

Code No: 156AR

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

B. Tech III Year II Semester Examinations, February - 2023

DIGITAL SIGNAL PROCESSING

(Common to ECE, EIE)

Time: 3 Hours

Max. Marks: 75

Note: i) Question paper consists of Part A, Part B.
ii) Part A is compulsory, which carries 25 marks. In Part A, Answer all questions.
iii) In Part B, Answer any one question from each unit. Each question carries 10 marks and may have a, b as sub questions.

PART – A

(25 Marks)

- 1.a) Define linear and non-linear systems. [2]
- b) Give the properties of causal and stable systems. [3]
- c) Define DFT pair. [2]
- d) State and prove property time shifting of DFT. [3]
- e) What are the properties of bilinear transformation? [2]
- f) Discuss the impulse invariant method of designing IIR filter. [3]
- g) In the design of FIR digital filter, how is Kaiser Window different from other windows? [2]
- h) List out the advantages and disadvantages of FIR filters. [3]
- i) What are the various basic building blocks used in realization of digital systems? [2]
- j) Discuss about the frequency response of the stable systems. [3]

PART – B

(50 Marks)

- 2.a) Check for the stability and Causality of the following systems.
i) $y(n) = x(-n-3)$ ii) $y(n) = nx(n)$
- b) Determine the linear convolution for the two sequences $x(n) = \{3,2,1,2\}$, $h(n) = \{1,2,1,2\}$. [4+6]

OR

- 3.a) Find impulse response of the system described by the difference equation $y(n) + y(n-1) - 2y(n-2) = x(n-1) + 2x(n-2)$.
b) Discuss about the power signal and Energy signal. [6+4]
- 4.a) Find the output sequence $y(n)$ of a filter whose impulse response is $h(n) = [1,1,1]$; and input signal $x[n] = [3,-1,0,1,3,2,0,1,3,1]$ using overlap save method.
b) Explain use of FFT in linear filtering and correlation. [6+4]

OR

- 5.a) Compute the DFT of the following sequence using Radix -2, DIT-FFT algorithm $x[n] = [1, 1, 1, 1, 0, 0, 0, 0]$.
b) Describe Quantization errors in the direct computation of DFT. [6+4]

6.a) Explain the steps in designing an analog low pass chebyshev filter.
b) Using the bilinear transform, design a high pass filter, monotonic in pass band with cut off frequency of 100 Hz and down 10 dB at 350 H. the sampling frequency is 5000 Hz.

[4+6]

OR

7. a) Obtain an Chebyshev filter transfer function that satisfies the constraints
 $0.707 \leq |H(w)| \leq 1 \quad 0 \leq w \leq 0.2\pi$
 $|H(w)| \leq 0.1 \quad 0.5\pi \leq w \leq \pi$
b) Give the advantages and disadvantages of the digital filters. [6+4]

8. Design a band pass filter which approximates the ideal filter with cutoff frequencies at 0.2 rad/sec and 0.3 rad/sec. The filter order is M=7. Use the Hanning window function. [10]

OR

9. a) Design a FIR low pass filter satisfying the following specifications $a_p \leq 0.1$ dB; $a_s \geq 44.0$ dB; $\omega_p = 20$ rad/sec; $\omega_s = 600$ rad/sec and $\omega_{sf} = 100$ rad/sec.
b) Explain different windows techniques in FIR digital filters. [6+4]

10. a) Realize the Direct form-I structure of the system given by

$$y[n] + 2y[n-1] + y[n-2] = x[n] + 0.75x[n-1]$$

b) Find the impulse response of the system described by difference equation

$$y(n) - 3y(n-1) - 4y(n-2) = x(n) + 2x(n-1) \text{ using } z \text{ transform.}$$

[5+5]

OR

11. a) Realize following digital filter by using direct form – II realization.

$$y(n) = 0.5y(n-1) - 0.25y(n-2) + x(n) + x(n-1)$$

b) Determine the impulse response of LTI system described by

$$y(n) = x(n) + 0.9y(n-1) - 0.81y(n-2)$$

[5+5]

your route to success...

