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Matrices - Introduction

Matrix algebra has at least two advantages:

*Reduces complicated systems of equations to simple
expressions

«Adaptable to systematic method of mathematical treatment
and well suited to computers

Definition:

A matrix is a set or group of numbers arranged in a square or
rectangular array enclosed by two brackets
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Matrices - Introduction

Properties:

A specified number of rows and a specified number of
columns

*Two numbers (rows x columns) describe the dimensions
or size of the matrix.

Examples:

3x3 matrix _

2X4 matrix 4 1 13 -3 [1 —1]
00 3 2

1x2 matrix
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Matrices - Introduction

A matrix is denoted by a bold capital letter and the elements
within the matrix are denoted by lower case letters

e.g. matrix [A] with elements a;;

a5

a,,...

a

m1l

| goes from 1 to m
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Matrices - Introduction

TYPES OF MATRICES

1. Column matrix or vector:

The number of rows may be any integer but the number of
columns is always 1
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Matrices - Introduction

TYPES OF MATRICES

2. Row matrix or vector

Any number of columns but only one row

116 [0 35 2]

[a11 Ay, Yz aln]
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Matrices - Introduction

TYPES OF MATRICES

3. Rectangular matrix

Contains more than one element and number of rows Is not
equal to the number of columns

LYomm110 0
3 7
. 2 0330

_7 6_

m =N
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Matrices - Introduction

TYPES OF MATRICES
4. Square matrix

The number of rows is equal to the number of columns

(a square matrix A has an order of m)
mxm

1 11 [T 11
3 0 9 9 0
=% e 61

The principal or main diagonal of a square matrix is composed of all
elements a;; for which =
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Matrices - Introduction

TYPES OF MATRICES

5. Diagonal matrix

A square matrix where all the elements are zero except those on
the main diagonal

10 0 )
0 2 0 0
0 0 1 0
ie. a :_O for all i #j_

3 00

aij ;/ O for some or a” | — jG SANDHYA RANI, ASSISTANT PROFESSOR



Matrices - Introduction
TYPES OF MATRICES

6. Unit or Identity matrix - |

A diagonal matrix with ones on the main diagonal

0 0 O
1 0
0 1
0 O

i.e. a; =0 forall i #]
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Matrices - Introduction

TYPES OF MATRICES

7. Null (zero) matrix - 0

All elements in the matrix are zero

For all i,
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Matrices - Introduction

TYPES OF MATRICES

8. Triangular matrix

A square matrix whose elements above or below the main
diagonal are all zero

1
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Matrices - Introduction

TYPES OF MATRICES

8a. Upper triangular matrix

A square matrix whose elements below the main
diagonal are all zero

0 i

0 0 &

l.e.a; =0 foralli>]
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Matrices - Introduction

TYPES OF MATRICES

8b. Lower triangular matrix

A square matrix whose elements above the main diagonal are all
Zero

0

l.e.a; =0foralli<]
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Matrices — Introduction

YPES OF MATRICES
9. Scalar matrix

A diagonal matrix whose main diagonal elements are
equal to the same scalar

A scalar is defined as a single number or constant

a. 0 0| [1 0o o] |6

J

0 & O 0 1 0 0
0 0 a| [0 0 1] |p

i.e.a;=0foralli=] 0

aij =aforalli= J G SANDHYA RANI, ASSISTANT PROFESSOR




MATRICES

Matrix Operations
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Matrices - Operations

EQUALITY OF MATRICES

Two matrices are said to be equal only when all
corresponding elements are equal

Therefore their size or dimensions are equal as well

0
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Matrices - Operations

Some properties of equality:
|[If A=B, then B = A for all A and B
Jif A=B,and B=C,then A=C forall A, Band C

If A=Bthen Q.. = bij
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Matrices - Operations
ADDITION AND SUBTRACTION OF MATRICES

The sum or difference of two matrices, A and B of the same
size yields a matrix C of the same size

Matrices of different sizes cannot be added or subtracted
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Matrices - Operations

Commutative Law:
A+B=B+A

Associative Law:
A+(B+C)=(A+B)+C=A+B+C

1 5 6]
-4 -2 3

B
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Matrices - Operations

A+0=0+A=A

A + (-A) = 0 (where —A Is the matrix composed of —a;; as elements)

5 2 2
2 2 -1
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Matrices - Operations

SCALAR MULTIPLICATION OF MATRICES

Matrices can be multiplied by a scalar (constant or single
element)

Let k be a scalar quantity; then
KA = Ak

3 -1
2 1

2 -3
_4 1_
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Matrices - Operations

12 -4
8§ 4
8§ -12

16 4

Properties:

k (A+B)=KkA+kB

* (k+g)A=kA+gA

« K(AB) = (kA)B = A(k)B

* K(GA) = (KQ)A i s srorscon




Matrices - Operations

MULTIPLICATION OF MATRICES

The product of two matrices is another matrix

Two matrices A and B must be conformable for multiplication to
be possible

I.e. the number of columns of A must equal the number of rows
of B

Example.
A x B = ~C
(1x3) (3x1) (1x1)
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Matrices - Operations

B x A = Notpossible!
(2x1) (4x2)

A x B = Not possible!
(6x2) (6x3)

Example
A X B = C
(2x3) (3x2) (2x2)
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Matrices - Operations

d; Sy g

(a, xby,)+(a, x

(a, xby,) +(a, x
(a,,xby;) +(ay, x

_a21 a‘22 a‘23_

L
b21 b22
_b31 b32 _

0,,) + (a3 xby,) =¢;y
0,,) + (343 xP5,) =Cyy

0,,) + (@5 xD;,) =Cy

(8, xBy,) +(ay, x by, ) + (2, xby,) =y,

Successive multiplication of row i of A with column j of
B — row by Column mlﬂﬁfﬁﬂﬁaﬂﬁﬁmm PROFESSOR




Matrices - Operations

4 2 7 B

1 2 3 | @x4)+(2x6)+(3%x3)  (Ix8)+(2x2)+(3x3)
{ } {(4><4)+(2><6)+(7><5) (4x8)+(2x2)+(7%x3)

31 21
63 57

Remember also:

IA=A




Matrices - Operations

Assuming that matrices A, B and C are conformable for
the operations indicated, the following are true:

. Al=1A=A

. A(BC) =(AB)C = ABC - (associative law)

. A(B+C)=AB + AC - (first distributive law)
(A+B)C = AC + BC - (second distributive law)

Caution!

