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Matrices - Introduction

Matrix algebra has at least two advantages:

•Reduces complicated systems of equations to simple 

expressions

•Adaptable to systematic method of mathematical treatment 

and well suited to computers

Definition:

A matrix is a set or group of numbers arranged in a square or 

rectangular array enclosed by two brackets

 11  








 03

24









dc

ba
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Matrices - Introduction

Properties:

•A specified number of rows and a specified number of 

columns

•Two numbers (rows x columns) describe the dimensions 

or size of the matrix.

Examples: 

3x3 matrix

2x4 matrix

1x2 matrix 

















333

514

421








 

2

3

3

3

0

1

0

1  11 
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Matrices - Introduction

A matrix is denoted by a bold capital letter and the elements 

within the matrix are denoted by lower case letters 

e.g. matrix [A] with elements aij





















mnijmm

nij

inij

aaaa

aaaa

aaaa

21

22221

1211

...

...



i goes from 1 to m

j goes from 1 to n

Amxn=

mAn
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Matrices - Introduction

TYPES OF MATRICES

1. Column matrix or vector:

The number of rows may be any integer but the number of 

columns is always 1

















2

4

1










3

1



















1

21

11

ma

a

a


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Matrices - Introduction

TYPES OF MATRICES

2. Row matrix or vector

Any number of columns but only one row

 611  2530

 naaaa 1131211 
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Matrices - Introduction

TYPES OF MATRICES

3. Rectangular matrix

Contains more than one element and number of rows is not 

equal to the number of columns





















67

77

73

11










03302

00111

nm 
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Matrices - Introduction

TYPES OF MATRICES

4. Square matrix

The number of rows is equal to the number of columns

(a square matrix   A has an order of m)










03

11

















166

099

111

m x m

The principal or main diagonal of a square matrix is composed of all 

elements aij for which i=j
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Matrices - Introduction

TYPES OF MATRICES

5. Diagonal matrix

A square matrix where all the elements are zero except those on 

the main diagonal

















100

020

001



















9000

0500

0030

0003

i.e. aij =0 for all i = j

aij = 0 for some or all i = jG  SANDHYA RANI, ASSISTANT PROFESSOR 9



Matrices - Introduction

TYPES OF MATRICES

6. Unit or Identity matrix - I

A diagonal matrix with ones on the main diagonal



















1000

0100

0010

0001










10

01

i.e. aij =0 for all i = j

aij = 1 for some or all i = j










ij

ij

a

a

0

0
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Matrices - Introduction

TYPES OF MATRICES

7. Null (zero) matrix - 0

All elements in the matrix are zero

















0

0

0

















000

000

000

0ija For all i,j
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Matrices - Introduction

TYPES OF MATRICES

8. Triangular matrix

A square matrix whose elements above or below the main 

diagonal are all zero

















325

012

001

















325

012

001

















300

610

981
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Matrices - Introduction

TYPES OF MATRICES

8a. Upper triangular matrix

A square matrix whose elements below the main 

diagonal are all zero

i.e. aij = 0 for all i > j

















300

810

781



















3000

8700

4710

4471

















ij

ijij

ijijij

a

aa

aaa

00

0
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Matrices - Introduction

TYPES OF MATRICES

A square matrix whose elements above the main diagonal are all 

zero

8b. Lower triangular matrix

i.e. aij = 0 for all i < j

















325

012

001

















ijijij

ijij

ij

aaa

aa

a

0

00
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Matrices – Introduction
TYPES OF MATRICES

9. Scalar matrix

A diagonal matrix whose main diagonal elements are 

equal to the same scalar

A scalar is defined as a single number or constant

















100

010

001



















6000

0600

0060

0006

i.e. aij = 0 for all i = j

aij = a for all i = j

















ij

ij

ij

a

a

a

00

00

00
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MATRICES

Matrix Operations 
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Matrices - Operations

EQUALITY OF MATRICES

Two matrices are said to be equal only when all 

corresponding elements are equal

Therefore their size or dimensions are equal as well

















325

012

001

















325

012

001
A = B = A = B
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Matrices - Operations

Some properties of equality:

•IIf A = B, then B = A for all A and B

•IIf A = B, and B = C, then A = C for all A, B and C

















325

012

001
A = B =

















333231

232221

131211

bbb

bbb

bbb

If A = B then 
ijij ba 
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Matrices - Operations

ADDITION AND SUBTRACTION OF MATRICES

The sum or difference of two matrices, A and B of the same 

size yields a matrix C of the same size

ijijij bac 

Matrices of different sizes cannot be added or subtracted
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Matrices - Operations

Commutative Law:

A + B = B + A

Associative Law:

A + (B + C) = (A + B) + C = A + B + C




































972

588

324

651

652

137

A

2x3

B

2x3

C

2x3
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Matrices - Operations

A + 0 = 0 + A = A

A + (-A) = 0 (where –A is the matrix composed of –aij as elements)






























122

225

801

021

723

246
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Matrices - Operations

SCALAR MULTIPLICATION OF MATRICES

Matrices can be multiplied by a scalar (constant or single 

element)

Let k be a scalar quantity; then

kA = Ak

Ex.  If k=4 and 

























14

32

12

13

A
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Matrices - Operations









































































416

128

48

412

4

14

32

12

13

14

32

12

13

4

Properties:

• k (A + B) = kA + kB

• (k + g)A = kA + gA

• k(AB) = (kA)B = A(k)B

• k(gA) = (kg)A G  SANDHYA RANI, ASSISTANT PROFESSOR 23



Matrices - Operations

MULTIPLICATION OF MATRICES

The product of two matrices is another matrix

Two matrices A and B must be conformable for multiplication to 

be possible

i.e. the number of columns of A must equal the number of rows 

of B

Example.

