifier const
 One way to use the constant is with memory constants. Memory constants use a C type qualifier; const.

 This indicates that the data cannot be changed.

⮩ const type identifier= value;

⮩ const float pi=3.14;

D.Srinivas, Asst. Professor,CSE Unit-1 Introduction to C Programming Language 41

D. Strings

⦁ Single character constants
⮩ A single character constants are enclosed in single

quotes.

⮩ Example: ‘1’ ‘X’ ‘%’ ‘ ‘

⮩ Character constants have integer values called ASCII

values.

char ch=‘A’;
printf(“%d”,ch); Output: 65

similarly printf(“%c”,65) Output: A

⦁ String Constants
⮩ String is a collection of characters or sequence of characters enclosed in double quotes.

⮩ The characters may be letters, numbers, special characters and blank space.

⮩ Example: “JNTUH” “2011” “A”.

D.Srinivas, Asst. Professor,CSE Unit-1 Introduction to C Programming Language 42

Backslash \ escape characters

⦁ Backslash characters are used in output functions.

⦁ These backslash characters are preceded with the \ symbol.

⦁ Numeric Constants

⮩ integer constant:

 It is a sequence of digits that consists numbers from 0to 9.

⮩ Example: 23 -678 0 +78

Rules:

1. integer constant have at least one digit.

2. No decimal points.

3. No commas or blanks are allowed.

4. The allowable range for integer constant is -32768 to 32767.

constant meaning

‘\a’ Alert(bell)

‘\b’ Back space

‘\f ’ Form feed

‘\n’ New line

‘\r’ Carriage return

‘\v’ Vertical tab

‘\t’ Horizontal tab

‘\’ Single quote

‘\”’ Double quotes

‘\?’ Question mark

‘\\’ Backslash

‘\0’ null

D.Srinivas, Asst. Professor,CSE Unit-1 Introduction to C Programming Language 43

Constants Cont…

⮩ Real constants:

⮩ The numbers containing fractional parts like 3.14
⮩ Example: 1.9099 -0.89 +3.14

followed by the⦁ A number is written as the combination of the mantissa, which is
prefix e or E, and the exponent.

⮩ Example: Examples of real constants

87000000 = 8.7e7

- 550 = -5.5e2

0.00000000031 = 3.1e-10.

⮩ Real constants are also expressed in exponential notation.

Mantissa e exponent

Type Representation Value

double 0. 0.0

double 0.0 .0

float -2.0f -2.0

long double 3.14159276544L 3.14159276544

D.Srinivas, Asst. Professor,CSE Unit-1 Introduction to C Programming Language 44

Constants Cont…

⮩ Coding Constants:
⮩ Different ways to create constants.

⮩ Literal constants:

 A literal is an unnamed constant used to specify data.

 Example: a = b + 5;

⮩ Defined constants:

 By using the preprocessor command you can create a constant.

 Example: #define pi 3.14

⮩ Memory constants:

 Memory constants use a C type qualifier, const, to indicate that the data can not be changed.

 Its format is: const type identifier = value;

 Example: const float PI = 3.14159;

D.Srinivas, Asst. Professor,CSE Unit-1 Introduction to C Programming Language 45

E.Operators

⦁ Unary operators are used on a single operand (- -, +, ++, --)

⦁ Binary operators are used to apply in between two operands (+, -, /,*, %)

⦁ Conditional (or ternary) operatorcan be applied on threeoperands. (? :)

⦁ C supports a rich set of operators.

⦁ An operator is a symbol that tells the computer to perform mathematical or logical operations.

⦁ Operators are used in C to operate on data and variables.

expression

X=Y+Z

Operands: x, y, zOperators: =, +

D.Srinivas, Asst. Professor,CSE Unit-1 Introduction to C Programming Language 46

Operators Cont…

⦁ Types of Operators:

⦁ C operators can be classified into a number of categories.

⦁ They include:
⮩ Arithmetic Operators

⮩ Relational Operators

⮩ Logical Operators

⮩ Assignment Operator

⮩ Increment and Decrement Operators

⮩ Conditional Operators

⮩ Bitwise Operators

⮩ Special Operators

D.Srinivas, Asst. Professor,CSE Unit-1 Introduction to C Programming Language 47

1.Arithmetic Operators

⦁ Arithmetic operators are used for mathematical calculation.

⮩ Examples:

10 + 10 = 20

10.0 + 10.0= 20.0

10 + 10.0 = 20.0

14 / 3 = 4

(addition on integer numbers)

(addition on real numbers)

(mixed mode)

(ignores fractional part)

Operator Meaning Example Description

+ Addition a + b Addition of a and b

- Subtraction a – b Subtraction of b from a

* Multiplication a * b Multiplication of a and b

/ Division a / b Division of a by b

% Modulo division- remainder a % b Modulo of a by b

Syntax: operand1 arithmetic operator operand2

D.Srinivas, Asst. Professor,CSE Unit-1 Introduction to C Programming Language 48

2.Relational Operators

⦁ Relational operators are used to compare two numbers and taking decisions based on their
relation.

⦁ The value of a relational expression is either one or zero.

⦁ It is one if the specified relation is true and zero if the relation is false.

⦁ Relational operators are used by if , while and for statements.

Operator Meaning Example Description

< Is less than a < b a is less than b

<= Is less than or equal to a <= b a is less than or equal to b

> Is greater than a > b a is greater than b

>= Is greater than or equal to a >= b a is greater than or equal to b

== Is equal to a = b a is equal to b

!= Is not equal to a != b a is not equal to b

D.Srinivas, Asst. Professor,CSE Unit-1 Introduction to programming language

Syntax: operand1 relational operator operand2

49

3. Logical Operators

⦁ Logical operators are used to test more than one condition and make decisions.

⦁ Yields a value either one or zero.

Syntax: operand1 logical operator operand2

or

logical operator operand

Operator Meaning
&& Logical AND (true only if both the operands are true)

|| Logical OR (true if either one operand is true)

! Logical NOT (negate the operand)

a b a&&b a||b

0 0 0 0

0 1 0 1

1 0 0 1

1 1 1 1

a !a

0 1

1 0

D.Srinivas, Asst. Professor,CSE Unit-1 Introduction to C Programming Language

Example: (x<y) && (x= = 8)

50

4. Assignment Operators

Assignment operators are used to assign the result of an expression to a variable.

Assignment Operator is =

Syntax: variable = expression;

Types of assignment:

⮩ Single Assignment Ex: a = 10;

⮩ Multiple Assignment Ex: a=b=c=0;

⮩ Compound Assignment Ex: c = a +

b;
Operator Meaning Example Equivalent

+= Addition with assignment a +=5 a= a+5

-= Subtraction with assignment a –=6 a=a-6

*= Multiplication with assignment a *=5 a=a*5

/= Division with assignment a /=5 a=a/5

%= Remainder with assignment a %=5 a=a%5

D.Srinivas, Asst. Professor,CSE Unit-1 Introduction to C Programming Language

operand1 arithmetic assigntment operator operand2

51

5. Increment and Decrement Operators

⮩We can add or subtract 1 to or from variables by using increment (++) and decrement (--)
operators.

⮩The operator ++ adds 1 to the operand and the operator – – subtracts 1.

⮩ They can apply in two ways: postfix and prefix.

⮩Syntax: increment or decrement operator operand

operand increment or decrement operator

⮩ Prefix form: Variable is changed before expression is evaluated

⮩ Postfix form: Variable is changed after expression is evaluated.

Operator Meaning Example Equivalent

++ Prefix or Pre Increment ++i i=i+1; i+=1

++ Postfix or Post Increment i++ i=i+1; i+=1

-- Prefix or Pre Decrement --i i=i-1; i-=1

-- Postfix or Pot Decrement i-- i=i-1; i-=1

D.Srinivas, Asst. Professor,CSE Unit-1 Introduction to C Programming Language

Syntax: operand1 arithmetic assigntment operator operand2

52

5. Increment and Decrement Operators

Operator Description

Pre increment operator (++x) value of x is incremented before assigning it to the variable on the left

x=10;
p=++x;

Example

First increment value of
x by one then assign.

Explanation

x will be 11
p will be 11

Output

Operator Description

Post increment operator (x++) value of x is incremented after assigning it to the variable on the left

x=10;
p=x++;

Example

First assign value of x
then increment value.

Explanation

x will be 11
p will be 10

Output

D.Srinivas, Asst. Professor,CSE Unit-1 Introduction to C Programming Language 53

6. Conditional (ternary)Operators (?:)

⦁ C’s only conditional (or ternary) operator requires three operands.

Syntax: conditional expression? expression1: expression2;

⦁ The conditional expression is any expression that results in a true (nonzero) or false (zero).

⦁ If the result is true then expression1 executes, otherwise expression2 executes.

⦁ Example: a=1; b=2;
x = (a<b)?a:b;

This is like
if(a<b)

else
x=a;

x=b;

D.Srinivas, Asst. Professor,CSE Unit-1 Introduction to C Programming Language 54

7. Bitwise Operators

C has a special operator known as Bitwise operator for manipulation of data at bit level.

Bitwise operator may not be applied for float and double.Manipulates the data which is in binary form.

Syntax: operand1 bitwise operator operand2

 Examples: & Bitwise AND 0110 & 0011  0010

| Bitwise OR 0110 | 0011  0111

^ Bitwise XOR 0110 ^ 0011  0101

<< Left shift 01101110 << 2  10111000

>> Right shift 01101110 >> 3  00001101

~ One's complement ~0011  1100

Operator Meaning Example

& bitwise AND a & b

| bitwise OR a | b

^ bitwise exclusive OR a ^ b

<< shift left (shift left means multiply by 2) a<< 2

>> shift right (shift right means divide by 2) a>>2

A B A&B A|B A^B

0 0 0 0 0

0 1 0 1 1

1 0 0 1 1

1 1 1 1 0

D.Srinivas, Asst. Professor,CSE Unit-1 Introduction to C Programming Language 55

7. Bitwise Operators Cont…

Shift right:

>> is a binary operator that requires two integral operands. the first one is value to be shifted, the
second one specifies number of bits to be shifted.

The general formis as follows:

variable >> expression;

When bits are shifted right, the bits at the rightmost end are deleted.

Shift right operator divides by a power of 2. I.e. a>>n results in a/2n, where n is number of bits to be
shifted.

Example:
a=8; b=a>>1;

// assigns 4 after shift right operation

D.Srinivas, Asst. Professor,CSE Unit-1 Introduction to C Programming Language 56

7. Bitwise Operators Cont…

 Shift left:

 << is a binary operator that requires two integral operands. the first one is value to be shifted, the second one
specifies number of bits to be shifted.

 The general formis as follows:

variable << expression;

 When bits are shifted left, the bits at the leftmost end are deleted.

Exampl

e:

a=8;

b=a<<1; // assigns 16 after left shift operation

 Shift left operator multiply by a power of 2, a<<n results in a*2n, where n is number of bits to be shifted.

D.Srinivas, Asst. Professor,CSE Unit-1 Introduction to C Programming Language 57

8.Special Operators

comma operator :
 It doesn’t operate on data but allows more than one expression to appear on the same line.

Example: int i = 10, j = 20; printf (%d %.2f %c”, a,f,c);
j = (i = 12, i + 8); //i is assigned 12 added to 8 produces 20

sizeof Operator :
 It is a unary operator (operates on a single value).
 Produces a result that represent the size in bytes.

Syntax: sizeof(datatype);
Example: int a = 5; sizeof (a); //produces 2

sizeof(char); // produces 1
sizeof(int); // produces 2

Operator Meaning

& Address operator, it is used to determine address of the variable.

* Pointer operator, it is used to declare pointer variable and to get value from it.

, Comma operator. It is used to link the related expressions together.

sizeof It returns the number of bytes the operandoccupies.

. member selection operator, used in structure.

-> member selection operator, used in pointer to structure.

D.Srinivas, Asst. Professor,CSE Unit-1 Introduction to C Programming Language 58

Data types

⦁ Data types are used to indicate the type of value represented or stored in a variable, the
number of bytes to be reserved in memory, the range of values that can be represented
in memory,and the type of operation that can be performed on a particular data value.

⦁ ANSI C supports 3 categories of data types:
⮩ Built-in data types

⮩ Derived data types

⮩ User Defined data types

D.Srinivas, Asst. Professor,CSE Unit-1 Introduction to C Programming Language 59

Data types Cont…

⦁ Built-in data types:
⮩ Built-in data types are also known as primitive data types. C uses the

⮩ following primitive data types.

int

char

float

double

integer quantity

character (stores a single character)

floating point number

floating point number

⦁ 1.Integer data type:
⮩ An integer number (also called whole number) has no fractional part or decimal point.

⮩ The keyword int is used to specify an integer variable.

⮩ It occupies 2 bytes (16 bits) or 4 bytes (32 bits), depending on the machine architecture.

⮩ 16-bit integer can have values in the range of -32768 to 32767

⮩ One bit is used for sign.

D.Srinivas, Asst. Professor,CSE Unit-1 Introduction to C Programming Language 60

Data types Cont…

⦁ 2.void data type:
⮩ Defines an emptydata type which can then be associated with some data types. It is useful with pointers.

Integer

Types

sizeof (short) ≤ sizeof (int) ≤ sizeof (long) ≤ sizeof (long long)

D.Srinivas, Asst. Professor,CSE Unit-1 Introduction to C Programming Language 61

Data types Cont…

⦁ 3.Character Data Type :
⮩ The shortest data type is character.

⮩ The keyword char is used to declare a variable of a character type.

⮩ It is stored in 1 byte in memory.

⮩ Corresponding integer values for all characters are defined in ASCII (American Standard Code for

Information Interchange).

⮩ Example: character constant ‘a’ has an int value 97, ‘b’ has 98, ‘A’ has 65 etc.

⮩ Character can have values in the range of -128 to 127.

CharacterTypes

D.Srinivas, Asst. Professor,CSE Unit-1 Introduction to C Programming Language 62

Data types Cont…

⦁ 4. floating point data type:
⮩ The keyword float is used to declare a variable of the type float.

⮩ The float type variable is usually stored in 32 bits, with 6 digits of precision.

⮩ A float variable can have values in the range of 3.4E-38 to 3.4 E+38.

⦁ 5. double data type:
⮩ A floating point number can also be represented by the double data type.

⮩ The data type double is stored on most machines in 64 bits which is about 15 decimal places of accuracy.

⮩ To declare a variable of the type double, use the keyword double.

⮩ A double variable can have values in the range of 1.7E-308 to +1.7E+308.

sizeof (float) ≤ sizeof (double) ≤ sizeof (long double)

D.Srinivas, Asst. Professor,CSE Unit-1 Introduction to C Programming Language 63

Data types Cont…

⦁ Derived data types and User defined data types:
⮩ These are the combination of primitive data types. They are used to represent a collection of data.

⮩ They are:

 Arrays

 Pointers

 Structures

 Unions

 Enumeration

Note: Number of bytes and range given to each data type is platform dependent.

⦁ Type Modifiers:
⮩ The basic data types may have various modifiers (or qualifiers) preceding them, except type ‘void’.

⮩ Amodifier is used to alter the meaning of the base data type to fit the needs of various situations more precisely.
⮩ The modifiers signed, unsigned, long, short may be applied to integer base types.
⮩ The modifiers unsigned and signed may be applied to characters. The modifier long may also be applied

to double.

⮩ The difference between signed and unsigned integers is in the way high-order bit (sign bit) of the integer is
interpreted.

⮩ If sign bit is 0, then the number is positive; if it is 1, then the number is negative.

D.Srinivas, Asst. Professor,CSE Unit-1 Introduction to C Programming Language 64

Data types Cont…

type
size

(byte

)

smalle

st

numb

er

large

st

numb

er

precision constant
forma

t

specifi

er

long double 10 3.4E -4932 1.1E+4932 1.08E -19
1.2345L,

1.234E -5L
%Lf, %Le,

%Lg

double 8 1.7E -308 1.7E+308 2.22E -16
1.2345,

1.234E -5
%lf, %le,

%lg

float 4 1.7E -38 3.4E+38 1.19E -7
1.2345F,

1.234E -5F
%f, %e, %g

unsigned long 4 0 4294967295 123UL %lu

long 4 -2147483648 2147483647 123L %ld, %li

unsigned 4 0 4294967295 123U %u

int 4 -2147483648 2147483647 123 %d, %i

unsigned short 2 0 65535 123U %hu

short 2 -32768 32767 123 %hd, %hi

unsigned char 1 0 255 ’a’, 123, ’ \n’ %c

char 1 -128 or 0 127 or 255 ’a’, 123, ’ \n’ %c

D.Srinivas, Asst. Professor,CSE Unit-1 Introduction to C Programming Language 65

Precedence and Associativity

 Precedence is used to determine the order in which different operators in a complex expression are evaluated.

 Associativity is used to determine the order in which operators with the same precedence are valuated in
a complex expression.

 Every operator has a precedence.

 The operators which has higher precedence in the expression is
evaluated first.

Example: a=8+4*2;
a=?

D.Srinivas, Asst. Professor,CSE Unit-1 Introduction to C Programming Language 66

Precedence and Associativity

D.Srinivas, Asst. Professor,CSE Unit-1 Introduction to C Programming Language 67

Expression Evaluation

⦁ A side effect is an action that results from the evaluation of an expression.

⦁ For example, in an assignment, C first evaluates the expression on the right of the assignment operator and then
places the value in the left variable.

⦁ Changing the value of the left variable is a side effect.

Left-to-Right Associativity

Right-to-Left Associativity

D.Srinivas, Asst. Professor,CSE Unit-1 Introduction to C Programming Language 68

Expression

Expression

⮩An expression is a sequence of operands and operators that reduces to a single value.

⮩Expressions can be simple or complex.

⮩An operator is a syntactical token that requires an action be taken.

⮩An operand is an object on which an operation is performed; it receives an operator’s action.

Primary Expression:

⮩The most elementary type of expression is a primary expression.

⮩ It consists of only one operand with no operator.

⮩ In C, the operand in the primary expression can be a name, a constant,or a parenthesized

expression.

⮩ Name is any identifier for a variable, a function, or any other object in the language.

⮩The following are examples of primary expressions:

⮩Example: a price sum max

⮩ Literal Constants is a piece of data whose value can’t change during the execution of the program.

D.Srinivas, Asst. Professor,CSE Unit-1 Introduction to C Programming Language 69

Expression
The following are examples of literal constants used in primary expression:

Example: ‘A’ 56 98 12.34

 Any value enclosed in parentheses must be reduced in a single value is called as primary expression.

 The following are example of parentheses expression:

Example: (a*x + b) (a-b*c) (x+90)

Post fix expression:

It is an expression which contains operand followed by one

Example: a++;

operator. a--;

 The operand in a postfix expression must be a variable.