1. AB not generally equal to BA, BA may not be conformable

2. If AB =0, neither A nor B necessarily =0
3. If AB = AC, B not necessarily =C
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Matrices - Operations

AB not generally equal to BA, BA may not be conformable

1 2

5 0
3 4
0 2

3 8
15 20

23 6
|10 0




Matrices - Operations

If AB = 0, neither A nor B necessarily =0

2 3
-2 =3
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Matrices - Operations

TRANSPOSE OF A MATRIX
If : ~

s |2
A=A’ =
2x3 5 3 1

Then transpose of A, denoted AT is:
5
4 3
_7 1_

Fbsrwﬁf"A i&Aﬁ,nﬁs]ANT PROFESSOR



Matrices - Operations

To transpose:
Interchange rows and columns

The dimensions of AT are the reverse of the dimensions of A

A=, A =

2
AT=,AT =
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Matrices - Operations

Properties of transposed matrices:
. (A+B)T=AT+ BT
. (AB)T=BTAT
. (KA)T = kAT
. (ADT=A
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Matrices - Operations

1. (A+B)T=AT+ BT

/7 3 -1 1 5 06 8 8 5
+ = —
2 -5 6 -4 -2 3 -2 -7 9

1 -4 ~2
~2 ~7




Matrices - Operations

(AB)T =BT AT




Matrices - Operations

SYMMETRIC MATRICES

A Square matrix Is symmetric if it is equal to its
transpose:
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Matrices - Operations

When the original matrix Is square, transposition does not
affect the elements of the main diagonal

S
_C d_

.
_b d_

The identity matrix, I, a diagonal matrix D, and a scalar matrix, K,
are equal to their transpose since the diagonal is unaffected.
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Matrices - Operations

INVERSE OF A MATRIX

Consider a scalar k. The inverse is the reciprocal or division of 1
by the scalar.

Example:
k=7 theinverse of kor k1 =1/k =1/7

Division of matrices is not defined since there may be AB = AC
while BZ C

Instead matrix inversion IS used.

The inverse of a square matrix, A, If it exists, Is the unigque matrix
Al where:

AAl = A1TA=
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Matrices - Operations

Example:

A=,A? =

1
A =
Because: _

1

T

-1
__2 3_

1

1

-2 3

.

—1

3 1

-1
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Matrices - Operations

Properties of the inverse:
(AB)_1 =B'A™
(A7) =
(A")"=(A")

(kA)™ = . ~ A"
k

A square matrix that has an inverse is called a nonsingular matrix
A matrix that does not have an inverse is called a singular matrix

Square matrices have inverses except when the determinant is zero

When the determinant of a' matrix‘is'zero‘the matrix is singular



Matrices - Operations

DETERMINANT OF A MATRIX

To compute the inverse of a matrix, the determinant is required

Each square matrix A has a unit scalar value called the
determinant of A, denoted by det A or |A|

1 2
If A=

5
2
5

0
1
0
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Matrices - Operations

If A =[A]Isasingle element (1x1), then the determinant is
defined as the value of the element

Then |A| =det A = a;,

If Ais (n x n), its determinant may be defined in terms of order
(n-1) or less.
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Matrices - Operations

MINORS
If A 1S an n x n matrix and one row and one column are deleted,

the resulting matrix is an (n-1) x (n-1) submatrix of A.

The determinant of such a submatrix is called a minor of A and
Is designated by m;; , where 1 and  correspond to the deleted

row and column, respectively.

m;; Is the minor of the element a;; In A.
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Matrices - Operations

dy S 3
a'21 a22 a23
_a31 a‘32 a33 |

Each element in A has a minor
Delete first row and column from A .

The determinant of the remaining 2 x 2 submatrix is the minor
of a;,

a22 a‘23
a32 a33

G SANDHYA RANI, ASSISTANT PROFESSOR




Matrices - Operations

Therefore the minor of a,, Is:
a‘21 a23
a31 a33

And the minor for a,; Is:

a21 a22

a'31 a32
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Matrices - Operations
COFACTORS

The cofactor C;; of an element a;; is defined as:

Cij — (_1)I+J mij

When the sum of a row number 1 and column J is even, ¢; = m;; and
When |+J |S Odd, Clj :'mij

c,(1=1]=1)= (_1)1+1 My, =-+My
C,(1=1]=2)= (_1)1+2 My, =—My,

Ci3(1=1]=3)= (_1)1+3 Mz =+My;
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Matrices - Operations

DETERMINANTS CONTINUED

The determinant of an n X n matrix A can now be defined as

A =det A=a,,C;;, +3,,C;, +...+ &,

The determinant of A is therefore the sum of the products of the
elements of the first row of A and their corresponding cofactors.

(It i1s possible to define |A| in terms of any other row or column
but for simplicity, the first row only is used)
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Matrices - Operations

Therefore the 2 X 2 matrix :

dy; 4y
a'21 a‘22_

A=

Has cofactors :

G, =My = ‘azz‘ = dy,

Cp=—M, = _‘3-21‘ =—dy

And the determinant of A Is:

‘A‘ =ay,C; + 5,6, =a;8,, —a;,d,
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Matrices - Operations

Example 1:

.
_1 2_
A=0C)2)-O)D) =5

A=




Matrices - Operations

For a 3 X 3 matrix:

Ay
a21

_a‘31

C¥
a22

a‘32

A3

a'23

a33 |

The cofactors of the first row are:

a'22
a‘32

a21
a'31

a‘21

a22

a‘23
a‘33

a23
a33

= Qy,833 —ay3ds,

— _(a21a33 — a‘23a31)

=, A58, — Aopdayy




Matrices - Operations

The determinant of a matrix A is:
‘A‘ = A1Cpq T A4,0p, =818y, —a,d),
Which by substituting for the cofactors in this case is:

\ = ail(a22a33 — azsasz) —a, (a21a33 — a23a31) +a, (a21a32 — 8y,d,,
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Matrices - Operations

Example 2:




Matrices - Operations
ADJOINT MATRICES

A cofactor matrix C of a matrix A Is the square matrix of the same
order as A in which each element a;; Is replaced by its cofactor c; .