A x     B =      C

(1x3)     (3x1)      (1x1)
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Matrices - Operations
B x    A =     Not possible!

(2x1)   (4x2)

A x    B =    Not possible!

(6x2)    (6x3)

Example

A x       B =    C

(2x3)        (3x2)         (2x2)
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Matrices - Operations




































2221

1211

3231

2221

1211

232221

131211

cc

cc

bb

bb

bb

aaa

aaa

22322322221221

21312321221121

12321322121211

11311321121111

)()()(

)()()(

)()()(

)()()(

cbababa

cbababa

cbababa

cbababa









Successive multiplication of row i of A with column j of 

B – row by column multiplicationG  SANDHYA RANI, ASSISTANT PROFESSOR 26



Matrices - Operations








































)37()22()84()57()62()44(

)33()22()81()53()62()41(

35

26

84

724

321











5763

2131

Remember also:

IA = A










10

01









5763

2131










5763

2131
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Matrices - Operations
Assuming that matrices A, B and C are conformable for 

the operations indicated, the following are true:

1. AI = IA = A

2. A(BC) = (AB)C = ABC - (associative law)

3. A(B+C) = AB + AC - (first distributive law)

4. (A+B)C =  AC + BC - (second distributive law)

Caution!

1. AB not generally equal to BA, BA may not be conformable

2. If AB = 0, neither A nor B necessarily = 0

3. If AB = AC, B not necessarily = C
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Matrices - Operations

AB not generally equal to BA, BA may not be conformable











































































010

623

05

21

20

43

2015

83

20

43

05

21

20

43

05

21

ST

TS

S

T
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Matrices - Operations

If AB = 0, neither A nor B necessarily = 0





























00

00

32

32

00

11
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Matrices - Operations

TRANSPOSE OF A MATRIX

If :











135

742
3

2AA
2x3



















17

34

52
3

2

TT AA

Then transpose of A, denoted AT is:

T

jiij aa  For all i and jG  SANDHYA RANI, ASSISTANT PROFESSOR 31



Matrices - Operations
To transpose:

Interchange rows and columns

The dimensions of AT are the reverse of the dimensions of A











135

742
3

2AA



















17

34

52
2

3

TT AA

2 x 3

3 x 2
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Matrices - Operations

Properties of transposed matrices:

1. (A+B)T = AT + BT

2. (AB)T = BT AT

3. (kA)T = kAT

4. (AT)T = A
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Matrices - Operations

1. (A+B)T = AT + BT




































972

588

324

651

652

137





















95

78

28

































































95

78

28

36

25

41

61

53

27
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Matrices - Operations

(AB)T = BT AT

 

   82

30

21

01

211

82
8

2

2

1

1

320

011





















































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Matrices - Operations
SYMMETRIC MATRICES

A Square matrix is symmetric if it is equal to its 

transpose:

A = AT





















db

ba
A

db

ba
A

T
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Matrices - Operations

When the original matrix is square, transposition does not 

affect the elements of the main diagonal





















db

ca
A

dc

ba
A

T

The identity matrix, I, a diagonal matrix D, and a scalar matrix, K, 

are equal to their transpose since the diagonal is unaffected.
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Matrices - Operations
INVERSE OF A MATRIX

Consider a scalar k.  The inverse is the reciprocal or division of 1 

by the scalar.

Example:

k=7 the inverse of k or k-1 = 1/k = 1/7

Division of matrices is not defined since there may be AB = AC

while B = C

Instead matrix inversion is used.  

The inverse of a square matrix, A, if it exists, is the unique matrix 

A-1 where:

AA-1 = A-1 A = I
G  SANDHYA RANI, ASSISTANT PROFESSOR 38



Matrices - Operations

Example:



























32

11

12

13

1

2

2

A

AA





























































10

01

32

11

12

13

10

01

12

13

32

11
Because:
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Matrices - Operations
Properties of the inverse:

11

11

11

111

1
)(

)()(

)(

)(

















A
k

kA

AA

AA

ABAB

TT

A square matrix that has an inverse is called a nonsingular matrix

A matrix that does not have an inverse is called a singular matrix

Square matrices have inverses except when the determinant is zero

When the determinant of a matrix is zero the matrix is singularG  SANDHYA RANI, ASSISTANT PROFESSOR 40



Matrices - Operations

DETERMINANT OF A MATRIX

To compute the inverse of a matrix, the determinant is required

Each square matrix A has a unit scalar value called the 

determinant of A, denoted by det A or |A|

56

21

56

21













A

AIf

then
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Matrices - Operations

If A = [A] is a single element (1x1), then the determinant is 

defined as the value of the element

Then |A| =det A =  a11

If A is (n x n), its determinant may be defined in terms of  order 

(n-1) or less.
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Matrices - Operations

MINORS
If A is an n x n matrix and one row and one column are deleted, 

the resulting matrix is an (n-1) x (n-1) submatrix of A.  

