
R-PROGRAMMING(DS3101PC/AM3101PC)

1

CSE,NRCM Mr. P.THIRUPATHI, ASSIT.PROF.

UNIT WISE SUBJECT NOTES

UNIT-I

R Programming Language – Introduction

OVERVIEW OF R

R is an open-source programming language that is widely used as a statistical software and data

analysis tool. R generally comes with the Command-line interface. R is available across widely

used platforms like Windows, Linux, and macOS. Also, the R programming language is the latest

cutting-edge tool.

It was designed by Ross Ihaka and Robert Gentleman at the University of Auckland, New

Zealand, and is currently developed by the R Development Core Team. R programming language

is an implementation of the S programming language. It also combines with lexical scoping

semantics inspired by Scheme. Moreover, the project conceives in 1992, with an initial version

released in 1995 and a stable beta version in 2000.

Why R Programming Language?

R programming is used as a leading tool for machine learning, statistics, and data analysis.

Objects, functions, and packages can easily be created by R.

It’s a platform-independent language. This means it can be applied to all operating system.

It’s an open-source free language. That means anyone can install it in any organization without

purchasing a license.

R-PROGRAMMING(DS3101PC/AM3101PC)

2

CSE,NRCM Mr. P.THIRUPATHI, ASSIT.PROF.

R programming language is not only a statistic package but also allows us to integrate with other

languages (C, C++). Thus, you can easily interact with many data sources and statistical

packages.

The R programming language has a vast community of users and it’s growing day by day.

R is currently one of the most requested programming languages in the Data Science job market

that makes it the hottest trend nowadays.

Features of R Programming Language

Statistical Features of R:

Basic Statistics: The most common basic statistics terms are the mean, mode, and median. These

are all known as “Measures of Central Tendency.” So using the R language we can measure

central tendency very easily.

Static graphics: R is rich with facilities for creating and developing interesting static graphics. R

contains functionality for many plot types including graphic maps, mosaic plots, biplots, and the

list goes on.

Probability distributions: Probability distributions play a vital role in statistics and by using R

we can easily handle various types of probability distribution such as Binomial Distribution,

Normal Distribution, Chi-squared Distribution and many more.

Data analysis: It provides a large, coherent and integrated collection of tools for data analysis.

Programming Features of R:

R Packages: One of the major features of R is it has a wide availability of libraries. R has

CRAN(Comprehensive R Archive Network), which is a repository holding more than 10, 0000

packages.

Distributed Computing: Distributed computing is a model in which components of a software

system are shared among multiple computers to improve efficiency and performance. Two new

packages ddR and multidplyr used for distributed programming in R were released in November

2015.

Programming in R:

Since R is much similar to other widely used languages syntactically, it is easier to code and

learn in R. Programs can be written in R in any of the widely used IDE like R Studio, Rattle,

Tinn-R, etc. After writing the program save the file with the extension .r. To run the program use

the following command on the command line:

R file_name.r

Example:

R-PROGRAMMING(DS3101PC/AM3101PC)

3

CSE,NRCM Mr. P.THIRUPATHI, ASSIT.PROF.

R program to print Welcome to GFG!

Below line will print "Welcome to GFG!"

cat("Welcome to GFG!")

Output:

Welcome to GFG!

Advantages of R:

R is the most comprehensive statistical analysis package. As new technology and concepts often

appear first in R.

As R programming language is an open source. Thus, you can run R anywhere and at any time.

R programming language is suitable for GNU/Linux and Windows operating system.

R programming is cross-platform which runs on any operating system.

In R, everyone is welcome to provide new packages, bug fixes, and code enhancements.

Disadvantages of R:

In the R programming language, the standard of some packages is less than perfect.

Although, R commands give little pressure to memory management. So R programming

language may consume all available memory.

In R basically, nobody to complain if something doesn’t work.

R programming language is much slower than other programming languages such as Python and

MATLAB.

Applications of R:

We use R for Data Science. It gives us a broad variety of libraries related to statistics. It also

provides the environment for statistical computing and design.

R is used by many quantitative analysts as its programming tool. Thus, it helps in data importing

and cleaning.

R is the most prevalent language. So many data analysts and research programmers use it. Hence,

it is used as a fundamental tool for finance.

Tech giants like Google, Facebook, bing, Twitter, Accenture, Wipro and many more using R

nowadays.

R-PROGRAMMING(DS3101PC/AM3101PC)

4

CSE,NRCM Mr. P.THIRUPATHI, ASSIT.PROF.

R and Python both play a major role in data science. It becomes confusing for any newbie to

choose the better or the most suitable one among the two, R and Python. So take a look at R vs

Python for Data Science to choose which language is more suitable for data science.

R DATATYPES AND OBJECTS

Generally, while doing programming in any programming language, you need to use various

variables to store various information. Variables are nothing but reserved memory locations to

store values. This means that, when you create a variable you reserve some space in memory.

You may like to store information of various data types like character, wide character, integer,

floating point, double floating point, Boolean etc. Based on the data type of a variable, the

operating system allocates memory and decides what can be stored in the reserved memory.

In contrast to other programming languages like C and java in R, the variables are not declared as

some data type. The variables are assigned with R-Objects and the data type of the R-object

becomes the data type of the variable. There are many types of R-objects. The frequently used

ones are −

1. Vectors

2. Lists

3. Matrices

4. Arrays

5. Factors

6. Data Frames

The simplest of these objects is the vector object and there are six data types of these atomic

vectors, also termed as six classes of vectors. The other R-Objects are built upon the atomic

vectors.

Data Type Example Verify

Logical TRUE, FALSE Live Demo

v <- TRUE

print(class(v))

it produces the following result −

[1] "logical"

Numeric 12.3, 5, 999 Live Demo

v <-23.5

print(class(v))

https://www.geeksforgeeks.org/r-vs-python-datascience/
https://www.geeksforgeeks.org/r-vs-python-datascience/
http://tpcg.io/JTJk0B
http://tpcg.io/xZEowl

R-PROGRAMMING(DS3101PC/AM3101PC)

5

CSE,NRCM Mr. P.THIRUPATHI, ASSIT.PROF.

it produces the following result −

[1] "numeric"

Integer 2L, 34L, 0L Live Demo

v <-2L

print(class(v))

it produces the following result −

[1] "integer"

Complex 3 + 2i Live Demo

v <-2+5i

print(class(v))

it produces the following result −

[1] "complex"

Character 'a' , '"good", "TRUE", '23.4' Live Demo

v <-"TRUE"

print(class(v))

it produces the following result −

[1] "character"

Raw "Hello" is stored as 48 65 6c 6c 6f Live Demo

v <-charToRaw("Hello")

print(class(v))

it produces the following result −

[1] "raw"

In R programming, the very basic data types are the R-objects called vectors which hold elements

of different classes as shown above. Please note in R the number of classes is not confined to

only the above six types. For example, we can use many atomic vectors and create an array

whose class will become array.

http://tpcg.io/NxIdEM
http://tpcg.io/4vSOmw
http://tpcg.io/YKv1ut
http://tpcg.io/hJkXrL

R-PROGRAMMING(DS3101PC/AM3101PC)

6

CSE,NRCM Mr. P.THIRUPATHI, ASSIT.PROF.

Vectors

When you want to create vector with more than one element, you should use c() function which

means to combine the elements into a vector.

 Live Demo

Create a vector.

apple <- c('red','green',"yellow")

print(apple)

Get the class of the vector.

print(class(apple))

When we execute the above code, it produces the following result −

[1] "red" "green" "yellow"

[1] "character"

Lists

A list is an R-object which can contain many different types of elements inside it like vectors,

functions and even another list inside it.

 Live Demo

Create a list.

list1 <- list(c(2,5,3),21.3,sin)

Print the list.

print(list1)

When we execute the above code, it produces the following result −

[[1]]

[1] 2 5 3

[[2]]

[1] 21.3

[[3]]

function (x) .Primitive("sin")

Matrices

http://tpcg.io/LcQaXR
http://tpcg.io/pueuoc

R-PROGRAMMING(DS3101PC/AM3101PC)

7

CSE,NRCM Mr. P.THIRUPATHI, ASSIT.PROF.

A matrix is a two-dimensional rectangular data set. It can be created using a vector input to the

matrix function.

Create a matrix.

M =matrix(c('a','a','b','c','b','a'),nrow=2,ncol=3,byrow= TRUE)

print(M)

When we execute the above code, it produces the following result −

[,1] [,2] [,3]

[1,] "a" "a" "b"

[2,] "c" "b" "a"

Arrays

While matrices are confined to two dimensions, arrays can be of any number of dimensions. The

array function takes a dim attribute which creates the required number of dimension. In the below

example we create an array with two elements which are 3x3 matrices each.

Create an array.

a <- array(c('green','yellow'),dim= c(3,3,2))

print(a)

When we execute the above code, it produces the following result −

, , 1

[,1] [,2] [,3]

[1,] "green" "yellow" "green"

[2,] "yellow" "green" "yellow"

[3,] "green" "yellow" "green"

, , 2

[,1] [,2] [,3]

[1,] "yellow" "green" "yellow"

R-PROGRAMMING(DS3101PC/AM3101PC)

8

CSE,NRCM Mr. P.THIRUPATHI, ASSIT.PROF.

[2,] "green" "yellow" "green"

[3,] "yellow" "green" "yellow"

Factors

Factors are the r-objects which are created using a vector. It stores the vector along with the

distinct values of the elements in the vector as labels. The labels are always character irrespective

of whether it is numeric or character or Boolean etc. in the input vector. They are useful in

statistical modeling.

Factors are created using the factor() function. The nlevels functions gives the count of levels.

Create a vector.

apple_colors<- c('green','green','yellow','red','red','red','green')

Create a factor object.

factor_apple<- factor(apple_colors)

Print the factor.

print(factor_apple)

print(nlevels(factor_apple))

When we execute the above code, it produces the following result −

[1] green green yellow red redred green

Levels: green red yellow

[1] 3

Data Frames

Data frames are tabular data objects. Unlike a matrix in data frame each column can contain

different modes of data. The first column can be numeric while the second column can be

character and third column can be logical. It is a list of vectors of equal length.

Data Frames are created using the data.frame() function.

Create the data frame.

BMI <- data.frame(

gender =c("Male","Male","Female"),

height =c(152,171.5,165),

R-PROGRAMMING(DS3101PC/AM3101PC)

9

CSE,NRCM Mr. P.THIRUPATHI, ASSIT.PROF.

weight =c(81,93,78),

Age=c(42,38,26)

)

print(BMI)

When we execute the above code, it produces the following result −

gender height weight Age

1 Male 152.0 81 42

2 Male 171.5 93 38

3 Female 165.0 78 26

READING AND WRITING DATA IN R

Reading Data in R

Here we will discuss about reading and writing data in R. For reading, (importing) data into R

following are some functions.

read.table(), and read.csv(), for reading tabular data

readLines() for reading lines of a text file

source() for reading in R code files (inverse of dump)

dget() for reading in R code files (inverse of dput)

load() for reading in saved workspaces.

Writing Data to files

Following are few functions for writing (exporting) data to files.

write.table(), and write.csv() exports data to wider range of file format including csv and tab-

delimited.

writeLinest() write text lines to a text-mode connection.

dump() takes a vector of names of R objects and produces text representations of the objects on a

file (or connection). A dump file can usually be sourced into another R session.

dput() writes an ASCII text representation of an R object to a file (or connection) or uses one to

recreate the object.

save() writes an external representation of R objects to the specified file.

R-PROGRAMMING(DS3101PC/AM3101PC)

10

CSE,NRCM Mr. P.THIRUPATHI, ASSIT.PROF.

Reading data files with read.table()

The read.table() function is one of the most commonly used functions for reading data into R. It

has a few important arguments.

file, the name of a file, or a connection

header, logical indicating if the file has a header line

sep, a string indicating how the columns are separated

colClasses, a character vector indicating the class of each column in the data set

nrows, the number of rows in the dataset

comment.char, a character string indicating the comment character

skip, the number of lines to skip from the beginning

stringsAsFactors, should character variables be coded as factors?

read.table() and read.csv() Examples

data <-read.table("foo.txt")

data <-read.table("D:\\datafiles\\mydata.txt")

data <-read.csv("D:\\datafiles\\mydata.csv")

R will automatically skip lines that begin with a #, figure out how many rows there are (and how

much memory needs to be allocated). R also figure out what type of variable is in each column of

the table.

Writing data files with write.table()

Following are few important arguments usually used in write.table() function.

x, the object to be written, typically a data frame

file, the name of the file which the data are to be written to

sep, the field separator string

col.names, a logical value indicating whether the column names of x are to be written along with

x, or a character vector of column names to be written

row.names, a logical value indicating whether the row names of x are to be written along with x,

or a character vector of row names to be written

na, the string to use for missing values in the data

write.table() and write.csv() Examples

x <- data.frame(a = 5, b = 10, c = pi)

R-PROGRAMMING(DS3101PC/AM3101PC)

11

CSE,NRCM Mr. P.THIRUPATHI, ASSIT.PROF.

write.table(x, file = "data.csv", sep = ",")

write.table(x, "c:\\mydata.txt", sep = "\t")

write.csv(x, file = "data.csv")

ESSENTIALS OF THE R LANGUAGE

Essential Fundamentals of R is an integrated program that draws from a variety of introductory

topics and courses to provide participants with a solid base of knowledge with which to use R

software for any intended purpose. No statistical knowledge, programming knowledge, or

experience with R software is necessary. Essential Fundamentals of R (7 sessions) covers those

important introductory topics basic to using R functions and data objects for any purpose:

installing R and RStudio; interactive versus batch use of R; reading data and datasets into R;

essentials of scripting; getting help in R; primitive data types; important data structures; using

functions in R; writing user-defined functions; the 'apply' family of functions in R; data set

manipulation: and subsetting, and row and column selection. Most sessions present "hands-on"

material that demonstrate the execution of R 'scripts' (sets of commands) and utilize many

extended examples of R functions, applications, and packages for a variety of common purposes.

RStudio, a popular, open source Integrated Development Environment (IDE) for developing and

using R applications, is also utilized in the program, supplemented with R-based direct scripts

(e.g. 'command-line prompts') when necessary.

Who this course is for:

Anyone who is interested in learning to use R software who is relatively new (or 'brand new') to

using R

People who wish to learn the essential fundamentals of using R including data types and

structures, inputting and outputting data and files, writing user-defined functions, and

manipulating data sets

College undergrads and/or graduate students who are looking for an alternative to using SAS or

SPSS software

Professionals engaged in quantitative analyses and/or data analyses tasks who seek an alternative

to using SAS and/or SPSS software.

Install R and RStudio – A Step-by-Step Guide for Beginners

Looking to install R and RStudio in different operating systems? Follow the step by step

procedure and download R and RStudio in an easy way.

Check out the installation process of R and RStudio on Linux operating

systems, Microsoft Windows, and Mac OS X and also look at some useful R packages that

enhance R’s capabilities.

How to Install R

In this tutorial, you will learn to-

R-PROGRAMMING(DS3101PC/AM3101PC)

12

CSE,NRCM Mr. P.THIRUPATHI, ASSIT.PROF.

Install R and RStudio on Linux

Install R and RStudio on Windows

Install R and RStudio on Mac OS X

Some useful Packages in R

Installing R and RStudio on Linux

Linux software is often distributed as source code and then compiled by package managers like

apt or yum. To install R in Ubuntu, we will have to go through the following steps.

Install R on Linux

Install the R-base package using the following code

sudo apt-get update

sudo apt-get install r-base

https://techvidvan.com/tutorials/install-r/#install-r-linux
https://techvidvan.com/tutorials/install-r/#install-r-windows
https://techvidvan.com/tutorials/install-r/#install-r-mac
https://techvidvan.com/tutorials/install-r/#r-packages

R-PROGRAMMING(DS3101PC/AM3101PC)

13

CSE,NRCM Mr. P.THIRUPATHI, ASSIT.PROF.

After running the command, a confirmation prompt will appear. Answer it with a ‘Y’ for yes.

Install RStudio on Linux

Step – 1 Next comes installing RStudio. To install RStudio, go to download RStudio, click on

the download button for RStudio desktop, click the link for the latest R version for your OS and

save the .deb file.

Step – 2 Download and install the gdebi package using the following commands

sudo apt install gdebi

Answer with a ‘Y’ for yes to confirm when prompted.