Example:

If A=

12

.

The cofactor Cof Ais C =
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Matrices - Operations

The adjoint matrix of A, denoted by adj A, is the transpose of its
cofactor matrix

adjA=C'
It can be shown that:

A(adj A) = (adjA) A = |A| |

Example: 1 2
A=

__3 4_

A= (1)(4) - (2)(-3) =10

adj‘ \ — CG SANDH A RANI, ASSISTANT PRDFESSOR




Matrices - Operations

. 1 214 =21 [10 ©
A(adjA) = — =101
~3 43 1 0 10
_ 1 21 10 ©
(adjA)A= — 10|
3 4 0 10
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Matrices - Operations

USING THE ADJOINT MATRIX IN MATRIX INVERSION

Since
AALl = A1A=|

and
A(adj A) = (adjA) A=|A| I
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Matrices - Operations

Example

To check

AA™ =

A7A=

0.4

AAT = ATA =

1 2]0
-3 4]0

4 —-0.2]
3 01

-0.2

NT PRQ

04 -02[1 2]
_0-3 0.15A H)LA.RBII,ASSAIi

03 01




Matrices - Operations

Example 2
'3 -1 1]
A=12 1 0

1 2 -1

The determinant of A IS
Al = (3)(-1-0)-(-1)(-2-0)+(1)(4-1) = -2

The elements of the cofactor matrix are
C, = "‘(_1)’ Cp, = _(_2)1 Ci3 = "‘(3)1

Cy = —(-1), Cyy = +(—4), Co3 = —(7),
Cyy = +(-1), Cyy =—(-2), Cy3 =+(9),
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Matrices - Operations

The cofactor matrix is therefore
-1 2 3]
C= -4 -7

-1
2 -4 2
3 -7 5

-1 1 -1| [ 05 -05 05
2 -4 2 -1.0 20 -1.0
3 G SW\JJYA RA!\5,AS_SISTAJIW01E-S5)R 35 - 25_




Matrices - Operations

The result can be checked using
AAT =ATA =

The determinant of a matrix must not be zero for the inverse to
exist as there will not be a solution

Nonsingular matrices have non-zero determinants

Singular matrices have zero determinants
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MATRIX INVERSION

Simple 2 x 2 case

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA




Simple 2 x 2 case

and
A= Al =
C

Since 1t Is known that
AAl=]
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Simple 2 x 2 case

Multiplying gives
aw+by =1
ax+hbz=0
cw+dy =0
cx+dz=1

It can simply be shown that

'Al=ad —bc
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Simple 2 x 2 case

thus
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Simple 2 x 2 case
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Simple 2 x 2 case
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Simple 2 x 2 case

b
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Simple 2 x 2 case

So that for a 2 x 2 matrix the inverse can be constructed
In a simple fashion as

d b

_ A A
At = ¢ a

Al A

*Exchange elements of main diagonal
*Change sign in elements off main diagonal

Divide resulting matrix by the determinant
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Simple 2 x 2 case

Example
2 3
A=

1 -3

Check Inverse

s

o
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MATRICES AND LINEAR
EQUATIONS

Linear Equations
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Linear Equations

Linear equations are common and important for survey
problems

Matrices can be used to express these linear equations and
aid in the computation of unknown values

Example

n equations in n unknowns, the a;; are numerical coefficients,
the b; are constants and the X; are unknowns

dp X; + a5, X, +-o -+ Qg X, :b
&, X +a,,X, +--+a =D,

2nn

an1X + aANmXA RAN-I,-ASSISTAN—TI-RR&SSOM b

nn-mn n



Linear Equations

The equations may be expressed in the form

where

nxn




Linear Equations

If the determinant is nonzero, the equation can be solved to produce
n numerical values for x that satisfy all the simultaneous equations

To solve, premultiply both sides of the equation by A-* which exists
because |A| £ 0

AlAX=A'lB

Now since
AlA=]

We get
J X=A1lB

So if the inverse of the coefficient matrix is found, the unknowns,
X Would be determlned G SANDHYA RANI, ASSISTANT PROFESSOR .




Linear Equations

Example
X, =Xy + X3 =2
2%, + X, =1
X, +2X, — X3 =3

The equations can be expressed as

3 -1 1°
2 1 0
1 2 -1
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Linear Equations

When Al is computed the equation becomes

05 -05 05 |2
-10 20 -10
-15 35 -25|3

Therefore




Linear Equations

The values for the unknowns should be checked by substitution
back into the initial equations

X =X, + X3 =2
2%, + X, =1
X, +2X, — X3 =3

3% (2) = (=3) + (—7) = 2
2% (2)+(-3) =1
(2)+2x(=3)—(~7) =3
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EIGENVALUES
AND
EIGENVECTORS



Eigen values and Eigen vectors

Definition
Let A be an n x n matrix. A scalar A is called an eigenvalue of A
If there exists a nonzero vector x in R" such that
AX = AX.
The vector x is called an eigenvector corresponding to A.

AX
X

AX Figure 5.1
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Computation of Eigen values and Eigen
vectors

Let A be an n x n matrix with eigenvalue A and corresponding

eigenvector X. Thus Ax = Ax. This equation may be written
AX— AXx=0

given

(A-Al)x=0
Solving the equation |[A — Al | = 0 for A leads to all the eigenvalues

of A.

On expending the determinant |A — Al |, we get a polynomial in A.
This polynomial is called the characteristic polynomial of A.
The equation |A— Al | = 0 is called the characteristic equation of

A.
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Find the eigenvalues and eigenvectors of the matrix
Example 1 {—4 —6}

3 5
.'Ut'On t us first derive the characteristic polynomial of A.

~4 -6 [1 0] [-4-4 -6
A-Al, = ] =
3 5 0 1 3 5-1

We get

A-Al,|=(-4-2)(5-2)+18=2-1-2

We now solve the characteristic equation of A.
AF=-1-2=0=2UA-2)(1+)=0=>1=20r-1

The eigenvalues of A are 2 and —1.