Code No: 156AR

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

B. Tech III Year II Semester Examinations, February/March - 2022

DIGITAL SIGNAL PROCESSING

(Common to ECE, EIE)

Time: 3 Hours

Max. Marks: 75

Answer any five questions

All questions carry equal marks

- 1.a) What are the conditions for stability and causality of an LTI system? Explain.
b) Explain in detail the classification of discrete-time systems.
c) What is the need for multi-stage implementation of sampling rate converters? Explain with an example. [5+5+5]

- 2.a) Find 8-point DFT $X(K)$ of the real sequence.
 $x(n) = \{0.707, 1, 0.707, 0, -0.707, -1, -0.707, 0\}$ by using DIF radix-2 FFT
b) Find the N-point DFT of $x(n) = b^n \cos an$ using the linearity property. [8+7]

- 3.a) State and prove any two properties of Discrete Fourier series.
b) Given $x(n) = 2^n$ and $N=8$, find $X(k)$ using DIT-FFT algorithm. [6+9]

- 4.a) Design a digital low pass filter using Chebyshev filter that meets the following specifications: Passband magnitude characteristics that is constant to within 1dB for recurrences below $\omega = 0.2\pi$ and stopband attenuation of atleast 15dB for frequencies between $\omega = 0.3\pi$ and π . Use bilinear transformation.
b) Derive the relation between digital and analog frequencies in bilinear transformation. [10+5]

- 5.a) Design a Butterworth analog high pass filter that will meet the following specifications
i) Maximum pass band attenuation = 2dB
ii) Passband edge frequency = 200rad/sec
iii) Minimum stopband attenuation=20dB
iv) Stop band edge frequency = 100 rad/sec.
b) Prove that for a linear phase FIR filter the impulse response is symmetric. [8+7]

- 6.a) Explain the type II frequency sampling method of designing an FIR digital filter.
b) Design a band pass filter which approximates the ideal filter with cutoff-frequencies at 0.2rad/sec and 0.3rad/sec. The filter order is $M=7$. Use the Hanning window function. [5+10]

- 7.a) Explain coefficient quantization of IIR filters.
b) What is Round-off Noise in IIR Digital Filters? Discuss its effects in IIR filters. [7+8]

- 8.a) Describe various Structures of IIR filters with suitable diagrams.
b) Explain the limit cycle oscillations due to product round-off and overflow errors. [10+5]

Code No: 156AR

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

B. Tech III Year II Semester Examinations, August/September - 2021

DIGITAL SIGNAL PROCESSING

(Common to ECE, EIE)

Time: 3 Hours

Max. Marks: 75

Answer any five questions

All questions carry equal marks

- - -

1.a) Calculate the total response of the system described by

$$y(n) - 4y(n-1) - 12y(n-2) = x(n), \quad y(-1) = 1, \quad y(-2) = 2.$$

b) Calculate the transfer function of the system defined by $y(n) - 2y(n-1) = x(n)$. [10+5]

2.a) Describe with mathematical equations, how sampling rate can be decreased by a factor of D.

b) Briefly introduce the concepts of Multirate Digital Signal Processing. [10+5]

3.a) Derive the following properties of DFS.

i) Time shifting

ii) Time reversal

iii) Convolution

b) Draw the butterfly diagram for DITFFT algorithm. [10+5]

4. Calculate the 8 point DFT of the sequence $x(n) = \{1, -2, 3, 1, -1, 2\}$ using DIF-FFT and DIT-FFT. [15]

5.a) Write the differences between bilinear transform and impulse invariant method.

b) Write the differences between analog and digital filters. [8+7]

6. Design butterworth high pass filter for the given specifications:

$$\alpha_p = 3dB, \quad \alpha_s = 15dB, \quad \Omega_p = 1000 \text{ rad/sec}, \quad \Omega_s = 500 \text{ rad/sec.} \quad [15]$$

7. Given the filter specifications as

$$H_d(e^{j\omega}) = e^{-j2\omega} \quad \text{for } 0 \leq |\omega| \leq \frac{\pi}{2}$$

$$= 0 \quad \frac{\pi}{2} \leq |\omega| \leq \pi$$

using rectangular window, calculate causal impulse response coefficients. [15]

8.a) Realize the following system equation in direct form-I and direct -form II

$$y(n) + 3/4y(n-1) = x(n) - 2x(n-1)$$

b) Write the differences between direct form-I and canonical form. [10+5]

III B. Tech II Semester Supplementary Examinations, April/May -2019
DIGITAL SIGNAL PROCESSING
 (Electronics and Communication Engineering)

Time: 3 hours

Max. Marks: 70

Note: 1. Question Paper consists of two parts (**Part-A** and **Part-B**)

