OP		

NARSIMHAREDDY ENGINEERING COLLEGE (UGC AUTONOMOUS)

1 B. Fech 1 Semester (NR23) Regular Examination, January/February 2024

MATRICES AND CALCULUS

(Common to CE, EEE, ME, ECE, CSE, FT, CSE (CS), CSE (AI&ML))

Time: 3 hours

Maximum marks; 60

- Note:
 This question paper contains two parts: A and B
 Part A is compulsory which carries 10 marks (10 sub questions are two from each unit carry 1 Marks). Answer all questions in Part A
 Part B Consists of 5 Units: Answer one question from each unit. Each question carries 10 Marks and may have a, b sub-questions

 Part-A

 (10 Marks)

		Answer all questions	(10	Mark	5)
Q.	No	Question	M	CO	81.
1)	28.	Define the Rank of the Matrix	1	COL	1.1
	b.	Explain Consistent and In-consistent	1	COL	1.2
	C.	State Cayley- Hamilton Theorem	1	CO2	12
	d	Define Index and Signature of the Quadratic form	1	CO2	LI
	6	State Cauchy's Mean Value Theorem	1	CO3	1.1
	E	Obtain the Maclaunn's series expansion of the function I(x) = e	1	CO3	13
	g.	If $u = \frac{x + y}{1 - xy}$ and $\theta = \tan^{-1} x + \tan^{-1} y$, find $\frac{\partial(u, \theta)}{\partial(x, y)}$	1	CO4	L
	h	Verify that $\frac{\partial^2 u}{\partial x \partial y} = \frac{\partial^2 u}{\partial y \partial x}$ when $u = \log(y \sin x + x \sin y)$	1	CO4	L
	1	11	1	CO5	L
	1	Evaluate $\int \int xy dx dy$			
		148.68	- 3	CO5	L
	1	Evaluate [1
		Part-B	(50 Mai	ris)

Part-B Answer all the Units All Questions carry equal Marks

	Question	M	CO	BL.
Q.N	UNIT-I	5	COI	1.3
2)	a. Find the rank of the matrix $A = \begin{bmatrix} 2 & 1 & 3 & 3 \\ 4 & 2 & 1 & 3 \\ 8 & 4 & 7 & 13 \\ 8 & 4 & -3 & -1 \end{bmatrix}$ by n	educing at to		
	Echelon form method to compate the im	verse of the 5	COI	1.3
	$matrixA = \begin{bmatrix} 2 & -2 & 1 \\ -1 & 1 & -1 \end{bmatrix}$ OR $\{2, 1, 3, 5, 1, \dots, 6, 2, 1, 3, 5, 1, \dots, 6, 1, \dots, 6, 1, \dots, 6, \dots, 6,$	5	COI	1.2
	a. Find the rank of the matrix $A = \begin{bmatrix} 4 & 2 & 1 & 3 \\ 8 & 4 & 7 & 13 \\ 0 & 4 & -3 & -1 \end{bmatrix}$ by	reducing it to		
	average form. 12 2x = 12 2x =	10y + x = 13, 5	COL	L
	b. Solve the system of equations 10x + y Solve the system of equations 10x + y x + y = 5z = 7 by using L-1) decomposition method		740	4 A G/ 7