The determinant of such a submatrix is called a minor of A and 

is designated by mij , where i and j correspond to the deleted

row and column, respectively.

mij is the minor of the element aij in A.
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Matrices - Operations



















333231

232221

131211

aaa

aaa

aaa

A

Each element in A has a minor

Delete first row and column from  A . 

The determinant of the remaining 2 x 2 submatrix is the minor 

of a11

eg.

3332

2322

11
aa

aa
m 
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Matrices - Operations

Therefore the minor of a12 is:

And the minor for a13 is:

3331

2321

12
aa

aa
m 

3231

2221

13
aa

aa
m 
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Matrices - Operations
COFACTORS

The cofactor Cij of an element aij is defined as:

ij

ji

ij mC  )1(

When the sum of a row number i and column j is even, cij = mij and 

when i+j is odd, cij =-mij

1313

31

13

1212

21

12

1111

11

11

)1()3,1(

)1()2,1(

)1()1,1(

mmjic

mmjic

mmjic












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Matrices - Operations

DETERMINANTS CONTINUED

The determinant of an n x n matrix A can now be defined as

nncacacaAA 1112121111det  

The determinant of A is therefore the sum of the products of the 

elements of the first row of A and their corresponding cofactors.

(It is possible to define |A| in terms of any other row or column 

but for simplicity, the first row only is used)
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Matrices - Operations

Therefore the 2 x 2 matrix :











2221

1211

aa

aa
A

Has cofactors :

22221111 aamc 

And:
21211212 aamc 

And the determinant of A is: 

2112221112121111 aaaacacaA 
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Matrices - Operations

Example 1:











21

13
A

5)1)(1()2)(3( A
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Matrices - Operations
For a 3 x 3 matrix:



















333231

232221

131211

aaa

aaa

aaa

A

The cofactors of the first row are:

31223221

3231

2221

13

31233321

3331

2321

12

32233322

3332

2322

11

)(

aaaa
aa

aa
c

aaaa
aa

aa
c

aaaa
aa

aa
c






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Matrices - Operations

The determinant of a matrix A is:

2112221112121111 aaaacacaA 

Which by substituting for the cofactors in this case is:

)()()( 312232211331233321123223332211 aaaaaaaaaaaaaaaA 
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Matrices - Operations

Example 2:





















101

320

101

A

4)20)(1()30)(0()02)(1( A

)()()( 312232211331233321123223332211 aaaaaaaaaaaaaaaA 
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Matrices - Operations
ADJOINT MATRICES

A cofactor matrix C of a matrix A is the square matrix of the same 

order as A in which each element aij is replaced by its cofactor cij . 

Example:













43

21
A













12

34
C

If

The cofactor C of A is
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Matrices - Operations

The adjoint matrix of A, denoted by adj A, is the transpose of its 

cofactor matrix
TCadjA

It can be shown that:

A(adj A) = (adjA) A = |A| I

Example:








 
















13

24

10)3)(2()4)(1(

43

21

TCadjA

A

A
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Matrices - Operations

IadjAA 10
100

010

13

24

43

21
)( 
















 












IAadjA 10
100

010

43

21

13

24
)( 


























 

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Matrices - Operations

USING THE ADJOINT MATRIX IN MATRIX INVERSION

A

adjA
A 1

Since 

AA-1 = A-1 A = I

and

A(adj A) = (adjA) A = |A| I

then
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Matrices - Operations

Example








 








 


1.03.0

2.04.0

13

24

10

11A










 43

21
A = 

To check AA-1 = A-1 A = I

IAA

IAA



























 


















 
















10

01

43

21

1.03.0

2.04.0

10

01

1.03.0

2.04.0

43

21

1

1
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Matrices - Operations

Example 2























121

012

113

A

|A| = (3)(-1-0)-(-1)(-2-0)+(1)(4-1) = -2

),1(

),1(

),1(

31

21

11







c

c

c

The determinant of A is

The elements of the cofactor matrix are

),2(

),4(

),2(

32

22

12







c

c

c

),5(

),7(

),3(

33

23

13







c

c

c
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Matrices - Operations

























521

741

321

C

The cofactor matrix is therefore

so

























573

242

111
TCadjA

and


















































5.25.35.1

0.10.20.1

5.05.05.0

573

242

111

2

11

A

adjA
A
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Matrices - Operations

The result can be checked using

AA-1 = A-1 A = I

The determinant of a matrix must not be zero for the inverse to 

exist as there will not be a solution

Nonsingular matrices have non-zero determinants

Singular matrices have zero determinants
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MATRIX INVERSION

Simple 2 x 2 case
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Simple 2 x 2 case