2. Answering the question in **Part-A** is compulsory

3. Answer any **THREE** Questions from **Part-B**

PART-A

1	a) What are the conditions for stability and causality of an LSI system? b) Define DFT and IDFT c) Find the z transform of $x[n] = \sin[\omega_0 n] u[n]$. d) What is the necessary and sufficient condition for linear phase Characteristics of an FIR filter? e) What is meant by aliasing? How to avoid it? f) What are the advantages of VLIW architecture?	[4M] [3M] [4M] [4M] [3M] [4M]
---	---	--

PART-B

2	a) Determine the frequency response, and time delay of the systems given by $y(n) - \frac{1}{2}y(n-1) = x(n)$ b) What is the significance of convolution? Explain	[8M] [8M]
3	a) Compute the DFTs of the sequence $x(n) = 2^{-n}$, where $N = 8$ using DIT algorithm. b) State any four properties of DFS and prove them	[8M] [8M]
4	Realize the following IIR system in the direct form I, direct form II and parallel forms. $H(z) = 1/(1 + az^{-1})(1 - bz^{-1})$	[16M]
5	a) The desired frequency response of a low pass filter is $H_d(e^{jw}) = \begin{cases} 1; & -\frac{\pi}{2} \leq w \leq \frac{\pi}{2} \\ 0; & \frac{\pi}{2} \leq w \leq \pi \end{cases}$ Determine $h_d(n)$ for $M = 7$ using a rectangular window	[8M]
6	b) Explain FIR filter design using windowing method.	[8M]
7	a) Explain the following terms: i) Decimation ii) interpolation. b) What are the applications of Multi rate system? Explain.	[8M] [8M]
8	a) What are the various addressing modes used in the TMS320C5X processor? b) What are the limitations of pipelining in Digital Signal Processor?	[8M] [8M]

III B. Tech II Semester Supplementary Examinations, November -2018

DIGITAL SIGNAL PROCESSING

(Electronics and Communication Engineering)

Time: 3 hours

Max. Marks: 70

Note: 1. Question Paper consists of two parts (**Part-A** and **Part-B**)

2. Answering the question in **Part-A** is compulsory

3. Answer any **THREE** Questions from **Part-B**

PART -A

1 a) Test the given system for time invariance : $y(n) = n x(n)$. [3M]
 b) State any four properties of DFT [4M]
 c) Find the Z-transform of $x(n) = (1/8)^n u(n)$ and its ROC. [4M]
 d) Draw the direct form structure of $y(n) = \sum_{k=0}^{N-1} h[k]x[n-k]$ [4M]
 e) What is the significance of Multirate Signal processing? What are the applications [3M]
 f) What are the differences between fixed point processors and floating point Processors? [4M]

PART -B

2 a) Find the solution to the following linear constant coefficient difference equation with initial conditions $y(-1) = 4$ and $y(-2) = 10$

$$y(n) - \frac{3}{2}y(n-1) + \frac{1}{2}y(n-2) = \frac{1}{2}n \quad \text{for } n \geq 0$$
 [8M]

b) Explain the frequency domain representation of Discrete time signals [8M]

3 a) Given $x(n) = \{1, 2, 3, 4, 4, 3, 2, 1\}$, find $X(k)$ using DIF FFT algorithm. [8M]
 b) State and prove time – shifting and time scaling property of DFT. [8M]

4 a) Determine the ZT of $x[n] = -na^n u[-n-1]$. [8M]
 b) What are the basic structures of FIR systems? Explain [8M]

5 a) What are the effects of windowing? Comparing various windowing techniques. [8M]
 b) Design a High Pass FIR filter whose cut-off frequency is 1.2 radians/sec and $N = 9$ using Hamming Window. [8M]

6 a) Derive the frequency domain representation of decimator. [8M]
 b) Explain the following terms: i) Up – sampling ii) Down- sampling [8M]

7 a) What is MAC? Explain its operation in detail. [8M]
 b) Explain about Special addressing modes [8M]

III B. Tech II Semester Supplementary Examinations, April/May -2019
DIGITAL SIGNAL PROCESSING
 (Electronics and Communication Engineering)

Time: 3 hours

Max. Marks: 70

Note: 1. Question Paper consists of two parts (**Part-A** and **Part-B**)