 (a++) has the same effect as (a = a + 1)

 If ++ is after the operand, as in a++, the increment takes place after the expression is

evaluated.

D.Srinivas, Asst. Professor,CSE Unit-1 Introduction to C Programming Language 70

Expression
In the following figure:

1. Value of the variable a is assigned to x

2. Value of the a is incremented by 1.

#include<stdio.h>

void main()

{

a=10;

x=a++;

printf(“x=%d, a=%d”,x,a);

}

Output:

x=10, a=11

D.Srinivas, Asst. Professor,CSE Unit-1 Introduction to C Programming Language 71

Expression
Pre fix expression:

⮩ It is an expression which contains operator followed by an operand.
⮩Example: ++a; --a;

⮩The operand of a prefix expression must be a variable.

⮩ (++a) has the same effect as (a = a + 1)

⮩ If ++ is before the operand, as in ++a, the increment takes place before the expression is

evaluated.

#include<stdio.h>

void main()
{

a=10;

x=++a;

printf(“x=%d, a=%d”,x,a);
}

Output:

x=11, a=11

D.Srinivas, Asst. Professor,CSE Unit-1 Introduction to C Programming Language 72

Expression
Unary expression:

⮩ It is an expression which consists of unary operator followed by the operand

Binary Expressions:

⮩In binary expression operator must be placed in between the two operands.

⮩Both operands of the modulo operator (%) must be integral types.

D.Srinivas, Asst. Professor,CSE Unit-1 Introduction to C Programming Language 73

Type conversion
⦁ Up to this point, we have assumed that all of our expressionsinvolved data of the same type.

⦁But, what happens when we write an expression that involves two different data types, such as multiplying

an integer and a floating-point number?

⦁ To perform these evaluations, one of the types mustbe converted.

⦁ Type Conversion: Conversion of one data type to another data type.

⦁ Type conversions are classified into:

⮩Implicit Type Conversion

⮩Explicit Type Conversion (Cast)

 Implicit Conversion:

In implicit type conversion, if the operands of an expression are of different types, the lower data type is

automatically converted to the higher data type before the operation evaluation.

 The result of the expression will be of higher data type.

The final result of an expression is converted to the type of the variable on the LHS of the assignment statement,

before assigning the value to it.

 Conversion during assignments:

char c = 'a‘; int i;

i = c; /* i is assigned by the ascii of ‘a’ */

D.Srinivas, Asst. Professor,CSE Unit-1 Introduction to C Programming Language 74

Type Conversion Cont…

⮩Arithmetic Conversion: If two operands of abinary operator are not the sametype, implicit conversion

occurs:
int i = 5 , j = 1;

float x = 1.0, y;

y = x / i;

y = j / i;

/* y = 1.0 / 5.0 */

/* y = 1 / 5 so y = 0 */

Explicit Conversion or Type Casting:
⮩In explicit type conversion, the user has to enforce the compiler to convert one data type to another data

type by using typecasting operator.

⮩This method of typecasting is done by prefixing the variable name with the data type enclosed

within parenthesis.

(data type) expression

⮩Where (data type) can be any valid C data type and expression is any variable, constant or a combination

of both.

⮩Example: int x;

x=(int)7.5;

D.Srinivas, Asst. Professor,CSE Unit-1 Introduction to C Programming Language 75

Type Conversion Cont…

Conversion Rank (C Promotion Rules)

D.Srinivas, Asst. Professor,CSE Unit-1 Introduction to C Programming Language 76

77

Computer

Statements
⮩ A statement causes an action to be performed by the program.

⮩ It translates directly into one or more executable computer instructions.

⮩ Generally statement is ended with semicolon.

⮩ Most statements need a semicolon at the end; some do not. Compound statements are used to group the
statements into a single executable unit.

⮩ It consists of one or more individual statements enclosed within the braces { }

D.Srinivas, Asst. Professor,CSE Unit-1 Introduction to C Programming Language 78

Decision Control Structures

The decision is described to the computer as a conditional statement that can be answered
either true or false.

If the answer is true, one or more action statements are executed.

If the answer is false, then a different action or set of actions is executed.

⦁ Types of decision control structures:
⮩ if

⮩ if..else

⮩ nested if…else

⮩ else if ladder

⮩ dangling else

⮩ switch statement

D.Srinivas, Asst. Professor,CSE Unit-1 Introduction to C Programming Language 79

Decision Control Statement: if..else

⮩ The expression or condition which is followed by if statement
must be enclosed in parenthesis.

⮩ No semicolon is needed for an if…else statement.

⮩ Both the true and false statements can be any statement (even
another if…else)

⮩ Multiple statements under if and else should be
enclosed between curly braces.

⮩ No need to enclose a single statement in curly braces.

⦁ The general formof a simple if statement is:

if (condition)
{
statement-block;

}
else
{
Statement-block;
}

⦁ Rules:

Enter

Condition

IF Statement

Exit

Example:

main()

{ int a=10,b=20;

if(a>b)

{printf(“%d”,a);}

else

{printf(“%d”,b);}

}

ELSE Statement

D.Srinivas, Asst. Professor,CSE Unit-1 Introduction to C Programming Language 80

Decision Control Statement: else if Ladder

⦁ Rules:
⮩ The conditions are evaluated from the top to

down.

⮩ As soon as a true condition is found the
statement associated with it is executed and
the control is transferred to the statement x
by skipping the rest of the ladder.

⮩ When all n conditions become false,final
else containing default_statementthat will
be executed

if (condition1)

statements1;

else if (condition2)

statements2;

else if (condition3)

statements3;

else if (condition4)

statements4;

……

else if(conditionn)

statementsn;

else

default_statement;

statement x;

D.Srinivas, Asst. Professor,CSE Unit-1 Introduction to C Programming Language 81

Dangling else

⦁else is always paired with the most recent unpaired if.

Dangling else Dangling else Solution

⦁To avoid dangling else problem place the inner if statement

with in the curly braces.

D.Srinivas, Asst. Professor,CSE Unit-1 Introduction to C Programming Language 82

Decision Control Statement: switch

⮩ It is a multi-way conditional statement generalizing the if…else statement.

⮩ It is a conditional control statement that allows some particular group of statements to be chosen
from several available groups.

⮩ A switch statement allows a single variable to be compared with several possible case labels, which are
represented by constant values.

⮩ If the variable matches with one of the constants, then an execution jump is made to that point.

⮩ A case label cannot appear more than once and there can only be one default expression.

⮩ Note: switch statement does not allow less than (<), greater than (>).

⮩ ONLY the equality operator (==) is used with a switch statement.

⮩ The control variable must be integral (int or char) only.

⮩ When the switch statement is encountered, the control variable is evaluated.

⮩ Then, if that evaluated value is equal to any of the values specified in a case clause, the statements
immediately following the colon (“:”) begin to run.

⮩ Default case is optional and if specified, default statements will be executed, if there is no match for the
case labels.

⮩ Once the program flow enters a case label, the statements associated with case have been executed, the
program flow continues with the statement for the next case. (if there is no break statement after case
label.)

D.Srinivas, Asst. Professor,CSE Unit-1 Introduction to C Programming Language 83

Decision Control Statement: switch

⦁ General format of switch:

⮩ If you want to execute only one case-label, C provides
break statement.

⮩ It causes the program to jump out of the switch
statement, that is go to the closing braces (}) and
continues the remaining code of the program.

⮩ If we add break to the last statement of the case, the
general formof switch case is as follows:

D.Srinivas, Asst. Professor,CSE Unit-1 Introduction to C Programming Language 84

Loops in C

⮩ C has three loop statements: the while, the for, and the do…while. The first two are pretest loops, and the
third is a post-test loop.

⮩ We can use all of them for event-controlled and counter-controlled loops.

⮩ A looping process, in general, would include the following four steps:

⮩ Before a loop start, the loop control variable must be initialized; this should be done before the first
execution of loop body.

⮩ Test for the specified condition for execution of the loop, known as loop control expression.

⮩ Executing the body of the loop, known as actions.

⮩ Updating the loop control variable for performing next condition checking.

D.Srinivas, Asst. Professor,CSE Unit-1 Introduction to C Programming Language 85

Loops in C

⦁ while
⮩ The "while" loop is a generalized looping structure that employs a variable or expression for testing the

condition.

⮩ It is a repetition statement that allows an action to be repeated while some conditions remain true.

⮩ The body of while statement can be a single statement or compound statements.

⮩ It doesn’t perform even a single operation if condition fails.

Compound while StatementThe while Statement

D.Srinivas, Asst. Professor,CSE Unit-1 Introduction to C Programming Language 86

Loops in C Cont…

Example 2: To print the reverse of the

given number.

void main()

{

int n, rem, rev = 0;

printf(“ Enter a positive number: ");

scanf("%d",&n);

while(n !=0)

{

rem= n%10;

rev = rev*10+rem;

n = n/10;

}

printf("The reverese of %d is %d",n,rev);

}

Example 1: To print 1 to 10 natural

numbers

#include<stdio.h>

main()

{

int i;

i=1;

while (i<=10)

{

printf(“%d”,i);

i++;

}

}

D.Srinivas, Asst. Professor,CSE Unit-1 Introduction to C Programming Language 87

Loops in C Cont…

⦁ do-while
⮩ The “do while" loop is a repetition statement that allows an action to be done at least once and then

condition is tested.

⮩ On reaching do statement, the program proceeds to evaluate the body of the loop first.

⮩ At the end of the loop, condition statement is evaluated.

⮩ If the condition is true, it evaluates the body of the loop once again.

⮩ This process continues up to the condition becomes false.

D.Srinivas, Asst. Professor,CSE Unit-1 Introduction to C Programming Language 88

Loops in C Cont…

Example 3: To print fibonacci sequence for

the given number.

#include<stdio.h>

main()

{

int

a=0,b=1,c,i;

i=1;

printf("%d%d",a,b)

; do

{

c=a+b;

i++;

printf("%3d",c);

a=b;

b=c;

}while(i<=10);

}

Example 4: To print multiplication

table for 5.

#include <stdio.h>

void main()

{

int

do

{

i = 1, n=5;

printf(“ %d * %d = %d “, n, i,

n*i); i = i + 1;

} while (i<= 5);

}

D.Srinivas, Asst. Professor,CSE Unit-1 Introduction to C Programming Language 89

Loops in C Cont…

⦁ for
⮩ A for loop is used when a loop is to be executed a known number of times.

⮩ We can do the same thing with a while loop, but the for loop is easier to read and more natural for counting
loops.

⮩ General formof the for is:

for(initialization; test-condition; updation)

{

Body of the loop

}

D.Srinivas, Asst. Professor,CSE Unit-1 Introduction to C Programming Language 90

Loops in C Cont…

⦁ Compare between while and for loops

D.Srinivas, Asst. Professor,CSE Unit-1 Introduction to C Programming Language 91

Loops in C Cont…

⮩ Option 3: The infinite loop

⮩ One of the most interesting uses of the for loop is the creation of the infinite loop. Since none of the three expressions
that form the for loop are required, it is possible to make an endless loop by leaving the conditional expression empty.

⮩ For example: for (; ;)

printf(“The loop will run forever\n”);

⮩ Actually the for (; ;) construct does not necessarily create an infinite loop because C’s break statement, when
encountered anywhere inside the body of a loop, causes immediate termination of the loop.

⮩ Program control then picks up the code following the loop, as shown here:

for (; ;)

{

/* get a character */ch = getchar();

if (ch = = ‘A’)

break ;

}

printf (“you typed anA”);

⮩ This loop will run untilA is typed at the keyboard.

D.Srinivas, Asst. Professor,CSE Unit-1 Introduction to C Programming Language 92

Loops in C Cont…

⮩ Option 3: For loop with no body

⮩ A statement, as defined by the C syntax, may be empty.

⮩ This means that the body of the for may also be empty.

⮩ This fact can be used to improve the efficiency of certain algorithms as well as to create time delay loops.

⮩ The following statement shows how to create a time delay loop using a for loop:

for (t = 0; t < SOME VALUE; t++);

⮩ The operator comma , is used to separate the more than one expressions.

⮩ A pair of expressions separated by a comma is evaluated left to right, and the type and value of the result are the type
and value of the right operand.

⮩ Thus, in a for statement, it is possible to place multiple expressions in the various parts.

D.Srinivas, Asst. Professor,CSE Unit-1 Introduction to C Programming Language 93

Others statements/Jumping Statements

⦁ 1. break
⮩ Whena break statement is enclosed inside a block or loop, the loop is immediately exited and program continues with the

next statement immediately following the loop.

⮩ When loop are nested break only exit from the inner loop containing it.

⮩ The format of the break statement is: Example 6: Program to

demonstrate break statement.

#include<stdio.h>

main()

{

int i;

i=1;

while(i<=10)

{

if(i==8)

break;

printf(“%d”,i);

i=i+1;

}

printf(“\nThanking You”);

}

D.Srinivas, Asst. Professor,CSE Unit-1 Introduction to C Programming Language 94

Others statements /Jumping Statements

⦁ 2. Continue
⮩ When a continue statement is enclosed inside a block or loop, the loop is to be continued with the next

iteration.

⮩ The continue statement tells the compiler, skip the following statements and continue with the next iteration.

⮩ The format of the continue statement is: Example 5: Program to

demonstrate continue

statement. #include<stdio.h>

main()

{

int i;

for(i=1;i<=5;i++)

{

if(i = = 3)

continue;

printf(" %d",i);

}

}

D.Srinivas, Asst. Professor,CSE Unit-1 Introduction to C Programming Language 95

Others statements/Jumping Statements

⦁ 3. goto
⮩ goto is an unconditional statement used to transfer the control from one statement to another statement in the

program.

⮩ Syntax:

Label: Statements; goto label;

⮩ The format of the gotostatement is:

Example 5: Program to

demonstrate goto statement.
#include <stdio.h>

void main()

{

int i;

clrscr();

for(i=1;i<=10;i++)

{

printf("%d ",

i); if(i==5)

goto end;

}

end:

printf("\nEnd of the program");

}

D.Srinivas, Asst. Professor,CSE Unit-1 Introduction to C Programming Language 96

Darshan Institute of Engineering & Technology, Rajkot

Thank

You

Programming for Problem Solving

(PPS)

D. SRINIVAS

Computer Science and Engineering Department

srinivascsedept@gmil.com

+91-9347556447
9

7

mailto:srinivascsedept@gmil.com

srinivascsedept@gmail.com

+91 9347556447

Department of CSE

Programming for ProblemSolving (PPS)

www.srinivas-materials.blogspot.com

98

mailto:srinivascsedept@gmail.com
http://www.srinivas-materials.blogspot.com/

🗸
Outline

• Arrays:
⮩one-and two-dimensional arrays,

⮩creating, accessing and manipulating elements of arrays.

• Strings:
⮩Introduction to strings,

⮩handling strings as array of characters,

⮩Basic string functions available in C (strlen, strcat, strcpy, strstr etc.),

⮩arrays of strings.

• Structures:
⮩Defining structures, initializing structures,

⮩unions,

⮩Array of structures

• Pointers:
⮩Idea of pointers, defining pointers,

⮩Pointers toArrays and Structures,

⮩Use of Pointers in self-referential structures,

⮩usage of self-referential structures in linked list (no implementation),

⮩Enumeration data type.

99

100

Arrays in C

⦁ How to create an array:
⮩ Creation of an consists two things: Element Type and Array Size.

⮩ Element Type: What kind of data an array can hold?

An array can hold any one of the following data:

integer, double, character data.

⮩ Array Size: How many elements an array can contain?

Once an array size is defined it cannotbe changed at run-time

⦁ Using arrays in C:
⮩ In C, arrays can be classified based on how the data items are arranged for human understanding. Arrays are

broadly classified into three categories,

1. One Dimensional Arrays

2.Two Dimensional Arrays

3. Multi Dimensional Arrays

D.Srinivas, Asst. Professor,CSE Unit-2 Arrays, Strings, Structures and Pointers 101

Arrays in C

⦁ One Dimensional Arrays:
⮩ One dimensional array is a linear list consisting of related and similar Data items.

⮩ In memory all the data items are stored in contiguous memory locations one after the other.

⮩ Syntax for declaring One Dimensional Arrays:

elementType arrayName[size];

⮩ Where elementType specifies data type of each element in the array,arrayName specifies name of the
variable you are declaring and size specifies number of elements allocated for this array.

⮩ To declare regular variables we just specify a data type and a unique name.

⮩ Example: int number;

⮩ To declare an array, we just add an array size.
Example:

Example:

int temp[5];

double stockprice[31];

//Creates an array of 5 integer elements.

//Creates an array of 31 double elements.

D.Srinivas, Asst. Professor,CSE Unit-2 Arrays, Strings, Structures and Pointers 102

Arrays in C

⦁ Initializing One Dimensional Arrays:
⮩ If array is not initialized it contain garbage values.

⮩ Types of array initializations:

Option 1: Initializing all memory locations

Option 2: Initialization without size Option

3: Partial array initialization

Option 4: Initializing an entire array with zero.

⦁ Option 1: Initializing all memory locations:
⮩ If you know all the data at compile time, you can specify all your data within brackets:

int temp [5] = {75, 79, 82, 70, 68};

⮩ During compilation, 5 contiguous memory locations are reserved by the compiler for the variable temp and
all these locations are initialized as shown below.

⮩ If the size of integer is 2 bytes, 10 bytes will be allocated for the variable temp.

D.Srinivas, Asst. Professor,CSE Unit-2 Arrays, Strings, Structures and Pointers 103

Arrays in C

⦁ Option 2: Initialization without size:
⮩ If you omit the size of an array, but specify an initial set of data, then the compiler will automatically

determine the size of an array.

int temp [] = {75, 79, 82, 70, 68};

⮩ In the above declaration, even though you have not specified exact number of elements to be used in array
temp, the array size will be set with the total number of initial values specified.

⮩ Here, the compiler creates an array of 5 elements. The array temp is initialized as shown below.

D.Srinivas, Asst. Professor,CSE Unit-2 Arrays, Strings, Structures and Pointers 104

Arrays in C

⦁ Option 3 Partial Array Initialization:
⮩ If the number of values to be initialized is less than the size of the array, then the elements are initialized in

the order from 0th location.

⮩ The remaining locations will be initialized to zero automatically.

int temp [5] = {75, 79, 82};

⮩ Even though compiler allocates 5 memory locations, using the above declaration statement, the compiler
initializes first three locations with 75, 70 and 82, and the next set of memory locations are automatically
initialized to 0’s by the compiler as shown below.

D.Srinivas, Asst. Professor,CSE Unit-2 Arrays, Strings, Structures and Pointers 105

Arrays in C

⦁ Option 4: Initializing an entire array with zero:
⮩ If you do not know any data ahead of time, but you want to initialize everything to 0, just use 0 within { }. For

example:

int temp [5] = {0};

⮩ This will initialize every element within the array to 0 as shown below.