Let











dc

ba
A

and











zy

xw
A 1

Since it is known that

A A-1 = I

then



























10

01

zy

xw

dc

ba
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Simple 2 x 2 case

Multiplying gives

1

0

0

1









dzcx

dycw

bzax

byaw

bcadA 

It can simply be shown that
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Simple 2 x 2 case

thus

A

d

bcda

d
w

d

cw

b

aw

d

cw
y

b

aw
y

















1

1

G  SANDHYA RANI, ASSISTANT PROFESSOR 64



Simple 2 x 2 case

A

b

bcda

b
x

d

cx

b

ax

d

cx
z

b

ax
z

















1

1
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Simple 2 x 2 case

A

c

cbad

c
y

c

dy

a

by

c

dy
w

a

by
w

















1

1
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Simple 2 x 2 case

A

a

bcad

a
z

c

dz

a

bz

c

dz
x

a

bz
x

















1

1
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Simple 2 x 2 case

So that for a 2 x 2 matrix the inverse can be constructed 

in a simple fashion as

































 ac

bd

A

A

a

A

c

A

b

A

d

1

•Exchange elements of main diagonal

•Change sign in elements off main diagonal

•Divide resulting matrix by the determinant











zy

xw
A 1

G  SANDHYA RANI, ASSISTANT PROFESSOR 68



Simple 2 x 2 case

Example 








































2.04.0

3.01.0

24

31

10

1

14

32

1A

A

Check inverse

A-1 A=I

I






























10

01

14

32

24

31

10

1
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MATRICES AND LINEAR 
EQUATIONS

Linear Equations
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Linear Equations
Linear equations are common and important for survey 

problems

Matrices can be used to express these linear equations and 

aid in the computation of unknown values

Example

n equations in n unknowns, the aij are numerical coefficients, 

the bi are constants and the xj are unknowns

nnnnnn

nn

nn

bxaxaxa

bxaxaxa

bxaxaxa















2211

22222121

11212111
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Linear Equations

The equations may be expressed in the form

AX = B

where

,,
2

1

11

22221

11211









































nnnnn

n

n

x

x

x

X

aaa

aaa

aaa

A











and





















nb

b

b

B


2

1

n x n n x 1 n x 1

Number of unknowns = number of equations = n
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Linear Equations

If the determinant is nonzero, the equation can be solved to produce 

n numerical values for x that satisfy all the simultaneous equations

To solve, premultiply both sides of the equation by A-1 which exists 

because |A| = 0

A-1 AX = A-1 B

Now since
A-1 A = I

We get
X = A-1 B

So if the inverse of the coefficient matrix is found, the unknowns, 

X would be determined G  SANDHYA RANI, ASSISTANT PROFESSOR 73



Linear Equations

Example

32

12

23

321

21

321







xxx

xx

xxx

The equations can be expressed as























































3

1

2

121

012

113

3

2

1

x

x

x
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Linear Equations

When A-1 is computed the equation becomes

























































 

7

3

2

3

1

2

5.25.35.1

0.10.20.1

5.05.05.0
1BAX

Therefore 

7

,3

,2

3

2

1







x

x

x
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Linear Equations

The values for the unknowns should be checked by substitution 

back into the initial equations

32

12

23

321

21

321







xxx

xx

xxx

3)7()3(2)2(

1)3()2(2

2)7()3()2(3







7

,3

,2

3

2

1







x

x

x
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Eigenvalues 

and 

Eigenvectors
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Eigen values and Eigen vectors

Ch5_79

Definition

Let A be an n  n matrix. A scalar  is called an eigenvalue of A

if there exists a nonzero vector x in Rn such that

Ax = x.

The vector x is called an eigenvector corresponding to .

Figure 5.1
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Computation of Eigen values and Eigen 
vectors

Ch5_80

Let A be an n  n matrix with eigenvalue  and corresponding 

eigenvector x. Thus Ax = x. This equation may be written

Ax – x = 0

given 

(A – In)x = 0

Solving the equation |A – In| = 0 for  leads to all the eigenvalues 

of A. 

On expending the determinant |A – In|, we get a polynomial in . 

This polynomial is called the characteristic polynomial of A.

The equation |A – In| = 0 is called the characteristic equation of 

A.
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Example 1

Ch5_81

Find the eigenvalues and eigenvectors of the matrix








 


53

64
A

Let us first derive the characteristic polynomial of A.

We get

Solution






























 







53

64

10

01

53

64
2IA

218)5)(4( 2

2  IA

We now solve the characteristic equation of A.

The eigenvalues of A are 2 and –1.

The corresponding eigenvectors are found by using these values 

of  in the equation(A – I2)x = 0. There are many eigenvectors 

corresponding to each eigenvalue.

1or  20)1)(2(022  
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• For   = 2

We solve the equation (A – 2I2)x = 0 for x.

The matrix (A – 2I2) is obtained by subtracting 2 from the diagonal elements 
of A. We get

0














 

2

1

33

66

x

x

This leads to the system of equations

giving x1 = –x2. The solutions to this system of equations are 

x1 = –r, x2 = r, where r is a scalar. Thus the eigenvectors of A

corresponding to  = 2 are nonzero vectors of the form

033

066

21

21





xx

xx

1

1 2

2

1 1
v

1 1

x
x r

x

      
       

    
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• For  = –1

We solve the equation (A + 1I2)x = 0 for x. 

The matrix (A + 1I2) is obtained by adding 1 to the diagonal elements of A. 
We get

0














 

2

1

63

63

x

x

This leads to the system of equations

Thus x1 = –2x2. The solutions to this system of equations are 

x1 = –2s and x2 = s, where s is a scalar. Thus the eigenvectors

of A corresponding to  = –1 are nonzero vectors of the form

063

063

21

21





xx

xx

1

2 2

2

2 2
v

1 1

x
x s

x

      
       

    
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Ch5_84

Let A be an n  n matrix and  an eigenvalue of A. The set of all 

eigenvectors corresponding to , together with the zero vector, is 

a subspace of Rn. This subspace is called the eigenspace of .