Step – 3 Use the following commands to install the .deb package

https://www.rstudio.com/ide/download

R-PROGRAMMING(DS3101PC/AM3101PC)

14

CSE,NRCM Mr. P.THIRUPATHI, ASSIT.PROF.

sudogdebi /path/to/the/file/.deb

Installing R and RStudio on Windows

To install R and RStudio on windows, go through the following steps:

Install R on windows

Step – 1: Go to CRAN R project website.

Step – 2: Click on the Download R for Windows link.

Step – 3: Click on the base subdirectory link or install R for the first time link.

https://cran.r-project.org/

R-PROGRAMMING(DS3101PC/AM3101PC)

15

CSE,NRCM Mr. P.THIRUPATHI, ASSIT.PROF.

Step – 4: Click Download R X.X.X for Windows (X.X.X stand for the latest version of R. eg:

3.6.1) and save the executable .exe file.

Step – 5: Run the .exe file and follow the installation instructions.

 Select the desired language and then click Next.

 Read the license agreement and click Next.

R-PROGRAMMING(DS3101PC/AM3101PC)

16

CSE,NRCM Mr. P.THIRUPATHI, ASSIT.PROF.

Select the components you wish to install (it is recommended to install all the components).

 Click Next.

Enter/browse the folder/path you wish to install R into and then confirm by clicking

Next.

 Select additional tasks like creating desktop shortcuts etc. then click Next.

R-PROGRAMMING(DS3101PC/AM3101PC)

17

CSE,NRCM Mr. P.THIRUPATHI, ASSIT.PROF.

 Wait for the installation process to complete.

 Click on Finish to complete the installation.

R-PROGRAMMING(DS3101PC/AM3101PC)

18

CSE,NRCM Mr. P.THIRUPATHI, ASSIT.PROF.

Install RStudio on Windows

Step – 1: With R-base installed, let’s move on to installing RStudio. To begin, go to download

RStudio and click on the download button for RStudio desktop.

Step – 2: Click on the link for the windows version of RStudio and save the .exe file.

Step – 3: Run the .exe and follow the installation instructions.

https://www.rstudio.com/ide/download
https://www.rstudio.com/ide/download

R-PROGRAMMING(DS3101PC/AM3101PC)

19

CSE,NRCM Mr. P.THIRUPATHI, ASSIT.PROF.

 Click Next on the welcome window.

 Enter/browse the path to the installation folder and click Next to proceed.

Select the folder for the start menu shortcut or click on do not create shortcuts and then

click Next.

R-PROGRAMMING(DS3101PC/AM3101PC)

20

CSE,NRCM Mr. P.THIRUPATHI, ASSIT.PROF.

 Wait for the installation process to complete.

 Click Finish to end the installation.

R-PROGRAMMING(DS3101PC/AM3101PC)

21

CSE,NRCM Mr. P.THIRUPATHI, ASSIT.PROF.

Installing R and RStudio on Mac OS X

To install R and RStudio on Mac OS X, go through the following steps:

Install R on Mac

Step – 1: Go to CRAN R Project Website.

Step – 2: Click on the Download for (Mac) OS X link.

Step – 3: Click on the link for the pkg file of the latest R version and save it.

Step – 4: Double click the downloaded file and follow installation instructions.

Install RStudio on Mac OS X

Step – 1: With the r-base installed, you need to install RStudio. To do that, go to download

RStudio and click on the download button for the RStudio desktop.

Step – 2: Click on the link for the Mac OS X version of RStudio and save the .dmg file.

Step – 3: Double click the downloaded file and then drag-and-drop it into your applications

folder.

Now with R and RStudio installed in your system, let’s look at a few packages that might help

you in learning as well as using R to its fullest potential!

Some useful Packages in R

https://cran.r-project.org./
https://www.rstudio.com/ide/download
https://www.rstudio.com/ide/download

R-PROGRAMMING(DS3101PC/AM3101PC)

22

CSE,NRCM Mr. P.THIRUPATHI, ASSIT.PROF.

CRAN is full of packages for everything you will need while working with R, and it is still

growing. Many useful functions of R come in these packages. To install a package, simply run

the following command in RStudio:

>install.packages(“<package name>”)

Once installed, a package can be made available in the current R session using the command:

>library(“<package name>”)

While it may become confusing at times due to the sheer number of options available, here are a

few packages that are popular for their reliability and usefulness:

Tidyverse – Tidyverse is a collection of packages that work in harmony with each other to clean,

process, model, and visualize data. Tidyverse’s core package contains packages like ggplot2,

dplyr, tidyr, readr, purrr, tibble, stringr, and forcats.

Installr – installr allows you to update R and all its packages with just a single command.

Rtweet – Twitter is the prime target for extracting tweets and building models to understand and

predict sentiment. The rtweet package allows you to scrap Tweets and perform sentiment

analysis.

MLR (Machine Learning in R) – MLR is a package that lets you perform all kinds of machine

learning tasks. MLR includes all the popular machine learning algorithms used for ML projects.

Reticulate – Reticulate lets you use Python alongside with R in the R environment. Not only

that, but you can also use major Python libraries within R itself.

R markdown – R markdown lets you create documents in multiple formats like pdf, HTML, and

MS Word documents while embedding R codes, results, and visualizations to produce

informative and thorough reports.

Shiny – Shiny is an R package that lets you make interactive web-apps. Using shiny, you can

embed the findings of your analysis into the web-apps. This enables the users to play with your

data and the results for deeper understanding, resulting in improved communication of the

results.

There are many more packages available on repositories like CRAN, Bioconductor, and GitHub

that can be used to improve R’s functions and facilities as well as to add new functions.

As you use and explore R some more, you will discover more of them and find new and exciting

uses for them all.

Summary

In this tutorial, we learned how to install R and RStudio in systems with Linux, Windows, and

Mac OS X.

We also learned about some useful R packages that improve and enhance R’s capabilities

and prove to be highly useful.

R-PROGRAMMING(DS3101PC/AM3101PC)

23

CSE,NRCM Mr. P.THIRUPATHI, ASSIT.PROF.

If you find any difficulty to install R and RStudio then ask us in the comment and our

TechVidvans will be happy to help.

Using R as a Calculator

One of the most basic ways to use R is as a calculator. We can enter many math functions

directly into the R Console. We will start to look at the various ways in which we can use R.

Arithmetic Operators

R can handle most simple types of math operators.

Operator Description

+ Addition

- Subtraction

* Multiplication

/ Division

^ or ** Exponentiation

For example:

Addition

5+4

[1] 9

Subtraction

124 - 26.82

[1] 97.18

Multiplication

5*4

[1] 20

Division

35/8

[1] 4.375

More Math functions.

We can also use many other math functions. All of these are included in base R without any extra

packages.

R-PROGRAMMING(DS3101PC/AM3101PC)

24

CSE,NRCM Mr. P.THIRUPATHI, ASSIT.PROF.

Exponentials

3^(1/2)

[1] 1.732051

Exponential Function

exp(1.5)

[1] 4.481689

Log base e

log(4.481689)

[1] 1.5

Log base 10

log10(1000)

[1] 3

On Your Own: Swirl Practice

In order to learn R you must do R. Follow the steps below in your RStudio console:

Run this command to pick the course:

swirl()

You will be promted to choose a course. Type whatever number is in front of 01 Getting Started.

This will then take you to a menu of lessons. For now we will just use lesson 2. Type 2 to

choose R as Calculator then follow all the instructions until you are finished.

Once you are finished with the lesson come back to this course and continue.

Logical Operators

Another important feature of R is the ability to use logic. This is not unique to R as all

programming languages can do this, but it will be extremely useful when working with data.

Operator Description

< Less Than

> Greater Than

<= Less Than or Equal To

>= Greater Than or Equal To

R-PROGRAMMING(DS3101PC/AM3101PC)

25

CSE,NRCM Mr. P.THIRUPATHI, ASSIT.PROF.

Operator Description

== Exactly Equal To

!= Not Equal To

!a Not a

a&b a AND b

We can then see an example of this:

a <- c(1:12)

If we wanted to know where a>9a>9 or where a<4a<4 we would expect to see the values: 1 2 3

10 11 12.

Having R do this

a

[1] 1 2 3 4 5 6 7 8 9 10 11 12

a>9

[1] FALSE FALSEFALSEFALSEFALSEFALSEFALSEFALSEFALSE TRUE TRUE

[12] TRUE

We can see that what R gives is are Boolean values as to whether or not each element of a is

greater than 9. Similarly:

a<4

[1] TRUE TRUETRUE FALSE FALSEFALSEFALSEFALSEFALSEFALSEFALSE

[12] FALSE

One simple thing we might try is to just combine these 2 values into a conditional

a>9 | a<4

[1] TRUE TRUETRUE FALSE FALSEFALSEFALSEFALSEFALSE TRUE TRUE

[12] TRUE

This again just gives us Booleans and not necessarily the values that we were hoping to see. We

use this to index a in the following manner

a[a>9 | a<4]

[1] 1 2 3 10 11 12

We will look at indexing with much further detail as we move through this course.

R-PROGRAMMING(DS3101PC/AM3101PC)

1

26

CSE,NRCM Mr. P.THIRUPATHI, ASSIT.PROF.

On Your Own: Swirl Practice

In order to learn R you must do R. Follow the steps below in your RStudio console:

Run this command to pick the course:

swirl()

You will be promted to choose a course. Type whatever number is in front of 01 Getting Started.

This will then take you to a menu of lessons. For now we will just use lesson 3. Type 3 to

choose Logic then follow all the instructions until you are finished.

Once you are finished with the lesson come back to this course and continue.

Further Operators

There are other operators that we will use that are not necesssarily mathematical in nature. Each

one of them is crucial for the use of R.

Description R Symbol Example

Comment # # This is a comment

Assignment <- x <- 5

Assignment -> 5 -> x

Assigment = x = 5

Concatenation operator c c(1,2,4)

Modular %% 25 %% 6

Sequence from a to b by h seq seq(a,b,h)

Sequence Operator : 0:3

Quick Check Practice

script.R

R Console

Create a variable a, equal to 5

Do this by typing: a <- 5

http://statseducation.com/Introduction-to-R/modules/getting%20started/calculator/
http://statseducation.com/Introduction-to-R/modules/getting%20started/calculator/

R-PROGRAMMING(DS3101PC/AM3101PC)

2

2

27

CSE,NRCM Mr. P.THIRUPATHI, ASSIT.PROF.

3

4

5

6

Create a variable a, equal to 5

Do this by typing: a <- 5

Square a

HintRun

Powered by DataCamp

Math Functions in R

We also have access to a wide variety of mathematical functions that are already built into R.

Description R Symbol

Square Root sqrt

floor(x) floor

\ceil(x) ceiling

Logarithm log

Exponential function, e^x exp

Factorial, ! factorial

Quick Check Practice

script.R

R Console

1

Create a variable b, equal to 4

https://www.datacamp.com/
http://statseducation.com/Introduction-to-R/modules/getting%20started/calculator/
http://statseducation.com/Introduction-to-R/modules/getting%20started/calculator/

R-PROGRAMMING(DS3101PC/AM3101PC)

28

CSE,NRCM Mr. P.THIRUPATHI, ASSIT.PROF.

3

4

5

6

7

8

9

Create a variable b, equal to 4

What is the log of b?

what is the exponential of the log of b?

An operator is a symbol that tells the compiler to perform specific mathematical or logical

manipulations. R language is rich in built-in operators and provides following types of operators.

Types of Operators

We have the following types of operators in R programming −

1. Arithmetic Operators

2. Relational Operators

3. Logical Operators

4. Assignment Operators

5. Miscellaneous Operators

Arithmetic Operators

Following table shows the arithmetic operators supported by R language. The operators act on

each element of the vector.

Operator Description Example

+ Adds two vectors Live Demo

v <-c(2,5.5,6)

t <-c(8,3,4)

print(v+t)

it produces the following result −

[1] 10.0 8.5 10.0

http://tpcg.io/y9tltI

R-PROGRAMMING(DS3101PC/AM3101PC)

29

CSE,NRCM Mr. P.THIRUPATHI, ASSIT.PROF.

− Subtracts second vector from the first Live Demo

v <-c(2,5.5,6)

t <-c(8,3,4)

print(v-t)

it produces the following result −

[1] -6.0 2.5 2.0

* Multiplies both vectors Live Demo

v <-c(2,5.5,6)

t <-c(8,3,4)

print(v*t)

it produces the following result −

[1] 16.0 16.5 24.0

/ Divide the first vector with the second Live Demo

v <-c(2,5.5,6)

t <-c(8,3,4)

print(v/t)

When we execute the above code, it

produces the following result −

[1] 0.250000 1.833333 1.500000

%% Give the remainder of the first vector with

the second

 Live Demo

v <-c(2,5.5,6)

t <-c(8,3,4)

print(v%%t)

it produces the following result −

[1] 2.0 2.5 2.0

http://tpcg.io/vte6zy
http://tpcg.io/xfsefB
http://tpcg.io/XCSdtl
http://tpcg.io/iFsj9E

R-PROGRAMMING(DS3101PC/AM3101PC)

30

CSE,NRCM Mr. P.THIRUPATHI, ASSIT.PROF.

%/% The result of division of first vector with

second (quotient)

 Live Demo

v <-c(2,5.5,6)

t <-c(8,3,4)

print(v%/%t)

it produces the following result −

[1] 0 1 1

^ The first vector raised to the exponent of

second vector

 Live Demo

v <-c(2,5.5,6)

t <-c(8,3,4)

print(v^t)

it produces the following result −

[1] 256.000 166.375 1296.000

Relational Operators

Following table shows the relational operators supported by R language. Each element of the first

vector is compared with the corresponding element of the second vector. The result of

comparison is a Boolean value.

Operator Description Example

>

Checks if each element of the first vector is

greater than the corresponding element of the

second vector.

 Live Demo

v <-c(2,5.5,6,9)

t <-c(8,2.5,14,9)

print(v>t)

it produces the following result −

[1] FALSE TRUE FALSE FALSE

<
Checks if each element of the first vector is less

than the corresponding element of the second

Live Demo

v <-c(2,5.5,6,9)

http://tpcg.io/khU9Zr
http://tpcg.io/5eTraf
http://tpcg.io/5hnjWV
http://tpcg.io/McpQJP

R-PROGRAMMING(DS3101PC/AM3101PC)

31

CSE,NRCM Mr. P.THIRUPATHI, ASSIT.PROF.

vector. t <-c(8,2.5,14,9)

print(v < t)

it produces the following result −

[1] TRUE FALSE TRUE FALSE

==

Checks if each element of the first vector is equal

to the corresponding element of the second

vector.

 Live Demo

v <-c(2,5.5,6,9)

t <-c(8,2.5,14,9)

print(v == t)

it produces the following result −

[1] FALSE FALSEFALSE TRUE

<=

Checks if each element of the first vector is less

than or equal to the corresponding element of the

second vector.

 Live Demo

v <-c(2,5.5,6,9)

t <-c(8,2.5,14,9)

print(v<=t)

it produces the following result −

[1] TRUE FALSE TRUE TRUE

>=

Checks if each element of the first vector is

greater than or equal to the corresponding

element of the second vector.

 Live Demo

v <- c(2,5.5,6,9)

t <-c(8,2.5,14,9)

print(v>=t)

it produces the following result −

[1] FALSE TRUE FALSE TRUE

!=
Checks if each element of the first vector is

unequal to the corresponding element of the

second vector.

Live Demo

v <-c(2,5.5,6,9)

t <-c(8,2.5,14,9)

http://tpcg.io/rEmlAQ
http://tpcg.io/hW1nKg
http://tpcg.io/TGrzhB
http://tpcg.io/SXHenH

R-PROGRAMMING(DS3101PC/AM3101PC)

32

CSE,NRCM Mr. P.THIRUPATHI, ASSIT.PROF.

print(v!=t)

it produces the following result −

[1] TRUETRUETRUE FALSE

Logical Operators

Following table shows the logical operators supported by R language. It is applicable only to

vectors of type logical, numeric or complex. All numbers greater than 1 are considered as logical

value TRUE.

Each element of the first vector is compared with the corresponding element of the second

vector. The result of comparison is a Boolean value.

Operator Description Example

&

It is called Element-wise Logical AND operator.

It combines each element of the first vector with

the corresponding element of the second vector

and gives a output TRUE if both the elements are

TRUE.