⮩ Example:

int temp [5] = {5};

⮩ The first value is supplied in the first element memory location, remaining all elements are placed with zero.

D.Srinivas, Asst. Professor,CSE Unit-2 Arrays, Strings, Structures and Pointers 106

Arrays in C

⦁ Accessing elements of one dimensional array:
⮩ You know how to declare and initialize an array. Now lets understand, how to access an array elements.

⮩ To access an array element use name of the array with the subscript in brackets.

⮩ Suppose you have an array called temperature, for storing temperature in a year.

⮩ Then the subscripts would be 0,1,…,364.

⮩ For example to access temperature of fifth day:

temperature [4]

⮩ To assign or store the value 89 for the 150thday:

temperature [149] = 89

⮩ You can loop through the elements of an array by varying the subscript.

⮩ To set all of the values to 0, say

for(i=0;i<365;i++)
temperature[i] = 0;

D.Srinivas, Asst. Professor,CSE Unit-2 Arrays, Strings, Structures and Pointers 107

Arrays in C

⮩ You can not use assignment statement directly with arrays.

⮩ If a[] , b[] are two arrays then the assignment a=b is not valid.

⮩ C does not provide array bounds checking.

⮩ Hence, if you have

⮩ double stockPrice[5];

⮩ printf ("%d", stockPrice[10]);

⮩ This will compile, but you have overstepped the bounds of your array.

⮩ You may therefore get wrong value.

⮩ As we can see above, the 5th element of an array is accessed as

‘arr[5]‘.

⮩ Note that for an array declared as int arr[5].

⮩ The five values are represented as: arr[0] arr[1] arr[2] arr[3] arr[4] and

not arr[1] arr[2] arr[3] arr[4] arr[5]

⮩ The first element of array always has a subscript of ’0′.

//Example for accessing array elements.

#include<stdio.h> main()

{

int arr[10];

int i = 0;

for(i=0;i<sizeof(arr);i++)

{

arr[i] = i;

}

int j = arr[4];

printf(“Value at 5th location is: %d”,j);

}

D.Srinivas, Asst. Professor,CSE Unit-2 Arrays, Strings, Structures and Pointers 108

Arrays in C

//Program to calculate sum of all the array elements.

#include <stdio.h>

void main()

{

int a[10];

int i, size, total=0;

printf(“ Enter the size of the array : ");

scanf("%d", &size);

printf(“ Enter the elements of an array : ");

for (i = 0; i < size ; i++)

scanf("%d",&a[i]);

for (i = 0; i < size ; i++)

total += a[i];

printf(“Sumof all array elements: %d", total);

}

D.Srinivas, Asst. Professor,CSE Unit-2 Arrays, Strings, Structures and Pointers 109

Arrays in C

⦁ Two Dimensional Arrays:

⮩ Two-dimensional array are those type of array, which has finite number of rows and finite number of
columns.

⮩ An array of array is called a two-dimensional array and can be represented as a table with rows and
columns.

⮩ This is an array of size 3 names whose elements are

arrays of size 4.

⮩ Syntax:elementType arrayName [rowsize][columnsize];

D.Srinivas, Asst. Professor,CSE Unit-2 Arrays, Strings, Structures and Pointers

Two-dimensional Array representation

110

Arrays in C

⦁ The declaration form of 2-dimensional array is

elementType arrayName [row size][column size];

⮩ The elementType maybe any valid type supported by C.

⮩ The rule for giving the arrayName is same as the ordinary variable.

⮩ The row size and column size should be an individual constant.

⮩ The following declares a two-dimensional 3 by 3 array of integers and

sets the first and last elements to be 10.

int matrix [3][3];
matrix[0][0] = 10;
matrix[2][2] = 10;

⮩ In the declaration of two dimensional array the column size should be specified, so that it can arrange the
elements in the form of rows and columns.

⮩ Two-dimensional arrays in C are stored in "row-major format": the array is laid out contiguously, one row at a
time.

[0] [1] [2]

[0] 10

[1]

[2] 10

D.Srinivas, Asst. Professor,CSE Unit-2 Arrays, Strings, Structures and Pointers

Two-dimensional Array representation

111

Arrays in C

⦁ Initialization of Two Dimensional Arrays:

⮩ An array may be initialized at the time of declaration as follows:

char names [3][4] = {

{‘J’, 'o', 'h', 'n'},

{‘M’, 'a', 'r', 'y'},

{‘I’, 'v', 'a', 'n'}

};

⮩ An integer array may be initialized to all zeros as follows

int nums [3][4] = {0};

⮩ An integer array may be initialized to different values as follows

int nums [3][4] = {

{1,2,3,4},

{5,6,7,8},

{9,0,10,11}

};

D.Srinivas, Asst. Professor,CSE Unit-2 Arrays, Strings, Structures and Pointers 112

Arrays in C

⮩ To access an element of a 2D array, you need to specify both the row and the column:

printf ("%d", nums[1][2]); //Program to print sum of elements of a matrix.
/* Number of rows */

/* Number of columns */
#define M 3

#define N 4

main() {
int a [M] [N], i, j, sum= 0;

for (i = 0; i < M; ++i) {

for (j = 0; j < N, ++j){

scanf (%d”, &a [i] [j]);}

}

for (i = 0; i < M; ++i) {

for (j = 0; j < N, ++j) {

“, i, j, a[i] [j]);

printf(“a [%d] [%d] = %d

}

printf (“\n”);

}

for (i = 0; i < M; ++i) {

for (j = 0; j < N, ++j) {
sum+= a[i] [j];}

printf(“\nsum= %d\n\n”);

}

}

D.Srinivas, Asst. Professor,CSE Unit-2 Arrays, Strings, Structures and Pointers 113

Arrays in C

⦁ Multi Dimensional Arrays:

⮩ C allows three or more dimensions. The exact limit is determined by the compile.

⮩ The general formof multidimensional array is

elementType arrayName [s1][s2][s3]…[sm];

⮩ Where si is the size of the ith dimension.

⮩ Array declarations read right-to-left

⮩ For Example: int a[3][5][4];

⮩ It is represented as “an array of ten arrays of three arrays of two ints”

⮩ In memory the elements are stored as shown in below figure.

D.Srinivas, Asst. Professor,CSE Unit-2 Arrays, Strings, Structures and Pointers 114

Arrays in C

D.Srinivas, Asst. Professor,CSE Unit-1 Cyber SecurityD.Srinivas, Asst. Professor,CSE Unit-2 Arrays, Strings, Structures and Pointers

Example:

int table[3][5][4] = {

{

{000,001,002,003},

{010,011,012,013},

{020,021,022,023},

{030,031,032,033},

{040,041,032,043}

},

{

{100,101,102,103},

{110,111,112,113},

{120,121,122,123},

{ 130, 131, 132, 133

} ,

{140,141,142,143}

},{

{200,201,202,203},

{210,211,212,213},

{220,221,222,223},

{ 230, 231, 232, 233

} ,

{240,241,242,243}

}};
115

Arrays in C

⦁ Inter-function communication (Functions with Arrays):

 Like the values of variable, it is also possible to pass values of an array to a function.

There are two types of passing an array to the function:

 1. Passing Individual Elements

 2. Passing the whole array

⦁ 1. Passing Individual Elements:

void fun(int x)

{

}

int a;

fun(a);

int a[10];

fun(a[3]);

D.Srinivas, Asst. Professor,CSE Unit-2 Arrays, Strings, Structures and Pointers 116

Arrays in C

⦁ 2. Passing the whole array:

⮩ Topass anarray to a called function, it is sufficient to list the nameof the array, without anysubscripts, and the
size of the array as arguments.

⮩ For example, the function call findMax(a, n); will pass all the elements contained in the array a of size n.

⮩ The called function expecting this must be appropriately defined.

⮩ The findMax function header looks like: int findMax(int x[], int size)

⮩ The pair of brackets informs the compiler that the argument x is an array of numbers. It is not necessary to
specify the size of the array here.

⮩ The function prototype takes of the form

int findMax (int [], int);

int findMax (int a [], int);

D.Srinivas, Asst. Professor,CSE Unit-2 Arrays, Strings, Structures and Pointers 117

Arrays in C

//Program to read an array of elements and find max

value.

#include<stdio.h>

int findMax(int[],int);

void main()

{

int a[10], n ,i , max;

printf(“\n Enter the size of the array “);

scanf(“%d”,&n);

printf(‘\n Enter the elements of the array : “);

for(i=0;i<n;i++)

scanf(“%d”,&a[i]);

max=findMax(a, n);

printf(“\nThe Maximum value =%d”, max);

}

int findMax(int x[],int size)

{

int temp;

temp=x[0];

for(i=1;i<size; i++)

{

if(x[i]>temp)

{

temp=x[i];

}

}

return temp;

}

D.Srinivas, Asst. Professor,CSE Unit-2 Arrays, Strings, Structures and Pointers 118

1

1

Strings

⦁ Character Arrays and Strings:
⮩ String is a sequence of characters.

⮩ If ‘\0’ is present after a series of characters in an array, then that array becomes a string otherwise it is a
character array.

//This is an array

//This is a string

⮩ Example:

char arr[] = {'a', 'b', 'c'};

char arr[] = {'a', 'b', 'c', ‘\0’ };

⦁ Strings:
⮩ A C string is a variable-length array of characters that is delimited by the null character.

⮩ A string is a sequence of characters.

⮩ A string literal is enclosed in double quotes.

D.Srinivas, Asst. Professor,CSE Unit-2 Arrays, Strings, Structures and Pointers 120

Strings

⦁ Declaring And Initializing String Variables

⦁ Declaring a String:

⮩ A string variable is a valid C variable name and always declared as an array.

⮩ The general form of declaration of a string variable is,

char string name [size];

⮩ The size determines the number of characters in the string name.

⮩ When the compiler assigns a character string to a character array, it automatically supplies a null
character(‘\0’) at the end of the string.

⮩ The size should be equal to the maximum number of characters in the string plus one.

⦁ Initializing a String: This can be done in two ways.

1. char str1[7]=“Welcome”;

2. char str2[8]={‘W’,’e’,’l’,’c’,’o’,’m’,’e’,’\0’};

Storing Strings and Characters
D.Srinivas, Asst. Professor,CSE Unit-2 Arrays, Strings, Structures and Pointers 121

Arrays of Strings

⦁ Ragged arrays are very common with strings.

⦁ Consider, for example, the need to store the days of the week in their textual format.

⦁ We could create a two-dimensional array of seven days by ten characters, but this wastes space.

D.Srinivas, Asst. Professor,CSE Unit-2 Arrays, Strings, Structures and Pointers 122

Strings Munipulation Functions

⦁ TheC Library provides a rich set of string handling functions that are placed under the header
file <string.h> and <ctype.h>.

⮩ Some of the string handling functions are (string.h):

strlen() strcat() strcpy() strrchr()

strcmp() strstr() strchr() strrev()

⮩ Some of the string conversion functions are (ctype.h):

toupper() tolower() toascii()

⮩ All I/O functions are available in stdio.h

puts()scanf()

getchar()

printf() gets()

putchar()

D.Srinivas, Asst. Professor,CSE Unit-2 Arrays, Strings, Structures and Pointers 123

Strings Munipulation Functions

⦁ strlen () function:
⮩ This function countsandreturns the numberof characters in astring. It takes the form

Syantax: int n=strlen(string);

⮩ Where n is an integer variable, which receives the value of the length of the string. The counting ends at the first null
character.

⦁ strcat () function:
⮩ The strcat function joins two strings together.

⮩ It takes of the following form:

strcat(string1,string2);

⮩ string1 and string2 are character arrays.

⮩ When the function strcat is executed, string2 is appended to string1.

⮩ It does so by removing the null character at the end of string1 and placing string2 from there.

⮩ strcat function may also append a string constant to a string variable. The following is valid.

strcat(part1,”Good”);

⮩ C permits nesting of strcat functions.

⮩ Example:

strcat(strcat(string1,string2),string3);

D.Srinivas, Asst. Professor,CSE Unit-2 Arrays, Strings, Structures and Pointers 124

Strings Munipulation Functions

D.Srinivas, Asst. Professor,CSE Unit-2 Arrays, Strings, Structures and Pointers 125

Strings Munipulation Functions

⦁ strcmp () function:
⮩ The strcmp function compares two strings, it returns the value 0 if they are equal.

⮩ If they are not equal, it returns the numeric difference between the first non matching characters in the
strings.

⮩ It takes the following form:

strcmp(str1,str2);

⮩ returning value less than 0 means ''str1'' is less than ''str2'‘

⮩ returning value 0 means ''str1'' is equal to ''str2'‘

⮩ returning value greater than 0 means ''str1'' is greater than ''str2''

⮩ string1 and string2 may be string variables or string constants.

⮩ Example:

strcmp(name1,name2);

strcmp(name1,”John”);

strcmp(“their” ,”there”);

D.Srinivas, Asst. Professor,CSE Unit-2 Arrays, Strings, Structures and Pointers 126

Strings Munipulation Functions

D.Srinivas, Asst. Professor,CSE Unit-2 Arrays, Strings, Structures and Pointers 127

Strings Munipulation Functions

⦁ strcpy () function:
⮩ It copies the contents of one string to another string.It takes the following form:

strcpy(string1,string2);

⮩ The above function assign the contents of string2 to string1.

⮩ string2 may be a character array variable or a string constant.

⮩ Example: strcpy(city ,”Delhi”);

strcpy(city1,city2):

⦁ strrev() function:
⮩ Reverses the contents of the string. It takes of the form

strrev(string); Example:

#include<stdio.h>

#include<string.h>

void main()

{char s[]=”hello”;

strrev(s);

puts(s);

}

D.Srinivas, Asst. Professor,CSE Unit-2 Arrays, Strings, Structures and Pointers 128

Strings Munipulation Functions

D.Srinivas, Asst. Professor,CSE Unit-2 Arrays, Strings, Structures and Pointers 129

Strings Munipulation Functions

⦁ strstr () function:
⮩ It is a two-parameter function that can be used to locate a sub-string in a string.

⮩ It takes the form:

⮩ strstr (s1, s2);

⮩ Example: strstr (s1,”ABC”);

⮩ The function strstr searches the string s1 to see whether the string s2 is contained in s1.If yes, the function
returns the position of the first occurrence of the sub-string. Otherwise, it returns a NULLpointer.

⦁ strchr() function:
⮩ It is used to determine the existence of a character in a string.

⮩ Example: strchr (s1,’m’); //It locates the first occurrence of the character ‘m’.

⮩ Example: strrchr(s2,’m’); //It locates the last occurrence of the character ‘m’.

D.Srinivas, Asst. Professor,CSE Unit-2 Arrays, Strings, Structures and Pointers 130

Strings Munipulation Functions

D.Srinivas, Asst. Professor,CSE Unit-2 Arrays, Strings, Structures and Pointers 131

Strings Munipulation Functions

⦁ strcat () function:
⮩ It is used to join only two Strings at a time.

⮩ It takes the form:

⮩ strcat (s1, s2);

⮩ Example: strcat (s1,”CAT”);

D.Srinivas, Asst. Professor,CSE Unit-2 Arrays, Strings, Structures and Pointers 132

Strings Munipulation Functions

D.Srinivas, Asst. Professor,CSE Unit-2 Arrays, Strings, Structures and Pointers 133

Strings Munipulation Functions

⮩ The basic string span function, strspn, searches the string, spanning characters that are in the set and
stopping at the first character that is not in the set.

⮩ They return the number of characters that matched those in the set.
⮩ If no characters match those in the set, they return zero.
⮩ The function declaration is shown below:

int strspn(const char* str, const char* set);
⮩ The second function, strcspn, is string complement span; its functions stop
⮩ at the first character that matches one of the characters in the set.

int strcspn(const char* str, const char* ste);

String Span

D.Srinivas, Asst. Professor,CSE Unit-2 Arrays, Strings, Structures and Pointers 134

String Example program

/*Define functions- length of a string, copy, concatenate, convert into uppercase letters, compare two strings for
alphabetical order- over strings and implement in a program*/

#include<stdio.h>

#include<string.h>

#include<stdlib.h>

#include<ctype.h>

main() {

char str1[15],str2[15],str3[10];

int n,c,len,i;

printf("\n Enter the string1 ");

gets(str1);

puts(str1);

printf("\n Enter the string2 ");

gets(str2);

puts(str2);

printf("Enter the string 3 ");

scanf("%s",str3);

printf("%s",str3);

D.Srinivas, Asst. Professor,CSE Unit-2 Arrays, Strings, Structures and Pointers 135

String Example program

printf("\n***************************");

printf("\n 1. String Length ");

printf("\n 2. String Copy ");

printf("\n 3. String Comparison ");

printf("\n 4. String Concat ");

printf("\n 5. UpperCase ");

printf("\n***************************");

printf("\n Enter the choice u want to perform");

scanf("%d",&n);

switch(n)

{

case 1:

case 2:

case 3:

len=strlen(str1);

printf("\n The length of the string entered is %d",len);

break;

strcpy(str1,str2);

printf("\n 1st string =%s,2nd string=%s",str1,str2);

break;

c=strcmp(str1,str2);

if(c==0)

printf("\n Both are equal");

else

D.Srinivas, Asst. Professor,CSE Unit-2 Arrays, Strings, Structures and Pointers 136

String Example program

printf("\n Both are different");

break;

case 4:

printf("\n The resultant string is: %s",strcat(str1,str2))

break;
case 5:

for(i=0;i<strlen(str1);i++)

str1[i]=toupper(str1[i]);

printf("%s",str1);

break;

default: printf("\n Enter correct choice");
}

}

OUTPUT:

Enter the string1: abcd

abcd

Enter the string2: efgh

efgh

Enter the string3: pqr

pqr

1. String Length

2. String Copy

3. String Comparison

4. String Concat

5. UpperCase

Enter ur choice 4

The resultant string is: abcdefgh

D.Srinivas, Asst. Professor,CSE Unit-2 Arrays, Strings, Structures and Pointers 137

138

The Type Definition (typedef)

⦁ typedef :
⮩ A type definition, typedef, gives a name to a data type by creating a new type that can then be used anywhere

a type is permitted.

⮩ Its purpose is to redefine the name of an existing variable type.

⮩ Thegeneral syntax of the typedef is as follows,

typedef datatype IDENTIFIER;

⮩ where typedef is the keyword that tells the compiler about the type definition, data_type refers to an existing
data type and IDENTIFIER refers the “new” name given to the data type.

⮩ Note that using typedef, we are not creating new data types.

⮩ Instead we are creating only new name for the existing data type.

⮩ These new data type names are called user-defined data types.