Proof

Let x1 and x2 be two vectors in the eigenspace of  and let c be a 

scalar. Then Ax1 = x1 and Ax2 = x2. Hence,

)()( 2121

2121

xxxx

xxxx









A

AA

Thus              is a vector in the eigenspace of . The set is closed 

under addition.
21 xx 
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Ch5_85

Further, since Ax1 = x1,

Therefore cx1 is a vector in the eigenspace of . The set is closed 

scalar multiplication.

Thus the set is a subspace of Rn.

)()( 11

11

xx

xx

ccA

ccA








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Example2: Find the eigenvalues and eigenvectors of the matrix
















222

254

245

A

The matrix A – I3 is obtained by subtracting  from the 

diagonal elements of A. Thus

Sol






























222

254

245

3IA































222

254

011

222

254

245

3IA

The characteristic polynomial of A is |A – I3|. Using row and 

column operations to simplify determinants, we get
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2

2

)1)(10()1)(10)(1(

]1011)[1(]8)2)(9)[(1(

242

294

001























We now solving the characteristic equation of A:

The eigenvalues of A are 10 and 1.

The corresponding eigenvectors are found by using three values 

of  in the equation (A – I3)x = 0.

1or  10

0)1)(10( 2








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• 1 = 10

We get

0

0x




































3

2

1

3

822

254

245

)10(

x

x

x

IA

The solution to this system of equations are x1 = 2r, x2 = 2r, 

and x3 = r, where r is a scalar.

Thus the eigenspace of 1 = 10 is the one-dimensional space 

of vectors of the form.

















1

2

2

r
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• 2 = 1

Let  = 1 in (A – I3)x = 0. We get

0

0x






























3

2

1

3

122

244

244

)1(

x

x

x

IA

The solution to this system of equations can be shown to be 

x1 = – s – t, x2 = s, and x3 = 2t, where s and t are scalars. 

Thus the eigenspace of 2 = 1 is the space of vectors of the 

form.















 

t

s

ts

2
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Separating the parameters s and t, we can write

Thus the eigenspace of  = 1 is a two-dimensional subspace of 

R3 with basis



















































 

2

0

1

0

1

1

2

ts

t

s

ts

















































0

0

1

 ,

0

1

1

If an eigenvalue occurs as a k times repeated root of the 

characteristic equation, we say that it is of multiplicity k. 

Thus =10 has multiplicity 1, while =1 has multiplicity 2 

in this example.
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Practice problems

Ch5_91

Ex: Prove that if A is a diagonal matrix, then its eigenvalues are

the diagonal elements.

Ex: Prove that if A and At have the same eigenvalues.

Ex: Prove that the constant term of the characteristic polynomial

of a matrix A is |A|.
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Diagonalization of Matrices

Ch5_92

Definition

Let A and B be square matrices of the same size. B is said to 

be similar to A if there exists an invertible matrix C such that 

B = C–1AC. The transformation of the matrix A into the matrix 

B in this manner is called a similarity transformation.
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Ch5_93

Example : Consider the following matrices A and C with C is 

invertible. Use the similarity transformation C–1AC to transform A

into a matrix B.
























31

52
     

43

107
CA

Solution


























10

02

31

52

21

106






















































31

52

43

107

21

53

31

52

43

107

31

52
1

1ACCB
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Theorem : Similar matrices have the same eigenvalues.

Proof

Let A and B be similar matrices. Hence there exists a matrix C

such that B = C–1AC. 

The characteristic polynomial of B is |B – In|. Substituting for B

and using the multiplicative properties of determinants, we get

CCIACIAC

CIACIACCIB

11

11 )(













IA

IIACCIA







 1

The characteristic polynomials of A and B are identical. This 

means that their eigenvalues are the same.
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Ch5_95

Definition

A square matrix A is said to be diagonalizable if there exists a 

matrix C such that D = C–1AC is a diagonal matrix.

Theorem 
Let A be an n  n matrix.

(a) If A has n linearly independent eigenvectors, it is 

diagonalizable. The matrix C whose columns consist of n 

linearly independent eigenvectors can be used in a similarity 

transformation C–1AC to give a diagonal matrix D. The 

diagonal elements of D will be the eigenvalues of A.

(b) If A is diagonalizable, then it has n linearly independent 

eigenvectors
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Ch5_96

Example :

(a) Show that the matrix is diagonalizable.

(b) Find a diagonal matrix D that is similar to A.

(c) Determine the similarity transformation that diagonalizes A.

Solution

(a) The eigenvalues and corresponding eigenvector of this 

matrix were found in Example 1 of Section 5.1. They are

Since A, a 2  2 matrix, has two linearly independent 

eigenvectors, it is diagonalizable.











1

1
 ,2 11 rv 










1

2
 and ,1 22 sv








 


53

64
A
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(b)  A is similar to the diagonal matrix D, which has diagonal elements 1

= 2 and 2 = –1. Thus



















 


10

02
 similar to is 

53

64
DA

(c) Select two convenient linearly independent eigenvectors, say

Let these vectors be the column vectors of the diagonalizing matrix C.



















1

2
 and 

1

1
21 vv








 


11

21
C

D

ACC



















 







 



















 







 







 






10

02

11

21

53

64

11

21

11

21

53

64

21

21
1

1

G  SANDHYA RANI, ASSISTANT PROFESSOR 97



Ch5_98

If A is similar to a diagonal matrix D under the transformation 

C–1AC, then it can be shown that Ak = CDkC–1. 