 Live Demo

v <- c(3,1,TRUE,2+3i)

t <- c(4,1,FALSE,2+3i)

print(v&t)

it produces the following result −

[1] TRUETRUE FALSE TRUE

|

It is called Element-wise Logical OR operator. It

combines each element of the first vector with

the corresponding element of the second vector

and gives a output TRUE if one the elements is

TRUE.

 Live Demo

v <- c(3,0,TRUE,2+2i)

t <- c(4,0,FALSE,2+3i)

print(v|t)

it produces the following result −

[1] TRUE FALSE TRUE TRUE

!

It is called Logical NOT operator. Takes each

element of the vector and gives the opposite

logical value.

 Live Demo

v <- c(3,0,TRUE,2+2i)

print(!v)

it produces the following result −

http://tpcg.io/80SLpI
http://tpcg.io/G3TeFe
http://tpcg.io/nIC8ag

R-PROGRAMMING(DS3101PC/AM3101PC)

33

CSE,NRCM Mr. P.THIRUPATHI, ASSIT.PROF.

[1] FALSE TRUE FALSE FALSE

The logical operator && and || considers only the first element of the vectors and give a vector of

single element as output.

Assignment Operators

These operators are used to assign values to vectors.

Operator Description Example

<−

or

=

or

<<−

Called Left Assignment Live Demo

v1 <- c(3,1,TRUE,2+3i)

v2 <<- c(3,1,TRUE,2+3i)

v3 = c(3,1,TRUE,2+3i)

print(v1)

print(v2)

Operator Description Example

&&

Called Logical AND operator. Takes first

element of both the vectors and gives the TRUE

only if both are TRUE.

 Live Demo

v <- c(3,0,TRUE,2+2i)

t <- c(1,3,TRUE,2+3i)

print(v&&t)

it produces the following result −

[1] TRUE

||

Called Logical OR operator. Takes first element

of both the vectors and gives the TRUE if one of

them is TRUE.

 Live Demo

v <- c(0,0,TRUE,2+2i)

t <- c(0,3,TRUE,2+3i)

print(v||t)

it produces the following result −

[1] FALSE

http://tpcg.io/HP9gZz
http://tpcg.io/wcjEcy
http://tpcg.io/6BakcE

R-PROGRAMMING(DS3101PC/AM3101PC)

34

CSE,NRCM Mr. P.THIRUPATHI, ASSIT.PROF.

print(v3)

it produces the following result −

[1] 3+0i 1+0i 1+0i 2+3i

[1] 3+0i 1+0i 1+0i 2+3i

[1] 3+0i 1+0i 1+0i 2+3i

->

or

->>

Called Right Assignment Live Demo

c(3,1,TRUE,2+3i)-> v1

c(3,1,TRUE,2+3i)->> v2

print(v1)

print(v2)

it produces the following result −

[1] 3+0i 1+0i 1+0i 2+3i

[1] 3+0i 1+0i 1+0i 2+3i

Miscellaneous Operators

These operators are used to for specific purpose and not general mathematical or logical

computation.

Operator Description Example

:

Colon operator. It creates

the series of numbers in

sequence for a vector.

 Live Demo

v <-2:8

print(v)

it produces the following result −

[1] 2 3 4 5 6 7 8

%in% This operator is used to

identify if an element

 Live Demo

http://tpcg.io/Q6i8ZL
http://tpcg.io/vPcV3b
http://tpcg.io/foTSf7

R-PROGRAMMING(DS3101PC/AM3101PC)

35

CSE,NRCM Mr. P.THIRUPATHI, ASSIT.PROF.

belongs to a vector. v1 <-8

v2 <-12

t <-1:10

print(v1 %in% t)

print(v2 %in% t)

it produces the following result −

[1] TRUE

[1] FALSE

%*%

This operator is used to

multiply a matrix with its

transpose.

M =matrix(c(2,6,5,1,10,4),nrow=2,ncol =3,byrow =

TRUE)

t = M %*% t(M)

print(t)

it produces the following result −

[,1] [,2]

[1,] 65 82

[2,] 82 117

Complex

A complex value in R is defined via the pure imaginary value i.

> z = 1 + 2i # create a complex number

> z # print the value of z

[1] 1+2i

> class(z) # print the class name of z

[1] "complex"

The following gives an error as −1 is not a complex value.

> sqrt(−1) # square root of −1

[1] NaN

Warning message:

In sqrt(−1) : NaNs produced

R-PROGRAMMING(DS3101PC/AM3101PC)

36

CSE,NRCM Mr. P.THIRUPATHI, ASSIT.PROF.

Instead, we have to use the complex value −1 + 0i.

> sqrt(−1+0i) # square root of −1+0i

[1] 0+1i

An alternative is to coerce −1 into a complex value.

> sqrt(as.complex(−1))

[1] 0+1i

‹ IntegerupLogical ›

Tags:

R Introduction

as.complex

class

sqrt

How to Round Numbers in R (5 Examples)

You can use the following functions to round numbers in R:

round(x, digits = 0): Rounds values to specified number of decimal places.

signif(x, digits = 6): Rounds values to specified number of significant digits.

ceiling(x): Rounds values up to nearest integer.

floor(x): Rounds values down to nearest integer.

trunc(x): Truncates (cuts off) decimal places from values.

The following examples show how to use each of these functions in practice.

Example 1: round() Function in R

The following code shows how to use the round() function in R:

#define vector of data

data <- c(.3, 1.03, 2.67, 5, 8.91)

#round values to 1 decimal place

https://www.r-tutor.com/r-introduction/basic-data-types/integer
https://www.r-tutor.com/r-introduction/basic-data-types/integer
https://www.r-tutor.com/r-introduction/basic-data-types/logical
https://www.r-tutor.com/category/r-tutorial/r-introduction
https://www.r-tutor.com/category/r-functions/ascomplex
https://www.r-tutor.com/category/r-functions/class
https://www.r-tutor.com/category/r-functions/sqrt

R-PROGRAMMING(DS3101PC/AM3101PC)

37

CSE,NRCM Mr. P.THIRUPATHI, ASSIT.PROF.

round(data, digits = 1)

[1] 0.3 1.0 2.7 5.0 8.9

Example 2: signif() Function in R

The following code shows how to use the signif() function to round values to a specific

number of significant digits in R:

#define vector of data

data <- c(.3, 1.03, 2.67, 5, 8.91)

#round values to 3 significant digits

signif(data, digits = 3)

[1] 0.30 1.03 2.67 5.00 8.91

Example 3: ceiling() Function in R

The following code shows how to use the ceiling() function to round values up to the nearest

integer:

#define vector of data

data <- c(.3, 1.03, 2.67, 5, 8.91)

#round values up to nearest integer

ceiling(data)

[1] 1 2 3 5 9

Example 4: floor() Function in R

The following code shows how to use the floor() function to round values down to the nearest

integer:

#define vector of data

data <- c(.3, 1.03, 2.67, 5, 8.91)

#round values down to nearest integer

floor(data)

[1] 0 1 2 5 8

Example 5: trunc() Function in R

R-PROGRAMMING(DS3101PC/AM3101PC)

38

CSE,NRCM Mr. P.THIRUPATHI, ASSIT.PROF.

The following code shows how to use the trunc() function to truncate (cut off) decimal places

from values:

#define vector of data

data <- c(.3, 1.03, 2.67, 5, 8.91)

#truncate decimal places from values

trunc(data)

[1] 0 1 2 5 8

"%%" and "%/%" for the remainder and the quotient

Ask Question

Asked 10 years, 3 months ago

Modified 4 years, 8 months ago

Viewed 135k times

Report this ad

73

I am wondering how and why the operator %% and %/% are for the remainder and the quotient.

Is there any reason or history that R developer had given them the meaning they have?

>0%/%10

[1]0

>30%%10

[1]0

>35%/%10

[1]3

>35%%10

[1]5

In R, you can assign your own operators using %[characters]%. A trivial example:

'%p%' <- function(x, y){x^2 + y}

2 %p% 3 # result: 7

https://stackoverflow.com/questions/11670176/and-for-the-remainder-and-the-quotient
https://stackoverflow.com/questions/ask
https://stackoverflow.com/questions/11670176/and-for-the-remainder-and-the-quotient?lastactivity

R-PROGRAMMING(DS3101PC/AM3101PC)

While I agree with BlueTrin that %% is pretty standard, I have a suspicion %/% may have

something to do with the sort of operator definitions I showed above - perhaps it was easier to

implement, and makes sense: %/% means do a special sort of division (integer division)

Variablenamesandassignment

A variable provides us with named storage that our programs can manipulate. A variable in R can

store an atomic vector, group of atomic vectors or a combination of many Robjects. A valid

variable name consists of letters, numbers and the dot or underline characters. The variable name

starts with a letter or the dot not followed by a number.

Variable Name Validity Reason

var_name2. valid Has letters, numbers, dot and underscore

var_name% Invalid Has the character '%'. Only dot(.) and underscore allowed.

2var_name invalid Starts with a number

.var_name,

var.name

valid Can start with a dot(.) but the dot(.)should not be followed by a

number.

.2var_name invalid The starting dot is followed by a number making it invalid.

_var_name invalid Starts with _ which is not valid

Variable Assignment

The variables can be assigned values using leftward, rightward and equal to operator. The values

of the variables can be printed using print() or cat() function. The cat() function combines

multiple items into a continuous print output.

Assignment using equal operator.

var.1=c(0,1,2,3)

Assignment using leftward operator.

var.2<- c("learn","R")

39

R-PROGRAMMING(DS3101PC/AM3101PC)

40

CSE,NRCM Mr. P.THIRUPATHI, ASSIT.PROF.

Assignment using rightward operator.

c(TRUE,1)->var.3

print(var.1)

cat ("var.1 is ",var.1,"\n")

cat ("var.2 is ",var.2,"\n")

cat ("var.3 is ",var.3,"\n")

When we execute the above code, it produces the following result −

[1] 0 1 2 3

var.1 is 0 1 2 3

var.2 is learn R

var.3 is 1 1

Note − The vector c(TRUE,1) has a mix of logical and numeric class. So logical class is coerced

to numeric class making TRUE as 1.

Data Type of a Variable

In R, a variable itself is not declared of any data type, rather it gets the data type of the R - object

assigned to it. So R is called a dynamically typed language, which means that we can change a

variable’s data type of the same variable again and again when using it in a program.

var_x<-"Hello"

cat("The class of var_x is ",class(var_x),"\n")

var_x<-34.5

cat(" Now the class of var_x is ",class(var_x),"\n")

var_x<-27L

cat(" Next the class of var_x becomes ",class(var_x),"\n")

When we execute the above code, it produces the following result −

R-PROGRAMMING(DS3101PC/AM3101PC)

41

CSE,NRCM Mr. P.THIRUPATHI, ASSIT.PROF.

The class of var_xis character

Now the class of var_xis numeric

Next the class of var_xbecomes integer

Finding Variables

To know all the variables currently available in the workspace we use the ls() function. Also the

ls() function can use patterns to match the variable names.

print(ls())

When we execute the above code, it produces the following result −

[1] "my var" "my_new_var" "my_var" "var.1"

[5] "var.2" "var.3" "var.name" "var_name2."

[9] "var_x" "varname"

Note − It is a sample output depending on what variables are declared in your environment.

The ls() function can use patterns to match the variable names

List the variables starting with the pattern "var".

print(ls(pattern ="var"))

When we execute the above code, it produces the following result −

[1] "my var" "my_new_var" "my_var" "var.1"

[5] "var.2" "var.3" "var.name" "var_name2."

[9] "var_x" "varname"

The variables starting with dot(.) are hidden, they can be listed using "all.names = TRUE"

argument to ls() function.

print(ls(all.name = TRUE))

When we execute the above code, it produces the following result −

[1] ".cars" ".Random.seed" ".var_name" ".varname" ".varname2"

[6] "my var" "my_new_var" "my_var" "var.1" "var.2"

[11]"var.3" "var.name" "var_name2." "var_x"

Deleting Variables

Variables can be deleted by using the rm() function. Below we delete the variable var.3. On

printing the value of the variable error is thrown.

R-PROGRAMMING(DS3101PC/AM3101PC)

42

CSE,NRCM Mr. P.THIRUPATHI, ASSIT.PROF.

rm(var.3)

print(var.3)

When we execute the above code, it produces the following result −

[1] "var.3"

Error in print(var.3) : object 'var.3' not found

All the variables can be deleted by using the rm() and ls() function together.

rm(list = ls())

print(ls())

When we execute the above code, it produces the following result −

character(0)

Integer

In order to create an integer variable in R, we invoke the integer function. We can be assured

that y is indeed an integer by applying the is.integer function.

> y = as.integer(3)

> y # print the value of y

[1] 3

> class(y) # print the class name of y

[1] "integer"

> is.integer(y) # is y an integer?

[1] TRUE

We can also declare an integer by appending an L suffix.

> y = 3L

> is.integer(y) # is y an integer?

[1] TRUE

Incidentally, we can coerce a numeric value into an integer with the as.integer function.

> as.integer(3.14) # coerce a numeric value

[1] 3

And we can parse a string for decimal values in much the same way.

> as.integer("5.27") # coerce a decimal string

[1] 5

On the other hand, it is erroneous trying to parse a non-decimal string.

R-PROGRAMMING(DS3101PC/AM3101PC)

43

CSE,NRCM Mr. P.THIRUPATHI, ASSIT.PROF.

> as.integer("Joe") # coerce an non-decimal string

[1] NA

Warning message:

NAs introduced by coercion

Often, it is useful to perform arithmetic on logical values. Just like the C language, TRUE has the

value 1, while FALSE has value 0.

> as.integer(TRUE) # the numeric value of TRUE

[1] 1

> as.integer(FALSE) # the numeric value of FALSE

[1] 0

UNIT-II

Control Structures

Control structures in R allow you to control the flow of execution of a series of R expressions.

Basically, control structures allow you to put some “logic” into your R code, rather than just

always executing the same R code every time. Control structures allow you to respond to inputs

or to features of the data and execute different R expressions accordingly.

Commonly used control structures are

if and else: testing a condition and acting on it

for: execute a loop a fixed number of times

while: execute a loop while a condition is true

repeat: execute an infinite loop (must break out of it to stop)

break: break the execution of a loop

next: skip an interation of a loop

Most control structures are not used in interactive sessions, but rather when writing functions or

longer expresisons. However, these constructs do not have to be used in functions and it’s a good

idea to become familiar with them before we delve into functions.

if-else

The if-else combination is probably the most commonly used control structure in R (or perhaps

any language). This structure allows you to test a condition and act on it depending on whether

it’s true or false.

For starters, you can just use the if statement.

if(<condition>) {

http://www.r-tutor.com/r-introduction/basic-data-types/logical

R-PROGRAMMING(DS3101PC/AM3101PC)

44

CSE,NRCM Mr. P.THIRUPATHI, ASSIT.PROF.

do something

}

Continue with rest of code

The above code does nothing if the condition is false. If you have an action you want to execute

when the condition is false, then you need an else clause.

if(<condition>) {

do something

} else {

do something else

}

You can have a series of tests by following the initial if with any number of else ifs.

if(<condition1>) {

do something

} elseif(<condition2>) {

do something different

} else {

do something different

}

Here is an example of a valid if/else structure.

Generate a uniform random number

x <-runif(1, 0, 10)

if(x >3) {

y <-10

} else {

y <-0

}

The value of y is set depending on whether x > 3 or not. This expression can also be written a

different, but equivalent, way in R.

R-PROGRAMMING(DS3101PC/AM3101PC)

45

CSE,NRCM Mr. P.THIRUPATHI, ASSIT.PROF.

y <-if(x >3) {

10

} else {

0

}

Neither way of writing this expression is more correct than the other. Which one you use will

depend on your preference and perhaps those of the team you may be working with.

Of course, the else clause is not necessary. You could have a series of if clauses that always get

executed if their respective conditions are true.

if(<condition1>) {

}

if(<condition2>) {

}

for Loops

For loops are pretty much the only looping construct that you will need in R. While you may

occasionally find a need for other types of loops, in my experience doing data analysis, I’ve

found very few situations where a for loop wasn’t sufficient.

In R, for loops take an interator variable and assign it successive values from a sequence or

vector. For loops are most commonly used for iterating over the elements of an object (list,

vector, etc.)