D.Srinivas, Asst. Professor,CSE Unit-2 Arrays, Strings, Structures and Pointers 139

The Type Definition (typedef)

⦁ The general syntax of the typedef is as follows,

⦁ typedef datatype IDENTIFIER;

⦁ where typedef is the keyword that tells the compiler about the type definition, data_type refers to an existing data type

and IDENTIFIER refers the “new” namegiven to the data type.

⦁ Note that using typedef, we are not creating new data types.

⦁ Instead we are creating only new namefor the existing data type.

⦁ These new data type names are called user-defined data types.

⦁ Suppose we want to store marks scored in various subjects in variables sub1, sub2 and sub3. These variables can be

declared as follows,

int sub1, sub2, sub3;

⦁ Using the user-defined data types, the variables can be declared as shown below,

⦁ typedef int MARKS;

MARKS sub1, sub2, sub3;

D.Srinivas, Asst. Professor,CSE Unit-2 Arrays, Strings, Structures and Pointers 140

The Type Definition (typedef)

⦁ //Example program to demonstrate typedef

D.Srinivas, Asst. Professor,CSE Unit-2 Arrays, Strings, Structures and Pointers 141

What is Structure?

⦁ Structure is a collection of logically related data items of different datatypes grouped together
under single name.

⦁ Structure is a user defined datatype.

⦁ Structure helps to build a complex datatype which is more meaningful than an array.

⦁ But, an array holds similar datatype record, when structure holds different datatypes records.

⦁ Two fundamental aspects of Structure:
⮩ Declaration of Structure Variable

⮩ Accessing of Structure Member

D.Srinivas, Asst. Professor,CSE Unit-2 Arrays, Strings, Structures and Pointers 142

Syntax to Define Structure

⦁ To define a structure, we need to use struct keyword.

⦁ This keyword is reserved word in C language. We can only use it for structure and its object
declaration.

structure_name is name of custom type

memberN_declaration is individual member
declaration

⦁ Members can be normal variables, pointers, arrays or other structures.

⦁ Member names within the particular structure must be distinct from one another.

1 struct structure_name
2 {
3 member1_declaration;
4 member2_declaration;
5 . . .
6 memberN_declaration;
7 };

Syntax

D.Srinivas, Asst. Professor,CSE Unit-2 Arrays, Strings, Structures and Pointers 143

Create Structure variable

⦁ A data type defines various properties about data stored in memory.

⦁ To use any type we must declare its variable.

⦁ Hence, let us learn how to create our custom structure type objects also known as structure
variable.

⦁ In C programming, there are two ways to declare a structure variable:
1. Along with structure definition

2. After structure definition

D.Srinivas, Asst. Professor,CSE Unit-2 Arrays, Strings, Structures and Pointers 144

Create Structure Variable – Cont.

1. Declaration along with the structure definition

1 struct structure_name
2 {
3 member1_declaration;
4member2_declaration; 5

. . .
6 memberN_declaration;
7 } structure_variable;

1 struct student
2 {
3 char name[30]; // Student Name
4 int roll_no; // Student Roll No
5 float CPI; // Student CPI
6 int backlog; // Student Backlog
7 } student1;

ExampleSyntax

D.Srinivas, Asst. Professor,CSE Unit-2 Arrays, Strings, Structures and Pointers 145

Create Structure Variable – Cont.

2. Declaration after Structure definition

1 struct structure_name structure_variable;

1 struct student
2 {
3 char name[30]; // Student Name
4 int roll_no; // Student Roll No
5 float CPI; // Student CPI
6int backlog; // Student Backlog 7
};
8 struct student student1; // Declare structure variable

Example

Syntax

D.Srinivas, Asst. Professor,CSE Unit-2 Arrays, Strings, Structures and Pointers 146

Access Structure member (data)

⦁ Structure is a complex data type, we cannot assign any value directly to it using assignment
operator.

⦁ We must assign data to individual structure members separately.

⦁ C supports two operators to access structure members, using a structure variable.
1. Dot/period operator (.)

2. Arrow operator (->)

D.Srinivas, Asst. Professor,CSE Unit-2 Arrays, Strings, Structures and Pointers 147

Access Structure member (data) – Cont.

1. Dot/period operator (.)
⮩ It is known as member access operator. We use dot operator to access members of simple structure variable.

2. A
r

row operator (->)
ber from a pointer to structure variable using dot

⮩ We use arrow operator to access structure member frompointer to structure.

1 // Assign CPI of student1
2 student1.CPI = 7.46;

1 pointer_to_structure->member_name; 1 // Student1 is a pointer to student type
2 student1 -> CPI = 7.46;

Syntax

1 structure_variable.member_name;

⮩ In C language it is illegal to access a structure mem
operator.

Syntax

Example

Example

D.Srinivas, Asst. Professor,CSE Unit-2 Arrays, Strings, Structures and Pointers 148

printf("Student Backlog: %i\n", student1.backlog);

1 #include <stdio.h>
2struct student
3 {
4 char name[40]; // Student name
5 int roll; // Student enrollment
6 float CPI; // Student mobile number
7int backlog; 8

};
9 int main()

10 {
11 struct student student1; // Simple structure variable
12 // Input data in structure members using dot operator
13 printf("Enter Student Name:");
14 scanf("%s", student1.name);
15 printf("Enter Student Roll Number:");
16 scanf("%d", &student1.roll);
17 printf("Enter Student CPI:");
18 scanf("%f", &student1.CPI);
19 printf("Enter Student Backlog:");
20 scanf("%d", &student1.backlog);
21 // Display data in structure members using dot operator
22 printf("\nStudent using simple structure variable.\n");
23 printf("Student name: %s\n", student1.name);
24 printf("Student Enrollment: %d\n", student1.roll);
25 printf("Student CPI: %f\n", student1.CPI);
26
27 }

Enter Student Name:aaa
Enter Student Roll Number:111
Enter Student CPI:7.89
Enter Student Backlog:0

Student using simple structure variable.
Student name: aaa
Student Enrollment: 111
Student CPI: 7.890000
Student Backlog: 0

Program Output

Write a program to read and display student information

using structure.

D.Srinivas, Asst. Professor,CSE Unit-2 Arrays, Strings, Structures and Pointers 149

printf ("\nEnter Hours: ");
scanf ("%d",&t1.hours);
printf ("Enter Minutes: ");
scanf ("%d",&t1.minutes);
printf ("Enter Seconds: ");
scanf ("%d",&t1.seconds);
printf ("The Time is
%d:%d:%d",t1.hours,t1.minutes,t1.seconds);
//2nd time
printf ("\n\nEnter the 2nd time.");
printf ("\nEnter Hours: ");
scanf ("%d",&t2.hours);
printf ("Enter Minutes: ");
scanf ("%d",&t2.minutes);
printf ("Enter Seconds: ");

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

Enter 1st time.
Enter Hours: 1
Enter Minutes: 20
Enter Seconds: 20
The Time is 1:20:20

Enter the 2nd time.
Enter Hours: 2
Enter Minutes: 10
Enter Seconds: 10
The Time is 2:10:10
Sum of the two time's is 3:30:30

Program

1 #include<stdio.h>
2 struct time {
3 int hours;
4 int minutes;

Outp

ut

Write a program to declare time structure and read two different time period and display sum of it.

scanf ("%d",&t2.seconds);
printf ("The Time is
%d:%d:%d",t2.hours,t2.minutes,t2.secon
ds);

27
28
29
30

5 int seconds; 31 h = t1.hours + t2.hours;
6 }; 32 m = t1.minutes + t2.minutes;
7 int main() { 33 s = t1.seconds + t2.seconds;
8 struct time t1,t2; 34 printf ("\nSum of the two time's is
9 int h, m, s; 35 %d:%d:%d",h,m,s);

10 //1st time 36 return 0;
11 printf ("Enter 1st time."); 37 }

D.Srinivas, Asst. Professor,CSE Unit-2 Arrays, Strings, Structures and Pointers 150

Structure using Pointer

⦁ Reference/address of structure object is passed as function argument to the definition of function.

char name[20];
int rollno;
float cpi;

{
struct student *studPtr, stud1;
studPtr = &stud1;
printf("Enter Name: ");
scanf("%s", studPtr->name);
printf("Enter RollNo: ");
scanf("%d", &studPtr->rollno);
printf("Enter CPI: ");
scanf("%f", &studPtr->cpi);
printf("\nStudent Details:\n");
printf("Name: %s\n", studPtr->name);
printf("RollNo: %d", studPtr->rollno);
printf(”\nCPI: %f", studPtr->cpi);
return 0;

Enter Name: ABC
Enter RollNo: 121
Enter CPI: 7.46

Student Details:
Name: ABC
RollNo: 121
CPI: 7.460000

Program Output

1 #include <stdio.h>
2 struct student {
3
4
5
6 };
7 int main()
8
9

10
11
12
13
14
15
16
17
18
19
20
21

}22

D.Srinivas, Asst. Professor,CSE Unit-2 Arrays, Strings, Structures and Pointers 151

Nested Structure

⦁ When a structure contains another structure, it is called nested structure.

⦁ For example, we have two structures named Address and Student. To make Address nested to Student,
we have to define Address structure before and outside Student structure and create an object of
Address structure inside Student structure.

1 struct structure_name1
2 {
3 member1_declaration;
4 member2_declaration;
5 ...
6 memberN_declaration;
7 };
8 struct structure_name2
9 {

10 member1_declaration;
11 member2_declaration;
12 ...
13 struct structure1 obj;
14 };

Syntax

D.Srinivas, Asst. Professor,CSE Unit-2 Arrays, Strings, Structures and Pointers 152

struct Address Add;13
14 };
15 int main()
16 {
17 int i;
18 struct Student s;
19 printf("\n\tEnter Student Name : ");
20 scanf("%s",s.name);
21 printf("\n\tEnter Student Roll Number : ");
22 scanf("%d",&s.roll);
23 printf("\n\tEnter Student CPI : ");
24 scanf("%f",&s.cpi);
25 printf("\n\tEnter Student House No : ");
26 scanf("%s",s.Add.HouseNo);

Details of Students
Student Name : aaa
Student Roll Number : 111
Student CPI : 7.890000
Student House No : 39
Student City : rajkot
Student Pincode : 360001

Program

Output

Write a program to read and display student information using nested of structure.

1 #include<stdio.h> 27 printf("\n\tEnter Student City : ");
2 struct Address 28 scanf("%s",s.Add.City);
3 { 29 printf("\n\tEnter Student Pincode : ");
4 char HouseNo[25]; 30 scanf("%s",s.Add.PinCode);
5 char City[25]; 31 printf("\nDetails of Students");
6 char PinCode[25]; 32 printf("\n\tStudent Name : %s",s.name);
7 }; 33 printf("\n\tStudent Roll Number :
8 struct Student 34 %d",s.roll);
9 { 35 printf("\n\tStudent CPI : %f",s.cpi);

10 char name[25]; 36 printf("\n\tStudent House No :
11 int roll; 37 %s",s.Add.HouseNo);
12 float cpi; 38 printf("\n\tStudent City :

39 %s",s.Add.City);
40 printf("\n\tStudent Pincode :
41 %s",s.Add.PinCode);
42return 0;
43 }

D.Srinivas, Asst. Professor,CSE Unit-2 Arrays, Strings, Structures and Pointers 153

Array of Structure

⦁ It can be defined as the collection of multiple structure variables where each variable contains
information about different entities.

⦁ The array of structures in C are used to store information about multiple entities of different
data types.

1 struct structure_name
2 {
3 member1_declaration;
4member2_declaration; 5

...
6 memberN_declaration;
7 } structure_variable[size];

Syntax

D.Srinivas, Asst. Professor,CSE Unit-2 Arrays, Strings, Structures and Pointers 154

1 #include<stdio.h>
2 struct student {
3 char name[20];
4 int rollno;
5float cpi; 6

};
7 int main() {
8 int i,n;
9 printf("Enter how many records u want to store : ");

10 scanf("%d",&n);
11 struct student sarr[n];
12 for(i=0; i<n; i++)
13 {
14 printf("\nEnter %d record : \n",i+1);
15 printf("Enter Name : ");
16 scanf("%s",sarr[i].name);
17 printf("Enter RollNo. : ");
18 scanf("%d",&sarr[i].rollno);
19 printf("Enter CPI : ");
20scanf("%f",&sarr[i].cpi); 21 }
22 printf("\n\tName\tRollNo\tMarks\t\n");
23 for(i=0; i<n; i++) {
24 printf("\t%s\t\t%d\t\t%.2f\t\n", sarr[i].name,
25sarr[i].rollno, sarr[i].cpi); 26 }
27 return 0;
28 }

Enter how many records u want to store : 3

Enter 1 record :
Enter Name : aaa
Enter RollNo. : 111
Enter CPI : 7.89

Enter 2 record :
Enter Name : bbb
Enter RollNo. : 222
Enter CPI : 7.85

Enter 3 record :
Enter Name : ccc
Enter RollNo. : 333
Enter CPI : 8.56

Name
aaa
bbb
ccc

RollNo Marks
111 7.89
222 7.85
333 8.56

Program

Output

Write a program to read and display N student information using array of structure.

D.Srinivas, Asst. Professor,CSE Unit-2 Arrays, Strings, Structures and Pointers 155

1 #include<stdio.h>
2 struct Time {
3 int hours;
4 int minutes;
5int seconds; 6

};
7 struct Time input(); // function declaration
8int main()
9 {

10 struct Time t;
11 t=input();
12 printf("Hours : Minutes : Seconds\n %d : %d :
13 %d",t.hours,t.minutes,t.seconds);
14return 0; 15 }
16 struct Time input() // function definition

17 {
18 struct Time tt;
19 printf ("Enter Hours: ");
20 scanf ("%d",&tt.hours);
21 printf ("Enter Minutes: ");
22 scanf ("%d",&tt.minutes);
23 printf ("Enter Seconds: ");
24 scanf ("%d",&tt.seconds);
25return tt; // return structure variable 26 }

Enter Hours: 1
Enter Minutes: 20
Enter Seconds: 20
Hours : Minutes : Seconds
1 : 20 : 20

Output

Write a program to declare time structure and read two different time period and display sum of it using function.

Program

D.Srinivas, Asst. Professor,CSE Unit-2 Arrays, Strings, Structures and Pointers 1871

5

Unions

1 union structure_name1
2 {
3 member1_declaration;
4 member2_declaration;
5 ...
6 memberN_declaration;
7 };
8 union structure_name2
9 {

10 member1_declaration;
11 member2_declaration;
12 ...
13 union structure1 obj;
14 };

⮩ Union can be defined as a user-defined data type which is a collection of different variables of different data
types in the same memory location.

⮩ The union can also be defined as many members, but only one member can contain a value at a particular
point in time.

⮩ Union is a user-defined data type, but unlike structures, they share the same memory location.

Syntax

D.Srinivas, Asst. Professor,CSE Unit-2 Arrays, Strings, Structures and Pointers 157

Unions

⦁ Access members of a union
⮩ We use the . operator to access members of a union.

⮩ And to access pointer variables, we use the -> operator..
In the above example,

⮩ To access price for car1, car1.price is used.

⮩ To access price using car3, either (*car3).price or car3->price can be used.

1 union car
2 {
3 char name[50];
4 int price;
5 } car1, car2, *car3;

Syntax

D.Srinivas, Asst. Professor,CSE Unit-2 Arrays, Strings, Structures and Pointers 158

Difference between unions and structures

⦁ differences between structures and unions

⮩ Here, the size of sJob is 40 bytes because

 the size of name[32] is 32 bytes

 the size of salary is 4 bytes

 the size of workerNo is 4 bytes

1 #include <stdio.h>
2union unionJob
3 {
4 char name[32];
5 float salary;
6 int workerNo;
7} uJob;
8
9 struct structJob

10 {
11 char name[32];
12 float salary;
13 int workerNo;
14 } sJob;
15void main()
16 {
17 printf("size of union = %d bytes",
18 sizeof(uJob));
19 printf("\nsize of structure = %d
20bytes", sizeof(sJob));
21 }

Program

size of union = 32
size of structure = 40

Output

D.Srinivas, Asst. Professor,CSE Unit-2 Arrays, Strings, Structures and Pointers 159

Differences between Structures and Unions

D.Srinivas, Asst. Professor,CSE Unit-2 Arrays, Strings, Structures and Pointers 160

1

6

What is Pointer?

⦁ A normal variable is used to store value.

⦁ A pointer is a variable that store address / reference of another variable.

⦁ Pointer is derived data type in C language.

⦁ A pointer contains the memory address of that variable as their value. Pointers are also
called address variables because they contain the addresses of other variables.

D.Srinivas, Asst. Professor,CSE Unit-2 Arrays, Strings, Structures and Pointers 162

Advantages and Disdvantages of pointers :

⦁ Advantages (Benefits) of pointers :
⮩ Pointers provide direct access to memory

⮩ Pointers provide a way to return more than one value to the functions

⮩ Reduces the storage space and complexity of the program

⮩ Reduces the execution time of the program

⮩ Provides an alternate way to access array elements

⮩ Pointers can be used to pass information back and forth between the calling function and called function.

⮩ Pointers allows us to perform dynamic memoryallocation and deallocation.

⮩ Pointers helps us to build complex data structures like linked list, stack, queues, trees, graphs etc.

⮩ Pointers allows us to resize the dynamically allocated memory block.

⮩ Addresses of objects can be extracted using pointers

⦁ Disadvantages (Drawbacks) of pointers :
⮩ Uninitialized pointers might cause segmentation fault.

⮩ Dynamically allocated block needs to be freed explicitly. Otherwise, it would lead to memory leak.

⮩ Pointers are slower than normal variables.

⮩ If pointers are updated with incorrect values, it might lead to memorycorruption.

D.Srinivas, Asst. Professor,CSE Unit-2 Arrays, Strings, Structures and Pointers 163

Declaration & Initialization of Pointer

⦁ p is integer pointer variable

⦁ & is address of or referencing operator which returns memory address of variable.

⦁ * is indirection or dereferencing operator which returns value stored at that memory address.

⦁ & operator is the inverse of * operator

⦁ x = a is same as x = *(&a)

1 datatype *ptr_variablename;

Syntax

1 void main()
2 {
3 int a=10, *p; // assign memory address of a
4 to pointer variable p
5 p = &a;
6 printf("%d %d %d", a, *p, p);
7 }

Example

Variabl

e

Valu

e

Addre

ss

a 10 500

0

500

0

p

504

8

10 10 5000

Output

D.Srinivas, Asst. Professor,CSE Unit-2 Arrays, Strings, Structures and Pointers 164

Why use Pointer?

⦁ C uses pointers to create dynamic data structures, data structures built up from blocks of
memory allocated from the heap at run-time. Example linked list, tree, etc.

⦁ C uses pointers to handle variable parameters passed to functions.