This result can be used to compute Ak. Let us derive this result 

and then apply it.

CACACCACCACCD k

k

kk 1

 times

111 )()()(  
  



This leads to
1 CCDA kk

Note
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Example : Compute A9 for the following matrix A.








 


53

64
A

Solution

A is the matrix of the previous example. Use the values of C and 

D from that example. We get 

9 9

9

9

2 0 512 02 0

0 1 0 10 ( 1)
D

    
    

    
  

 






 







 











 







1025513

1026514

11

21

10

0512

11

21
1

199 CCDA
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Ch5_100

Example : Show that the following matrix A is not diagonalizable.













13

35
A

Solution

2

5 3

3 1
A I





 
   

  

 

 
The characteristic equation is

0)2)(2(044

09)1)(5(0

2

2







IA

There is a single eigenvalue,  = 2. We find he corresponding 

eigenvectors. (A – 2I ) x = 0 gives

.033        21

2

1

33

33


















xx

x

x
0
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Ch5_101

Thus x1 = r, x2 = r. The eigenvectors are nonzero vectors 

of the form

The eigenspace is a one-dimensional space. A is a 2  2 

matrix, but it does not have two linearly independent 

eigenvectors. Thus A is not diagonalizable.










1

1
r
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Theorem : Let A be an n  n symmetric matrix.

(a) All the eigenvalues of A are real numbers.

(b) The dimension of an eigenspace of A is the multiplicity of the 

eigenvalues as a root of the characteristic equation.

(c) A has n linearly independent eigenvectors.
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Symmetric Matrices 
and 
Quadratic Forms
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QUADRATIC FORMS

• Example 1: Let                .    Compute xTAx for the 

following matrices. 

a.

b.

1

2

x
x

x

 
  
 

4 0

0 3
A

 
  
 

3 2

2 7
A

 
   
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QUADRATIC FORMS

   1 1 2 2

1 2 1 2 1 2

2 2

44 0
x x 4 3

30 3

T
x x

A x x x x x x
x x

    
       

     

   1 1 2

1 2 1 2

2 1 2

1 1 2 2 1 2

2 2

1 1 2 2 1 2

2 2

1 1 2 2

3 23 2
x x

2 72 7

(3 2 ) ( 2 7 )

3 2 2 7

3 4 7

T
x x x

A x x x x
x x x

x x x x x x

x x x x x x

x x x x

     
            

    

   

  
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QUADRATIC FORMS

•The presence of             in the quadratic form in 
Example 1(b) is due to the       entries off the 
diagonal in the matrix A.

• In contrast, the quadratic form associated with 
the diagonal matrix A in Example 1(a) has no x1x2

cross-product term.
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CHANGE OF VARIBALE IN A QUADRATIC 
FORM

• If x represents a variable vector in      , then a change 
of variable is an equation of the form

, or equivalently,                           ----(1)

where P is an invertible matrix and y is a new variable 
vector in      .

•Here y is the coordinate vector of x relative to the 
basis of  determined by the columns of P.

• If the change of variable (1) is made in a quadratic 
form xTAx, then

----(2)

and the new matrix of the quadratic form is PTAP.

x yP
1y xP

x x ( y) ( y) y y y ( )yT T T T T TA P A P P AP P AP  
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•Since A is symmetric, Theorem 2 guarantees that there 
is an orthogonal matrix P such that PTAP is a diagonal 
matrix D, and the quadratic form in (2) becomes yTDy.

•Example 2: Make a change of variable that transforms 
the quadratic form                                           into a 
quadratic form with no cross-product term.

•Solution: The matrix of the given quadratic form is  

2 2

1 1 2 2
(x) 8 5Q x x x x  

1 4

4 5
A

 
    
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•The first step is to orthogonally diagonalize A.

• Its eigenvalues turn out to be           and            .

•Associated unit eigenvectors are

•These vectors are automatically orthogonal (because 
they correspond to distinct eigenvalues) and so 
provide an orthonormal basis for      .

λ 3 λ 7 

2 / 5 1/ 5
λ 3: ;λ 7 :

1/ 5 2 / 5

   
     

      

2
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CHANGE OF VARIBALE IN A 
QUADRATIC FORM

•Let 

•Then                              and                                    .

•A suitable change of variable is

where                            and                . 

2 / 5 1/ 5 3 0
,

0 71/ 5 2 / 5
P D

   
        

1A PDP
1 TD P AP P AP 

x yP
1

2

x
x

x

 
  
 

1

2

y
y

y

 
  
 G  SANDHYA RANI, ASSISTANT PROFESSOR 111



•Then 

•To illustrate the meaning of the equality of quadratic 
forms in Example 2, we can compute Q (x) for                            
using the new quadratic form.

2 2

1 1 2 2

2 2

1 2

8 5 x x ( y) ( y)

y y y y

3y 7y

T T

T T T

x x x x A P A P

P AP D

   

 

 

x (2, 2) 
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•First, since             , 

so

•Hence 

•This is the value of Q (x) when                    .

x yP
1y x xTP P 

2 / 5 1/ 5 2 6 / 5

21/ 5 2 / 5 2 / 5
y

     
             

2 2 2 2

1 2
3y 7y 3(6 / 5) 7( 2 / 5) 3(36 / 5) 7(4 / 5)

80 / 5 16

     

 

x (2, 2) 
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THE PRINCIPAL AXIS THEOREM
•See the figure below.