>for(iin1:10) {

+print(i)

+ }

[1] 1

[1] 2

[1] 3

[1] 4

[1] 5

[1] 6

R-PROGRAMMING(DS3101PC/AM3101PC)

46

CSE,NRCM Mr. P.THIRUPATHI, ASSIT.PROF.

[1] 7

[1] 8

[1] 9

[1] 10

This loop takes the i variable and in each iteration of the loop gives it values 1, 2, 3, …, 10,

executes the code within the curly braces, and then the loop exits.

The following three loops all have the same behavior.

> x <-c("a", "b", "c", "d")

>

>for(iin1:4) {

+## Print out each element of 'x'

+print(x[i])

+ }

[1] "a"

[1] "b"

[1] "c"

[1] "d"

The seq_along() function is commonly used in conjunction with for loops in order to generate an

integer sequence based on the length of an object (in this case, the object x).

>## Generate a sequence based on length of 'x'

>for(iinseq_along(x)) {

+print(x[i])

+ }

[1] "a"

[1] "b"

[1] "c"

[1] "d"

It is not necessary to use an index-type variable.

R-PROGRAMMING(DS3101PC/AM3101PC)

47

CSE,NRCM Mr. P.THIRUPATHI, ASSIT.PROF.

>for(letter in x) {

+print(letter)

+ }

[1] "a"

[1] "b"

[1] "c"

[1] "d"

For one line loops, the curly braces are not strictly necessary.

>for(iin1:4) print(x[i])

[1] "a"

[1] "b"

[1] "c"

[1] "d"

However, I like to use curly braces even for one-line loops, because that way if you decide to

expand the loop to multiple lines, you won’t be burned because you forgot to add curly braces

(and you will be burned by this).

Nested for loops

for loops can be nested inside of each other.

x <-matrix(1:6, 2, 3)

for(iinseq_len(nrow(x))) {

for(j inseq_len(ncol(x))) {

print(x[i, j])

}

}

Nested loops are commonly needed for multidimensional or hierarchical data structures

(e.g. matrices, lists). Be careful with nesting though. Nesting beyond 2 to 3 levels often makes it

difficult to read/understand the code. If you find yourself in need of a large number of nested

loops, you may want to break up the loops by using functions (discussed later).

while Loops

R-PROGRAMMING(DS3101PC/AM3101PC)

48

CSE,NRCM Mr. P.THIRUPATHI, ASSIT.PROF.

While loops begin by testing a condition. If it is true, then they execute the loop body. Once the

loop body is executed, the condition is tested again, and so forth, until the condition is false, after

which the loop exits.

> count <-0

>while(count <10) {

+print(count)

+ count <- count +1

+ }

[1] 0

[1] 1

[1] 2

[1] 3

[1] 4

[1] 5

[1] 6

[1] 7

[1] 8

[1] 9

While loops can potentially result in infinite loops if not written properly. Use with care!

Sometimes there will be more than one condition in the test.

> z <-5

>set.seed(1)

>

>while(z >=3&& z <=10) {

+ coin <-rbinom(1, 1, 0.5)

+

+if(coin ==1) { ## random walk

+ z <- z +1

R-PROGRAMMING(DS3101PC/AM3101PC)

49

CSE,NRCM Mr. P.THIRUPATHI, ASSIT.PROF.

+ }else {

+ z <- z -1

+ }

+ }

>print(z)

[1] 2

Conditions are always evaluated from left to right. For example, in the above code, if z were less

than 3, the second test would not have been evaluated.

repeat Loops

repeat initiates an infinite loop right from the start. These are not commonly used in statistical or

data analysis applications but they do have their uses. The only way to exit a repeat loop is to

call break.

One possible paradigm might be in an iterative algorith where you may be searching for a

solution and you don’t want to stop until you’re close enough to the solut ion. In this kind of

situation, you often don’t know in advance how many iterations it’s going to take to get “close

enough” to the solution.

x0 <-1

tol<-1e-8

repeat {

x1 <-computeEstimate()

if(abs(x1 - x0) <tol) { ## Close enough?

break

} else {

x0 <- x1

}

}

R-PROGRAMMING(DS3101PC/AM3101PC)

50

CSE,NRCM Mr. P.THIRUPATHI, ASSIT.PROF.

Note that the above code will not run if the computeEstimate() function is not defined (I just

made it up for the purposes of this demonstration).

The loop above is a bit dangerous because there’s no guarantee it will stop. You could get in a

situation where the values of x0 and x1 oscillate back and forth and never converge. Better to set

a hard limit on the number of iterations by using a for loop and then report whether convergence

was achieved or not.

next, break

next is used to skip an iteration of a loop.

for(iin1:100) {

if(i<=20) {

Skip the first 20 iterations

next

}

Do something here

}

break is used to exit a loop immediately, regardless of what iteration the loop may be on.

for(iin1:100) {

print(i)

if(i>20) {

Stop loop after 20 iterations

break

}

}

Summary

Control structures like if, while, and for allow you to control the flow of an R program

Infinite loops should generally be avoided, even if (you believe) they are theoretically correct.

Control structures mentioned here are primarily useful for writing programs; for command-line

interactive work, the “apply” functions are more useful.

R Functions

R-PROGRAMMING(DS3101PC/AM3101PC)

51

CSE,NRCM Mr. P.THIRUPATHI, ASSIT.PROF.

A function is a block of code which only runs when it is called.

You can pass data, known as parameters, into a function.

A function can return data as a result.

Creating a Function

To create a function, use the function() keyword:

Example

my_function<- function() { # create a function with the name my_function

print("Hello World!")

}

Call a Function

To call a function, use the function name followed by parenthesis, like my_function():

Example

my_function<- function() {

print("Hello World!")

}

my_function() # call the function named my_function

OUTPUT:

[1] "Hello World!"

Arguments

Information can be passed into functions as arguments.

Arguments are specified after the function name, inside the parentheses. You can add as many

arguments as you want, just separate them with a comma.

The following example has a function with one argument (fname). When the function is called,

we pass along a first name, which is used inside the function to print the full name:

Example

my_function<- function(fname) {

paste(fname, "Griffin")

}

my_function("Peter")

my_function("Lois")

my_function("Stewie")

OUTPUT:

R-PROGRAMMING(DS3101PC/AM3101PC)

52

CSE,NRCM Mr. P.THIRUPATHI, ASSIT.PROF.

[1] "Peter Griffin"

[1] "Lois Griffin"

[1] "Stewie Griffin”

Parameters or Arguments?

The terms "parameter" and "argument" can be used for the same thing: information that are

passed into a function.

From a function's perspective:

A parameter is the variable listed inside the parentheses in the function definition.

An argument is the value that is sent to the function when it is called.

Number of Arguments

By default, a function must be called with the correct number of arguments. Meaning that if your

function expects 2 arguments, you have to call the function with 2 arguments, not more, and not

less:

Example

This function expects 2 arguments, and gets 2 arguments:

my_function<- function(fname, lname) {

paste(fname, lname)

}

my_function("Peter", "Griffin")

OUTPUT:

1] "Peter Griffin"

If you try to call the function with 1 or 3 arguments, you will get an error:

Example

This function expects 2 arguments, and gets 1 argument:

my_function<- function(fname, lname) {

paste(fname, lname)

}

my_function("Peter")

OUTPUT:

Error in paste(fname, lname) :

argument "lname" is missing, with no default

Calls: my_function -> print -> paste

Execution halted

R-PROGRAMMING(DS3101PC/AM3101PC)

53

CSE,NRCM Mr. P.THIRUPATHI, ASSIT.PROF.

Default Parameter Value

The following example shows how to use a default parameter value.

If we call the function without an argument, it uses the default value:

Example

my_function<- function(country = "Norway") {

paste("I am from", country)

}

my_function("Sweden")

my_function("India")

my_function() # will get the default value, which is Norway

my_function("USA")

OUTPUT:

[1] "I am from Sweden"

[1] "I am from India"

[1] "I am from Norway"

[1] "I am from USA"

Return Values

To let a function return a result, use the return() function:

Example

my_function<- function(x) {

return (5 * x)

}

print(my_function(3))

print(my_function(5))

print(my_function(9))

OUTPUT:

[1] 15

[1] 25

[1] 45

The output of the code above will be:

[1] 15

[1] 25

[1] 45

R-PROGRAMMING(DS3101PC/AM3101PC)

54

CSE,NRCM Mr. P.THIRUPATHI, ASSIT.PROF.

Nested Functions

There are two ways to create a nested function:

Call a function within another function.

Write a function within a function.

Example

Call a function within another function:

Nested_function<- function(x, y) {

a <- x + y

return(a)

}

Nested_function(Nested_function(2,2), Nested_function(3,3))

OUTPUT:

[1] 10

Example Explained

The function tells x to add y.

The first input Nested_function(2,2) is "x" of the main function.

The second input Nested_function(3,3) is "y" of the main function.

The output is therefore (2+2) + (3+3) = 10.

Example

Write a function within a function:

Outer_func<- function(x) {

Inner_func<- function(y) {

a <- x + y

return(a)

}

return (Inner_func)

}

output <- Outer_func(3) # To call the Outer_func

output(5)

OUTPUT:

[1] 8

Example Explained

R-PROGRAMMING(DS3101PC/AM3101PC)

55

CSE,NRCM Mr. P.THIRUPATHI, ASSIT.PROF.

 You cannot directly call the function because the Inner_func has been defined (nested)

inside the Outer_func.

 We need to call Outer_func first in order to call Inner_func as a second step.

 We need to create a new variable called output and give it a value, which is 3 here.

 We then print the output with the desired value of "y", which in this case is 5.

 The output is therefore 8 (3 + 5).

Recursion

R also accepts function recursion, which means a defined function can call itself.

Recursion is a common mathematical and programming concept. It means that a function calls

itself. This has the benefit of meaning that you can loop through data to reach a result.

The developer should be very careful with recursion as it can be quite easy to slip into writing a

function which never terminates, or one that uses excess amounts of memory or processor power.

However, when written correctly, recursion can be a very efficient and mathematically-elegant

approach to programming.

In this example, tri_recursion() is a function that we have defined to call itself ("recurse"). We

use the k variable as the data, which decrements (-1) every time we recurse. The recursion ends

when the condition is not greater than 0 (i.e. when it is 0).

To a new developer it can take some time to work out how exactly this works, best way to find

out is by testing and modifying it.

Example

tri_recursion<- function(k) {

if (k > 0) {

result <- k + tri_recursion(k - 1)

print(result)

} else {

result = 0

return(result)

}

}

tri_recursion(6)

OUTPUT:

[1] 1

[1] 3

[1] 6

[1] 10

[1] 15

[1] 21

Variable:

R-PROGRAMMING(DS3101PC/AM3101PC)

56

CSE,NRCM Mr. P.THIRUPATHI, ASSIT.PROF.

A variable is a memory allocated for the storage of specific data and the name associated with the

variable is used to work around this reserved block. The name given to a variable is known as its

variable name. Usually a single variable stores only the data belonging to a certain data type. The

name is so given to them because when the program executes there is subject to change hence it

varies from time to time.

Variables in R

R Programming Language is a dynamically typed language, i.e. the R Language Variables are

not declared with a data type rather they take the data type of the R-object assigned to them. This

feature is also shown in languages like Python and PHP.

 Declaring and Initializing Variables in R Language

 R supports three ways of variable assignment:

 Using equal operator- data is copied from right to left.

 Using leftward operator- data is copied from right to left.

 Using rightward operator- data is copied from left to right.

R Variables Syntax:

#using equal to operator

variable_name = value

#using leftward operator

variable_name<- value

#using rightward operator

value ->variable_name

Example: Creating Variables in R

R

R program to illustrate

Initialization of variables

using equal to operator

var1 = "hello"

print(var1)

using leftward operator

var2 < - "hello"

https://www.geeksforgeeks.org/introduction-to-r-programming-language/

R-PROGRAMMING(DS3101PC/AM3101PC)

57

CSE,NRCM Mr. P.THIRUPATHI, ASSIT.PROF.

print(var2)

using rightward operator

"hello"-> var3

print(var3)

Output:

[1] "hello"

[1] "hello"

[1] "hello"

Important Methods for Variables

R provides some useful methods to perform operations on variables. These methods are used to

determine the data type of the variable, finding a variable, deleting a variable, etc. Following are

some of the methods used to work on variables:

class() function

This built-in function is used to determine the data type of the variable provided to it. The

variable to be checked is passed to this as an argument and it prints the data type in return.

Syntax:

class(variable)

Example:

R

var1 = "hello"

print(class(var1))

Output:

[1] "character"

ls() function

This built-in function is used to know all the present variables in the workspace. This is generally

helpful when dealing with a large number of variables at once and helps prevents overwriting any

of them.

Syntax:

R-PROGRAMMING(DS3101PC/AM3101PC)

58

CSE,NRCM Mr. P.THIRUPATHI, ASSIT.PROF.

ls()

Example:

using equal to operator

var1 = "hello”

using leftward operator

var2 < - "hello"

using rightward operator

"hello"-> var3

print(ls())

Output:

[1] "var1" "var2" "var3"

rm() function

This is again a built-in function used to delete an unwanted variable within your workspace. This

helps clear the memory space allocated to certain variables that are not in use thereby creating

more space for others. The name of the variable to be deleted is passed as an argument to it.

Syntax:

rm(variable)

Example:

using equal to operator

var1 = "hello"

using leftward operator

var2 < - "hello"

using rightward operator

"hello"-> var3

Removing variable

R-PROGRAMMING(DS3101PC/AM3101PC)

59

CSE,NRCM Mr. P.THIRUPATHI, ASSIT.PROF.

rm(var3)

print(var3)

Output:

Error in print(var3) : object 'var3' not found

Scope of Variables in R programming

The location where we can find a variable and also access it if required is called the scope of a

variable. There are mainly two types of variable scopes:

Global Variables:

Global variables are those variables that exist throughout the execution of a program. It can be

changed and accessed from any part of the program.

As the name suggests, Global Variables can be accessed from any part of the program.

They are available throughout the lifetime of a program.

They are declared anywhere in the program outside all of the functions or blocks.

Declaring global variables: Global variables are usually declared outside of all of the functions

and blocks. They can be accessed from any portion of the program.

R program to illustrate

usage of global variables

global variable

global = 5

global variable accessed from

within a function

display = function(){

print(global)

}

display()

changing value of global variable

https://www.geeksforgeeks.org/scope-of-variable-in-r/
https://www.geeksforgeeks.org/scope-of-variable-in-r/

R-PROGRAMMING(DS3101PC/AM3101PC)

60

CSE,NRCM Mr. P.THIRUPATHI, ASSIT.PROF.

global = 10

display()

Output:

[1] 5

[1] 10

In the above code, the variable ‘global’ is declared at the top of the program outside all of the

functions so it is a global variable and can be accessed or updated from anywhere in the program.

Local Variables:

Local variables are those variables that exist only within a certain part of a program like a

function and are released when the function call ends. Local variables do not exist outside the

block in which they are declared, i.e. they can not be accessed or used outside that block.

Declaring local variables:

Local variables are declared inside a block.

Scope of Variable in R

In R, variables are the containers for storing data values. They are reference, or pointers, to an

object in memory which means that whenever a variable is assigned to an instance, it gets

mapped to that instance. A variable in R can store a vector, a group of vectors or a combination

of many R objects.

Example:

R program to demonstrate

variable assignment

Assignment using equal operator

var1 =c(0, 1, 2, 3)

print(var1)

Assignment using leftward operator

var2 <-c("Python", "R")

print(var2)

R-PROGRAMMING(DS3101PC/AM3101PC)

61

CSE,NRCM Mr. P.THIRUPATHI, ASSIT.PROF.

A Vector Assignment

a =c(1, 2, 3, 4)

print(a)

b =c("Debi", "Sandeep", "Subham", "Shiba")

print(b)

A group of vectors Assignment using list

c =list(a, b)

print(c)

Output:

[1] 0 1 2 3

[1] "Python" "R"

[1] 1 2 3 4

[1] "Debi"

"Sandeep" "Subham"

"Shiba"

[[1]]

[1] 1 2 3 4

[[2]]

[1] "Debi" "Sandeep" "Subham" "Shiba"

Naming convention for Variables

The variable name in R has to be Alphanumeric characters with an exception

of underscore(‘_’) and period(‘.’), the special characters which can be used in the variable names.

The variable name has to be started always with an alphabet.