⦁ Pointers in C provide an alternative way to access information stored in arrays.

⦁ Pointer use in system level programming where memory addresses are useful. For example
shared memory used by multiple threads.

⦁ Pointers are used for file handling.

⦁ This is the reason why C is versatile.

D.Srinivas, Asst. Professor,CSE Unit-2 Arrays, Strings, Structures and Pointers 165

Pointer to Pointer – Double Pointer

⦁ Pointer holds the address of another variable of same type.

⦁ When a pointer holds the address of another pointer then such type of pointer is known
as pointer-to-pointer or double pointer.

⦁ The first pointer contains the address of the second pointer, which points to the location that
contains the actual value.

1 datatype **ptr_variablename;

Syntax
Point

er

Point

er

Variabl

e

addre

ss

addre

ss

valu

e

1 int **ptr;

Example

D.Srinivas, Asst. Professor,CSE Unit-2 Arrays, Strings, Structures and Pointers 166

1 #include <stdio.h>
2 int main () {
3 int var;
4 int *ptr;
5 int **pptr;
6 var = 3000;
7 ptr = &var; // address of var
8 pptr = &ptr; // address of ptr using address of operator &
9 printf("Value of var = %d\n", var);

10 printf("Value available at *ptr = %d\n", *ptr);
11 printf("Value available at **pptr = %d\n", **pptr);
12return 0; 13 }

Value of var = 3000
Value available at *ptr = 3000
Value available at **pptr = 3000

Program

Output

Write a program to print variable, address of pointer variable and pointer to pointer variable.

D.Srinivas, Asst. Professor,CSE Unit-2 Arrays, Strings, Structures and Pointers 167

Relation between Array & Pointer

⦁ Whenwe declare an array, compiler allocates continuous blocks of memoryso that all the
elements of an array can be stored in that memory.

⦁ The address of first allocated byte or the address of first element is assigned to an array name.

⦁ Thus array name works as pointer variable.

⦁ The address of first element is also known as base address.

D.Srinivas, Asst. Professor,CSE Unit-2 Arrays, Strings, Structures and Pointers 168

Relation between Array & Pointer – Cont.

⦁ Example: int a[10], *p;

⦁ a[0] is same as *(a+0), a[2] is same as *(a+2) and a[i] is same as

*(a+i)

a[0]

a[1]

.

.

.

.

a[i]

.

.

.

.

a[9]

*(a+0)

*(a+1)

.

.

.

.

*(a+i)

.

.

.

.

*(a+9)

a: a:

a+1:

a+i:

a+9:

2000

2002

2000 + i*2

2018

D.Srinivas, Asst. Professor,CSE Unit-2 Arrays, Strings, Structures and Pointers 169

Array of Pointer

⦁ As we have an array of char, int, float etc, same way we can have an array of pointer.

⦁ Individual elements of an array will store the address values.

⦁ So, anarray is acollection of values of similar type. It can also be acollection of references of
similar type known by single name.

1 datatype *name[size];

Syntax

1 int *ptr[5]; //declares an array of integer pointer of size 5

Example

D.Srinivas, Asst. Professor,CSE Unit-2 Arrays, Strings, Structures and Pointers 170

Array of Pointer – Cont.

⦁ An array of pointers ptr can be used to point to different rows of matrix as follow:

⦁ By dynamic memory allocation, we do not require to declare two-dimensional array, it can be
created dynamically using array of pointers.

1 for(i=0; i<5; i++)
2 {
3 ptr[i]=&mat[i][0];
4 }

Example

ptr[0]

ptr[1]

ptr[2]

ptr[3]

ptr[4]

ptr 0 1 2

D.Srinivas, Asst. Professor,CSE Unit-2 Arrays, Strings, Structures and Pointers 171

Enter value of num1 and num2: 5
10
Before Swapping: num1 is: 5, num2 is: 10
After Swapping: num1 is: 10, num2 is: 5

Program

1 int main()
2 {
3 int num1,num2;
4 printf("Enter value of num1 and num2: ");
5scanf("%d %d",&num1, &num2); 6
7 //displaying numbers before swapping
8printf("Before Swapping: num1 is: %d, num2 is: %d\n",num1,num2); 9

10 //calling the user defined function swap()
11swap(&num1,&num2); 12
13 //displaying numbers after swapping
14 printf("After Swapping: num1 is: %d, num2 is: %d\n",num1,num2);
15return 0; 16

}

Output

Write a program to swap value of two variables using pointer / call by reference.

D.Srinivas, Asst. Professor,CSE Unit-2 Arrays, Strings, Structures and Pointers 172

Pointer and Function

⦁ Like normal variable, pointer variable can be passed as function argument and function can
return pointer as well.

⦁ There are two approaches to passing argument to a function:
⮩ Call by value

⮩ Call by reference / address

D.Srinivas, Asst. Professor,CSE Unit-2 Arrays, Strings, Structures and Pointers 173

Call by Value

⦁ In this approach, the values are passed as function argument to the definition of function.

1 #include<stdio.h>
2 void fun(int,int);
3int main()
4 {
5 int A=10,B=20;
6 printf("\nValues before calling %d, %d",A,B);
7 fun(A,B);
8 printf("\nValues after calling %d, %d",A,B);
9return 0; 10 }
11 void fun(int X,int Y)
12 {
13 X=11;
14 Y=22;
15 }

Values before calling 10, 20
Values after calling 10, 20

Program Output

10 20

A B Y

Addre

ss
Valu

e

Variabl

e

48252 24688

10 11 2022

X

D.Srinivas, Asst. Professor,CSE Unit-2 Arrays, Strings, Structures and Pointers 174

Call by Reference / Address

⦁ In this approach, the references / addresses are passed as function argument to the definition
of function.

1 #include<stdio.h>
2 void fun(int*,int*);
3int main()
4 {
5 int A=10,B=20;
6 printf("\nValues before calling %d, %d",A,B);
7 fun(&A,&B);
8 printf("\nValues after calling %d, %d",A,B);
9return 0; 10 }
11 void fun(int *X,int *Y)
12 {
13 *X=11;
14 *Y=22;
15 }

Values before calling 10, 20
Values after calling 11, 22

Program
Output

48252 24688

A B *Y

Addre

ss
Valu

e

Variabl

e

48252 24688

*X

1011 20 22

D.Srinivas, Asst. Professor,CSE Unit-2 Arrays, Strings, Structures and Pointers 175

Pointer to Function

⦁ Every function has reference or address, and if we know the reference or address of function,
we can access the function using its reference or address.

⦁ This is the way of accessing function using pointer.

⦁ return-type: Type of value function will return.

⦁ argument list: Represents the type and number of value function will take, values are sent by
the calling statement.

⦁ (*ptr-function): The parentheses around *ptr-function tells the compiler that it is pointer to
function.

⦁ If we write *ptr-function without parentheses then it tells the compiler that ptr-function is a
function that will return a pointer.

1 return-type (*ptr-function)(argument list);

Syntax

D.Srinivas, Asst. Professor,CSE Unit-2 Arrays, Strings, Structures and Pointers 176

1 #include<stdio.h>
2 int Sum(int,int);
3 int (*ptr)(int,int);
4int main()
5 {
6 int a,b,rt;
7 printf("\nEnter 1st number : ");
8 scanf("%d",&a);
9 printf("\nEnter 2nd number : ");

10 scanf("%d",&b);
11 ptr = Sum;
12 rt = (*ptr)(a,b);
13 printf("\nThe sum is : %d",rt);
14return 0; 15 }
16 int Sum(int x,int y)
17 {
18 return x + y;
19 }

Enter 1st number : 5

Enter 2nd number : 10

The sum is : 15

Program

Output

Write a program to sum of two numbers using pointer to function.

D.Srinivas, Asst. Professor,CSE Unit-2 Arrays, Strings, Structures and Pointers 177

Enumerated Types

⦁ Enum:
⮩ The enumerated type is a user-defined type based on the standard integer type.

⮩ In an enumerated type, each integer value is given an identifier called an enumeration constant.

⮩ Declaring an Enumerated Type:

⮩ To declare an enumerated type, we mustdeclare its identifier and its values. Because it is derived from
integer type, its operations are the same as for integers.

⮩ Syntax for defining an enumerated type is as follows,

enumtypeName

{

member1;

member2;

….

….

};

⮩ Where enum is the keyword that tells the compiler about enumerated type definition, enum type_Name
together represent the user defined data type and member1, member2… are integer constants but
represented using descriptive names. These are called enumerator constants or enumerators.

D.Srinivas, Asst. Professor,CSE Unit-2 Arrays, Strings, Structures and Pointers 178

Enumerated Types

⦁ Enum:
⮩ The definition is terminated with a semicolon.

⮩ The syntax for declaring the variables are shown below:

enum typeName var;

Following are some of the examples of

enumerator type:
enumcolor

{

RED,

BLUE,

GREE

N

};

enumcolor c1, c2;

enumdays

{

SUNDAY,

MONDAY

,
…

SATURDA

Y

} d1;

D.Srinivas, Asst. Professor,CSE Unit-2 Arrays, Strings, Structures and Pointers 179

Enumerated Types

⦁ Assigning Values to Enumerated Types
⮩ After an enumerated variable has been declared, we can store values in it.

⮩ While, the compiler automatically assigns values to enumerated types starting with 0, the next values are
initialized with a value by adding 1 to previous value.

⮩ For example,

enum color {RED, BLUE, GREEN, WHITE};

⮩ Here red representing the value 0, blue is 1, green is 2, white is 3.

⮩ You can also create variables from the enumerated type.

⮩ For example, enum color skyColor;

⮩ We can override it and assign our own values.

⮩ For example, to make JAN start with 1 we could use the following declaration.

⮩ enum month

{
JAN=1, FEB, MAR, APR, MAY,JUN, JUL, AUG, SEP, OCT, NOV, DEC

}m1;

⮩ Note that we need not to assign every enumerator constant value. If we omit the initializes, the complier assigns the next
value by adding 1.

D.Srinivas, Asst. Professor,CSE Unit-2 Arrays, Strings, Structures and Pointers 180

Enumerated Types

⦁ Assigning Values to Enumerated

Types
⮩ Consider the following enumerated declaration,

enum days

{

sun=3, mon, tue, wed=0, thu, fri, sat

} d1, d2;

//Example program to demonstrate enum

#include<stdio.h> main()

{

enumcolor

{

RED,

GREEN,

BLUE

}c1;

printf("%d%d%d",RED,GREEN,BLUE);

c1 = BLUE;

printf("\n%d",c1);

}1 2

Output:

0

2

D.Srinivas, Asst. Professor,CSE Unit-2 Arrays, Strings, Structures and Pointers 181

Darshan Institute of Engineering & Technology, Rajkot

Thank

You

Programming for Problem Solving

(PPS)

D. SRINIVAS

Computer Science and Engineering Department

srinivascsedept@gmil.com

+91-9347556447
182

mailto:srinivascsedept@gmil.com

srinivascsedept@gmail.com

+91 9347556447

Department of CSE

Programming for ProblemSolving (PPS)

www.srinivas-materials.blogspot.com

183

UNIT-3

mailto:srinivascsedept@gmail.com
http://www.srinivas-materials.blogspot.com/

🗸 Outline

• Functions:
⮩Designing structured programs,

⮩Declaring a function, Signature of a function,

⮩Parameters and return type of a function,

⮩passing parameters to functions,

⮩call by value Passing arrays to functions,

⮩passing pointers to functions, idea of call by reference,

⮩Some C standard functions and libraries

• Recursion:
⮩Simple programs,

⮩such as Finding Factorial,

⮩Fibonacci series etc.,

⮩Limitations of Recursive functions

• Dynamic memory allocation:
⮩Allocating and freeing memory,

⮩Allocating memory for arrays of different datatypes.

184

1

8

Function

⦁ A function is a group of programming statements that perform a specific task.

⦁ It divides a large program into smaller parts.

⦁ A function is something like hiring a person to do a specific job for you.

⦁ Every C program can be thought of as a collection of these functions.

⦁ Program execution in C language starts from the main function.

⦁ Why function ?
⮩ Avoids rewriting the same code over and over.

⮩ Using functions it becomes easier to write programs and keep track of what they doing.

void main()
{

// body part
}

Syntax

D.Srinivas, Asst. Professor,CSE Unit-3 Functions and Dynamic Memory Allocations 186

Advantages of Function

⦁ Using function we can avoid rewriting the same logic or code again and again in a program.

⦁ We can track or understand large program easily when it is divide into functions.

⦁ It provides reusability.

⦁ It help in testing and debugging because it can be tested for errors individually in the easiest
way.

⦁ Reduction in size of program due to code of a function can be used again and again, by calling
it.

D.Srinivas, Asst. Professor,CSE Unit-3 Functions and Dynamic Memory Allocations 187

Types of Functions

Function

Library Function

Predefined or inbuilt

Declarations inside header files

Eg. printf() –stdio.h

pow() – math.h

strcmp() – string.h

User Defined Function (UDF)

Created by User

Programmer need to declare it

Eg. findSimpleInterest()

areaOfCircle()

D.Srinivas, Asst. Professor,CSE Unit-3 Functions and Dynamic Memory Allocations 188

Program Structure for Function

⦁ When we use a user-defined function program structure is divided into three parts.

void func1();

void main()
{

....
func1();

}

void func1()
{

....
//function body
....

}

Function Prototype

Function call

Function definition

Function Structure

D.Srinivas, Asst. Professor,CSE Unit-3 Functions and Dynamic Memory Allocations 189

Function Phototype

⦁ Afunction Prototype also know as function declaration.

⦁ A function declaration tells the compiler about a function name and how to call
the function.

⦁ It defines the function before it is being used or called.

⦁ Afunction prototype needs to be written at the beginning of the program.

return-type function-name (arg-1, arg 2, …);

Syntax

void addition(int, int);

Example

D.Srinivas, Asst. Professor,CSE Unit-3 Functions and Dynamic Memory Allocations 190

Function Definition

⦁ A function definition defines the functions header and body.

⦁ A function header part should be identical to the function prototype.
⮩ Function return type

⮩ Function name

⮩ List of parameters

⦁ A function body part defines function logic.
⮩ Function statements

return-type function-name
{

(arg-1, arg 2, …)

//... Function body
}

Syntax

void addition(int x, int y)
{
printf("Addition
is=%d“,(x+y)); }

Example

D.Srinivas, Asst. Professor,CSE Unit-3 Functions and Dynamic Memory Allocations 191

Program on Function

⦁ WAPto add two number using add(int, int) Function

#include <stdio.h>
void add(int, int); // function declaration

void main()
{

int a = 5, b = 6;
add(a, b); // function call

}

void add(int x, int y) // function definition
{

printf("Addition is = %d", x + y);
}

Addition is = 11
Program

Output

D.Srinivas, Asst. Professor,CSE Unit-3 Functions and Dynamic Memory Allocations 192

Actual parameters and Formal parameters

⦁ Values that are passed to the called function from the main function are known as Actual
parameters.

⦁ The variables declared in the function prototype or definition are known as Formal parameters.

⦁ When a method is called, the formal parameter is temporarily "bound" to the actual parameter.

void main()
{

int a = 5, b = 6;
add(a, b); // a and b are the
actual parameters in this call.

}

void add(int x, int y) // x and y are
formal parameters.
{

printf("Addition is = %d", x + y);

}

Actual parameters Formal parameters

D.Srinivas, Asst. Professor,CSE Unit-3 Functions and Dynamic Memory Allocations 193

Programs on Functions

#include <stdio.h>
int fact(int);
int main()
{

Enter the
5
factorial

number :

= 120

int n, f;
printf("Enter the number :\n");
scanf("%d", &n);
f = fact(n);
printf("factorial = %d", f);

}
int fact(int n)
{

int i, fact = 1;
for (i = 1; i <= n; i++)

fact = fact * i;
return fact;

}

⦁ WAPto find Factorial of a Number.

Program Output

D.Srinivas, Asst. Professor,CSE Unit-3 Functions and Dynamic Memory Allocations 194

Programs on Functions

Enter the number :7
The number 7 is a prime number.

⦁ WAPto check Number is Prime or not
Program

Output

#include <stdio.h>
int checkPrime(int);
void main()

int
{

checkPrime(int

int i = 2;

n1)

{
int n1, prime;
printf("Enter the number :");

while (i <= n1
{

if (n1 % i

/ 2)

== 0)
scanf("%d", &n1);
prime = checkPrime(n1);
if (prime == 1)

printf("The number %d is a prime

else

}

return 0;

i++;

number.\n", n1);
else }

return 1;

printf("The number %d is not a
prime number.\n", n1);

}

Programcontd.

D.Srinivas, Asst. Professor,CSE Unit-3 Functions and Dynamic Memory Allocations 195

Category of Function

(1) Function with no argument and no return value

(2) Function with no argument and returns value

void fun1()
{
.....
.....
.....

}

No
Input

No return
value

int fun1(void)
{
.....
.....
return b;

}

No
Input

Function
result

D.Srinivas, Asst. Professor,CSE Unit-3 Functions and Dynamic Memory Allocations 196

Category of Function cont…

(4) Function with argument and returns value

(3) Function with argument and but no return value

int fun1(int f)
{
.....
.....
return e;

}

Value of

Argument

Function

Result

void fun1(int f)
{
.....
.....
.....

}

Value of

Argument

No

Return

value

D.Srinivas, Asst. Professor,CSE Unit-3 Functions and Dynamic Memory Allocations 197

Passing Parameters to Functions

⦁ There are two ways of passing parameters to the functions.

1. Call by value and 2. Call by reference

⦁ Call by value:
⮩ When a function is called with actual parameters, the values of actual parameters are copied into the formal

parameters.

⮩ If the values of the formal parameters changes in the function, the values of the actual parameters are not
changed.

⮩ This way of passing parameters is called call by value (pass by value).

⮩ In the below example, the values of the arguments to swap () 10 and 20 are copied into the parameters x and y.

⮩ Note that the values of x and y are swapped in the function.

⮩ But, the values of actual parameters remain same before swap and after swap.

⦁ Note: In call by value any changes done on the formal parameter will not affect the actual
parameters.

D.Srinivas, Asst. Professor,CSE Unit-3 Functions and Dynamic Memory Allocations 198

Example Program on call by value

/*function prototype */

#include<stdio.h>

void swap (int , int);

void main ()

{ int a=10, b=20;

swap (a, b); /*function calling*/

printf (“From main The Values of a and b a=%d, b=%d “, a, b);

}

void swap (int x, int y) /* function definition */

{ int temp;

temp=x;

x=y;

y=temp;

printf (“\n The Values of a and b after swapping a=%d, b =%d”, x, y);

}

D.Srinivas, Asst. Professor,CSE Unit-3 Functions and Dynamic Memory Allocations 199

Passing Parameters to Functions

⦁ Call by reference:
⮩ When a function is called with actual parameters, the values of actual parameters are copied into the formal

parameters.