•Theorem 4: Let A be an          symmetric matrix. Then 
there is an orthogonal change of variable,             , that 
transforms the quadratic form xTAx into a quadratic 
form yTDy with no cross-product term.

n n
x yP
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THE PRINCIPAL AXIS THEOREM

•The columns of P in theorem 4 are called the 
principal axes of the quadratic form xTAx.

•The vector y is the coordinate vector of x relative to 
the orthonormal basis of       given by these principal 
axes.

•A Geometric View of Principal Axes

•Suppose                                 , where A is an invertible         

•symmetric matrix, and let c be a constant.
(x) x xTQ A 2 2
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A GEOMETRIC VIEW OF 
PRINCIPAL AXES

•It can be shown that the set of all x in       that satisfy

----(3)

either corresponds to an ellipse (or circle), a 
hyperbola, two intersecting lines, or a single point, or 
contains no points at all.

•If A is a diagonal matrix, the graph is in standard 
position, such as in the figure below.

x xT A c
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A GEOMETRIC VIEW OF 
PRINCIPAL AXES

• If A is not a diagonal matrix, the graph of equation (3) 
is rotated out of standard position, as in the figure 
below.

•Finding the principal axes (determined by the 
eigenvectors of A) amounts to finding a new 
coordinate system with respect to which the graph is 
in standard position.
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CLASSIFYING QUADRATIC FORMS

• Definition: A quadratic form Q is:
a. positive definite if                  for all           ,

b. negative definite if                 for all           ,

c. indefinite if Q (x) assumes both positive and 
negative values.

• Also, Q is said to be positive semidefinite if                
for all x, and 

• negative semidefinite if                      for all x.

(x) 0Q  x 0

(x) 0Q  x 0

(x) 0Q 

(x) 0Q 
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QUADRATIC FORMS AND 
EIGENVALUES

• Theorem 5: Let A be an                symmetric 
matrix. Then a quadratic form xTAx is:

a. positive definite if and only if the 
eigenvalues of A are all positive,

b. negative definite if and only if the 
eigenvalues of A are all negative, or 

c. indefinite if and only if A has both positive 
and negative eigenvalues.

n n
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QUADRATIC FORMS AND 
EIGENVALUES

• Proof: By the Principal Axes Theorem, there exists an

orthogonal change of variable                                 such that

----(4)

where λ1,…,λn are the eigenvalues of A.

• Since P is invertible, there is a one-to-one correspondence 
between all nonzero x and all nonzero y.

x yP
2 2 2

1 1 2 2
(x) x x y y λ λ λT T

n n
Q A D y y y     
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QUADRATIC FORMS AND 
EIGENVALUES

•Thus the values of Q (x) for                 coincide with 
the values of the expression on the right side of 
(4), which is controlled by the signs of the 
eigenvalues λ1,…,λn, in three ways described in 
the theorem 5.

x 0
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MEAN VALUE 
THEOREM
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•Mean Value Theorem (MVT)

 Lagrange’s MVT  

 Rolle’s Theorem

Cauchy’s MVT

•Applications
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Motivation
• Law of Mean:

For a “smooth” curve (a curve which can be drawn in a plane without 
lifting the pencil on a certain interval) y=f(x) (a≤x≤b) it looks evident 
that at some point c lies between a and b i.e. a<c<b, the slope of the 
tangent f’(c) will be equal to the slope of the chord joining the end 
points of the curve. That is, for some c lies between a and b (a<c<b), 

Physical Interpretation: 

The velocity of a particle (matter) is exactly equal to the average speed.

ab

afbf
cf






)()(
)(
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Mean value Theorem (Lagrange’s MVT)

• Statement:

Let f(x) be any real valued function defined in a≤x≤b such that

(i) f(x) is continuous in a≤x≤b

(ii) f(x) is differentiable in a<x<b

Then, there exists at least one c in a<c<b such that 

Alternative form (by taking b=a+h, h: small 
increment)

f(a+h)=f(a)+hf’(a+θh) for some θ, 0< θ<1

ab

afbf
cf






)()(
)(
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Geometrical Interpretation of 
MVT
• For a continuous curve y=f(x) defined in a≤x≤b, the slope of the 

tangent f’(c) (where c lies between a and b i.e. a<c<b) to the curve  
is parallel to the slope of the chord joining the end points of the 
curve.
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Special Case of MVT
• Rolle’s Theorem
Statement:

Let f(x) be any real valued function defined in a≤x≤b such 
that

(i) f(x) is continuous in a≤x≤b

(ii) f(x) is differentiable in a<x<b

(iii) f(a)=f(b)

Then, there exists at least one c in a<c<b such that f’(c)=0.

Note: All the conditions of Rolle’s theorem are sufficient not 
necessary.