Other special characters like(‘!’, ‘@’, ‘#’, ‘$’) are not allowed in the variable names.

Example:

R program to demonstrate

rules for naming the variables

Correct naming

R-PROGRAMMING(DS3101PC/AM3101PC)

62

CSE,NRCM Mr. P.THIRUPATHI, ASSIT.PROF.

b2 =7

Correct naming

Amiya_Profession="Student"

Correct naming

Amiya.Profession="Student"

Wrong naming

2b=7

Wrong naming

Amiya@Profession="Student"

Above code when executed will generate an error because of the wrong naming of variables.

Error: unexpected symbol in "2b"

Execution halted

Scope of a variable

The location where we can find a variable and also access it if required is called the scope of a

variable. There are mainly two types of variable scopes:

Global Variables: Global variables are those variables that exist throughout the execution of a

program. It can be changed and accessed from any part of the program.

Local Variables: Local variables are those variables that exist only within a certain part of a

program like a function and are released when the function call ends.

Global Variable

As the name suggests, Global Variables can be accessed from any part of the program.

They are available throughout the lifetime of a program.

R-PROGRAMMING(DS3101PC/AM3101PC)

63

CSE,NRCM Mr. P.THIRUPATHI, ASSIT.PROF.

They are declared anywhere in the program outside all of the functions or blocks.

Declaring global variables: Global variables are usually declared outside of all of the functions

and blocks. They can be accessed from any portion of the program.

R program to illustrate

usage of global variables

global variable

global=5

global variable accessed from

within a function

display =function(){

print(global)

}

display()

changing value of global variable

global=10

display()

Output:

[1] 5

[1] 10

In the above code, the variable ‘global‘ is declared at the top of the program outside all of the

functions so it is a global variable and can be accessed or updated from anywhere in the program.

Local Variable

Variables defined within a function or block are said to be local to those functions.

Local variables do not exist outside the block in which they are declared, i.e. they can not be

accessed or used outside that block.

Declaring local variables: Local variables are declared inside a block.

Example:

R-PROGRAMMING(DS3101PC/AM3101PC)

64

CSE,NRCM Mr. P.THIRUPATHI, ASSIT.PROF.

R program to illustrate

usage of local variables

func=function(){

this variable is local to the

function func() and cannot be

accessed outside this function

age =18

}

print(age)

Output:

Error in print(age) : object 'age' not found

The above program displays an error saying “object ‘age’ not found”. The variable age was

declared within the function “func()” so it is local to that function and not visible to the portion of

the program outside this function.

To correct the above error we have to display the value of variable age from the function “func()”

only.

Example:

R program to illustrate

usage of local variables

func=function(){

this variable is local to the

function func() and cannot be

accessed outside this function

age =18

print(age)

}

R-PROGRAMMING(DS3101PC/AM3101PC)

65

CSE,NRCM Mr. P.THIRUPATHI, ASSIT.PROF.

cat("Age is:\n")

func()

Output:

Age is:

[1] 18

Accessing Global Variables

Global Variables can be accessed from anywhere in the code unlike local variables that have a

scope restricted to the block of code in which they are created.

Example:

f =function() {

a is a local variable here

a <-1

}

f()

Can't access outside the function

print(a) # This'll give error

Output:

Error in print(a) : object 'a' not found

In the above code, we see that we are unable to access variable “a” outside the function as it’s

assigned by an assignment operator(<-) that makes “a” as a local variable. To make assignments

to global variables, a super assignment operator(<<-) is used.

How super assignment operator works?

When using this operator within a function, it searches for the variable in the parent environment

frame, if not found it keeps on searching the next level until it reaches the global environment. If

the variable is still not found, it is created and assigned at the global level.

Example:

R-PROGRAMMING(DS3101PC/AM3101PC)

66

CSE,NRCM Mr. P.THIRUPATHI, ASSIT.PROF.

R program to illustrate

Scope of variables

outer_function=function(){

inner_function=function(){

Note that "<<-" operator here

makes a as global variable

a <<-10

print(a)

}

inner_function()

print(a)

}

outer_function()

Can access outside the function

print(a)

Output:

[1] 10

[1] 10

[1] 10

When the statement “a <<- 10” is encountered within inner_function(), it looks for the variable

“a” in the outer_function() environment. When the search fails, it searches in R_GlobalEnv.

Since “a” is not defined in this global environment as well, it is created and assigned there which

is now referenced and printed from within inner_function() as well as outer_function().

Dynamic Scoping in R Programming

R is an open-source programming language that is widely used as a statistical software and data

analysis tool. R generally comes with the Command-line interface. R is available across widely

used platforms like Windows, Linux, and macOS. Also, the R programming language is the latest

cutting-edge tool. The scoping rules for R are the main feature that makes it different from the

original S language. R language uses lexical scoping or static scoping. A common alternative

is Dynamic scoping.

https://www.geeksforgeeks.org/introduction-to-r-programming-language/
https://www.geeksforgeeks.org/lexical-scoping-in-r-programming/

R-PROGRAMMING(DS3101PC/AM3101PC)

67

CSE,NRCM Mr. P.THIRUPATHI, ASSIT.PROF.

Concept Behind Dynamic Scoping

Consider the following function:

R

f <- function(x, y){

x^2 + y/z

}

This function has 2 formal arguments x and y. In the body of the function, there is another

symbol z. In this case, z is a free variable. The scoping rules of a language determine how values

are assigned to free variables. Free variables are not formal arguments and are not local variables

(assigned inside the body). Lexical scoping in R means that the values of free variables are

searched for in the environment in which the function was defined. Searching for the value of the

free variable means:

If the value of the symbol is not found in the environment in which a function was defined, then

the search is continued in the parent environment.

The search continues down the sequence of the parent environment until the users hit the top-

level environment; this usually the global environment (workspace) or the namespace of a

package.

If the value for a given symbol cannot be found once the empty environment has arrived, then an

error is thrown. The value for the free variable is given in the below image.

Typically a function is defined in the global environment so that the value of free variables is

just found in the user’s workspace however in R one can have functions defined inside other

functions. For example, have a look at the below code.

make.power<- function(n){

R-PROGRAMMING(DS3101PC/AM3101PC)

68

CSE,NRCM Mr. P.THIRUPATHI, ASSIT.PROF.

pow <- function(x){

x = x^n

}

pow

}

cube <- make.power(3)

square <- make.power(2)

print(cube(3))

print(square(3))

Output:

[1] 27

[1] 9

The power function takes the argument x and raised the power n. So that makes the function pow

return inside the function value. n is a free variable and is defines in the pow function. What’s in

a function environment?

R

ls(environment(cube))

[1] "n" "pow"

get("n", environment(cube))

[1] 3

ls(environment(square))

[1] "n" "pow"

get("n", environment(square))

R-PROGRAMMING(DS3101PC/AM3101PC)

69

CSE,NRCM Mr. P.THIRUPATHI, ASSIT.PROF.

[1] 2

Let’s consider another example:

y <- 10

creating a function f which takes argument x

f <- function(x){

y is free variable

y <- 2

g function is also a free variable

not defined in the scope of function

y^2 + g(x)

}

g <- function(x){

y is free variable

value of y in this function is 10

x*y

}

What is the value of y in this case?

With the lexical scoping the value of y in the function g is looked up in the environment in which

the function was defined, in this case, the global environment, so the value of y is 10.

With the dynamic scoping the value of y is looked up in the environment from which the

function was called (sometimes referred to as calling environment).

In R the calling environment is known as the parent frame. So the value of y would be 2.

When a function is defined in the global environment and is subsequently called from the global

environment, then the defining environment and the calling environment are the same. This can

sometimes give the appearance of dynamic scoping.

g <- function(x){

https://www.geeksforgeeks.org/environments-in-r-programming/

R-PROGRAMMING(DS3101PC/AM3101PC)

70

CSE,NRCM Mr. P.THIRUPATHI, ASSIT.PROF.

a <- 3

in this case x is function a formal argument and

a is local variable and

y is free variable

x + a + y

}

printing value of g(2)

print(g(2))

If we call g(2) it will give an error like the following:

Output:

Error in g(2) : object 'y' not found

After assigning value to y call g(2) as follows:

g <- function(x){

a <- 3

x + a + y}

assigning value to y

y <- 3

print g(2)

print(g(2))

Output:

[1] 8

Lexical Scoping in R Programming

Lexical Scoping in R programming means that the values of the free variables are searched for in

the environment in which the function was defined. An environment is a collection of symbols,

value, and pair, every environment has a parent environment it is possible for an environment to

have multiple children but the only environment without the parent is the empty environment. If

the value of the symbol is not found in the environment in which the function was defined then

the search is continued in the parent environment. In R, the free variable bindings are resolve by

https://www.geeksforgeeks.org/introduction-to-r-programming-language/

R-PROGRAMMING(DS3101PC/AM3101PC)

71

CSE,NRCM Mr. P.THIRUPATHI, ASSIT.PROF.

first looking in the environment in which the function was created. This is called Lexical

Scoping.

Why Lexical Scoping?

Lexical Scoping is a set of rules that helps to determine how R represents the value of a symbol.

It is an in-built rule in R which automatically works at the language level. It is mostly used to

specify statistical calculations. Lexical scoping looks up to symbol based on how functions were

nested initially when they were created and not on how they were nested when they called upon.

When we use lexical scoping we don’t have to know how the function is called and to figure out

where the value of the variable will be looked upon. We only have to look at the function’s

definition.

Lexical meaning in lexical scoping is completely different from usual English definition which

means relating to words or vocabulary of a language which is distinguished from grammar and

construction rather it comes from computer science term lexing meaning by which process that

converts code represented as text to meaningful pieces which is comprehensible by programming

language. Consider the following example:

f <-function(x, y)

{

x *y *z

}

In this:

x and y are formal arguments

z as the free variable

Therefore, the scoping rules of the language determine how values are assigned to free variables.

Free variables are not formal arguments and not local variables that are assigned inside of the

function body.

Principles of Lexical Scoping

There are four basic principles behind R’s implementation of lexical scoping:

1. Name Masking

2. Functions vs variables

3. A fresh start

4. Dynamic Lookup

5. Let’s discuss each principle one by one.

Name Masking

R-PROGRAMMING(DS3101PC/AM3101PC)

72

CSE,NRCM Mr. P.THIRUPATHI, ASSIT.PROF.

The following example illustrates the most basic principle of lexical scoping, and you should

have no problem predicting the output.

If variable is not defined inside the function:

Example:

c <-10

f <-function(a, b)

{

a +b +c

}

f(8, 5)

Output:

[1] 23

It takes the c value as 10 and then adds these numbers and finally we are having 23 as output.

If name is not defined inside the function:

If a name isn’t defined inside a function, R will look one level up.

Example:

a <-10

b <-function()

{

c <-11

c(a, c)

}

b()

Output:

[1] 10 11

When one function is defined inside another function:

The same rules apply if a function is defined inside another function: look inside the current

R-PROGRAMMING(DS3101PC/AM3101PC)

73

CSE,NRCM Mr. P.THIRUPATHI, ASSIT.PROF.

function, then where that function was defined, and so on, all the way up to the global

environment, and then on to other loaded packages.

Example:

a <-10

g <-function(){

b <-20

h <-function(){

c <-30

c(a, b, c)

}

h()

}

g()

Output:

[1] 10 20 30

When functions are created by another function:

The same rules apply to closures, functions created by other functions.

Example:

a <-function(z){

b <-10

function(){

z +4*b

}

}

x <-a(10)

x()

Output:

[1] 50

R-PROGRAMMING(DS3101PC/AM3101PC)

74

CSE,NRCM Mr. P.THIRUPATHI, ASSIT.PROF.

R returns the accurate value of b after calling the function because x preserves the environment in

which it was defined. The environment includes the value of b.

Functions vs Variables

The same principles apply regardless of the type of associated value — finding functions works

exactly the same way as finding variables:

Example:

a <-function(x) 10*x

b <-function(){

a <-function(x) x +10

a(12)

}

b()

Output:

[1] 22

A Fresh Start

When a function is called, a new environment is created every time. Each acknowledgement is

completely independent because a function cannot tell what happened when it was run last time.

Example:

a <-function(){

if(!exists("z"))

{

z <-10

}

else

{

z <-z+10

}

z

R-PROGRAMMING(DS3101PC/AM3101PC)

75

CSE,NRCM Mr. P.THIRUPATHI, ASSIT.PROF.

}

a()

Output:

[1] 10

Dynamic Lookup

Lexical scoping controls where to look for values not when to look for them. R looks for the

values when the function is executed not when it is created. The output of the function can be

different depending on objects outside its environment.

Example:

g <-function() x^3

x <-10

g()

Output:

[1] 1000

There is a function in R which is findGlobals() from codetools and it helps us to find all global

variables being used in a function and lists all the external dependencies of a

function. findGlobals() find the global variables and functions which are used by the closure.

Example:

aGlobal<-rnorm(10)

bGlobal<-rnorm(10)

f <-function()

{

a <-aGlobal

b <-bGlobal

plot(b ~ a)

}

codetools::findGlobals(f)

Output:

R-PROGRAMMING(DS3101PC/AM3101PC)

76

CSE,NRCM Mr. P.THIRUPATHI, ASSIT.PROF.

[1] "{" "~" "<-" "aGlobal" "bGlobal" "plot"

We can manually change the environment to the empty environment emptyenv(). emptyenv() is a

totally empty environment.

Dates and Times

R has developed a special representation for dates and times. Dates are represented by

the Date class and times are represented by the POSIXct or the POSIXlt class. Dates are stored

internally as the number of days since 1970-01-01 while times are stored internally as the number

of seconds since 1970-01-01.

It’s not important to know the internal representation of dates and times in order to use them in

R. I just thought those were fun facts.

Dates in R

Dates are represented by the Date class and can be coerced from a character string using

the as.Date() function. This is a common way to end up with a Date object in R.

>## Coerce a 'Date' object from character

> x <-as.Date("1970-01-01")

> x

[1] "1970-01-01"

You can see the internal representation of a Date object by using the unclass() function.

>unclass(x)

[1] 0

>unclass(as.Date("1970-01-02"))

[1] 1

Times in R

Times are represented by the POSIXct or the POSIXlt class. POSIXct is just a very large integer

under the hood. It use a useful class when you want to store times in something like a data

frame. POSIXlt is a list underneath and it stores a bunch of other useful information like the day

of the week, day of the year, month, day of the month. This is useful when you need that kind of

information.

There are a number of generic functions that work on dates and times to help you extract pieces

of dates and/or times.

 weekdays: give the day of the week

 months: give the month name

 quarters: give the quarter number (“Q1”, “Q2”, “Q3”, or “Q4”)

R-PROGRAMMING(DS3101PC/AM3101PC)

77

CSE,NRCM Mr. P.THIRUPATHI, ASSIT.PROF.

 Times can be coerced from a character string using

the as.POSIXlt or as.POSIXct function.

> x <-Sys.time()

> x

[1] "2022-05-31 09:26:50 EDT"

>class(x) ## 'POSIXct' object

[1] "POSIXct""POSIXt"

The POSIXlt object contains some useful metadata.

> p <-as.POSIXlt(x)

>names(unclass(p))

[1] "sec""min""hour""mday""mon""year""wday""yday"

[9] "isdst""zone""gmtoff"

>p$wday## day of the week

[1] 2

You can also use the POSIXct format.

> x <-Sys.time()

> x ## Already in ‘POSIXct’ format

[1] "2022-05-31 09:26:50 EDT"

>unclass(x) ## Internal representation

[1] 1654003610

>x$sec## Can't do this with 'POSIXct'!

Error inx$sec:$ operator is invalid for atomic vectors

> p <-as.POSIXlt(x)

>p$sec## That's better

[1] 50.11802

Finally, there is the strptime() function in case your dates are written in a different

format. strptime() takes a character vector that has dates and times and converts them into to

a POSIXlt object.

>datestring<-c("January 10, 2012 10:40", "December 9, 2011 9:10")

R-PROGRAMMING(DS3101PC/AM3101PC)

78

CSE,NRCM Mr. P.THIRUPATHI, ASSIT.PROF.

> x <-strptime(datestring, "%B %d, %Y %H:%M")

> x

[1] "2012-01-10 10:40:00 EST""2011-12-09 09:10:00 EST"

>class(x)

[1] "POSIXlt""POSIXt"

The weird-looking symbols that start with the % symbol are the formatting strings for dates and

times. I can never remember the formatting strings. Check ?strptime for details. It’s probably not

worth memorizing this stuff.