⮩ If the values of the formal parameters changes in the function, the values of the actual parameters are not
changed.

⮩ This way of passing parameters is called call by reference (pass by address).

⮩ In the below example, the values of the arguments to swap () 10 and 20 are copied into the parameters x and y.

⮩ Note that the values of x and y are swapped in the function.

⮩ But, the values of actual parameters remain same before swap and after swap.

⦁ Note: In call byreference anychangesdone on the formal parameter will affect the actual
parameters.

D.Srinivas, Asst. Professor,CSE Unit-3 Functions and Dynamic Memory Allocations 200

Example Program on call by reference

/*function prototype */

#include<stdio.h>

void swap (int * , int *);

void main ()

{ int a=10, b=20;

swap (&a, &b); /*function calling*/

printf (“From main The Values of a and b a=%d, b=%d “, a, b);

}

void swap (int *x, int *y) /* function definition */

{ int temp;

temp=*x;

*x=*y;

*y=temp;

printf (“\n The Values of a and b after swapping a=%d, b =%d”, x, y);

}

D.Srinivas, Asst. Professor,CSE Unit-3 Functions and Dynamic Memory Allocations 201

Differences between Call by Value and Call by

Reference
Call by Value Call by Reference

When Function is called the values of

variables are passed.

When a function is called address of

variables is passed.

Formal parameters contain the value of

actual parameters.

Formal parameters contain the address
of

actual parameters.

Change of formal parameters in the function

will not affect the actual parameters in the

calling function

The actual parameters are changed
since

the formal parameters indirectly

manipulate the actual parameters

Execution is slower since all the values
have

to be copied into formal parameters.

Execution is faster since only addresses
are

copied.

D.Srinivas, Asst. Professor,CSE Unit-3 Functions and Dynamic Memory Allocations 202

2

0

Recursion

⦁ Any function which calls itself is called recursive function and such function calls are called
recursive calls.

⦁ Recursion cannot be applied to all problems, but it is more useful for the tasks that can be
defined in terms of a similar subtask.

⦁ It is idea of representing problem a with smaller problems.

⦁ Any problem that can be solved recursively can be solved iteratively.

⦁ When recursive function call itself, the memory for called function allocated and different copy
of the local variable is created for each function call.

⦁ Some of the problem best suitable for recursion are
⮩ Factorial

⮩ Fibonacci

⮩ Tower of Hanoi

D.Srinivas, Asst. Professor,CSE Unit-3 Functions and Dynamic Memory Allocations 204

Working of Recursion

void

main()

{

....

func1();

....

}

void

func1()

{

....

func1();

....

}

Working

void

func1();

Function

call

Recursive

function call

D.Srinivas, Asst. Professor,CSE Unit-3 Functions and Dynamic Memory Allocations 205

Properties Recursion

⦁ A recursive function can go infinite like a loop. To avoid infinite running of recursive function,
there are two properties that a recursive function must have.

⦁ Base Case or Base criteria
⮩ It allows the recursion algorithm to stop.

⮩ A base case is typically a problem that is small enough to solve directly.

⦁ Progressive approach
⮩ A recursive algorithm must change its state in such a way that it moves forward to the base case.

D.Srinivas, Asst. Professor,CSE Unit-3 Functions and Dynamic Memory Allocations 206

Programs on Recursion
⦁ Factorial of a Number using Recursion

Fibonacci Series of a Number using Recursion

#include <stdio.h>

int fact(int);

void main()

{

int n, f;

printf("Enter the
number:\n");

scanf("%d", &n); f =

fact(n);

printf("factorial = %d", f);

}

int fact(int n)

{

if (n == 0)

return 1; else

if (n == 1)

return 1;

else

return n * fact(n - 1);

}

Program Output

Enter the
number: 5
factorial = 120

#include <stdio.h>
int fibonacci(int);
void main()
{

int n, m = 0, i;
printf("Enter
Total terms\n");
scanf("%d", &n);
printf("Fibonacci
series\n");
for (i = 1; i <=
n; i++)
{ printf("%d ",
fibonacci(m));

m++;
}

}

int fibonacci(int n)
{

if (n == 0 || n == 1)
return n;

else
return

(fibonacci(n - 1) +
fibonacci(n - 2));

}

Output

Enter Total terms
5
Fibonacci series
0 1 1 2 3

Program

D.Srinivas, Asst. Professor,CSE Unit-3 Functions and Dynamic Memory Allocations 207

Iteration vs Recursion

ITERATION RECURSION

Iteration explicitly uses repetition structure. Recursion achieves repetition by calling the same

function repeatedly.

Iteration is terminated when the loop

condition fails

Recursion is terminated when base

case is satisfied.

Mayhave infinite loop if the loop condition never

fails

Recursion is infinite if there is no base case or if

base case never reaches.

Iterative functions execute much faster and

occcupy less memory space.

Recursive functions are slow and takes a

lot of memory space compared to

iterative functions

No. of CPU Cycles repeated No. of times Function

executed

D.Srinivas, Asst. Professor,CSE Unit-3 Functions and Dynamic Memory Allocations 208

2

0

Dynamic Memory Allocation(DMA)

⦁ If memory is allocated at runtime (during execution of program) then it is called
dynamic memory.

⦁ It allocates memory from heap (heap: it is an empty area in memory)

⦁ Memory can be accessed only through a pointer.

When DMA is needed?

⦁ It is used when number of variables are not known in advance or large in size.

⦁ Memory can be allocated at any time and can be released at any time during
runtime.

D.Srinivas, Asst. Professor,CSE Unit-3 Functions and Dynamic Memory Allocations 210

1.malloc() Function

⦁ malloc () is used to allocate a fixed amount of memory during the execution of a program.

⦁ malloc () allocates size_in_bytes of memory from heap, if the allocation succeeds, a
pointer to the block of memory is returned else NULL is returned.

⦁ Allocated memory space may not be contiguous.

⦁ Each block contains a size, a pointer to the next block, and the space itself.

⦁ The blocks are kept in ascending order of storage address, and the last block points to the first.

⦁ The memory is not initialized.

Syntax Description

ptr_var = (cast_type *)
malloc (size_in_bytes);

This statement returns a pointer to size_in_bytes of uninitialized storage, or

NULL if the request cannot be satisfied.

Example: fp = (int *)malloc(sizeof(int) *20);

D.Srinivas, Asst. Professor,CSE Unit-3 Functions and Dynamic Memory Allocations 211

Write a C program to allocate memory using malloc.

#include <stdio.h>
void main()
{

int *fp; //fp is a pointer variable
fp = (int *)malloc(sizeof(int)); //returns a pointer to int size storage
*fp = 25; //store 25 in the address pointed by fp
printf("%d", *fp); //print the value of fp, i.e. 25
free(fp); //free up the space pointed to by fp

}

Program

Output

25

D.Srinivas, Asst. Professor,CSE Unit-3 Functions and Dynamic Memory Allocations 212

2.calloc() function

⦁ calloc() is used to allocate a block of memory during the execution of a program

⦁ calloc() allocates a region of memory to hold no_of_blocks of size_of_block each,
if the allocation succeeds then a pointer to the block of memory is returned else NULL is
returned.

⦁ The memory is initialized to ZERO.

Syntax Description

ptr_var = (cast_type *)
calloc (no_of_blocks,
size_of_block);

This statement returns a pointer to no_of_blocks of size size_of_blocks, it

returns NULL if the request cannotbe satisfied.

Example:

int n = 20;

fp = (int *)calloc(n, sizeof(int));

D.Srinivas, Asst. Professor,CSE Unit-3 Functions and Dynamic Memory Allocations 213

Write a C program to allocate memory using calloc.

#include <stdio.h>
void main()
{

int i, n; //i, n are integer variables
int *fp; //fp is a pointer variable
printf("Enter how many numbers: ");
scanf("%d", &n);
fp = (int *)calloc(n, sizeof(int)); //calloc returns a pointer to n blocks
for(i = 0; i < n; i++) //loop through until all the blocks are read
{

scanf("%d",fp); //read and store into location where fp points
fp++; //increment the pointer variable

}
free(fp); //frees the space pointed to by fp

}

Program

D.Srinivas, Asst. Professor,CSE Unit-3 Functions and Dynamic Memory Allocations 214

3.realloc() function

⦁ realloc() changes the size of the object pointed to by pointer fp to specified size.

⦁ The contents will be unchanged up to the minimum of the old and new sizes.

⦁ If the new size is larger, the new space will be uninitialized.

⦁ realloc() returns a pointer to the newspace, or NULL if the request cannot be satisfied, in
which case *fp is unchanged.

Syntax Description

ptr_var = (cast_type *)
realloc (void *fp,
size_t);

This statement returns a pointer to new space, or NULL if the request cannot be

satisfied.

Example: fp = (int *)realloc(fp,sizeof(int)*20);

D.Srinivas, Asst. Professor,CSE Unit-3 Functions and Dynamic Memory Allocations 215

Write a C program to allocate memory using realloc.

Program

#include <stdio.h>
void main()
{

int *fp; //fp is a file pointer
fp = (int *)malloc(sizeof(int)); //malloc returns a pointer to int size storage
*fp = 25; //store 25 in the address pointed by fp
fp =(int *)realloc(fp, 2*sizeof(int)); //returns a pointer to new space
printf("%d", *fp); //print the value of fp
free(fp); //free up the space pointed to by fp

}

Output

25

D.Srinivas, Asst. Professor,CSE Unit-3 Functions and Dynamic Memory Allocations 216

4.free() function

⦁ Free() deallocates the space pointed to by fp.

⦁ It does nothing if fp is NULL.

⦁ fp must be a pointer to space previously allocated by calloc, malloc or realloc.

Syntax Description

void free(void *); This statement free up the memory not needed anymore.

Example: free(fp);

D.Srinivas, Asst. Professor,CSE Unit-3 Functions and Dynamic Memory Allocations 217

Darshan Institute of Engineering & Technology, Rajkot

Thank

You

Programming for Problem Solving

(PPS)

D. SRINIVAS

Computer Science and Engineering Department

srinivascsedept@gmil.com

+91-9347556447
218

mailto:srinivascsedept@gmil.com

srinivascsedept@gmail.com

+91 9347556447

Department of CSE

Programming for ProblemSolving (PPS)

www.srinivas-materials.blogspot.com

219

UNIT-4

mailto:srinivascsedept@gmail.com
http://www.srinivas-materials.blogspot.com/

🗸 Outline

• Algorithms:
⮩Algorithms for finding roots of a quadratic equations, finding minimum and maximum

numbers of a given set, finding if a number is prime number, etc.
•Sorting:

⮩Basic searching in an array of elements (linear and binary search techniques),

⮩Basic algorithms to sort array of elements (Bubble, Insertion and Selection sort

algorithms),

⮩Basic concept of order of complexity through the example programs

220

221

Algorithms

⦁ Algorithm: It is an ordered sequence of unambiguous and well-defined
instructions that
performs some task and halts in finite time.

⦁ Let's examine the four parts of this definition more closely.

1. Ordered Sequence: You can number the step.

2. Unambiguous and well defined instructions: Each instruction should be clear, well understand.

3. Performs some task

4. Halts in finite time: Algorithm must terminate at some point.

⦁ Properties of an Algorithm:-

1. Finiteness: An algorithm must terminate in a finite number of steps.

2. Definiteness: Each step of an algorithm must be precisely and unambiguously stated.

3. Effectiveness: Each step must be effective, and can be performed exactly in a finite amount of time.

4. Generality: The algorithm must be complete in itself.

5. Input/Output: Each algorithm must take zero, one or more inputs and produces one or more output.

D.Srinivas, Asst. Professor,CSE Unit-4 Algorithms, Searching and Sortings 222

Algorithm to find all the roots of a quadratic equation

Start:

Step1: Input the value of a, b, c.

Step2: Calculate d = b*b -4*a*c

Step3: If (d < 0)

Step3.1:Display "Roots are Imaginary “ calculate r1 =(-b+i sqrt(d))/ 2a and

r2 =(b + i sqrt(d))/ 2a.

Step4:else if (d = 0)

Step4.1:Display "Roots are Equal" and calculate r1 = r2 = (-b / 2*a)

Step5:else

Step5.1:Display "Roots are real” and

calculate r1 = -b + sqrt(d) / 2*a and r2 = -b -sqrt(d) / 2*a

Step4: Print r1 and r2.

Stop:

D.Srinivas, Asst. Professor,CSE Unit-4 Algorithms, Searching and Sortings 223

Algorithm to find the minimum and maximum numbers in a given

set of numbers
Start:

Step1: Initialize two variables "min" and "max" to the first element in the set.

Step2: Iterate through the rest of the set, comparing each element to the current
values of "min" and "max".

Step3: If the current element is smaller than "min", set "min" to the current element.

Step4: If the current element is larger than "max", set "max" to the current element.

Step5: After iterating through the entire set, "min" and "max" will contain the minimum
and maximum values, respectively.

Stop:

D.Srinivas, Asst. Professor,CSE Unit-4 Algorithms, Searching and Sortings 224

Algorithm to Find Prime Number

Start:
Step1:Take numas input.

STEP2: Initialize a variable temp to 0.

STEP3: Iterate a “for” loop from2 to num/2.

STEP4: If numis divisible by loop iterator, then increment temp.

STEP5: If the temp is equal to 0,

Return “Num IS PRIME”.

Step6: Else,

Return “Num IS NOT PRIME”.

Stop:

D.Srinivas, Asst. Professor,CSE Unit-4 Algorithms, Searching and Sortings 225

226

SEARCHING
⦁ Searching is an operation or a technique that helps finds the place of a given

element or value in the list.

⦁ Any search is said to be successful or unsuccessful depending upon whether the
element that is being searched is found or not.

⦁ Some of the standard searching technique that is being followed in data structure
is listed below:

1. Linear Search

2. Binary Search

D.Srinivas, Asst. Professor,CSE Unit-4 Algorithms, Searching and Sortings 227

Linear Search

⦁ The algorithmproceeds as follows:
1. Start at the first element of the list.

2. Compare the current element with the target value.

3. If the current element is equal to the target value, return the index of the current element.

4. If the end of the list is reached without finding the target value, return -1to indicate that
the target value was not found.

⦁ Features of Linear Search Algorithm
1. It is used for unsorted and unordered small list of elements.

2. It has a time complexity of O(n), which means the time is linearly dependent on the
number of elements, which is not bad, but not that good too.

3. It has a very simple implementation.

D.Srinivas, Asst. Professor,CSE Unit-4 Algorithms, Searching and Sortings 228

Linear Search

⦁ Example

D.Srinivas, Asst. Professor,CSE Unit-4 Algorithms, Searching and Sortings 229

Linear Search

⦁ Linear search is a very basic and simple search algorithm. In Linear search, we search an
element or value in a given array by traversing the array from the starting, till the desired
element or value is found.

⦁ It compares the element to be searched with all the elements present in the array and when the
element is matched successfully, it returns the index of the element in the array, else it return -1.

⦁ Linear Search is applied on unsorted or unordered lists, when there are fewer elements in a list.

Step 6: Print Element x Found at index

i and go to step 8

Step 7: Print element not found

Step 8:

Exit

Algorithm Linear Search (ArrayA, Value x)

Step 1: Set i to 1

Step 2: if i > n then go to step 7

Step 3: if A[i] = x then go to step 6

Step 4: Set i to i + 1

Step 5: Go to Step 2

D.Srinivas, Asst. Professor,CSE Unit-4 Algorithms, Searching and Sortings 230

Write a C program to find key element in the list using Linear Search.

#include <stdio.h>
int main()
{

int a[10], i, item,n;
printf("\nEnter number of elements of an array:\n");
scanf("%d",&n);
printf("\nEnter elements: \n");
for (i=0; i<n; i++)

scanf("%d", &a[i]);
printf("\nEnter item to search: ");
scanf("%d", &item);
for (i=0; i<=9; i++)

if (item == a[i])
{

printf("\nItem found at location %d", i+1);
break;

}
if (i > 9)

printf("\nItem does not exist.");
return 0;

}

Program

Output

Enter number of elements of an

array:

8

Enter elements:

2 3 5 7 8 6 4 1

Enter itemto search: 1

Itemfound at location8

D.Srinivas, Asst. Professor,CSE Unit-4 Algorithms, Searching and Sortings 231

Binary Search

⦁ Binary Search is used with sorted array or list.

⦁ In binary search, we followthe following steps:

⮩ 1. We start by comparing the element to be searched with the element in the middle of the

list/array.

⮩2. If we get a match, we return the index of the middle element.

⮩ 3. If we do not get a match, we check whether the element to be searched is less or greater

than in value than the middle element.

⮩ 4. If the element/number to be searched is greater in value than the middle number, then we

pick the elements on the right side of the middle element(as the list/array is sorted, hence onthe

right, we will have all the numbers greater than the middle number), and start again from the step

1.

⮩ 5. If the element/number to be searched is lesser in value than the middle number, then we

pick theelementsonthe left side of themiddleelement,and start again fromthe step 1.

D.Srinivas, Asst. Professor,CSE Unit-4 Algorithms, Searching and Sortings 232

Binary Search

⦁ Features of Binary Search Algorithm
1. It is great to search through large sorted arrays.

2. It has a time complexity of O(log n) which is a very good time complexity.

3. It has a simple implementation.

D.Srinivas, Asst. Professor,CSE Unit-4 Algorithms, Searching and Sortings 233

Binary Search

⦁ Example

D.Srinivas, Asst. Professor,CSE Unit-4 Algorithms, Searching and Sortings 234

Write a C program to find key element in the list using Binary

Search.

#include<stdio.h>
#include<conio.h>
int main()
{

int i, arr[10], search, first, last, middle;
printf("Enter 10 elements (in ascending order): ");
for(i=0; i<10; i++)

scanf("%d", &arr[i]);
printf("\nEnter element to be search: ");
scanf("%d", &search);
first = 0;
last = 9;
middle = (first+last)/2;
while(first <= last)
{

if(arr[middle]<search)
first = middle+1;

else if(arr[middle]==search)
{

printf("\nThe number, %d found at Position
%d", search, middle+1);

break;
}

Program

Output

Enter 10 elements (in ascending order): 1 5 8 9 10 15 20

21 25 28

Enter element to be search: 15

The number, 15 found at Position 6

else
last = middle-1;

middle = (first+last)/2;
}
if(first>last)

printf("\nThe number, %d is not found in given
Array", search);

getch();
return 0;

}

D.Srinivas, Asst. Professor,CSE Unit-4 Algorithms, Searching and Sortings 235

Sorting Algorithms

⦁ A sorting algorithm is an algorithm that puts elements of a list in a certain order. The most
used orders are numerical order and lexicographical order.