The corresponding eigenvectors are found by using these values

of A in the equation(A — Al,)x = 0. There are many eigenvectors
corresponding to each eigenvalue.
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e FOor AL=2
We solve the equation (A — 21,)x = 0 for x.
The matrix (A — 21,) is obtained by subtracting 2 from the diagonal elements

of A. We get
-6 -6 X
=0
3 3| X

This leads to the system of equations

—6X%,—6Xx, =0

. 33X, 3%, =0 .
giving X, = —X,. The solutions to this system of equations are
X, =T, X, = r, where r is a scalar. Thus the eigenvectors of A
corresponding to A = 2 are nonzero vectors of the form

ol
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eFori=-1
We solve the equation (A + 11,)x = 0 for x.
The matrix (A + 11,) is obtained by adding 1 to the diagonal elements of A.

We get
{—3 _6}{)(1}:0
3 6 |[X

This leads to the system of equations
—3%, —6X, =0

3%, +6X%X, =0

Thus x; = —2X,. The solutions to this system of equations are
X, = —2s and X, = s, where s is a scalar. Thus the eigenvectors
of A corresponding to A =—1 are nonzero vectors of the form

2

G SANDHYA RANI, ASSISTANT PROFESSOR




Let A be an n x n matrix and A an eigenvalue of A. The set of all
eigenvectors corresponding to A, together with the zero vector, is
a subspace of R". This subspace is called the eigenspace of A.

loof

Let X, and X, be two vectors in the eigenspace of A and let c be a
scalar. Then Ax; = Ax; and Ax, = AX,. Hence,

AX; + AX, = AX, + AX,
A(X, +X,) = A(X, +X,)

Thus X, +X, Is a vector in the eigenspace of A. The set is closed
under addition.
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Further, since Ax; = AXq,

CAX, = CAX;
A(cx;) = A(cX,)

Therefore cx, Is a vector in the eigenspace of A. The set is closed
scalar multiplication.

Thus the set is a subspace of R".
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Example2: Find the eigenvalues and eigenvectors of the matrix
(5 4 2]
A=(4 5 2

2 2 2
.3| The matrix A — Al; Is obtained by subtracting A from the

diagonal elements of A. Thus

5-1 4 2
A-Al,=| 4 5-1 2
2 2 2-1

The characteristic polynomial of A is |A — Al;|. Using row and
column operations to simplify determinants, we get
5-1 4 2 | 1-4 -1+4 0
A-Al= 4 5-1 2 4 5-1 2
2 2 2-2 |2 2 2-A
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2_ 4
— (L= A)[(9=A)(2-2)=8] = (1— A)[ L —114 +10]
= (1- 2)(2 ~10)(2 1) = ~(A ~10)(A ~ 1)

We now solving the characteristic equation of A:
—(A-10)(1-1)* =0
A=10o0rl

The eigenvalues of A are 10 and 1.
The corresponding eigenvectors are found by using three values
of A in the equation (A — Al3)x = 0.
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(A-101,)x =0

5 4 2]
4 -5 2
2 2 _8

The solution to this system of equations are x, = 2r, X, = 2r,
and x5 = r, where r is a scalar.

Thus the eigenspace of A, = 10 is the one-dimensional space

of vectors of the form.

2
1
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07\‘2:1
Let A =11in (A—Al;)x =0.We get

(A-11,)x =0

(4 4 2]
4 4 2 =0
2 2 1]

The solution to this system of equations can be shown to be

X, =—S—1,X, =5, and X3 = 2t, where s and t are scalars.

Thus the eigenspace of A, = 1 is the space of vectors of the

form. ) )
—S—1
S

2t
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Separating the parameters s and t, we can write
et
S |=5S +1

2t
Thus the eigenspace of A =1 is a two-dimensional subspace of

R3 with basis

( 3

If an eigenvalue occurs as a k times repeated root of the

characteristic equation, we say that it is of multiplicity k.
Thus A=10 has multiplicity 1, while A=1 has multiplicity 2

In this example.
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Practice problems

Ex: Prove that if A Is a diagonal matrix, then its eigenvalues are
the diagonal elements.

Ex: Prove that if A and At have the same eigenvalues.

Ex: Prove that the constant term of the characteristic polynomial
of amatrix A is |A|.
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Diagonalization of Matrices

Definition
Let A and B be square matrices of the same size. B is said to
be similar to A if there exists an invertible matrix C such that

B = CtAC. The transformation of the matrix A into the matrix
B in this manner Is called a similarity transformation.
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Example : Consider the following matrices A and C with C is
invertible. Use the similarity transformation C-*AC to transform A
Into a matrix B.

/ =10 2 5
Ay ol ot
-Jtion B

s-cae-[1 3] 1 3
B
A e

2 0
0 1
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Theorem : Similar matrices have the same eigenvalues.

loof

Let A and B be similar matrices. Hence there exists a matrix C
such that B = C1AC.

The characteristic polynomial of B is |B — Al |. Substituting for B
and using the multiplicative properties of determinants, we get

B-l|=C*AC-Al|=C*(A-Al)C
=|C*|A-Al|C|=|A-a1|C(C|
=|A-Al|ciC|=|A- I

=|A-Al
The characteristic polynomials of A and B are identical. This
means that their eigenvalues are the same.
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Definition
A square matrix A is said to be diagonalizable if there exists a
matrix C such that D = C-*AC is a diagonal matrix.

Theorem

Let A be an n x n matrix.

(a) If A has n linearly independent eigenvectors, it Is
diagonalizable. The matrix C whose columns consist of n
linearly independent eigenvectors can be used in a similarity
transformation C-*AC to give a diagonal matrix D. The
diagonal elements of D will be the eigenvalues of A.

(b) If A is diagonalizable, then it has n linearly independent
eigenvectors
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Example :

(a) Show that the matrix is diagonalizable.

(b) Find a diagonal matrix D that is similar to A.

(c) Determine the similarity transformation that diagonalizes A.