Operations on Dates and Times

You can use mathematical operations on dates and times. Well, really just + and -. You can do

comparisons too (i.e. ==, <=)

> x <-as.Date("2012-01-01")

> y <-strptime("9 Jan 2011 11:34:21", "%d %b %Y %H:%M:%S")

> x-y

Warning: Incompatible methods ("-.Date", "-.POSIXt") for"-"

Error in x - y: non-numeric argument to binary operator

> x <-as.POSIXlt(x)

> x-y

Time difference of 356.3095 days

The nice thing about the date/time classes is that they keep track of all the annoying things about

dates and times, like leap years, leap seconds, daylight savings, and time zones.

Here’s an example where a leap year gets involved.

> x <-as.Date("2012-03-01")

> y <-as.Date("2012-02-28")

> x-y

Time difference of 2 days

Here’s an example where two different time zones are in play (unless you live in GMT timezone,

in which case they will be the same!).

>## My local time zone

> x <-as.POSIXct("2012-10-25 01:00:00")

R-PROGRAMMING(DS3101PC/AM3101PC)

79

CSE,NRCM Mr. P.THIRUPATHI, ASSIT.PROF.

> y <-as.POSIXct("2012-10-25 06:00:00", tz ="GMT")

> y-x

Time difference of 1 hours

Summary

 Dates and times have special classes in R that allow for numerical and statistical

calculations

 Dates use the Date class

 Times use the POSIXct and POSIXlt class

 Character strings can be coerced to Date/Time classes using the strptime function or

the as.Date, as.POSIXlt, or as.POSIXct

R DATA STRUCTURES

R data structures are:

1. R data frames

2. R matrices

3. R lists

4. R vectors

5. R arrays

6. R factors

7. Data Frames

Data Frames are data displayed in a format as a table.

Data Frames can have different types of data inside it. While the first column can be character,

the second and third can be numeric or logical. However, each column should have the same type

of data.

Use the data.frame() function to create a data frame:

Example

Create a data frame

Data_Frame<- data.frame (

Training = c("Strength", "Stamina", "Other"),

Pulse = c(100, 150, 120),

Duration = c(60, 30, 45)

)

Print the data frame

Data_Frame

Output:

Training Pulse Duration

R-PROGRAMMING(DS3101PC/AM3101PC)

80

CSE,NRCM Mr. P.THIRUPATHI, ASSIT.PROF.

1 Strength 100 60

2 Stamina 150 30

3 Other 120 45

Summarize the Data

Use the summary() function to summarize the data from a Data Frame:

Example

Data_Frame<- data.frame (

Training = c("Strength", "Stamina", "Other"),

Pulse = c(100, 150, 120),

Duration = c(60, 30, 45)

)

Data_Frame

summary(Data_Frame)

Output:

Training Pulse Duration

1 Strength 100 60

2 Stamina 150 30

3 Other 120 45

Training Pulse Duration

Other :1 Min. :100.0 Min. :30.0

Stamina :1 1st Qu.:110.0 1st Qu.:37.5

Strength:1 Median :120.0 Median :45.0

Mean :123.3 Mean :45.0

3rd Qu.:135.0 3rd Qu.:52.5

Max. :150.0 Max. :60.0

You will learn more about the summary() function in the statistical part of the R tutorial.

Access Items

We can use single brackets [], double brackets [[]] or $ to access columns from a data frame:

R-PROGRAMMING(DS3101PC/AM3101PC)

81

CSE,NRCM Mr. P.THIRUPATHI, ASSIT.PROF.

Example

Data_Frame<- data.frame (

Training = c("Strength", "Stamina", "Other"),

Pulse = c(100, 150, 120),

Duration = c(60, 30, 45)

)

Data_Frame[1]

Data_Frame[["Training"]]

Data_Frame$Training

Output:

Training

1 Strength

2 Stamina

3 Other

[1] Strength Stamina Other

Levels: Other Stamina Strength

[1] Strength Stamina Other

Levels: Other Stamina Strength

Add Rows

Use the rbind() function to add new rows in a Data Frame:

Example

Data_Frame<- data.frame (

Training = c("Strength", "Stamina", "Other"),

Pulse = c(100, 150, 120),

Duration = c(60, 30, 45)

)

Add a new row

New_row_DF<- rbind(Data_Frame, c("Strength", 110, 110))

Print the new row

New_row_DF

R-PROGRAMMING(DS3101PC/AM3101PC)

82

CSE,NRCM Mr. P.THIRUPATHI, ASSIT.PROF.

Output:

Training Pulse Duration

1 Strength 100 60

2 Stamina 150 30

3 Other 120 45

4 Strength 110

Add Columns

110

Use the cbind() function to add new columns in a Data Frame:

Example

Data_Frame<- data.frame (

Training = c("Strength", "Stamina", "Other"),

Pulse = c(100, 150, 120),

Duration = c(60, 30, 45)

)

Add a new column

New_col_DF<- cbind(Data_Frame, Steps = c(1000, 6000, 2000))

Print the new column

New_col_DF

Output:

Training Pulse Duration Steps

1 Strength 100 60 1000

2 Stamina 150 30 6000

3 Other 120 45 2000

Remove Rows and Columns

Use the c() function to remove rows and columns in a Data Frame:

Example

Data_Frame<- data.frame (

Training = c("Strength", "Stamina", "Other"),

Pulse = c(100, 150, 120),

Duration = c(60, 30, 45)

R-PROGRAMMING(DS3101PC/AM3101PC)

83

CSE,NRCM Mr. P.THIRUPATHI, ASSIT.PROF.

)

Remove the first row and column

Data_Frame_New<- Data_Frame[-c(1), -c(1)]

Print the new data frame

Data_Frame_New

Output:

Pulse Duration

2 150 30

3 120 45

Amount of Rows and Columns

Use the dim() function to find the amount of rows and columns in a Data Frame:

Example

Data_Frame<- data.frame (

Training = c("Strength", "Stamina", "Other"),

Pulse = c(100, 150, 120),

Duration = c(60, 30, 45)

)

dim(Data_Frame)

Output:

[1] 3 3

You can also use the ncol() function to find the number of columns and nrow() to find the

number of rows:

Example

Data_Frame<- data.frame (

Training = c("Strength", "Stamina", "Other"),

Pulse = c(100, 150, 120),

Duration = c(60, 30, 45)

)

ncol(Data_Frame)

nrow(Data_Frame)

Output:

R-PROGRAMMING(DS3101PC/AM3101PC)

84

CSE,NRCM Mr. P.THIRUPATHI, ASSIT.PROF.

[1] 3

[1] 3

Data Frame Length

Use the length() function to find the number of columns in a Data Frame (similar to ncol()):

Example

Data_Frame<- data.frame (

Training = c("Strength", "Stamina", "Other"),

Pulse = c(100, 150, 120),

Duration = c(60, 30, 45)

)

length(Data_Frame)

Output:

[1] 3

Combining Data Frames

Use the rbind() function to combine two or more data frames in R vertically:

Example

Data_Frame1 <- data.frame (

Training = c("Strength", "Stamina", "Other"),

Pulse = c(100, 150, 120),

Duration = c(60, 30, 45)

)

Data_Frame2 <- data.frame (

Training = c("Stamina", "Stamina", "Strength"),

Pulse = c(140, 150, 160),

Duration = c(30, 30, 20)

)

New_Data_Frame<- rbind(Data_Frame1, Data_Frame2)

New_Data_Frame

Output:

Training Pulse Duration

1 Strength 100 60

2 Stamina 150 30

3 Other 120 45

R-PROGRAMMING(DS3101PC/AM3101PC)

85

CSE,NRCM Mr. P.THIRUPATHI, ASSIT.PROF.

4 Stamina 140 30

5 Stamina 150 30

6 Strength 160 20

And use the cbind() function to combine two or more data frames in R horizontally:

Example

Data_Frame3 <- data.frame (

Training = c("Strength", "Stamina", "Other"),

Pulse = c(100, 150, 120),

Duration = c(60, 30, 45)

)

Data_Frame4 <- data.frame (

Steps = c(3000, 6000, 2000),

Calories = c(300, 400, 300)

)

New_Data_Frame1 <- cbind(Data_Frame3, Data_Frame4)

New_Data_Frame1

Output:

Training Pulse Duration Steps Calories

1 Strength 100 60 3000 300

2 Stamina 150 30 6000 400

3 Other 120 45 2000 300

Matrices

A matrix is a two dimensional data set with columns and rows.

A column is a vertical representation of data, while a row is a horizontal representation of data.

A matrix can be created with the matrix() function. Specify the nrow and ncol parameters to get

the amount of rows and columns:

Example

Create a matrix

thismatrix<- matrix(c(1,2,3,4,5,6), nrow = 3, ncol = 2)

Print the matrix

thismatrix

R-PROGRAMMING(DS3101PC/AM3101PC)

86

CSE,NRCM Mr. P.THIRUPATHI, ASSIT.PROF.

Output:

[,1] [,2]

[1,] 1 4

[2,] 2 5

[3,] 3 6

Note: Remember the c() function is used to concatenate items together.

You can also create a matrix with strings:

Example

thismatrix<- matrix(c("apple", "banana", "cherry", "orange"), nrow = 2, ncol = 2)

thismatrix

output:

[,1] [,2]

[1,] "apple" "cherry"

[2,] "banana" "orange"

Access Matrix Items

You can access the items by using [] brackets. The first number "1" in the bracket specifies the

row-position, while the second number "2" specifies the column-position:

Example

thismatrix<- matrix(c("apple", "banana", "cherry", "orange"), nrow = 2, ncol = 2)

thismatrix[1, 2]

output:

[1] "cherry"

The whole row can be accessed if you specify a comma after the number in the bracket:

Example

thismatrix<- matrix(c("apple", "banana", "cherry", "orange"), nrow = 2, ncol = 2)

thismatrix[2,]

output:

R-PROGRAMMING(DS3101PC/AM3101PC)

87

CSE,NRCM Mr. P.THIRUPATHI, ASSIT.PROF.

[1] "banana" "orange"

The whole column can be accessed if you specify a comma before the number in the bracket:

Example

thismatrix<- matrix(c("apple", "banana", "cherry", "orange"), nrow = 2, ncol = 2)

thismatrix[,2]

output:

[1] "cherry" "orange"

Access More Than One Row

More than one row can be accessed if you use the c() function:

Example

thismatrix<-

matrix(c("apple", "banana", "cherry", "orange","grape", "pineapple", "pear", "melon", "fig"),

nrow = 3, ncol = 3)

thismatrix[c(1,2),]

output:

[,1] [,2] [,3]

[1,] "apple" "orange" "pear"

[2,] "banana" "grape" "melon"

Access More Than One Column

More than one column can be accessed if you use the c() function:

Example

thismatrix<-

matrix(c("apple", "banana", "cherry", "orange","grape", "pineapple", "pear", "melon", "fig"),

nrow = 3, ncol = 3)

thismatrix[, c(1,2)]

output:

[,1] [,2]

[1,] "apple" "orange"

[2,] "banana" "grape"

R-PROGRAMMING(DS3101PC/AM3101PC)

88

CSE,NRCM Mr. P.THIRUPATHI, ASSIT.PROF.

[3,] "cherry" "pineapple"

Add Rows and Columns

Use the cbind() function to add additional columns in a Matrix:

Example

thismatrix<-

matrix(c("apple", "banana", "cherry", "orange","grape", "pineapple", "pear", "melon", "fig"),

nrow = 3, ncol = 3)

newmatrix<- cbind(thismatrix, c("strawberry", "blueberry", "raspberry"))

Print the new matrix

newmatrix

output:

[,1] [,2] [,3] [,4]

[1,] "apple" "orange" "pear" "strawberry"

[2,] "banana" "grape" "melon" "blueberry"

[3,] "cherry" "pineapple" "fig" "raspberry"

Note: The cells in the new column must be of the same length as the existing matrix.

Use the rbind() function to add additional rows in a Matrix:

Example

thismatrix<-

matrix(c("apple", "banana", "cherry", "orange","grape", "pineapple", "pear", "melon", "fig"),

nrow = 3, ncol = 3)

newmatrix<- rbind(thismatrix, c("strawberry", "blueberry", "raspberry"))

Print the new matrix

newmatrix

output:

[,1] [,2] [,3]

[1,] "apple"

"orange"

"pear"

[2,] "banana" "grape" "melon"

[3,] "cherry" "pineapple" "fig"

R-PROGRAMMING(DS3101PC/AM3101PC)

89

CSE,NRCM Mr. P.THIRUPATHI, ASSIT.PROF.

[4,] "strawberry" "blueberry" "raspberry"

Note: The cells in the new row must be of the same length as the existing matrix.

Remove Rows and Columns

Use the c() function to remove rows and columns in a Matrix:

Example

thismatrix<- matrix(c("apple", "banana", "cherry", "orange", "mango", "pineapple"), nrow = 3,

ncol =2)

#Remove the first row and the first column

thismatrix<- thismatrix[-c(1), -c(1)]

thismatrix

output:

[1] "mango" "pineapple"

Check if an Item Exists

To find out if a specified item is present in a matrix, use the %in% operator:

Example

Check if "apple" is present in the matrix:

thismatrix<- matrix(c("apple", "banana", "cherry", "orange"), nrow = 2, ncol = 2)

"apple" %in% thismatrix

output:

[1] TRUE

Number of Rows and Columns

Use the dim() function to find the number of rows and columns in a Matrix:

Example

thismatrix<- matrix(c("apple", "banana", "cherry", "orange"), nrow = 2, ncol = 2)

dim(thismatrix)

output:

[1] 2 2

R-PROGRAMMING(DS3101PC/AM3101PC)

90

CSE,NRCM Mr. P.THIRUPATHI, ASSIT.PROF.

Matrix Length

Use the length() function to find the dimension of a Matrix:

Example

thismatrix<- matrix(c("apple", "banana", "cherry", "orange"), nrow = 2, ncol = 2)

length(thismatrix)

output:

[1] 4

Total cells in the matrix is the number of rows multiplied by number of columns.

In the example above: Dimension = 2*2 = 4.

Loop Through a Matrix

You can loop through a Matrix using a for loop. The loop will start at the first row, moving right:

Example

Loop through the matrix items and print them:

thismatrix<- matrix(c("apple", "banana", "cherry", "orange"), nrow = 2, ncol = 2)

for (rows in 1:nrow(thismatrix)) {

for (columns in 1:ncol(thismatrix)) {

print(thismatrix[rows, columns])

}

}

output:

[1] "apple"

[1] "cherry"

[1] "banana"

[1] "orange"

Combine two Matrices

Again, you can use the rbind() or cbind() function to combine two or more matrices together:

Example

Combine matrices

Matrix1 <- matrix(c("apple", "banana", "cherry", "grape"), nrow = 2, ncol = 2)

Matrix2 <- matrix(c("orange", "mango", "pineapple", "watermelon"), nrow = 2, ncol = 2)

Adding it as a rows

R-PROGRAMMING(DS3101PC/AM3101PC)

91

CSE,NRCM Mr. P.THIRUPATHI, ASSIT.PROF.

Matrix_Combined<- rbind(Matrix1, Matrix2)

Matrix_Combined

Adding it as a columns

Matrix_Combined<- cbind(Matrix1, Matrix2)

Matrix_Combined

Output:

[,1] [,2]

[1,] "apple" "cherry"

[2,] "banana" "grape"

[3,] "orange" "pineapple"

[4,] "mango" "watermelon"

[,1] [,2] [,3] [,4]

[1,] "apple" "cherry" "orange" "pineapple"

[2,] "banana" "grape" "mango" "watermelon"

Lists

A list in R can contain many different data types inside it. A list is a collection of data which is

ordered and changeable.

To create a list, use the list() function:

Example

List of strings

thislist<- list("apple", "banana", "cherry")

Print the list

thislist

Output:

[[1]]

[1] "apple"

[[2]]

[1] "banana"

R-PROGRAMMING(DS3101PC/AM3101PC)

92

CSE,NRCM Mr. P.THIRUPATHI, ASSIT.PROF.