⦁ Efficient sorting is important to optimizing the use of other algorithms that require sorted lists
to work correctly and for producing human - readable input. Sorting algorithms are often
classified by :

⮩ * Computational complexity (worst, average and best case) in terms of the size of the list
(N). For typical sorting algorithms good behaviour is O(NlogN) and worst case
behaviour is O(N2) and the average case behaviour is O(N).

⮩ * Memory Utilization

⮩ * Stability -Maintaining relative order of records with equal keys.

⮩ * No. of comparisions.

⮩ * Methods applied like Insertion, exchange, selection, merging etc. Sorting is a process
of linear ordering of list of objects.

⮩ Sorting techniques are categorized into

 Internal Sorting: takes place in the main memory of a computer.

• Ex. eg : -Bubble sort, Insertion sort, Shell sort, Quick sort, Heap sort, etc.
D.Srinivas, Asst. Professor,CSE Unit-4 Algorithms, Searching and Sortings 236

Sorting Algorithms

 External Sorting: takes place in the secondary memory of a computer, Since
the number of objects to be sorted is too large to fit in main memory.

• eg : -Merge Sort, Multiway Merge, Polyphase merge.

⦁ Sorting Techniques
⮩ Bubble Sort

⮩ Selection Sort

⮩ Insertion Sort

⮩ Merge Sort

⮩ Quicksort

⮩ Counting Sort

⮩ Radix Sort

⮩ Bucket Sort

⮩ Heap Sort

⮩ Shell Sort

D.Srinivas, Asst. Professor,CSE Unit-4 Algorithms, Searching and Sortings 237

Bubble Sort
⦁ Bubble sort is a simple sorting algorithm that repeatedly iterates through the list,

compares adjacent elements and swaps them if they are in the wrong order. The
algorithm continues until no more swaps are needed.

⦁ The basic steps of the bubble sort algorithmare as follows:
⮩ Start at the beginning of the list.

⮩ Compare the first two elements. If the first element is greater than the second element,
swap them.

⮩ Move to the next pair of adjacent elements and repeat step 2.

⮩ Continue this process until the end of the list is reached.

⮩If anyswapswere madeduring the previous iteration, repeat steps 2-4until noswaps are
made.

D.Srinivas, Asst. Professor,CSE Unit-4 Algorithms, Searching and Sortings 238

Bubble Sort

D.Srinivas, Asst. Professor,CSE Unit-4 Algorithms, Searching and Sortings 239

Write a C program to sort elements in the list using Bubble Sort.

#include <stdio.h>
int main()
{

int array[100], n, i, j, swap;
printf("Enter number of elements\n");
scanf("%d", &n);

printf("Enter %d integers\n", n);

for (i = 0; i < n; i++)

scanf("%d", &array[i]);

for (i = 0 ; i < n - 1; i++)
{

for (j = 0 ; j < n - i - 1; j++)
{

if (array[d] > array[d+1])
{

swap = array[j];
array[j] = array[j+1];
array[j+1] = swap;

}
}

Program

Output

Enter number of elements

5

Enter 5 integers

8

10

2

0

5

Sorted list in ascending order:

0 2 5 8 10

}

printf("Sorted list in ascending order:\n");

for (i = 0; i < n; i++)
printf("%d\n", array[i]);

return 0;
}

D.Srinivas, Asst. Professor,CSE Unit-4 Algorithms, Searching and Sortings 240

Bubble Sort

⦁ Advantages:
⮩ Bubble sort is easy to understand and implement.

⮩ Bubble sort is a stable sorting algorithm, meaning that it preserves the relative order of
equal elements in the input list.

⮩ Bubble sort has a space complexity of O(1), meaning that it does not require any additional
memory beyond the input list.

⦁ Disadvantages:
⮩ Bubble sort has a time complexity of O(n^2), where n is the number of

elements in the input list. This means that as the size of the list increases, the time taken
to sort the list increases exponentially. For large lists, bubble sort is much slower than
other sorting algorithms with better time complexity, such as merge sort or quicksort.

⮩ Bubble sort is not adaptive, meaning that it does not take advantage of the fact that
the input list may already be partially sorted. Even if the input list is nearly sorted, bubble
sort still requires O(n 2̂) time to sort the list.

⮩ Bubble sort is not efficient for large lists, and it is generally only used for
educational purposes or for sorting small lists with fewelements.

D.Srinivas, Asst. Professor,CSE Unit-4 Algorithms, Searching and Sortings 241

Selection Sort
⦁ Selection sort is a simple sorting algorithm that works by repeatedly selecting the

smallest element from the unsorted portion of the list and swapping it with the
first element of the unsorted portion.

⦁ The algorithmproceeds as follows:
1. Find the smallest element in the unsorted portion of the list.

2. Swap the smallest element with the first element of the unsorted portion of the list.

3. Move the boundary between the sorted and unsorted portions of the list one element to
the right.

4. Repeat steps 1-3until the entire list is sorted.

D.Srinivas, Asst. Professor,CSE Unit-4 Algorithms, Searching and Sortings 242

Selection Sort

D.Srinivas, Asst. Professor,CSE Unit-4 Algorithms, Searching and Sortings 243

Write a C program to sort elements in the list using Slection Sort.

#include <stdio.h>
int main()
{

int array[100], n, c, d, position, t;
printf("Enter number of elements\n");
scanf("%d", &n);
printf("Enter %d integers\n", n);
for (c = 0; c < n; c++)

scanf("%d", &array[c]);
for (c = 0; c < (n - 1); c++)
{

position = c;
for (d = c + 1; d < n; d++)
{

if (array[position] > array[d])
position = d;

}
if (position != c)

{
t = array[c];
array[c] = array[position];

array[position] = t;
}

}

Program

Output

Enter number of elements

5

Enter 5 integers

8

2

1

0

40

Sorted list in ascending order:

0 1 2 8 40

printf("Sorted list in ascending order:\n");
for (c = 0; c < n; c++)

printf("%d\n", array[c]);
return 0;

}

D.Srinivas, Asst. Professor,CSE Unit-4 Algorithms, Searching and Sorting 244

Selection Sort
⦁ Advantages:

⮩ Selection sort is easy to understand and implement.

⮩ Selection sort is a stable sorting algorithm, meaning that it preserves the relative order of
equal elements in the input list.

⮩Selection sort has a space complexity of O(1), meaning that it does not require any
additional memory beyond the input list.

⦁ Disadvantages:
⮩ Selection sort has a time complexity of O(n^2), where n is the number of elements in the input list. This means

that as the size of the list increases, the time taken to sort the list increases exponentially. For large lists,

selection sort is much slower than other sorting algorithms with better time complexity, such as merge sort or

quicksort.

⮩Selection sort is not adaptive, meaning that it does not take advantage of the fact that the input list mayalready be

partially sorted. Even if the input list is nearly sorted, selection sort still requires O(n^2) time to sort the list.

⮩ Selection sort is not efficient for large lists, and it is generally only used for educational purposes or for sorting

small lists with fewelements.

D.Srinivas, Asst. Professor,CSE Unit-4 Algorithms, Searching and Sortings 245

Insertion Sort
⦁ Insertion sort works similar to the sorting of playing cards in hands. It is assumed that the

first card is already sorted in the card game, and then we select an unsorted card. If the
selected unsorted card is greater than the first card, it will be placed at the right side;
otherwise, it will be placed at the left side. Similarly, all unsorted cards are taken and put
in their exact place.

⦁ The algorithm proceeds as follows:

⮩ Step 1 - If the element is the first element, assume that it is already sorted. Return 1.

⮩ Step2 - Pick the next element, and store it separately in a key.

⮩ Step3 - Now, compare the key with all elements in the sorted array.

⮩ Step 4 - If the element in the sorted array is smaller than the current element, then move to
the next element. Else, shift greater elements in the array towards the right.

⮩ Step 5 - Insert the value.

⮩ Step 6 - Repeat until the array is sorted.

D.Srinivas, Asst. Professor,CSE Unit-4 Algorithms, Searching and Sortings 246

Insertion Sort

D.Srinivas, Asst. Professor,CSE Unit-4Algorithms, Searching and Sortings 247

Write a C program to sort elements in the list using Insertion Sort.

#include <stdio.h>
int main()
{

int n, array[1000], c, d, t, flag =
0; printf("Enter number of
elements\n"); scanf("%d", &n);
printf("Enter %d integers\n", n);
for (c = 0; c < n; c++)

scanf("%d", &array[c]);
for (c = 1 ; c <= n - 1; c++) {

t = array[c];
for (d = c - 1 ; d >= 0; d--) {

if (array[d] > t) {
array[d+1] = array[d];
flag = 1;

}
else

break;
}

if (flag)
array[d+1] = t;

}

Program

Output

Enter number of elements

5

Enter 5 integers

6

8

0

1

30

Sorted list in ascending order:

0 1 6 8 30

printf("Sorted list in ascending order:\n");
for (c = 0; c <= n - 1; c++) {

printf("%d\n", array[c]);
}

return 0;
}

D.Srinivas, Asst. Professor,CSE Unit-4 Algorithms, Searching and Sortings 248

Insertion Sort
⦁ Advantages:

⮩ Simple implementation

⮩ Efficient for small data sets

⮩ Adaptive, i.e., it is appropriate for data sets that are already substantially sorted.

⦁ Disadvantages:
⮩ The disadvantage of the insertion sort is that it does not perform as well as other, better

sorting algorithms

⮩ With n-squared steps required for every n element to be sorted, the insertion sort does not
deal well with a huge list.

⮩ The insertion sort is particularly useful only when sorting a list of few items.

D.Srinivas, Asst. Professor,CSE Unit-4 Algorithms, Searching and Sortings 249

Time and Space Complexity of all Sorting Algorithms

D.Srinivas, Asst. Professor,CSE Unit-4 Algorithms, Searching and Sortings 250

2

5

Storage Classes

⦁ Storage class decides the scope, lifetime and memory allocation of variable.

⦁ Scope of a variable is the boundary within which a variable can be used.

Storage

Specifier
Storage

Initial

Value
Scope Life Example

Auto

{auto}
Stack Garbag

e

Withinblock End of block
int a;

auto int a;

Register

{register}
CPU

register

Garbag

e

Withinblock End of block
register int var;

External

{extern}
Data

segment
Zero

Global

Multiple file
Till end of program extern int var;

Static

{static}
Data

segment

Zero Withinblock Till end of program static extern int var;
static int

D.Srinivas, Asst. Professor,CSE Unit-4 Algorithms, Searching and Sortings 252

Darshan Institute of Engineering & Technology, Rajkot

Thank

You

Programming for Problem Solving

(PPS)

D. SRINIVAS

Computer Science and Engineering Department

srinivascsedept@gmil.com

+91-9347556447
253

mailto:srinivascsedept@gmil.com

srinivascsedept@gmail.com

+91 9347556447

Department of CSE

Programming for ProblemSolving (PPS)

www.srinivas-materials.blogspot.com

254

UNIT-5

mailto:srinivascsedept@gmail.com
http://www.srinivas-materials.blogspot.com/

🗸 Outline

• Preprocessor:
⮩Introduction to Preprocessors

⮩Types of Preprocessors

⮩Commonly used Preprocessor commands like include, define, undef, if, ifdef, ifndef.

• Files:
⮩Text and Binary files,

⮩Creating and Reading and writing text and binary files,

⮩Appending data to existing files,

⮩Writing and reading structures using binary files,

⮩Random access using fseek, ftell and rewind functions

255

256

Preprocessor

⦁ The C compiler is made of two functional parts: a preprocessor and a translator.

⦁ The preprocessor is a program which processes the source code before it passes through the
compiler.

⦁ The translator is a program which converts the program into machine language and gives the
object module.

⦁ There are 4 main types of preprocessor directives:
⮩ Macros

⮩ File Inclusion

⮩ Conditional Compilation

⮩ Other directives

D.Srinivas, Asst. Professor,CSE Unit-5 Preprocessors and Files 257

Types of Pre-processors

⦁ 1. Macros:
⮩ Macros are a piece of code in a programwhich is given some name.

⮩ Whenever this name is encountered by the compiler the compiler replaces the namewith the actual piece of code.

⮩ The ‘#define’directive is used to define a macro.

⮩a.Pass by Symbolic Constants as macro:
 Macro definition without arguments is referred as a constant.

 The body of the macro definition can be any constant value including integer, float, double, character, or string.

 However, character constants must be enclosed in single quotes and string constants in double quotes.

 Example:

#define PI 3.14159
 Here “PI” replaces with "3.14159“.

⮩b.Pass by Function macro:
 C handles function macros by simply rescanning a line after macro expansion.

 Therefore, if an expansion results in a new statement with a macro ,the second macro will be properly expanded.

For Example:

#define sqre(a) (a*a)

D.Srinivas, Asst. Professor,CSE Unit-5 Preprocessors and Files 258

Types of Preprocessors

⮩ Program

//Example for macro to calculate square of a given number

#include<stdio.h>

#define square(x) (x*x) /* macro definition */

void main()

{

int a=10;

printf("The square of %d=%d", a, square(a));

}

OUTPUT:

The square of 5 = 25

D.Srinivas, Asst. Professor,CSE Unit-5 Preprocessors and Files 259

Types of Pre-processors

⮩ C. Predefined Macros

 ANSI C defines a number of macros.Although each one is available for use in programming, the predefined macros
should not be directly modified.

⮩ Program:
Sr.No. Macro & Description

1. DATE The current date as a character literal

in "MMM DD YYYY" format.

2. TIME The current time as a character literal

in "HH:MM:SS" format.

3. FILE This contains the current filename as a

string literal.

4. LINE This contains the current line number

as a decimal constant.

5. STDC Defined as 1 when the compi ler

complies with the ANSI standard.

FILE);

DATE);

TIME);

LINE);

STDC);

#include <stdio.h>

void main()

{

printf("File :%s\n",

printf("Date :%s\n",

printf("Time :%s\n",

printf("Line :%d\n",

printf("ANSI :%d\n",

}

⮩ Output:

File :test.c

Date :April 1 2022

Time :03:36:24

Line :8

ANSI :1

D.Srinivas, Asst. Professor,CSE Unit-5 Preprocessors and Files 260

Types of Pre-processors –Cont…

⦁ 2.File Inclusion:
⮩ This type of preprocessor directive tells the compiler to include a file in the source code program.

⮩ There are two types of files which can be included by the user in the program:

⮩ A. Header File or Standard files:

 These files contains definition of pre-defined functions like printf(), scanf() etc.

 These files must be included for working with these functions.

 It is used to direct the preprocessor to include header files from the system library.

⮩ Syntax:

 #include< file-name >

⮩ B. User defined files:

 Whena program becomes very large, it is good practice to divide it into smaller files and include whenever needed.

 These types of files are user defined files.

 It is used to direct the preprocessor look for the files in the current working directory and standard library.

 These files can be included as:

⮩ Syntax:

 #include"filename”

D.Srinivas, Asst. Professor,CSE Unit-5 Preprocessors and Files 261

Types of Pre-processors –Cont…

⦁ 3.Conditional Compilation:
⮩ Conditional Compilation directives are type of directives which helps to compile a specific portion of the

program or to skip compilation of some specific part of the program based on some conditions.

⮩ It allows us to control the compilation process by including or excluding statements.

⮩ Cast expressions, size of, enumeration constants cannot be evaluated in preprocessor directives.

⮩ Its structure is similar to if statement.

⮩ This can be done with the help of two preprocessing commands ‘ifdef‘ and ‘endif‘.

⮩ Syntax for conditional compilation:

 #if expression1

code to be included for true

 #elif expression2

code to be included for true

 #else

code to be included false

 #endif

 #if !defined(NULL)

D.Srinivas, Asst. Professor,CSE Unit-5 Preprocessors and Files 262

Types of Pre-processors –Cont…

⦁ 4. Other Directives:
⮩ Apart from the above directives there are two more directives which are not commonly used.

⮩ These are:

⮩ #undef Directive:

 The #undef directive is used to undefine an existing macro.

 This directive works as:

 first job of a preprocessor is file inclusion that is copying of one or more files into programs.

 The files are usually header files and external files containing functions and data declarations.

⮩ Syntax:

 #undef LIMIT

⮩ #pragma Directive:

 This directive is a special purpose directive and is used to turn on or off some features.

 #pragma startup and #pragma exit:

 These directives helps us to specify the functions that are needed to run before program startup(before the control
passes to main()) and just before program exit (just before the control returns from main()).

D.Srinivas, Asst. Professor,CSE Unit-5 Preprocessors and Files 263

Types of Pre-processors –Cont…

Preprocessor Syntax/Description

Macro
Syntax: #define

This macro defines constant value and can be any of the basic data
types.

Header file inclusion

Syntax: #include <file_name>

The source code of the file “file_name” is included in the main program at the

specified place.

Conditional compilation

Syntax: #ifdef, #endif, #if, #else, #ifndef

Set of commands are included or excluded in source program before

compilation with respect to the condition.

Other directives

Syntax: #undef, #pragma

#undef is used to undefine a defined macro variable. #Pragma is used to call a

function before and after main function in a C program.

D.Srinivas, Asst. Professor,CSE Unit-5 Preprocessors and Files 264

265

Files

FILE:
⮩ A file is an external collection of related data treated as a unit.

⮩ The primary purpose of a file is to keep a record of data.

⮩ Record is a group of related fields. Field is a group of characters they convey meaning.

⮩ Files are stored in auxiliary or secondary storage devices. The two commonforms of secondary storage are
disk (hard disk, CD and DVD) and tape.

⮩ Each file ends with an end of file (EOF) at a specified byte number, recorded in file structure.

⮩ C has predefined structure to hold this information.

⮩ The stdio.h header file defines this file structure; its name is FILE.

⦁ File Name
⮩ File name is a string of characters that make up a valid filename.

⮩ Every operating system uses a set of rules for naming its files.

⮩ When we want to read or write files, we must use the operating system rules when we name a file.

⮩ The file name may contain two parts, a primary name and an optional period with extension.
⮩

Example:

input.txt

program.c

D.Srinivas, Asst. Professor,CSE Unit-1 Cyber SecurityD.Srinivas, Asst. Professor,CSE Unit-1 Introduction to C Programming LanD.Srinivas, Asst. Professor,CSE Unit-5 Preprocessors and Files 266

File Management

⦁ In real life, we want to store data permanently so that later we can retrieve it and reuse it.

⦁ A file is a collection of characters stored on a secondary storage device like hard disk, or pen
drive.

⦁ There are two kinds of files that programmer deals with:
⮩ Text Files are human readable and it is a stream of plain English characters

⮩ Binary Files are computer readable, and it is a stream of processed characters andASCII symbols

Binary File

11010011010100010110111010101
11010111010011010100010110111

01010111010111010011

Text File

Hello, this is a text file. Whatever
written here can be read easily
without the help of a computer.