-ution

(a) The eigenvalues and corresponding eigenvector of this

matrix were found in Example 1 of Section 5.1. They are
-1 —2
A=2,V1={ J 2,2:—1,andv2=s{ J

Since A, a 2 x 2 matrix, has two linearly independent
eigenvectors, it Is diagonalizable.
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(b) Ais similar to the diagonal matrix D, which has diagonal elements A,
=2and A, =-1. Thus

-4 -6 | 2 0
A= Issimilar to D =

(C) Select two convenient linearly independent eigenvectors, say

L L’dand V, L JJ
Let these vectors be the n vectors of-the agonallzmg matrix C.

=i_11 _21}__34 _56}{_11 ﬂ{é —OJ:
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Note

If A Is similar to a diagonal matrix D under the transformation

C-1AC, then it can be shown that Ak = CDXC1.
This result can be used to compute Ak, Let us derive this result

and then apply it.
D =(C'AC)*=(C"AC) .- (CTAC)=CA*C

NG
k times

This leads to

A¥ =cD*c™
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Example : Compute A® for the following matrix A.

-4 -6
A =
3 5
-ution
A is the matrix of the previous example. Use the values of C and
D from that example. We get

y_[2 O_[2 0 ]_[512 0
‘[0 —J ‘[0 (—1)9H —J

A’ =CD’C™

[-1 -2]512 0-1 —-2]" [-514 -1026
|1 10 -1J1 1| | 513 1025
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Example : Show that the following matrix A is not diagonalizable.

A:{s —3}
_ 3 -1
-UtIOn

5-1 —3}

A=Al =
3 -1-A

The characteristic equation is

A-Al,|=0= (5-2)(-1-2)+9=0
=224 +4=0=(1-2)(1-2)=0

There is a single eigenvalue, A = 2. We find he corresponding
eigenvectors. (A—21 )x =0 gives

{3 ‘3}{)(1}:0 — 3x,-3x, =0.
3 -3 X,
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Thus x; =, X, = r. The eigenvectors are nonzero vectors
of the form rH

1
The eigenspace is a one-dimensional space. Aisa 2 x 2

matrix, but it does not have two linearly independent
eigenvectors. Thus A iIs not diagonalizable.
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Theorem : Let A be an n x n symmetric matrix.
(a) All the eigenvalues of A are real numbers.

(b) The dimension of an eigenspace of A is the multiplicity of the
eigenvalues as a root of the characteristic equation.

(c) A has n linearly independent eigenvectors.
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Symmetric Matrices
and

Quadratic Forms




QUADRATIC FORMS

Example 1: Let . | Compute x’Ax for the
X =

following matrices.
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QUADRATIC FORMS

o alx)t *la

X

X AX =X X,] "

=[X1 XZ]

— X1(3X1 o 2X2) + Xz (_2X1 + 7X2)
=3X7 —2XX, = 2X, X, + T X
=3x> —4X X, + 7X;

}:4x12 +3X;

- 3X, —2X,

_—2x1 +7x2_




QUADRATIC FORMS

The presence of in the quadratic form in
Example 2(b) is due to the  entries off the
diagonal in the matrix A.

-In contrast, the quadratic form associated with
the diagonal matrix A in Example 1(a) has no x_x,
cross-product term.
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CHANGE OF VARIBALE IN A QUADRATIC
FORM

-If X represents a variable vectorin , then a change
of variable is an equation of the form

X =Py O equivalently,  y =Py ----(1)
where P is an invertible matrix and y is a new variable
vector in

-Here y is the coordinate vector of x relative to the
basis of determined by the columns of P.

-If the change of variable (1) is made in a quadratic
form x’Ax, then

X Ax = (Py)" A(PY) =y'P APy =y (PTAP)y "

and the new matrix of the quadratic form is P'AP.
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-Since A is symmetric, Theorem 2 guarantees that there
is an orthogonal matrix P such that P’AP is a diagonal
matrix D, and the quadratic form in (2) becomes y’Dy.

-Example 2: Make @(ﬁ?fﬁxbﬂ@ﬁﬁ@ﬁ@ﬁ transforms

the quadratic form into a
quadratic form with no cross-product term.

1 -4
«Solution: The matﬁ;Lf_nhe_gilen quadratic form is
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- The first step is to orthogonally diagonalize A.
-Its eigenvalues turn outtobe } =3nd ) =-7
- Associated unit eigenvectors are

15
—1/+5 12/\5

- These vectors are automatically orthogonal (because
they correspond to distinct eigenvalues) and so
provide an orthonormal basis for 7 2

215

A=3:
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QUADRAﬂCFORM

- 2/5 1/\5
-1/45 215

P =

‘Then A: PDP—l and D — P—lAP :.PT AP

- A suitable change of variable is

X =Py

where x =




« Then
X- —8x.X, —5x; =x"'Ax = (Py)" A(Py)
=y'P"APy =y'Dy

=3y, -7,

- To illustrate the meaning of the equality of quadratic
forms in Example 2, we can compute Q Q():f@ )
using the new quadratic form. ’
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-First, since X =Py
y=P x=P'X

2/5 —1/5( 27 | 6/45

SO

y:

1/5 2135|172 |-2/5

Hence

3y2 —7y2 =3(6/+/5)* —7(-2/~/5)* =3(36/5) - 7(4/5)
=80/5=16




THE PRINCIPAL AXIS THEOREM

-See the figure below.

e
Rz

Multiplication |
by P 0

vy Dy

R +

Change of variable in x’Ax.

-Theorem 4: Let Abe an nxyymmetric matrix. Then
there is an orthogonal change of variable, y — pythat
transforms the quadratic form x’Ax into a quadratic
form y’Dy with no cross-product term.
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THE PRINCIPAL AXIS THEOREM

«The columns of P in theorem 4 are called the
principal axes of the quadratic form x’Ax.

- The vectory is the coordinate vector of x relative to
the orthonormal basis of  given by these principal
axes.

- A Geometric View of Principal Axes

-Suppose — T Ax where A is an invertible 2%
-symmetric rix, and let c be a constant.

G SANDHYA RANI, ASSISTANT PROFESSOR




A GEOMETRICVIEW OF
PRINCIPAL AXES

oIt can be shown tlggt'&l)’ke:s%t of all xin  that satisfy
~(3)

either corresponds to an ellipse (or circle), a
hyperbola, two intersecting lines, or a single point, or
contains no points at all.

oIf A is a diagonal matrix, the graph is in standard
position, such as in the figure below.
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b
a *y %
2 2 2 2
x_l...ﬁ,:h a>b=>0 Ji—x—2=l, a>b=0
a’> b2 = b2
ellipse hyperbola

An ellipse and a hyperbola in standard position.
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PRINCIPAL AXES

-If A is not a diagonal matrix, the graph of equation (3)
is rotated out of standard position, as in the figure
below.