		UNIT-II			
0	a	Find the eigen values and corresponding eigen vectors of the matrix $A = \begin{bmatrix} 6 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3 \end{bmatrix}$	5	CO2	13
	b	Verify Cayley-Hamilton theorem for $A = \begin{bmatrix} 8 & -1.2 & 9\\ 15 & -25 & 11\\ 24 & -42 & 19 \end{bmatrix}$ and hence find A^{-1} and A^{5}	5	CO2	LA
		OR	-		-
5)	a.	Diagonalise the matrix and obtain the modal matrix for $A = \begin{bmatrix} -1 & 1 & 2 \\ 0 & -2 & 1 \\ 0 & 0 & -3 \end{bmatrix}$ Hence find A'	5	CO2	13
	b.	Find the orthogonal transformation which transforms the quadratic form $3x^2 - 2y^2 \neq 4xy + 12yz + 8zx$ to canonical form and find the rank, index, signature and nature	5	CO2	1.2
		UNIT-III			
6)	12.	Show that the Rolle's theorem is applicable for the function $f(x) = \log \left(\frac{x^2 + ab}{3(a+b)} \right)$ in the interval $\{a,b\}, a \ge 0, b \ge 0$	5	C03	1.3
	b.	Expand the function $f(x, y) = e^x \log (1+y)$ in terms of x and y up to the terms of 3^{3d} degree using Taylor's theorem.	5	CO3	1.4
		OR			
21	1	Show that the Lagrange's mean value theorem is applicable for the function $f(x) = x^2 - 5x + 3$ in the interval $\{0,4\}$	5	CO2	1.4
	b	Show that $\int (\log 1/x)^{n-1} dx = V(n)$	5	COS	1.5
		UNIT-IV			
8)	a	If $u = f(x^2 + 2yz, y^2 + 2zx)$ prove thus $(y^2 - zx)\frac{\partial u}{\partial x} + (x^2 - yz)\frac{\partial u}{\partial y} + (z^2 - xy)\frac{\partial u}{\partial z} = 0$	3	CO4	1.5
	0	Verify if $u = 2x - y + 3z$, $y = 2x - y - z$, $w = 2x - y - z$ are functionally dependent and if so, find the relation between them	3	C04	1.6
9)	T	Examine the extrema of $f(x, y) = x^2 + xy + y^2 + \frac{1}{x} + \frac{1}{y}$	3	COL	14
		Divide 24 into three points such that the commund product of the first, square of the second and cube of the third in maximum. UNIT-V	5	C04	1.6
	1	 a. Evaluate ∫∫ ay de dy where R is the region bounded by the fine x+2y = 2, lying in the first quadrant. 	3	005	LA
		b. Evaluate the following unegral by transforming into polar coordinates $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} y \sqrt{x^2 + y^2} dx dy$	5	605	LS
-		OR			
1	(1)		13	Ç08	
		h Evaluate $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{1}{(1-u^2-u^2-u^2-u^2)} dz dy dz$	1	005	

-00O00-

Q.P Code: MAI101BS

Hall Tuker No

SIST OF TOTAL

NARSIMHA REDDY ENGINEERING COLLEGE (UGC AUTONOMOUS)

I R.Tech I Semester (NR21) Regular & Supplementary Examination, March 2023

LINEAR ALGEBRA & CALCULUS (Common to CE, EEE, ME, ECE, CSE, CSE (CS), CSE (AL&ML), CSE (DS)) Maximum marks: 70

Time: 3 hours

This question paper contains two parts, A and B
 Part A is compulsory which carries 20 marks (10 mb questions are two from each unit carry 2 Marks). Answer all questions in Part A
 Part B Consists of 5 Units. Answer one question from each unit. Each question carries 10
 Necks and may have a, b sub questions

Answer all questions Part-A

(20 Marks)

From

Form

Form

Define Eigen Values and Eigen Vectors

Find the sum and product of the Eigen values of $\begin{bmatrix} 2 & 3 & -2 \\ 2 & 3 & -2 \end{bmatrix}$ in $\begin{bmatrix} 0 & 2\pi \end{bmatrix}$ Find the Rank of the Matrix 3 -2 4 to reduce Echelon -1 2 is ormogenal M CO BL 2 COI LI 2 CO2 L1 2 CO2 L1 2 COI L3

2 CO3 L1

Find the value of as, if f(x) = x in $(0, 2\pi)$ and verify $\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial^2 f}{\partial y \partial x}$ If $x = r\cos\theta$, $y = r\sin\theta$, find $\frac{\partial(x,y)}{\partial(r,\theta)}$ Define Fourier series of a function f(x) in the interval $(c,c+2\pi)$. 2 CO3 L1 State Rolle's Theorem

Define Gamma Function

Determine first and second order partial derivatives of $ax^2 + 2hxy + by^2$ 2 CO5 L3 COS LI

(50 Marks)