Counter Example: i) f(x)=2+(x-1)2/3 in 0≤x≤2

ii) f(x)=|x-1|+|x-2| on [-1,3]
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Geometrical Interpretation of Rolle’s Theorem

• For a continuous curve y=f(x) defined in a≤x≤b, the slope of the 
tangent f’(c) (where c lies between a and b i.e. a<c<b) to the curve 
joining the two end points a and b is parallel to the x-axis.
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General case (Cauchy’s MVT)

• Statement:

Let f(x) and g(x) be two real valued function defined in a≤x≤b such 
that

(i) f(x) and g(x) are continuous in a≤x≤b

(ii) f(x) and g(x) are both differentiable in a<x<b

(iii) g’(x)≠0 for some a<x<b

Then, there exists at least one c in a<c<b such that 

)(

)(

)()(

)()(

cg

cf

agbg

afbf









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Alternative form:

)10(,
)(

)(

)()(

)()(
















hag

haf

aghag

afhaf
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Interpretation (Cauchy’s MVT)

• Useful generalization of the law of mean by considering a smooth 
curve in parametric representation x=g(t) and y=f(t) (a≤t≤b). 

• The slope of the tangent to the curve at t=c is  

• The generalized law of mean asserts that there is always a value of 
c in a<c<b, for which the slope of the curve is equal to the slope of 
the tangent at c.

)(

)(

cg

cf




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Observations

Cauchy’s MVT

MVT (Lagrange’s) 

By taking g(x)=x in Cauchy’s MVT

Rolle’s Theorem

By taking f(x)=x in MVT
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Applications

• To estimate some values of trigonometrical function say sin460 etc.

• Darboux’s theorem: If the interval is an open subset of R and f:I→R
is differentiable at every point of I, then the range of an interval f’ is 
an interval (not necessarily an open set).

[This has the flavour of an “Intermediate Value Theorem” for f’, but 
we are not assuming f’ to be continuous].

• L’ Hospital’s Rule: If f(x) →0, g(x) →0 and f’(x)/g’(x) →L as x→c, 
then f(x)/g(x)→L as x→c.
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• To deduce the necessary and sufficient condition of monotonic 
increasing or decreasing function.

For a continuous function f:[a,b]→R that is differentiable on (a,b), 
the following conditions are equivalent:

(i) f is increasing (or decreasing)

(ii) f’(x)≥0 (or f’(x)≤0 )

 Not only the above examples but many more applications can 
found in different reference books from mathematics.
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BETA AND 
GAMMA 

FUNCTIONS
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The first eulerian integral

where m>0, n>0 is called a Beta function 

and is denoted by B(m,n).

The quantities m and n are positive but not 

necessarily integers.

Example:-

Beta function
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Properties of Beta Function

B(x,y) = B(x,y+1) + B(x+1,y)

xB(x,y +1) =y B(x+1,y)
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Gamma function

• The Eulerian integral ,n>0 
is called gamma function and is denoted by

• Example:-
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Recurrence formulae for gamma
function
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Relation between gamma and factorial

Other results
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Relation between beta and gamma
function
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Thus, we have…
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Chandigarh
G  SANDHYA RANI, ASSISTANT PROFESSOR 147



GAMMA FUNCTIONS
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Double Integrals
The Double Integral over a Rectangle

We start with a function f continuous on a rectangle

R : a ≤ x ≤ b, c ≤ y ≤ d

We want to define the double integral of f over R:

 , .
R

f x y dxdy
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Let          P1 = {x0, x1, . . . , xm}    be  a partition  of [a, b]

and         P2 = {y0, y1, . . . , yn}     a partition of [c, d] .

Then the set

P = P1 × P2 = {(xi , yj) :   xi  P1,   yj  P2}

is called a partition of R.  
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Double Integrals
The sum of all the products

is called the P upper sum for f :

    1 1area of i j i j i j i i j j i j i jM R M x x y y M x y      
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The sum of all the products

is called the P lower sum for f :

    1 1area of i j i j i j i i j j i j i jm R m x x y y m x y      
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Double Integrals
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Double Integrals
The Double Integral as a Volume

If f is continuous and nonnegative on the rectangle R, the equation

z = f (x, y) 

represents a surface that lies above R.  In this case the double integral

gives the volume of the solid that is bounded below by R 

and bounded above by the  surface  z = f (x, y).

 
R

f x dxdy

G  SANDHYA RANI, ASSISTANT PROFESSOR 166



Double IntegralsSince the choice of a partition P is arbitrary, the volume of T must be the double integral:

The double integral

gives the volume of a solid of constant height 1 erected over R. In square units this is

just the area of R:

1
R R

dxdy dxdy 
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Double IntegralsThe Double Integral over a Region
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Double Integrals
If f is continuous and nonnegative over Ω, the extended f is nonnegative on 

all of R.  The volume of the solid T bounded above by z = f (x, y) and 

bounded below by Ω is given by:
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Double IntegralsFour Elementary Properties of the Double Integral:

I.  Linearity: The double integral of a linear combination is the linear combination 

of the double integrals:

II. Order: The double integral preserves order:

if  f ≥ 0  on Ω, then

if f ≤ g on Ω, then

       , , , ,f x y g x y dx dy f x y dxdy g x y dxdy   
  

       

 , 0f x y dxdy




   , ,f x y dxdy g x y dxdy
 

 
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Double IntegralsIII. Additivity: If Ω is broken up into a finite number of nonoverlapping basic  

regions Ω1, . . . , Ωn, then

     
1

, , ,

n

f x y dxdy f x y dxdy f x y dxdy
  

    
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Double Integrals

     0 0, , area of f x y dxdy f x y


  

IV. Mean-value condition: There is a point (x0, y0) in Ω for which

We call f (x0, y0) the average value of  f  on Ω .
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Double Integrals
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