2. Answering the question in **Part-A** is compulsory

3. Answer any **THREE** Questions from **Part-B**

PART-A

1 a) What are the conditions for stability and causality of an LSI system? [4M]
 b) Define DFT and IDFT [3M]
 c) Find the z transform of $x[n] = \sin[\omega_0 n] u[n]$. [4M]
 d) What is the necessary and sufficient condition for linear phase Characteristics of an FIR filter? [4M]
 e) What is meant by aliasing? How to avoid it? [3M]
 f) What are the advantages of VLIW architecture? [4M]

PART-B

2 a) Determine the frequency response, and time delay of the systems given by $y(n) - \frac{1}{2}y(n-1) = x(n)$ [8M]
 b) What is the significance of convolution? Explain [8M]

3 a) Compute the DFTs of the sequence $x(n) = 2^{-n}$, where $N = 8$ using DIT algorithm. [8M]
 b) State any four properties of DFS and prove them [8M]

4 Realize the following IIR system in the direct form I, direct form II and parallel forms. $H(z) = 1/(1+az^{-1})(1-bz^{-1})$ [16M]

5 a) The desired frequency response of a low pass filter is [8M]

$$H_d(e^{jw}) = \begin{cases} 1; & -\frac{\pi}{2} \leq w \leq \frac{\pi}{2} \\ 0; & \frac{\pi}{2} \leq w \leq \pi \end{cases}$$
 Determine $h_d(n)$ for $M = 7$ using a rectangular window

b) Explain FIR filter design using windowing method. [8M]

6 a) Explain the following terms: i) Decimation ii) interpolation. [8M]
 b) What are the applications of Multi rate system? Explain. [8M]

7 a) What are the various addressing modes used in the TMS320C5X processor? [8M]
 b) What are the limitations of pipelining in Digital Signal Processor? [8M]

III B. Tech II Semester Regular/Supplementary Examinations, April - 2017
DIGITAL SIGNAL PROCESSING
 (Electronics and Communication Engineering)

Time: 3 hours

Maximum Marks: 70

Note: 1. Question Paper consists of two parts (**Part-A** and **Part-B**)
 2. Answering the question in **Part-A** is compulsory
 3. Answer any **THREE** Questions from **Part-B**

PART -A

1 a) Test whether the following signal is periodic or not ,if periodic find the fundamental period $\sin\sqrt{2} \pi t$ [4M]
 b) Find the DFT of a sequence $x(n) = \{1, 1, 2, 2\}$ [4M]
 c) Give block diagram representation of linear constant-coefficient difference equations. [4M]
 d) By impulse invariant method obtain the digital filter transfer function and the differential equation of the analog filter $h(s) = 1/s+1$ [4M]
 e) What are the applications of multi rate DSP? [3M]
 f) List special feature of DSP architecture. [3M]

PART -B

2 a) Determine whether each of the following systems defined below is (i) causal (ii) linear (iii) dynamic (iv) time invariant
 (i) $y(n) = \log_{10}[\{x(n)\}]$
 (ii) $y(n) = x(-n-2)$
 (iii) $y(n) = \cosh[nx(n) + x(n-1)]$
 b) Give the frequency domain representation of discrete time signals. [4M]

3 a) Compute the DFT for the sequence $\{1, 2, 0, 0, 0, 2, 1, 1\}$. Using radix -2 DIF FFT and radix -2 DIT- FFT algorithm.
 b) Derive the equation to implement a butterfly structure In DITFFT algorithm. [8M]

4 a) Realize the filter $H(z) = (z^{-1}-a)(z^{-1}-b) / (1-az^{-1})(1-bz^{-1})$ in cascade and parallel forms. [8M]
 b) State and prove time convolution property of Z-Transforms. [8M]

5 a) Obtain the impulse response of digital filter to correspond to an analog filter with impulse response $h_a(t) = 0.5 e^{-2t}$ and with a sampling rate of 1.0kHz using impulse invariant method.
 b) Compare bilinear transformation and impulse invariant mapping. [8M]

6 a) Explain the decimation and interpolation process with an example. Also find the spectrum.
 b) The sequence $x(n) = [0, 2, 4, 6, 8]$ is interpolated using interpolation sequence $b_k = [1/2, 1, 1/2]$ and the interpolation factor is 2.find the interpolated sequence $y(m)$. [8M]

7 a) Describe the multiplier/adder unit of TMS320c54xx processor with a neat block diagram.
 b) What are interrupts? What are the classes of interrupts available in the TMS320C5xx processor? [8M]