All Quescions carry equal Marks Answer all the Units Part-B

Q.No Find the rank of the matrix A = - 1 by englying 5 CO1 M CO BL Page 1 uf 3

$f(x) = e^{ax} \text{ in } 0 < x < \pi$	$f(x) = x \text{ in } (-\pi, \pi)$ b. Determine the half range sine series for the functions	7) a. Express the given function as a Fourier series expansion	$\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^3} + \dots = \frac{31^4}{8}$	b. Find the Fourier series representation of the function $f(x) = \begin{cases} -\pi & for -\pi < x < 0 \\ x & for 0 < x < \pi \end{cases}$ Also Prove that	6) a. Find the Fourier series representation of the function (x_1) : $\left(\frac{\pi - x}{2}\right)^2 \ln\left(0, 2\pi\right) \text{ Hence Prove that } \frac{1}{1} + \frac{1}{2^2} + \cdots + \frac{\pi^2}{12}$	Find the orthogonal transformation which transforms the quadratic form $x^2 + 3y^2 + 3x^2 - 2yz$ to canonical form and Determine the rank, index, signature and nature.		b Reduce the matrix $A = \begin{bmatrix} 1 & 0 & 11 \\ 0 & 1 & 0 \end{bmatrix}$ to the flagorial form and hence Determine A^6	- 4	of equations using Gauss Jordan method e -3y + 2e -0 2x - y + x -0 of equations by Gauss Seidel method y+20y-x = -18, 2x-3y+20x = 25.	E S
	5 003	n 5 003 L		-	100	2 000	10	5	002	601 160	1

5

-	161		-	103			1	0)	T		8)
pr	20		0	70		5	7		0		2
Divide 24 into three points such that the continued product of the first, square of the second and cube of the third is maximum.	Prove that the function $f(x, y) = x^3+y^3 - 63(x+y)+12xy$ is smaximum at $(-7, -7)$ and minimum at $(3, 3)$.	OR	Prove that the functions $u = x+y+z$, $v=x^2+y^2+z^2-2xy-2yz-2zx$ and $w = x^2+y^2+z^2-3xyz$ are functionally related and find the relation between them.	If $U = \frac{1}{\sqrt{x^2 + y^2 + z^2}}$, $x^2 + y^2 + z^2 = 0$ then prove that $\frac{\partial^2 U}{\partial x^2} + \frac{\partial^2 U}{\partial y^2} + \frac{\partial^2 U}{\partial z^2} = 0$	A-LING	Prove that $\beta(m,n) = \int_{-1}^{\infty} \frac{y^{n-1}}{(l+y)^{m+n}} dy$	Prove that $S(m,n) = \frac{\Gamma(m)\Gamma(n)}{\Gamma(m+n)}$ where m,n>0.	OR	Prove that $1-\frac{a}{b} < \log \frac{b}{a} < \frac{b}{a} - 1, 0 < a < b$ by using Lagrange's mean value theorem.	$g(x) = \frac{1}{\sqrt{x}} \text{ in } [a, b] \text{ for } 0 < a < b.$	
U)			On	La	ı	(4)	14		4	1/4	
cos	COS		005	03 13		100	004		ā	5 004	
1.6	LS		1.5	5		5	G		2	2	

+ U Hall Ticker No.: 2 | X C | A C S A A Time: 3 hours b If $f(x) = \log x$ and $g(x) = x^2$ in [a, b], then prove that n. Investigate for what values of a.b the equations $b_1IIU = \log(x^3 + y^3 + x^3 - 3xyx)$, then Prove that Hence deduce that $\frac{1}{2^3} + \frac{1}{2^3} + \frac{1}{2^3} + \frac{1}{4^3} + \cdots = \frac{\pi^3}{6}$ Expand $f(x) = (\frac{x-x}{2})^2$, (bcx < 2x m a) Fourier series State Cayley-Hamilton theorem and Verify Cayley-Hamilton theorem for b. Solve the equations x + 3y - 2z = 0,2x - y + 4z = 0,x - 11y + $\frac{\log b - \log x}{b - x} = \frac{x + b}{2 + 0} sing Cauchy's mean value theorem$ Find the maximum and minimum values of $f(x, y) = x^3 + 3xy^2 -$ Reduce the Matrix A = 4 2 Verify Rolle's theorem for $f(x) = \log \left[\frac{x^2 + ab}{x(a+b)} \right]$ in the interval [a,b]. (UGC-AUTONOMOUS)