[[3]]

[1] "cherry"

Access Lists

You can access the list items by referring to its index number, inside brackets. The first item has

index 1, the second item has index 2, and so on:

Example

thislist<- list("apple", "banana", "cherry")

thislist[1]

output:

[[1]]

[1] "apple"

Change Item Value

To change the value of a specific item, refer to the index number:

Example

thislist<- list("apple", "banana", "cherry")

thislist[1] <- "blackcurrant"

Print the updated list

thislist

output:

[[1]]

[1] "blackcurrant"

[[2]]

[1] "banana"

[[3]]

[1] "cherry"

List Length

To find out how many items a list has, use the length() function:

Example

thislist<- list("apple", "banana", "cherry")

length(thislist)

R-PROGRAMMING(DS3101PC/AM3101PC)

93

CSE,NRCM Mr. P.THIRUPATHI, ASSIT.PROF.

output:

[1] 3

Check if Item Exists

To find out if a specified item is present in a list, use the %in% operator:

Example

Check if "apple" is present in the list:

thislist<- list("apple", "banana", "cherry")

"apple" %in% thislist

output:

[1] TRUE

Add List Items

To add an item to the end of the list, use the append() function:

Example

Add "orange" to the list:

thislist<- list("apple", "banana", "cherry")

append(thislist, "orange")

output:

[[1]]

[1] "apple"

[[2]]

[1] "banana"

[[3]]

[1] "cherry"

[[4]]

[1] "orange"

To add an item to the right of a specified index, add "after=index number" in

the append() function:

Example

Add "orange" to the list after "banana" (index 2):

R-PROGRAMMING(DS3101PC/AM3101PC)

Example

94

CSE,NRCM Mr. P.THIRUPATHI, ASSIT.PROF.

thislist<- list("apple", "banana", "cherry")

append(thislist, "orange", after = 2)

output:

[[1]]

[1] "apple"

[[2]]

[1] "banana"

[[3]]

[1] "orange"

[[4]]

[1] "cherry"

Remove List Items

You can also remove list items. The following example creates a new, updated list without an

"apple" item:

Example

Remove "apple" from the list:

thislist<- list("apple", "banana", "cherry")

newlist<- thislist[-1]

Print the new list

newlist

output:

[[1]]

[1] "banana"

[[2]]

[1] "cherry"

Range of Indexes

You can specify a range of indexes by specifying where to start and where to end the range, by

using the : operator:

R-PROGRAMMING(DS3101PC/AM3101PC)

Example

95

CSE,NRCM Mr. P.THIRUPATHI, ASSIT.PROF.

Return the second, third, fourth and fifth item:

thislist<- list("apple", "banana", "cherry", "orange", "kiwi", "melon", "mango")

(thislist)[2:5]

output:

[[1]]

[1] "banana"

[[2]]

[1] "cherry"

[[3]]

[1] "orange"

[[4]]

[1] "kiwi

Note: The search will start at index 2 (included) and end at index 5 (included).

Remember that the first item has index 1.

Loop Through a List

You can loop through the list items by using a for loop:

Example

Print all items in the list, one by one:

thislist<- list("apple", "banana", "cherry")

for (x in thislist) {

print(x)

}

output:

[1] "apple"

[1] "banana"

[1] "cherry"

Join Two Lists

There are several ways to join, or concatenate, two or more lists in R.

The most common way is to use the c() function, which combines two elements together:

R-PROGRAMMING(DS3101PC/AM3101PC)

Example

96

CSE,NRCM Mr. P.THIRUPATHI, ASSIT.PROF.

list1 <- list("a", "b", "c")

list2 <- list(1,2,3)

list3 <- c(list1,list2)

list3

output:

[[1]]

[1] "a"

[[2]]

[1] "b"

[[3]]

[1] "c"

[[4]]

[1] 1

[[5]]

[1] 2

[[6]]

[1] 3

Vectors

A vector is simply a list of items that are of the same type.

To combine the list of items to a vector, use the c() function and separate the items by a comma.

In the example below, we create a vector variable called fruits, that combine strings:

Example

Vector of strings

fruits <- c("banana", "apple", "orange")

Print fruits

fruits

Output:

[1] "banana" "apple" "orange"

In this example, we create a vector that combines numerical values:

R-PROGRAMMING(DS3101PC/AM3101PC)

97

CSE,NRCM Mr. P.THIRUPATHI, ASSIT.PROF.

Vector of numerical values

numbers <- c(1, 2, 3)

Print numbers

numbers

1] 1 2 3

To create a vector with numerical values in a sequence, use the : operator:

Example

Vector with numerical values in a sequence

numbers <- 1:10

numbers

[1] 1 2 3 4 5 6 7 8 9 10

You can also create numerical values with decimals in a sequence, but note that if the last

element does not belong to the sequence, it is not used:

Example

Vector with numerical decimals in a sequence

numbers1 <- 1.5:6.5

numbers1

Vector with numerical decimals in a sequence where the last element is not used

numbers2 <- 1.5:6.3

numbers2

Result:

[1] 1.5 2.5 3.5 4.5 5.5 6.5

[1] 1.5 2.5 3.5 4.5 5.5

In the example below, we create a vector of logical values:

Example

Vector of logical values

log_values<- c(TRUE, FALSE, TRUE, FALSE)

log_values

Output:

[1] TRUE FALSE TRUE FALSE

R-PROGRAMMING(DS3101PC/AM3101PC)

98

CSE,NRCM Mr. P.THIRUPATHI, ASSIT.PROF.

Vector Length

To find out how many items a vector has, use the length() function:

Example

fruits <- c("banana", "apple", "orange")

length(fruits)

output:

[1] 3

Sort a Vector

To sort items in a vector alphabetically or numerically, use the sort() function:

Example

fruits <- c("banana", "apple", "orange", "mango", "lemon")

numbers <- c(13, 3, 5, 7, 20, 2)

sort(fruits) # Sort a string

sort(numbers) # Sort numbers

output:

[1] "apple" "banana" "lemon" "mango" "orange"

[1] 2 3 5 7 13 20

Access Vectors

You can access the vector items by referring to its index number inside brackets []. The first item

has index 1, the second item has index 2, and so on:

Example

fruits <- c("banana", "apple", "orange")

Access the first item (banana)

fruits[1]

output:

[1] "banana"

You can also access multiple elements by referring to different index positions with

the c() function:

Example

R-PROGRAMMING(DS3101PC/AM3101PC)

99

CSE,NRCM Mr. P.THIRUPATHI, ASSIT.PROF.

fruits <- c("banana", "apple", "orange", "mango", "lemon")

Access the first and third item (banana and orange)

fruits[c(1, 3)]

output:

[1] "banana" "orange"

You can also use negative index numbers to access all items except the ones specified:

Example

fruits <- c("banana", "apple", "orange", "mango", "lemon")

Access all items except for the first item

fruits[c(-1)]

output:

[1] "apple" "orange" "mango" "lemon"

Change an Item

To change the value of a specific item, refer to the index number:

Example

fruits <- c("banana", "apple", "orange", "mango", "lemon")

Change "banana" to "pear"

fruits[1] <- "pear"

Print fruits

fruits

output:

[1] "pear" "apple" "orange" "mango" "lemon"

Repeat Vectors

To repeat vectors, use the rep() function:

Example

Repeat each value:

R-PROGRAMMING(DS3101PC/AM3101PC)

100

CSE,NRCM Mr. P.THIRUPATHI, ASSIT.PROF.

repeat_each<- rep(c(1,2,3), each = 3)

repeat_each

output:

[1] 1 1 1 2 2 2 3 3 3

Example

Repeat the sequence of the vector:

repeat_times<- rep(c(1,2,3), times = 3)

repeat_times

output:

[1] 1 2 3 1 2 3 1 2 3

Example

Repeat each value independently:

repeat_indepent<- rep(c(1,2,3), times = c(5,2,1))

repeat_indepent

output:

[1] 1 1 1 1 1 2 2 3

Generating Sequenced Vectors

One of the examples on top, showed you how to create a vector with numerical values in a

sequence with the : operator:

Example

numbers <- 1:10

numbers

output:

[1] 1 2 3 4 5 6 7 8 9 10

To make bigger or smaller steps in a sequence, use the seq() function:

Example

R-PROGRAMMING(DS3101PC/AM3101PC)

101

CSE,NRCM Mr. P.THIRUPATHI, ASSIT.PROF.

numbers <- seq(from = 0, to = 100, by = 20)

numbers

output:

[1] 0 20 40 60 80 100

Note: The seq() function has three parameters: from is where the sequence starts, to is where the

sequence stops, and by is the interval of the sequence.

Vectors are the most basic R data objects and there are six types of atomic vectors. They are

logical, integer, double, complex, character and raw.

Vector Creation

Single Element Vector

Even when you write just one value in R, it becomes a vector of length 1 and belongs to one of

the above vector types.

Atomic vector of type character.

print("abc");

Atomic vector of type double.

print(12.5)

Atomic vector of type integer.

print(63L)

Atomic vector of type logical.

print(TRUE)

Atomic vector of type complex.

print(2+3i)

Atomic vector of type raw.

R-PROGRAMMING(DS3101PC/AM3101PC)

102

CSE,NRCM Mr. P.THIRUPATHI, ASSIT.PROF.

print(charToRaw('hello'))

When we execute the above code, it produces the following result −

[1] "abc"

[1] 12.5

[1] 63

[1] TRUE

[1] 2+3i

[1] 68 65 6c 6c 6f

Multiple Elements Vector

Using colon operator with numeric data

Creating a sequence from 5 to 13.

v <-5:13

print(v)

Creating a sequence from 6.6 to 12.6.

v <-6.6:12.6

print(v)

If the final element specified does not belong to the sequence then it is discarded.

v <-3.8:11.4

print(v)

When we execute the above code, it produces the following result −

[1] 5 6 7 8 9 10 11 12 13

[1] 6.6 7.6 8.6 9.6 10.6 11.6 12.6

[1] 3.8 4.8 5.8 6.8 7.8 8.8 9.8 10.8

Using sequence (Seq.) operator

Create vector with elements from 5 to 9 incrementing by 0.4.

R-PROGRAMMING(DS3101PC/AM3101PC)

103

CSE,NRCM Mr. P.THIRUPATHI, ASSIT.PROF.

print(seq(5,9,by=0.4))

When we execute the above code, it produces the following result −

[1] 5.0 5.4 5.8 6.2 6.6 7.0 7.4 7.8 8.2 8.6 9.0

Using the c() function

The non-character values are coerced to character type if one of the elements is a character.

The logical and numeric values are converted to characters.

s <- c('apple','red',5,TRUE)

print(s)

When we execute the above code, it produces the following result −

[1] "apple" "red" "5" "TRUE"

Accessing Vector Elements

Elements of a Vector are accessed using indexing. The [] brackets are used for indexing.

Indexing starts with position 1. Giving a negative value in the index drops that element from

result.TRUE, FALSE or 0 and 1 can also be used for indexing.

Accessing vector elements using position.

t <- c("Sun","Mon","Tue","Wed","Thurs","Fri","Sat")

u <- t[c(2,3,6)]

print(u)

Accessing vector elements using logical indexing.

v <- t[c(TRUE,FALSE,FALSE,FALSE,FALSE,TRUE,FALSE)]

print(v)

R-PROGRAMMING(DS3101PC/AM3101PC)

104

CSE,NRCM Mr. P.THIRUPATHI, ASSIT.PROF.

Accessing vector elements using negative indexing.

x <- t[c(-2,-5)]

print(x)

Accessing vector elements using 0/1 indexing.

y <- t[c(0,0,0,0,0,0,1)]

print(y)

When we execute the above code, it produces the following result −

[1] "Mon" "Tue" "Fri"

[1] "Sun" "Fri"

[1] "Sun" "Tue" "Wed" "Fri" "Sat"

[1] "Sun"

Vector Manipulation

Vector arithmetic

Two vectors of same length can be added, subtracted, multiplied or divided giving the result as a

vector output.

Create two vectors.

v1 <-c(3,8,4,5,0,11)

v2 <-c(4,11,0,8,1,2)

Vector addition.

add.result<- v1+v2

print(add.result)

R-PROGRAMMING(DS3101PC/AM3101PC)

105

CSE,NRCM Mr. P.THIRUPATHI, ASSIT.PROF.

Vector subtraction.

sub.result<- v1-v2

print(sub.result)

Vector multiplication.

multi.result<- v1*v2

print(multi.result)

Vector division.

divi.result<- v1/v2

print(divi.result)

When we execute the above code, it produces the following result −

[1] 7 19 4 13 1 13

[1] -1 -3 4 -3 -1 9

[1] 12 88 0 40 0 22

[1] 0.7500000 0.7272727 Inf 0.6250000 0.0000000 5.5000000

Vector Element Recycling

If we apply arithmetic operations to two vectors of unequal length, then the elements of the

shorter vector are recycled to complete the operations.

v1 <-c(3,8,4,5,0,11)

v2 <-c(4,11)

V2 becomes c(4,11,4,11,4,11)

add.result<- v1+v2

print(add.result)

sub.result<- v1-v2

R-PROGRAMMING(DS3101PC/AM3101PC)

106

CSE,NRCM Mr. P.THIRUPATHI, ASSIT.PROF.

print(sub.result)

When we execute the above code, it produces the following result −

[1] 7 19 8 16 4 22

[1] -1 -3 0 -6 -4 0

Vector Element Sorting

Elements in a vector can be sorted using the sort() function.

v <-c(3,8,4,5,0,11,-9,304)

Sort the elements of the vector.

sort.result<- sort(v)

print(sort.result)

Sort the elements in the reverse order.

revsort.result<- sort(v, decreasing = TRUE)

print(revsort.result)

Sorting character vectors.

v <- c("Red","Blue","yellow","violet")

sort.result<- sort(v)

print(sort.result)

Sorting character vectors in reverse order.

revsort.result<- sort(v, decreasing = TRUE)

print(revsort.result)

When we execute the above code, it produces the following result −

[1] -9 0 3 4 5 8 11 304

[1] 304 11 8 5 4 3 0 -9

R-PROGRAMMING(DS3101PC/AM3101PC)

107

CSE,NRCM Mr. P.THIRUPATHI, ASSIT.PROF.

[1] "Blue" "Red" "violet" "yellow"

[1] "yellow" "violet" "Red" "Blue"

UNIT-III

R – Lists

A list in R is a generic object consisting of an ordered collection of objects. Lists are one-

dimensional, heterogeneous data structures. The list can be a list of vectors, a list of matrices, a

list of characters and a list of functions, and so on.

A list is a vector but with heterogeneous data elements. A list in R is created with the use

of list() function. R allows accessing elements of a list with the use of the index value. In R, the

indexing of a list starts with 1 instead of 0 like other programming languages.

Creating a List

To create a List in R you need to use the function called “list()”. In other words, a list is a generic

vector containing other objects. To illustrate how a list looks, we take an example here. We want

to build a list of employees with the details. So for this, we want attributes such as ID, employee

name, and the number of employees.

Example:

R program to create a List

The first attributes is a numeric vector

containing the employee IDs which is created

using the command here

empId = c(1, 2, 3, 4)

The second attribute is the employee name

which is created using this line of code here

which is the character vector

empName = c("Debi", "Sandeep", "Subham", "Shiba")

R-PROGRAMMING(DS3101PC/AM3101PC)

108

CSE,NRCM Mr. P.THIRUPATHI, ASSIT.PROF.

The third attribute is the number of employees

which is a single numeric variable.

numberOfEmp = 4

We can combine all these three different

data types into a list

containing the details of employees

which can be done using a list command

empList = list(empId, empName, numberOfEmp)

print(empList)

Output:

[[1]]

[1] 1 2 3 4

[[2]]

[1] "Debi"

"Sandeep" "Subham"

"Shiba"

[[3]]

[1] 4

Accessing components of a list

We can access components of a list in two ways.

Access components by names: All the components of a list can be named and we can use those

names to access the components of the list using the dollar command.

Example:

R

R-PROGRAMMING(DS3101PC/AM3101PC)

109

CSE,NRCM Mr. P.THIRUPATHI, ASSIT.PROF.

R program to access

components of a list

Creating a list by naming all its components

empId = c(1, 2, 3, 4)

empName = c("Debi", "Sandeep", "Subham", "Shiba")

numberOfEmp = 4

empList = list(

"ID" = empId,

"Names" = empName,

"Total Staff" = numberOfEmp

)

print(empList)

Accessing components by names

cat("Accessing name components using $ command\n")

print(empList$Names)

Output:

$ID

[1] 1 2 3 4

$Names

[1] "Debi" "Sandeep" "Subham" "Shiba"

$`Total Staff`

[1] 4

R-PROGRAMMING(DS3101PC/AM3101PC)

110

CSE,NRCM Mr. P.THIRUPATHI, ASSIT.PROF.