(a) 5x7 —dx x, + 5x3 =48 (b) x7 - 8xx, - 5x3=16

An ellipse and a hyperbola not in standard position.

-Finding the principal axes (determined by the
eigenvectors of A) amounts to finding a new
coordinate system with respect to which the graphis
in standard position.
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CLASSIFYING QUADRATIC FORMS

Definition: A quadratic f@'&})gd)s X =0
a. positive definite if for all

b. negative definite if 20 <Cforall X * 0

c. indefinite if Q (x) assumes both p05|t|ve and
negative values.

Also, Q is said to be positive semidefinite if
for all x, and Q(x)=0

negative semidefinite if for all x.
Q(x)<0
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QUADRATIC FORMS AND

EIGENVALUES

Theorem g: Let Abeafi XN

symmetric

matrix. Then a quadratic form x’Ax is:
. positive definite if and only if the

eigenvalues of A are al

. negative definite if anc

eigenvalues of A are al

. indefinite if and only if A has both positive
and negative eigenvalues.

positive,
only if the
negative, or
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QUADRATIC FORMS AND
EIGENVALUES

- Proof: By the Principal Axeﬁ(Tgepng, there exists an

QO =X AX =Y DY =0, y; +2,y; ++-+ 4,y

- (4)

where A_,...,A, are the eigenvalues of A.

- Since Pis invertible, there is a one-to-one correspondence
between all nonzero x and all nonzeroy.
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QUADRATIC FORMS AND
EIGENVALUES

«Thus the values of Q (x) for coincide with
the values of the expression o :;pe right side of

(4), which is controlled by the'signs of the

eigenvalues A, ...,A,, in three ways described in
the theorem .
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MEAN VALUE
THEOREM

SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS




Mean Value Theorem (MVT)

" | agrange’'s MVT
= Rolle’s Theorem
=Cauchy’'s MVT

«Applications
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Motivation

« Law of Mean:

For a "smooth” curve (a curve which can be drawn in a plane without
lifting the pencil on a certain interval) y=f(x) (asx<b) it looks evident
that at some point c lies between a and b i.e. a<c<b, the slope of the
tangent f'(c) will be equal to the slope of the chord joining the end
points of the curve. That is, for some c lies between a and b (a<c<b),

f(b)—1(a)
b-a

f'(c) =
Physical Interpretation:
The velocity of a particle (matter) is exactly equal to the average speed.
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Mean value Theorem (Lagrange’'s MVT)

« Statement:

Let f(x) be any real valued function defined in asx<b such that
(i) f(x) is continuous in a<x<b

(ii) f(x) is differentiable in a<x<b

Then, there exists at least one c in a<c<b such that
: f(b)-f(a)
f'(c) =
b—a

Alternative form (by taking b=a+h, h: small
Increment)

f(a+h)=f(a)+hf'(a+6h) for some 6, 0< 6<1
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Geometrical Interpretation of
MVT

« For a continuous curve y=f(x) defined in asx<b, the slope of the
tangent f'(c) (where c lies between a and b i.e. a<c<b) to the curve
is parallel to the slope of the chord joining the end points of the

Ccurve.
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SEeciaI Case of MVT

olle’s Theorem
Statement:

Let f(x) be any real valued function defined in asx<b such
that

(i) f(x) is continuous in asx<b

(ii) f(x) is differentiable in a<x<b

(iii) f(a)=f(b)

Then, there exists at least one c in a<c<b such that f'(c)=o.

Note: All the conditions of Rolle’s theorem are sufficient not
necessary.

Counter Example: i) f(x)=2+(x-1)3/3 in osx=<2

i) f(x)=|x-1|+|x-2] on [-1,3]
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Geometrical Interpretation of Rolle’s Theorem

« For a continuous curve y=f(x) defined in a<x<b, the slope of the
tangent f'(c) (where c lies between a and b i.e. a<c<b) to the curve
joining the two end points a and b is parallel to the x-axis.

/
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General case (Cauchy’s MVT)

e Statement:

Let f(x) and g(x) be two real valued function defined in asx<b such
that

(i) f(x) and g(x) are continuous in asxs<b
(ii) f(x) and g(x) are both differentiable in a<x<b
(iii) g’(x)z0 for some a<x<b

Then, there exists at least one c in a<c<b such that

f(h)-f(a) _f'(c)
g(b)-g(@) d'(c)
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Alternative form:

f(a+h)—f(a)

Fa+th) o.p<

ga+h)-g(@) g'(a+éh)




Interpretation (Cauchy’s MVT)

« Useful generalization of the law of mean by considering a smooth
curve in parametric representation x=g(t) and y=f(t) (ast<b).

« The slope of the tangent to the curve at t=c s f'(c)
g'(c)

« The generalized law of mean asserts that there is always a value of
c in a<c<b, for which the slope of the curve is equal to the slope of
the tangent at c.
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Observations

Rolle’s Theorem
By taking f(x)=xin MVT

MVT (Lagrange’s)
By taking g(x)=x in Cauchy’s MVT

Cauchy’'s MVT
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Applications

» To estimate some values of trigonometrical function say sin46° etc.

« Darboux’s theorem: If the interval is an open subset of R and f:l—R
is differentiable at every point of |, then the range of an interval f' is
an interval (not necessarily an open set).

[This has the flavour of an “Intermediate Value Theorem” for f’, but
we are not assuming f’ to be continuous].

« L' Hospital's Rule: If f(x) —o0, g(x) —0 and f'(x)/g’(x) —L as x—-c,
then f(x)/g(x)—L as x—-c.
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 To deduce the necessary and sufficient condition of monotonic
increasing or decreasing function.