B.TECH I YEAR I SEMESTER SUPPLEMENTARY EXAMINATIONS, SEPT-2022 15x2-15y2+72x. find its Rank (Common to CIVIL EEE ME ECE CSE CSE(CS), CSE(AI&ML), CSE(DS)) (i) No solution (ii) Unique solution (iii) infinitely many solutions. $A = \begin{bmatrix} 1 & 0 & -1 \\ 1 & 2 & 1 \end{bmatrix}$ and find A^{-1} and A^{-2} x+2y+3z=4,x+3y+4z=5NARSIMHA REDDY ENGINEERING COLLEGE $\left(\frac{\partial}{\partial z} + \frac{\partial}{\partial y} + \frac{\partial}{\partial z}\right)^2 U = \frac{-9}{(x+y+z)^2}$ LINEAR ALGEBRA & CALCULUS All Questions carry Equal Marks Answer any Five Questions [Regulation: NR21] mto Echelon form. Hence x + 3y + az = b haveQueerion Paper Cody: MA118185 Set 2 Max. Marks: 70 Marks Bloom's -4 T 4 -1 La 4 14 U H 5 E

LU-decomposition method

Evaluate (i) $\int_0^x \sin^4\theta \cos^4\theta d\theta$ using 0-F functions

Evaluate (i) $\int_0^x \sin^4\theta \cos^4\theta d\theta$ using 0-F functions

Use Causs-Scidal iteration method to solve that $x \frac{\partial x}{\partial x} + y \frac{\partial x}{\partial y} = T$ and 10x + y + z = 12.2x + 10y + z = 13.2x + 2y + 10x = 14

44.9

.....

Code No: 181AN

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B. Tech I Year I Semester Examinations, March/April - 2023 MATRICES AND CALCULUS

(Common to CE, ME, ECE, EIE, AE, MIE, CSE(AI&ML), CSE(IOT), AI&DS, AI&ML) Time: 3 Hours Max. Marks: 60

Note: This question paper contains two parts A and B.

- i) Part- A for 10 marks, ii) Part B for 50 marks.
 - Part-A is a compulsory question which consists of ten sub-questions from all units carrying equal marks.
 - Part-B consists of ten questions (numbered from 2 to 11) carrying 10 marks each. From each unit, there are two questions and the student should answer one of them. Hence, the student should answer five questions from Part-B.

PART- A

(10 Marks)

- What is the value of 'k' if the rank of the matrix $\begin{bmatrix} 1 & 2 & 3 \\ 2 & k & 7 \\ 2 & 6 & 10 \end{bmatrix}$ is 2? 1.a) [1]
 - Find the value of 'a' for which the equations have infinite number of solutions: [1] b) x+y+z=1; ax-ay+3z=5; 5x-3y+az=6.
 - If the eigenvalues of $A = \begin{bmatrix} 5 & -2 & 0 \\ -2 & 6 & 2 \\ 0 & 2 & 7 \end{bmatrix}$ are 3, 6 and 9, then what are the eigenvalues of c) adj A? [1]
 - What is the nature of the quadratic form 2xy + 6xz 4yz? d) [1]
 - Find the value of the constant in Cauchy's mean value theorem for $f(x) = e^x$ and e) $g(x) = e^{-x}$ defined on [a, b], 0 < a < b.
 - Find the Taylor's expansion of $f(x) = e^x$ around x=1. f) [1]
 - g)
 - h)
 - i)
 - If $u = \frac{y}{x}$, v = xy, then find $J\left(\frac{u,v}{x,y}\right)$. [1] Find the stationary point's of the function $x^2 + 2xy + 2y^2 + 2x + 2y$. [1] Evaluate $\int_0^1 \int_2^4 xy dx dy$. [1] In the integral $\int_0^4 \int_x^4 f(x,y) dx dy$, write the limits after changing the order of integration. j) [1]

PART-B

(50 Marks)

- Find rank of matrix $A = \begin{bmatrix} 1 & 0 & 2 & 1 \\ 0 & 1 & -2 & 1 \\ 1 & -1 & 4 & 0 \\ 2 & 2 & 0 & 0 \end{bmatrix}$ by reducing it into normal form. 2.a)
 - Solve the system of equations: b) x+y+54z=110; 27x+6y-z=85; 6x+15y+2z=72 using Gauss-Seidel method. [5+5]

3.a) Solve the system of equations by Gauss -elimination method

$$5x + y + z + w = 4$$
, $x + 7y + z + w = 12$, $x + y + 6z + w = -5$, $x + y + z + 4w = -6$.