D.Srinivas, Asst. Professor,CSE Unit-5 Preprocessors and Files 267

Text Files And Binary Files:

⦁ Text File:
⮩ It is a file in which data are stored using only characters; a text file is written using text stream.

⮩ Non-character data types are converted to a sequence of characters before they are stored in the file.

⮩ In the text format, data are organized into lines, terminated by newline character.

⮩ The text files are in human readable form and they can be created and read using any text editor.

⮩ Text files are read and written using input / output functions that convert characters to data types: scanf and
printf, getchar and putchar, fgets and fputs.

⦁ The following figure shows the data transfer in text file:

Reading and Writing Text

Files

D.Srinivas, Asst. Professor,CSE Unit-5 Preprocessors and Files 268

File Opening Modes

⮩ We can perform different operations on a file based on the file opening modes

Text Mode
Binary

Mode
Description

r rb
Open the file for reading only. If it exists, then the file is opened with the current

contents; otherwise an error occurs.

w wb
Open the file for writing only. A file with specified name is created if the file does

not exists. The contents are deleted, if the file already exists.

a ab

Open the file for appending (or adding data at the end of file) data to it. The file is

opened with the current contents safe. A file with the specified name is created if the file

does not exists.

r+ r+b The existing file is opened to the beginning for both reading and writing.

w+ w+b Same as w except both for reading and writing.

a+ a+b Same as a except both for reading and writing.

Note: The main difference is w+ truncate the file to zero length if it exists or create a new file if it doesn't. While r+ neither

deletes the content nor create a new file if it doesn't exist.

D.Srinivas, Asst. Professor,CSE Unit-5 Preprocessors and Files 269

Text Files And Binary Files:

⦁ Binary File:
⮩ A binary file is a collection of data stored in the internal format of the computer.

⮩ The binary files are not in human readable form.

⮩ There are no lines or newline characters.

⮩ Binary files are read and written using binary streams known as block input / output functions.

⮩ The following figure shows the data transfer in binary file:

Block Input and Output

Binary Files

D.Srinivas, Asst. Professor,CSE Unit-5 Preprocessors and Files 270

Text Files And Binary Files:

⦁ Differences between Text File and

Binary File

Text File Binary File

Data is stored as lines of

characters with each line

terminated by newline.

Data is stored on the disk in the

same way as it is represented

in the computer memory.

Human readable format. Not in human readable format.

There is a special character

called end-of-file(EOF)

marker at the end of the file.

There is an end-of-file marker.

Data can be read using any of the

text editors.

Data can be read only by specific

programs written for them.

D.Srinivas, Asst. Professor,CSE Unit-5 Preprocessors and Files 271

File Handling Functions or Operations

⦁ In general, there are five steps to processing a file.
⮩ 1. Creating a file

⮩ 2. Opening a file

⮩ 3. Reading a file

⮩ 4. Writing a file

⮩ 5. Closing a file

⦁ 1.Creating a file (fopen):
⮩ The function that prepares a file for processing is fopen.

⮩ It does two things: First, it makes the connection between the physical file and the file stream in the program.

⮩ Second, it creates a program file structure to store the information needed to process the file.

⮩ To open a file, we need to specify the physical filename and its mode.

⮩ Syntax:

fopen (“filename”, “mode”);

⮩ The file mode is a string that tells C compiler how we intend to use the file: reading, writing or append.

⮩ For example: fptr1 = fopen (“mydata", "r”);

⮩ Once the files are open, they stay open until you close them or end the program.

D.Srinivas, Asst. Professor,CSE Unit-5 Preprocessors and Files 272

File Handling Functions or Operations

⦁ 2.Opening a file (fopen):
⮩ This function used to open existing file with respective mode.

⮩ The function that prepares a file for processing is fopen.

⮩ It does two things: First, it makes the connection between the physical file and the file stream in the program.

⮩ Second, it creates a program file structure to store the information needed to process the file.

⮩ To open a file, we need to specify the physical filename and its mode.

⮩ Syntax:

fopen (“filename”, “mode”);

⮩ The file mode is a string that tells C compiler how we intend to use the file: reading, writing or append.

⮩ For example: fptr1 = fopen (“mydata", "r”);

⮩ Once the files are open, they stay open until you close them or end the program.

D.Srinivas, Asst. Professor,CSE Unit-5 Preprocessors and Files 273

File Handling Functions or Operations

int getc (FILE *spIn); or int
getc(stdin);

int fgetc (FILE *spIn); or int

fgetc(stdin);

⦁ 3.Reading a file :

⦁ Read a character: getc () and fgetc ()
⮩ The getc functions read the next character from the stream, which can be a user-defined stream or stdin, and converts it in

to an integer.

⮩ This function has one argument which is the file pointer declared as FILE or stdin (in case of standard input stream).

⮩ If the read detects an end of file, the function returns EOF, EOF is also returned if any error occurs.

⮩ The functionality of getc / fgetc is same.

⮩ Syntax:

⦁ Read a string: gets () and fgets ()
⮩ The gets functions read the string from the file, which can be a user-definedstream or stdin.

⮩ This function has one argument which is the file pointer declared as FILE or stdin (in case of standard input stream).

⮩ If the read detects an end of file, the function returns EOF, EOF is also returned if any error occurs.

⮩ The functionality of gets / fgets is same.

⮩ Syntax:
int gets (FILE *spIn);

int fgets(FILE *spIn);

or

or

int gets(stdin);

int fgets(stdin);
D.Srinivas, Asst. Professor,CSE Unit-5 Preprocessors and Files 274

File Handling Functions or Operations

⦁ Read an integer: getw() and fgetw()
⮩ The getc functions read the next interger from the stream, which can be a user-defined stream or stdin.

⮩ This function has one argument which is the file pointer declared as FILE or stdin (in case of standard input stream).

⮩ If the read detects an end of file, the function returns EOF, EOF is also returned if any error occurs.

⮩ The functionality of getw / fgetw is same.

⮩ Syntax:

int getw(FILE *spIn);

int fgetw(FILE *spIn);

or

or

int getw(stdin);

int fgetw(stdin);

D.Srinivas, Asst. Professor,CSE Unit-5 Preprocessors and Files 275

File Handling Functions or Operations

⦁ 3.Reading a file :

⦁ Formatted input -fscanf ():
⮩ It is used to read data from a user-specified stream.

⮩ The general format of fscanf() is:

fscanf (stream-pointer, ”format string”, list);

⮩ The first argument is the stream pointer, it is the pointer to the streams that has been declared and associated with a text file.
Remaining is same as scanf function arguments.

⮩ The following example illustrates the use of an input stream.
int a, b; FILE

*fptr1;

fptr1 = fopen (“mydata", "r”);

fscanf (fptr1, "%d %d", &a, &b);

⮩ The fscanf function would read values from the file "pointed" to by fptr1 and assign those values to a and b.

⮩ The only difference between scanf and fscanf is that scanf reads data from the stdin (input stream) and fscanf reads input
from a user specified stream(stdin or file).

⮩ The following example illustrates how to read data from keyboard using fscanf,

fscanf (stdin,”%d”, &a);

D.Srinivas, Asst. Professor,CSE Unit-5 Preprocessors and Files 276

File Handling Functions or Operations

⦁ 4.Writing a file :

⦁ Writing a character: putc () and fputc ()
⮩ The putc function writes a character to the stream which can be a user-defined stream, stdout, or stderr.

⮩ The functionality of putc/ fputc is same.

⮩ The functions, putc or fputc takes two arguments.

⮩ The first parameter is the character to be written and the second parameter is the file.

⮩ The second parameter is the file pointer declared as FILE or stdout or stderr.

⮩ If the character is successfully written, the function returns it. If any error occurs, it returns EOF.

⮩ Syntax:

int putc (char, *fp);

int fputc (char, *fp);

D.Srinivas, Asst. Professor,CSE Unit-5 Preprocessors and Files 277

File Handling Functions or Operations

⦁ Read an integer: getw() and fgetw()
⮩ The getc functions read the next interger from the stream, which can be a user-defined stream or stdin.

⮩ This function has one argument which is the file pointer declared as FILE or stdin (in case of standard input stream).

⮩ If the read detects an end of file, the function returns EOF, EOF is also returned if any error occurs.

⮩ The functionality of getw / fgetw is same.

⮩ Syntax:

int getw(FILE *spIn);

int fgetw(FILE *spIn);

or

or

int getw(stdin);

int fgetw(stdin);

D.Srinivas, Asst. Professor,CSE Unit-5 Preprocessors and Files 278

File Handling Functions or Operations

⦁ Formatted Output -Writing to Files: fprintf ()
⮩ It can handle a group of mixed data simultaneously.

⮩ The first argument of these functions is a file pointer which specifies the file to be used.

⮩ The general formof fprintf is:

fprintf (stream-pointer, ”format string”, list);

⮩ Where stream-pointer is a file pointer associated with a file that has been opened for writing.

⮩ The format string contains output specifications for the items in the list.

⮩ The list may include variables, constants and strings.

⮩ The following example illustrates the use of an Output stream.

int a = 5, b = 20;

FILE *fptr2;

fptr2 = fopen (“results", "w”);

fprintf (fptr2, "%d %d", a, b) ;

⮩ The fprintf functions would write the values stored in a and b to the file "pointed" to by fptr2.

⮩ fprintf function works like printf except that it specifies the file in which the data will be displayed.

⮩ The file can be standard output (stdout) or standard error (stderr) also.

⮩ Example,

fprintf (stdout,”%d”,45);

D.Srinivas, Asst. Professor,CSE Unit-5 Preprocessors and Files 279

File Handling Functions or Operations

⦁ 5.Closing a file (fclose):
⮩ When we no longer need a file, we should be close it to free system resources, such as buffer space.

⮩ Closing a file ensures that all outstanding information associated with the file is flushed out from the buffers
and all links to the file are broken.

⮩ Another instance where we have to close a file is to reopen the same file in a different mode.

⮩ A file is closed using the close function, fclose.

⮩ Syntax:

fclose (file-pointer);

⮩ fclose () returns 0 on success (or) -1 on error.

⮩ Once a file is closed, its file pointer can be reused for another file.

D.Srinivas, Asst. Professor,CSE Unit-5 Preprocessors and Files 280

Programs

⦁ Write a C program to fprintf() and fscanf() a text file.

#include <stdio.h>
#include <stdlib.h>

int main()
{

int num;
FILE *fptr;
fptr = fopen("C:\\program.txt","w");

if(fptr == NULL)
{

printf("Error!");
exit(1);

}

printf("Enter num: ");
scanf("%d",&num);

fprintf(fptr,"%d",num);
fclose(fptr);

return 0;
}

Program

#include <stdio.h>
#include <stdlib.h>

int main()
{

int num;
FILE *fptr;

if ((fptr = fopen("C:\\program.txt","r")) == NULL){
printf("Error! opening file");

exit(1);
}

fscanf(fptr,"%d", &num);

printf("Value of n=%d", num);
fclose(fptr);

return 0;
}

Program

D.Srinivas, Asst. Professor,CSE Unit-5 Preprocessors and Files 281

File Handling Functions or Operations

⦁ Reading And Writing binary Functions:
⮩ C language uses the block input and output functions to read and write data to binary files.

⮩ As we know that data are stored in memory in the form of 0’s and 1’s.

⮩ Whenweread andwrite the binary files, the data are transferred just as they are found in memoryandhencethere are no
format conversions.

⦁ File Read: fread ()
⮩ It reads a specified number of bytes from a binary file and places them into memory at the specified location.

⮩ The functiondeclaration is as follows:

int fread (void *pInArea, int elementsize, int count, FILE *sp);

⮩ The first parameter, pInArea, is a pointer to the input area in memory.The data read from the file should be stored in
memory.

⮩ For this purpose, it is required to allocate the sufficient memory and address of the first byte is stored in pInArea.

⮩ The next two elements, elementSize and count, are multiplied to determine how much data are to be transferred.

⮩ The size is normally specified using the sizeof operator and the count is normally one when reading structures.

⮩ The last argument is the pointer to the file we want to read from.

⮩ This function returns the number of items read. If no items have been read or when error has occurred or EOF
encountered, the function returns 0.

D.Srinivas, Asst. Professor,CSE Unit-5 Preprocessors and Files 282

File Handling Functions or Operations

⦁ File Write: fwrite ()
⮩ It writes specified number of items to a binary file.

⮩ The function declaration is as follows,

int fwrite (void *pOutArea, int elementSize, int count, FILE *sp);

⮩ The parameters for file write correspond exactly to the parameters for the file read function.

D.Srinivas, Asst. Professor,CSE Unit-5 Preprocessors and Files 283

Programs

⦁ Write a C program to fread() and fwrite() a binary file.

#include <stdio.h>
#include <stdlib.h>
struct threeNum
{

int n1, n2, n3;
};
void main()
{

int n;
struct threeNum num;
FILE *fptr;
if ((fptr = fopen("C:\\program.bin","wb")) == NULL){

printf("Error! opening file");
exit(1);

}
for(n = 1; n < 5; ++n)
{

num.n1 = n;
num.n2 = 5*n;
num.n3 = 5*n + 1;
fwrite(&num, sizeof(struct threeNum), 1, fptr);

}
fclose(fptr);

}

Program

#include <stdio.h>
#include <stdlib.h>
struct threeNum
{

int n1, n2, n3;
};
void main()
{

int n;
struct threeNum num;
FILE *fptr;

if ((fptr = fopen("C:\\program.bin","rb")) == NULL){
printf("Error! opening file");
exit(1);

}

for(n = 1; n < 5; ++n)
{

fread(&num, sizeof(struct threeNum), 1, fptr);
printf("n1: %d\tn2: %d\tn3: %d\n", num.n1, num.n2,

num.n3);
}
fclose(fptr);

}

Program

D.Srinivas, Asst. Professor,CSE Unit-5 Preprocessors and Files 284

Programs

⦁ Write a C program to copy a given file.

Program

#include <stdio.h>
void main()
{

FILE *fp1, *fp2; //p and q is a FILE type pointer
char ch; //ch is used to store temporary data
fp1 = fopen("file1.c","r"); //open file “file1.c” in read mode
fp2 = fopen("file2.c","w"); //open file “file2.c” in write mode
do { //repeat step 9 and 10 until EOF is reached

ch = getc(fp1); //get character pointed by p into ch
putc(ch, fp2); //print ch value into file, pointed by pointer q

}while(ch != EOF); //condition to check EOF is reached or not
fclose(fp1); //free up the file pointer p
fclose(fp2); //free up the file pointer q
printf("File copied successfully...");

}

D.Srinivas, Asst. Professor,CSE Unit-5 Preprocessors and Files 285

Programs- Cont…

⦁ Write a C program to merge the two files
Program

#include <stdio.h>
void main()
{

FILE *p1,*p2,*p3;
char ch;
p1 = fopen(“file1.txt","r");
p2 = fopen(“file2.txt","r");
p3 = fopen(“file3.txt",“w");

if (fp1 == NULL || fp2 == NULL)
{

puts("Could not open files");
exit(0);

}
while ((c = fgetc(fp1)) != EOF)

{
fputc(c, fp3);

while ((c = fgetc(fp2)) != EOF)
fputc(c, fp3);

Output

Merged file1.txt and file2.txt into
file3.txt

printf("Merged file1.txt and
file2.txt into file3.txt");
fclose(fp1);
fclose(fp2);
fclose(fp3);
return 0;
}

Program (contd.)

D.Srinivas, Asst. Professor,CSE Unit-5 Preprocessors and Files 286

Programs- Cont…

⦁ Write a C program to count lines, words, tabs, and characters

#include <stdio.h>
void main()
{

FILE *p;
char ch;
int ln=0,t=0,w=0,c=0;
p = fopen("text1.txt","r");
ch = getc(p);
while (ch != EOF) {

if (ch == '\n')
ln++;

else if(ch == '\t')
t++;

else if(ch == ' ')
w++;

else

Program

Output

Lines = 22, tabs = 0, words = 152,
characters = 283

C++;

ch = getc(p);
}
fclose(p);
printf("Lines = %d, tabs = %d, w

ords = %d, characters = %d\n",ln,
t, w, c);
}

Program
(contd.)

D.Srinivas, Asst. Professor,CSE Unit-5 Preprocessors and Files 287

Random Access File Functions

⦁ Rewind File (rewind):

⮩ It simply sets the file position indicator to the beginning of the file.

⮩ Syntax:
void rewind(FILE *stream);

⮩ It helps us in reading a file more than once, without having to close and open the file.

⮩ A common use of the rewind function is to change a work file from a write state to a read state.

D.Srinivas, Asst. Professor,CSE Unit-5 Preprocessors and Files 288

Random Access File Functions

⦁ Current Location (ftell):
⮩ It reports the current position of the file marker in the file, relative to the beginning of the file.

⮩ It measures the position in the file by the number of bytes, relative to zero, from the beginning of the file.

⮩ Syntax:

int pos=long int ftell(FILE *stream);

⮩ It also returns the number of bytes from the beginning of the file.

⮩ If ftell encounters an error, it returns -1.

Current Location (ftell)

Operation

D.Srinivas, Asst. Professor,CSE Unit-5 Preprocessors and Files 289

Random Access File Functions

⦁ Re Position: (fseek):
⮩ It is used to move the file position to a desired location within the file.

⮩

Syntax:

⮩ The offset specifies the number of positions to be moved from the location specified by position.

⮩ The position can take one of the following three values:

Valu

e

0

1

2

Meaning

Beginning of file.

Current position.

End of file.

⮩ The offset may be positive(means forward), or negative (means backward).

⮩ When the operation is successful, fseek returns a zero.

⮩ If we attempt to move the file pointer beyond the file boundaries, an error occurs and fseek returns -1.

int fseek(FILE *stream, long offset, int wherefrom);

D.Srinivas, Asst. Professor,CSE Unit-5 Preprocessors and Files 290

Random Access File Functions

Statement Meaning

fseek(fp,0L,0); Go to the beginning.

fseek(fp,0L,1); Stay at the current position.

fseek(fp,0L,2); Go to the end of the file, past the last character

of the file.

fseek(fp,m,0) Move to (m+1)th byte in the file.

fseek(fp,m,1); Go forward by m bytes.

fseek(fp,-m,1); Go backward by m bytes from the current

position.

fseek(fp,-m,2); Go backward by mbytes from the end. (positions

the file to the character from the end.)

Operations of the fseek function

D.Srinivas, Asst. Professor,CSE Unit-5 Preprocessors and Files 291

Darshan Institute of Engineering & Technology, Rajkot

Thank

You

Programming for Problem Solving

(PPS)

D. SRINIVAS

Computer Science and Engineering Department

srinivascsedept@gmil.com

+91-9347556447
292

mailto:srinivascsedept@gmil.com