For a continuous function f:[a,b]—R that is differentiable on (a,b),
the following conditions are equivalent:

(i) fis increasing (or decreasing)
(ii) f'(x)=0 (or f'(x)<0)

> Not only the above examples but many more applications can
found in different reference books from mathematics.
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BETA AND

GAMMA
FUNCTIONS




Beta function 1
The fﬁst eulerian cl)ntegral B(z,y) = f t(1=t)" " dt

where m>0, n>0 Is called a Betoa function
and Is denoted by B(m,n).

The guantities m and n are positive but not

necessarily integers.

Example:-




PropertieswofBeta Function

B(:cy)—]miltm_l dt,  Re(z)> 0, Re(y) >0

—I—t x4+

B(x,y) = B(x,y+1) + B(x+1,y)

xB(x,y +1) =y B(x+1,y)

B(z.y) = 2 £ " () (cosB)¥ 1 db,  Re(x) >0, Re(y) > 0

[(z) I'(y)

Blz,y) = I'(z+y)

T

B(z,y) -Bla+y,1-y) = Sin(rg)’
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Gamma function

 The Eulerian integral r(x)
is called gamma function and is d ed by

«Example:-

['(x)

r(1) = [ ¢ etar

G SANDHYA RANI, ASSISTANT PROFESSOR



Recurre F(x:rl) _ x'r(x’) rgamma
function

I (x - 1) = I e'dt  Use integration by parts
0
u=r" dv=e'dt

du = xt*dt

T(x+1)=—t'e” : _ j :(_e-f)xﬁ-ldf

I['(x+1)=0+ I: xt' e ldt = x-[: e dt
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Relation between gamma and factorial

1 (H + l) =
Other results

r(1/2)={ e“du=r

r(3/2) = %I‘(I/Z) =

I'(5/2) = gr(g/z) — g

Bie o 2Hi— 1)




Relation beB’gy\gfe_eﬁJaq;caxgngj.gamma

function 1

etting X = y + 5 gives the more symmetric formula

L _— b—1
B(a.b) = 1/2(54‘}’) (5—}’) dy.

Now let y = 5 to obtain

S

(25)*TP1B(a, b) = / (a4 BF e~ 8"

—S

Multiply by e=2° then integrate with respect to s, 0 < s < A, to
get

A A rs
B(a. b)/ e 25(25) -1 s = / / B sty e—t)ldrds:
0 0 J—s
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Take the limit as A — ~ to get

A ps
%B(a, b)[(a+ b) = Alim / / e—zs(s + t)a'l(s — t)b_1 dt ds.
—0C 0 S

Let 0 = s+ t. 7 = s — t. so we integrate over
R={(o,7):0+71 < 2A, 0,7 > 0}.

Since s = 2(0 + 7)., t = 3(0 — 7) the Jacobian determinant of the
change of variables is

1
5B(a.b)[(a+b) = lim / / ¢ e lotm)pa-1:6-1 4 g
R
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Thus

B(a.b)[(a+ b) =

e %0 el dr do

9_003—1 dU) (/ e T2t dT) :
0

/ / e g dr do

Thus, we have... B(z.y) = 1;_(("21'(:))
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GAMMA FUNCTIONS




The factorial function
1 1

w

Peode—Le=l -1 (@s0)
b a 0 Lt

j‘wxe_“xdx == lxe"’“ = r[— le‘"‘”“)alx = Lz

¢ o A R o

=Y AT e o) o RS e T 0n 3
Similarly , L x’e dx-;, jo x’e dx—?

o n_—ox n! = n_—X
jxe dx = >jxe dx=nl (a=1)
0 aﬂ+l 0




Definition of the gamma function: recursion

relation et |
— Gamma fun(:’[ionr(P)=j0 x""e7dxe, p>0.

F(n) = j: x" e dx = (n - l)!,

I'(n + 1) = f: x"e “dx=n!.

— Recursion relation F(p+1)=f:xpe_"dx=p!, p>-1.

I(p+1)=pI(p)

— Example T(9/4)=(/H1(5/4)=(5/4)1/4)1(1/4)
so, T(1/4)+T(9/4)=16/5.
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The Gamma function of negative numbers

l_‘(p)=%r(p +1) (p<0)

— Example

I(-03)= %r(m), I(-13)= 2 0-3)1(_ 3 1(0.7)

of. r(p)=%r(p+l)—>oo as p—0.

— Using the above relation,

1) Gamma(p= negative integers) — infinite.

2) For p < 0, the sign changes alternatively in the intervals between
negative integers
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Some important formulas involving gamma
functions

- 1(1/2)=7
-1

(prove) F(l/2)=j: e'dr = | - e’ 2ydy = 2j e dy.

[C@/2)F =4[ | 449 oy = 4 j " rdrd® = 7.

- I(p)r(-p)=—

sinzp



Beta functions
B(p.q)=[x""(-x)\"dx, p>0, ¢>0. of. B(p.q)=Blq.p)

! B( )_ "/y p—ll ¥y q—ldJ’_ 1 < p—l( )q—ld (,_ / )
) P4 _IO\Z —; n —ap+q_1j0y a—y ly. \ x=y/a

o/ 2

ii) B(p,q)=2 (sin@)” '(cos @) ' d6. (x = sin” 9)

v0

iii ) B(p,q)z‘[) (11}})13;. (x=y/(1+y)




Beta functions in terms of gamma functions

)=

Prove)
I(p)= rot” Tetdr = 2_[00 y*ledy, T(g)= 2_‘-: 2 le* e

F(p)r(q) 4j' j‘ 2¢-1 2pl x+y )dxdy

=4[ [ (rcos0)* ' (rsin6)" e " rdrde

:4'[0 PPt T drrlz(cosé’) “(sing)" d@——l“(p+q) B(P q)
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o xdx o yP _ldy

- Example j _ J

Tay 7 Blpa)= I(

1+y)p+q'

p+g=>5, p—1:3—> =4  g=1.
r4rq) 3'

r(s)




LEGENDRE’S DUPLICATION FORMULA

r'(1 +z)l"(z + %) =22z T(22+1) General proof in §13.3.