b) Find the inverse of
$$A = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$
 using Gauss-Jordan method. [5+5]

- 4.a) Find the eigenvalues and the corresponding eigen vectors of $\begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & 1 \\ 2 & -1 & 3 \end{bmatrix}$.
 - b) Using Cayley Hamilton theorem for the matrix $A = \begin{bmatrix} 1 & -3 & 1 \\ 6 & 3 & 1 \\ 1 & 3 & 1 \end{bmatrix}$, find A^4 . [5+5]

OR

- 5. Reduce the quadratic form $3x^2 + 2y^2 + 3z^2 2xy 2yz$ to the canonical form by orthogonal transformations and find rank, index, signature, nature of the quadratic form.
- 6.a) Find the region in which $f(x) = 1-4x-x^2$ is increasing and the region in which it is decreasing using Mean Value Theorem.
 - b) Find the volume of the solid generated by the revolution of the area bounded by $y = x^2$ and y = x about y axis. [5+5]

OR

7.a) Expand $\tan^{-1} x$ in powers of (x-1) up to the term containing fourth degree.

b) Evaluate
$$\int_{0}^{1} x^4 \left(\log \frac{1}{x}\right)^3 dx$$
. [5+5]

- 8.a) If $u = \sin^{-1} \left(\frac{x^2 + y^2}{x + y} \right)$ find the value of $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y}$.
 - b) If x + y + z = u, y + z = uv, z = uvw, then evaluate $\frac{\partial(x, y, z)}{\partial(u, v, w)}$. [5+5]

OR

- 9.a) If $x = e^r \sec \theta$, $y = e^r \tan \theta$, prove that $\frac{\partial(x, y)}{\partial(r, \theta)} \cdot \frac{\partial(r, \theta)}{\partial(x, y)} = 1$.
 - b) The Temperature T at any point (x, y, z) in space is $T = 400xyz^2$. Find the highest temperature at the surface of the unit sphere $x^2 + y^2 + z^2 = 1$. [5+5]
- 10.a) By changing the order of integration, evaluate $\int_{0}^{a} \int_{0}^{\sqrt{a^2 x^2}} \sqrt{a^2 x^2 y^2} \, dy dx.$
 - b) Find the volume bounded by the cylinder $x^2 + y^2 = 4$ and the plane z = 0, y + z = 4. [5+5]

- 11.a) Evaluate $\int_{0}^{a} \int_{0}^{\sqrt{a^2-x^2}} \sqrt{x^2+y^2} dy dx$ by changing into polar coordinates.
 - b) Using spherical polar coordinates, evaluate $\iiint \frac{xyz \, dxdydz}{\sqrt{x^2 + y^2 + z^2}}$ taken over the volume bounded by the sphere $x^2 + y^2 + z^2 = a^2$ in the first octant. [5+5]

--00O00--

Code No: 181AN

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B. Tech I Year I Semester Examinations, March/April - 2023 MATRICES AND CALCULUS

(Common to EEE, CSE, IT, CSIT, CE(SE), CSE(CS), CSE(DS), CSD)

Time: 3 Hours Max. Marks: 60

Note: This question paper contains two parts A and B.

- i) Part- A for 10 marks, ii) Part B for 50 marks.
 - Part-A is a compulsory question which consists of ten sub-questions from all units carrying equal marks.
 - Part-B consists of ten questions (numbered from 2 to 11) carrying 10 marks
 each. From each unit, there are two questions and the student should answer one
 of them. Hence, the student should answer five questions from Part-B.

PART- A

(10 Marks)

- 1.a) Are the system of equations x + y + z = 6, x + 2y + 3z = 14, x + 4y + 7z = 30 Consistent?
 - b) Find the rank of $A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 3 & 4 & 5 \end{bmatrix}$. [1]
 - c) If λ be a eigen value of a matrix A (non-zero matrix). Is λ^{-1} is an eigen value of A^{-1} ? [1]
 - d) The eigenvalues of a matrix $S = \begin{bmatrix} 3 & 2 \\ 2 & 3 \end{bmatrix}$ are 5 and 1. What are the eigenvalues of S^2 ?
 - e) Does Lagrange mean value theorem for the function $f(x) = \log_{e} x$ in the interval [1, e] apply?
 - f) Write the Beta function β (m, n) in terms of Sine and Cosine. [1]
 - g) Find the Jacobian $\frac{\partial(u,v)}{\partial(x,y)}$ where $u=e^x\sin y$ and $v=x+\log\sin y$. [1]
 - h) If $u = x^y$, then find $\frac{\partial u}{\partial y}$. [1]
 - i) Find the area lying between the parabola $y = 4x x^2$ and the line y = x. [1]
 - j) Change the order of integration for $\int_0^a \int_0^y f(x,y) dx dy$. [1]

PART - B

(50 Marks)

2.a) Use either the Gaussian Elimination or the Gauss Jordan method to solve

$$x + 2y - 3z = 9$$
$$2x - y + z = 0$$
$$4x - y + z = 4$$

b) For what values of n will the equations:

x = y + z = 1; x + 2y + 4z = n; $x + 4y + 10z = n^2$ be consistent. Solve them completely in each case. [5+5]

- 3. Using Gauss-seidel method solve the following system of equations 5x + 2y + z = 12, x + 4y + 2z = 15, x + 2y + 5z = 20.[10]
- For matrix $A = \begin{bmatrix} 1 & 3 & 6 & -1 \\ 1 & 4 & 5 & 1 \\ 1 & 5 & 4 & 3 \end{bmatrix}$, find non-singular matrices P and Q such that PAQ is in 4.a)

normal form and hence find rank of matrix A.

Diagonalise the Hermitian matrix $A = \begin{bmatrix} 2 & 1-2i \\ 1+2i & -2 \end{bmatrix}$ to unitarily similar diagonal b) matrix.

Find a matrix P that transforms $A = \begin{bmatrix} 1 & 0 & -1 \\ 1 & 2 & 1 \\ 2 & 2 & 3 \end{bmatrix}$ to diagonal form and hence find A^4 . 5.a)

- Using Cayley Hamilton Theorem, find A^8 if $A = \begin{bmatrix} 1 & 2 \\ 2 & -1 \end{bmatrix}$. Also find A^{-1} . [5+5]b)
- State Rolle's Theorem. And Test the validity of the theorem for the functions in the 6.a) interval mentioned against them $(x-2)^2$ in [-1,5].
 - Show that $\Gamma(n) = \int_0^1 \left(\log \frac{1}{x}\right)^{n-1} n > 0.$ b) [5+5]

Prove that $\beta(n,n) = \frac{\sqrt{\pi} \cdot \Gamma(n)}{2^{2n-1} \cdot \Gamma\left(n + \frac{1}{2}\right)}$.

The curve $v^{2} = \frac{\sqrt{n} \cdot \Gamma(n)}{2^{2n-1} \cdot \Gamma\left(n + \frac{1}{2}\right)}$. 7.a)

- The curve $y^2(a+x) = x^2(3a-x)$ revolves about the axis by x. Find the volume b) generated by the loop. [5+5]
- Determine if the following function is functionally dependent. If they are functionally 8.a) dependent, then find a functional relation between them.

$$u = x\sqrt{1-y^2} + y\sqrt{1-x^2}, \quad v = \sin^{-1} x + \sin^{-1} y$$

Calculate $\frac{\partial(u,v)}{\partial(r,\theta)}$ if u=2axy, $v=a(x^2-y^2)$ where $x=r\cos\theta$, $y=r\sin\theta$. b) [5+5]

OR

- Show that the rectangular solid of maximum volume that can be inscribed in a given 9.a) sphere is a cube.
 - Find the maximum and minimum distance of the point (3, 4, 12) from the sphere b) $x^2 + y^2 + z^2 = 1$. [5+5]

- 10.a) Evaluate $\iint \frac{dxdy}{x^4 + y^4}$, over the region bounded by $y \ge x^2$, $x \ge 1$.
 - b) If a denotes the radius of the base, h the altitude of a right circular cone, express the volume as a triple integral and evaluate it. [5+5]

OR

- 11.a) Find the volume of the solid bounded below by the paraboloid $z = x^2 + y^2$ and above by the plane z = 2y.
 - b) A triangular prism is formed by planes whose equations are ay = bx, y = 0 and x = a. Find the volume of the prism between the planes z = 0 and the surface z = c + xy. [5+5]

--00O00---