Prooffor z=n=1.2. 3 ... : (Case z = 0 is proved by inspection. )

1 1 3 Pt

[ C PN

=2—1n|:(2n—1)(2n—3)--~ T =7(2n—1)!!~/;

F(l+n)=n! =-(-2—;;)-£ = F(l+n)I’(n+%)= 22’1')1”(2n—l)!!\/;




13.3. THE BETA FUNCTION

Beta Function : .q)= =B(q.p)

[(p)T(q)=4[dse™ s [die” 1o I(z)=2 [dsie™ s
0 0 0

S=7'C.OSQ T o = 05 0,5 o = cf)sG —rsiné 54D =y dr 40
t=rsiné ot o sinf rcos@

w2

I'(p)T(q)=4 Ir dr I df e r7 7Y cos?1 9 sin* ! 6
0 0

ai2
=2T(p+q) | dO cos™'Osin*' 0 p=m+l
0

g=n+l1
a2

— B(p.q)=2 !d@ cos™ O'sin**" 6 m! n! =2Td(9 o™ g sn?m g
0

G SANDHYA RANI, ASSI 7(4’!& I;kJI-IEgtCJR)! 157




ALTERNATE FORMS : DEFINITE
INTEGRALS

x/2

B(p+Lg+1)=2 [ df cos™"0 sin*" 0
0

1 1
t=cos’@ B(p+1,q+1):jdcoszé‘ cos™? @ sin*? @ =Idt £ (l—t)q
0 0

B(p+1,q+1)=2jdx e (l—xz)q
0

e dt:[l & ]du= =

1+u_(1+u)2 (l+u)2

' 1 e T Nt u”
S '[ u(l+u)2 (1+u] (l+u) J; u(1+u)p+q2

0

To be used in integral rep. of Bessel (Ex.14.1.17)
& hypergeometric (Ex.18.5.12) functions




DERIVATION: LEGENDRE
DUPLICATION FORMULA

B(p+l,q+1)=jdt t? (1-1)° =2j.dx 2P (l_xz)q
0 0
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The Double Integral over a Rectangle

Welsiart it eftlrlatﬁfgﬂﬁlﬁus on a rectangle

R:a<x<b,c<y<d

We want to define the double integral of f over R:

Figure 17.2.1
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Let P, ={Xop X, - -+, X} be apartition of [a, b]
and P, ={Yo, Y1, - - ., Yo} apartition of [c, d].
Then the set

P=P; xP,={(x,¥): Xie Py, Yyje Py}

Is called a partition of R.

(xjr y])

\

X

l
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Figure 17.2.2




ThBumof ithe gtéts rals
Mij(areaofR) M (xi—xi_l)(yj—yj_l)zMiijiij

Is called the P upper sum for f :

m n m n

(17.2.1) Uf(P) = ZZM,-J-(area OfR,_,) = ZZMUAX,'A}’]'.

i=] j=1 =1 =l
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The sum of all the products

m, (area of R )=m ;(x =% )(Y; = Vi) =M ;A Ay,

is called the P lower sum for f ;

(17.2.2) Ly (P)= Z Z m;;(area of R;;) = Z Z mijAx;Ay;.

i=1 j= i=l j=
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Double Integrals

DEFINITION 17.2.3 THE DOUBLE INTEGRAL OVER A RECTANGLE R

Let f be continuous on a closed rectangle R. The unique number / that satisfies
the inequality
Ly(P)<1<U(P)  forall partitions P of R

is called the double integral of f over R, and is denoted by
[[ 1 nasay

R
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The Double Integral as a Volume

If f |ﬁ@%h@l rlcin‘ntgglg Iggilg'ectangle R, the equation

X, Y)
represents a surface that lies above R. In this case the double integral

” dxdy

gives the volume of the solid that is bounded below by R
and bounded above by the surface z=f (X, y

Figure 17.2.6 Figure 17.2.5
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Sin@iﬁclhj)beltéa Pﬁtﬁ@ gif-ﬁq@ry, the volume of T must be the double integral:

(17.2.4) volume of 7' = f / f(x, y)dxdy.
R

The double integral

j.ldxdyz_” dx dy
R

R

gives the volume of a solid of constant height 1 erected over R. In square units this is
just the area of R:

(17.2.5) area of R = / / dx dy.
R
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Example 2. Evaluate

ff adady
R

where « is a constant and R is the rectangle R: a <x <b,c <y < d.
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(17.2.6)

raRF qs

é [ 16 ydvay = [ fx, y)drdy.

] SA%ure 17.2.12
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If f is continuous and nonnegative over Q, the extended f is nonnegative on

zlc:u d’ ﬁﬁr& I)f t?fﬁ@}g)rged above by z =f (x, y) and

(17.2.7) volume of 7 = f f f(x, y)dxdy.
Q
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Figure 17.2.13



Four Iemenbr r;&es of tPea Drgble Integral:

I. Linearity: The double integral of a linear combination is the linear combination
of the double integrals:

([Tt (xy)+Ag(xy)]dxdy=c[ f (x.y)dxdy+ 5[] g (x y)dxdy

I1. Order: The double integral preserves order:

if f20 on@, then  [[ f(xy)dxdy=>0
Q

if f <gonQ, then ” f(x, y)dxdygﬂg(x,y)dxdy
Q Q
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'D@w‘b’l eql eg.lp'atl)g finite number of nonoverlapping basic
[ Q. th

regions €,

” f(x, y)dxdy:” f(x, y)dxdy+---+_” f (x,y)dxdy

f J.f(x, v) dxdy =J' J‘f(x, v) dxdy +I f f(x, y) dxdy +f f(x, y) dxdy +f J f(x, y) dxdy
Q Q 2, Qy Q

Figure 17.2.14
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V. eg%be@nolﬁamgeﬁ@ Ip&nt (X, o) in © for which

H f(x,y)dxdy = f(x,,Y,)-(areaof Q)

We call f (x,, y,) the average value of f on Q.

(17.2.9) f f(x,y)dxdy = (‘h" g;iiagg gl“e) fareanFO).

Q
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THEOREM 17.2.10 THE MEAN-VALUE THEOREM FOR DOUBLE
INTEGRALS

Let f and g be functions continuous on a basic region £2. If g is nonnegative
on £2, then there exists a point (xg, yp) in £ for which

f f P y)Ete, )8t &= 0, 70) f 2(x, y)dedy.!

Q Q

We call f(xq, yo) the g-weighted average of [ on Q.
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