Accessing name components using $ command

[1] "Debi" "Sandeep" "Subham" "Shiba"

Access components by indices: We can also access the components of the list using indices. To

access the top-level components of a list we have to use a double slicing operator “[[]]” which is

two square brackets and if we want to access the lower or inner level components of a list we

have to use another square bracket “[]” along with the double slicing operator “[[]]“.

Example:

R

R program to access

components of a list

Creating a list by naming all its components

empId = c(1, 2, 3, 4)

empName = c("Debi", "Sandeep", "Subham", "Shiba")

numberOfEmp = 4

empList = list(

"ID" = empId,

"Names" = empName,

"Total Staff" = numberOfEmp

)

print(empList)

Accessing a top level components by indices

cat("Accessing name components using indices\n")

print(empList[[2]])

Accessing a inner level components by indices

cat("Accessing Sandeep from name using indices\n")

R-PROGRAMMING(DS3101PC/AM3101PC)

111

CSE,NRCM Mr. P.THIRUPATHI, ASSIT.PROF.

print(empList[[2]][2])

Accessing another inner level components by indices

cat("Accessing 4 from ID using indices\n")

print(empList[[1]][4])

Output:

$ID

[1] 1 2 3 4

$Names

[1] "Debi" "Sandeep" "Subham" "Shiba"

$`Total Staff`

[1] 4

Accessing name components using indices

[1] "Debi" "Sandeep" "Subham" "Shiba"

Accessing Sandeep from name using indices

[1] "Sandeep"

Accessing 4 from ID using indices

[1] 4

Modifying components of a list

A list can also be modified by accessing the components and replacing them with the ones which

you want.

Example:

R

R-PROGRAMMING(DS3101PC/AM3101PC)

112

CSE,NRCM Mr. P.THIRUPATHI, ASSIT.PROF.

R program to edit

components of a list

Creating a list by naming all its components

empId = c(1, 2, 3, 4)

empName = c("Debi", "Sandeep", "Subham", "Shiba")

numberOfEmp = 4

empList = list(

"ID" = empId,

"Names" = empName,

"Total Staff" = numberOfEmp

)

cat("Before modifying the list\n")

print(empList)

Modifying the top-level component

empList$`Total Staff` = 5

Modifying inner level component

empList[[1]][5] = 5

empList[[2]][5] = "Kamala"

cat("After modified the list\n")

print(empList)

Output:

Before modifying the list

$ID

R-PROGRAMMING(DS3101PC/AM3101PC)

113

CSE,NRCM Mr. P.THIRUPATHI, ASSIT.PROF.

[1] 1 2 3 4

$Names

[1] "Debi" "Sandeep" "Subham" "Shiba"

$`Total Staff`

[1] 4

After modified the list

$ID

[1] 1 2 3 4 5

$Names

[1] "Debi" "Sandeep" "Subham" "Shiba" "Kamala"

$`Total Staff`

[1] 5

Concatenation of lists

Two lists can be concatenated using the concatenation function. So, when we want to concatenate

two lists we have to use the concatenation operator.

Syntax:

list = c(list, list1)

list = the original list

list1 = the new list

Example:

R

R program to edit

components of a list

R-PROGRAMMING(DS3101PC/AM3101PC)

114

CSE,NRCM Mr. P.THIRUPATHI, ASSIT.PROF.

Creating a list by naming all its components

empId = c(1, 2, 3, 4)

empName = c("Debi", "Sandeep", "Subham", "Shiba")

numberOfEmp = 4

empList = list(

"ID" = empId,

"Names" = empName,

"Total Staff" = numberOfEmp

)

cat("Before concatenation of the new list\n")

print(empList)

Creating another list

empAge = c(34, 23, 18, 45)

empAgeList = list(

"Age" = empAge

)

Concatenation of list using concatenation operator

empList = c(empList, empAgeList)

cat("After concatenation of the new list\n")

print(empList)

Output:

Before concatenation of the new list

$ID

R-PROGRAMMING(DS3101PC/AM3101PC)

115

CSE,NRCM Mr. P.THIRUPATHI, ASSIT.PROF.

[1] 1 2 3 4

$Names

[1] "Debi" "Sandeep" "Subham" "Shiba"

$`Total Staff`

[1] 4

After concatenation of the new list

$ID

[1] 1 2 3 4

$Names

[1] "Debi" "Sandeep" "Subham" "Shiba"

$`Total Staff`

[1] 4

$Age

[1] 34 23 18 45

Deleting components of a list

To delete components of a list, first of all, we need to access those components and then insert a

negative sign before those components. It indicates that we had to delete that component.

Example:

R

R program to access

components of a list

R-PROGRAMMING(DS3101PC/AM3101PC)

116

CSE,NRCM Mr. P.THIRUPATHI, ASSIT.PROF.

Creating a list by naming all its components

empId = c(1, 2, 3, 4)

empName = c("Debi", "Sandeep", "Subham", "Shiba")

numberOfEmp = 4

empList = list(

"ID" = empId,

"Names" = empName,

"Total Staff" = numberOfEmp

)

cat("Before deletion the list is\n")

print(empList)

Deleting a top level components

cat("After Deleting Total staff components\n")

print(empList[-3])

Deleting a inner level components

cat("After Deleting sandeep from name\n")

print(empList[[2]][-2])

Output:

Before deletion the list is

$ID

[1] 1 2 3 4

$Names

[1] "Debi" "Sandeep" "Subham" "Shiba"

R-PROGRAMMING(DS3101PC/AM3101PC)

117

CSE,NRCM Mr. P.THIRUPATHI, ASSIT.PROF.

$`Total Staff`

[1] 4

After Deleting Total staff components

$ID

[1] 1 2 3 4

$Names

[1] "Debi" "Sandeep" "Subham" "Shiba"

After Deleting sandeep from name

[1] "Debi" "Subham" "Shiba"

Merging list

We can merge the list by placing all the lists into a single list.

R

Create two lists.

lst1 <- list(1,2,3)

lst2 <- list("Sun","Mon","Tue")

Merge the two lists.

new_list<- c(lst1,lst2)

Print the merged list.

print(new_list)

Output:

[[1]]

R-PROGRAMMING(DS3101PC/AM3101PC)

118

CSE,NRCM Mr. P.THIRUPATHI, ASSIT.PROF.

[1] 1

[[2]]

[1] 2

[[3]]

[1] 3

[[4]]

[1] "Sun"

[[5]]

[1] "Mon"

[[6]]

[1] "Tue"

Converting List to Vector

Here we are going to convert the list to vector, for this we will create a list first and then unlist

the list into the vector.

R

Create lists.

lst<- list(1:5)

print(lst)

Convert the lists to vectors.

vec<- unlist(lst)

R-PROGRAMMING(DS3101PC/AM3101PC)

119

CSE,NRCM Mr. P.THIRUPATHI, ASSIT.PROF.

print(vec)

Output:

[[1]]

[1] 1 2 3 4 5

[1] 1 2 3 4 5

R List to matrix

We will create matrices using matrix() function in R programming. Another function that will be

used is unlist() function to convert the lists into a vector.

R

Defining list

lst1 <- list(list(1, 2, 3),

list(4, 5, 6))

Print list

cat("The list is:\n")

print(lst1)

cat("Class:", class(lst1), "\n")

Convert list to matrix

mat <- matrix(unlist(lst1), nrow = 2, byrow = TRUE)

Print matrix

cat("\nAfter conversion to matrix:\n")

print(mat)

cat("Class:", class(mat), "\n")

R-PROGRAMMING(DS3101PC/AM3101PC)

120

CSE,NRCM Mr. P.THIRUPATHI, ASSIT.PROF.

Output:

The list is:

[[1]]

[[1]][[1]]

[1] 1

[[1]][[2]]

[1] 2

[[1]][[3]]

[1] 3

[[2]]

[[2]][[1]]

[1] 4

[[2]][[2]]

[1] 5

[[2]][[3]]

[1] 6

Class: list

After conversion to matrix:

[,1] [,2] [,3]

R-PROGRAMMING(DS3101PC/AM3101PC)

121

CSE,NRCM Mr. P.THIRUPATHI, ASSIT.PROF.

[1,] 1 2 3

[2,] 4 5 6

Class: matrix

List of Dataframes in R

DataFrames are generic data objects of R which are used to store the tabular data. They are two-

dimensional, heterogeneous data structures. A list in R, however, comprises of elements, vectors,

data frames, variables, or lists that may belong to different data types. In this article, we will

study how to create a list consisting of data frames as its components and how to access, modify,

and delete these data frames to lists. list() function in R creates a list of the specified arguments.

The data frames specified as arguments in this function may have different lengths.

Operations that can be performed on a list of DataFrames are:

 Creating a list of Dataframes

 Accessing components of a list of Dataframes

 Modifying components of a list of Dataframes

 Concatenation of lists of Dataframes

 Deleting components of a list of Dataframes

Creating a list of Dataframes

To create a list of Dataframes we use the list() function in R and then pass each of the data frame

you have created as arguments to the function.

Example:

R program to create list of data frames

Create dataframe

df1 =data.frame(y1 =c(1, 2, 3), y2 =c(4, 5, 6))

Create another dataframe

df2 =data.frame(y1 =c(7, 8, 9), y2 =c(1, 4, 6))

R-PROGRAMMING(DS3101PC/AM3101PC)

122

CSE,NRCM Mr. P.THIRUPATHI, ASSIT.PROF.

Create list of data frame using list()

listOfDataframe =list(df1, df2)

print(listOfDataframe)

Output:

[[1]]

y1 y2

1 1 4

2 2 5

3 3 6

[[2]]

y1 y2

1 7 1

2 8 4

3 9 6

Accessing components of a list of Dataframes

We can access components of a list of data frames in two ways.

Access components by names: All the components of a list of data frames can be named and we

can use those names to access the components of the list using the dollar command.

Example:

Python3

R program to access components

of a list of data frames

R-PROGRAMMING(DS3101PC/AM3101PC)

123

CSE,NRCM Mr. P.THIRUPATHI, ASSIT.PROF.

Create dataframe

df1 =data.frame(

y1 =c(1, 2, 3),

y2 =c(4, 5, 6)

)

Create another dataframe

df2 =data.frame(

y1 =c(7, 8, 9),

y2 =c(1, 4, 6)

)

Creating a list of data frames

by naming all its components

listOfDataframe =list(

"Dataframe1"=df1,

"Dataframe2"=df2

)

print(listOfDataframe)

Accessing components by names

cat("Accessing Dataframe2 using $ command\n")

print(listOfDataframe$Dataframe2)

Output:

$Dataframe1

R-PROGRAMMING(DS3101PC/AM3101PC)

124

CSE,NRCM Mr. P.THIRUPATHI, ASSIT.PROF.

y1 y2

1 1 4

2 2 5

3 3 6

$Dataframe2

y1 y2

1 7 1

2 8 4

3 9 6

Accessing Dataframe2 using $ command

y1 y2

1 7 1

2 8 4

3 9 6

Access components by indices: We can also access the components of the list of data frames

using indices. To access the top-level components of a list of data frames we have to use a double

slicing operator “[[]]” which is two square brackets and if we want to access the lower or inner

level components of a list we have to use another square bracket “[]” along with the double

slicing operator “[[]]”.

Example:

R program to access components

of a list of data frames

Create dataframe

df1 =data.frame(

R-PROGRAMMING(DS3101PC/AM3101PC)

125

CSE,NRCM Mr. P.THIRUPATHI, ASSIT.PROF.

y1 =c(1, 2, 3),

y2 =c(4, 5, 6)

)

Create another dataframe

df2 =data.frame(

y1 =c(7, 8, 9),

y2 =c(1, 4, 6)

)

Creating a list of data frames

by naming all its components

listOfDataframe =list(

"Dataframe1"=df1,

"Dataframe2"=df2

)

print(listOfDataframe)

Accessing a top level components by indices

cat("Accessing Dataframe2 using indices\n")

print(listOfDataframe[[2]])

Accessing a inner level components by indices

cat("Accessing second column from Dataframe1 using indices\n")

print(listOfDataframe[[1]][2])

R-PROGRAMMING(DS3101PC/AM3101PC)

126

CSE,NRCM Mr. P.THIRUPATHI, ASSIT.PROF.

Accessing another inner level components by indices

cat("Accessing 4 from Dataframe2 using indices\n")

Here [2, 2] represents that I want

to access element from second row and second column i.e 4 here

print(listOfDataframe[[2]][2, 2])

Output:

$Dataframe1

y1 y2

1 1 4

2 2 5

3 3 6

$Dataframe2

y1 y2

1 7 1

2 8 4

3 9 6

Accessing Dataframe2 using indices

y1 y2

1 7 1

2 8 4

3 9 6

Accessing second column from Dataframe1 using indices

y2

R-PROGRAMMING(DS3101PC/AM3101PC)

127

CSE,NRCM Mr. P.THIRUPATHI, ASSIT.PROF.

1 4

2 5

3 6

Accessing 4 from Dataframe2 using indices

[1] 4

Modifying components of a list of Dataframes

A list of data frames can also be modified by accessing the components and replacing them with

the ones which you want.

Example:

R program to modify components

of a list of data frames

Create dataframe

df1 =data.frame(y1 =c(1, 2, 3), y2 =c(4, 5, 6))

Create another dataframe

df2 =data.frame(y1 =c(7, 8, 9), y2 =c(1, 4, 6))

Creating a list of data frames

by naming all its components

listOfDataframe =list("Dataframe1"=df1, "Dataframe2"=df2)

cat("Before modifying the list of data frame\n")

print(listOfDataframe)

R-PROGRAMMING(DS3101PC/AM3101PC)

128

CSE,NRCM Mr. P.THIRUPATHI, ASSIT.PROF.

Modifying the dataframe2

listOfDataframe$Dataframe2 =data.frame(y1 =c(70, 80, 9), y2 =c(14, 41, 63))

Modifying second column from Dataframe1

listOfDataframe[[1]][2] =c(23, 45, 67)

Modifying element 2 from dataframe1

listOfDataframe[[1]][2, 1] =15

cat("After modified the list of data frame\n")

print(listOfDataframe)

Output:

Before modifying the list of data frame

$Dataframe1

y1 y2

1 1 4

2 2 5

3 3 6

$Dataframe2

y1 y2

1 7 1

2 8 4

3 9 6

R-PROGRAMMING(DS3101PC/AM3101PC)

129

CSE,NRCM Mr. P.THIRUPATHI, ASSIT.PROF.

After modified the list of data frame

$Dataframe1

y1 y2

1 1 23

2 15 45

3 3 67

$Dataframe2

y1 y2

1 70 14

2 80 41

3 9 63

Concatenation of lists of Dataframes

Two lists of data frames can be concatenated using the concatenation function. So, when we want

to concatenate two lists of data frames we have to use the concatenation operator.

Syntax:

list = c(list, list1)

list = the original list of the data frame

list1 = the new list of the data frame

Example:

Python3

R program concatenation

of lists of data frames

Create dataframe

R-PROGRAMMING(DS3101PC/AM3101PC)

130

CSE,NRCM Mr. P.THIRUPATHI, ASSIT.PROF.

df1 =data.frame(y1 =c(1, 2, 3), y2 =c(4, 5, 6))

Create another dataframe

df2 =data.frame(y1 =c(7, 8, 9), y2 =c(1, 4, 6))

Creating a list of data frames

by naming all its components

listOfDataframe =list("Dataframe1"=df1, "Dataframe2"=df2)

cat("Before concatenation of the new list of data frame\n")

print(listOfDataframe)

Creating another one list of data frame

df3 =data.frame(

y1 =c(7, 8, 98),

y2 =c(10, 44, 6)

)

newListOfDataframe =list(

"Dataframe3"=df3

)

Concatenation of list of data frames

using concatenation operator

listOfDataframe =c(listOfDataframe, newListOfDataframe)

cat("After concatenation of the new list of data frame\n")

print(listOfDataframe)

Output:

R-PROGRAMMING(DS3101PC/AM3101PC)

131

CSE,NRCM Mr. P.THIRUPATHI, ASSIT.PROF.

Before concatenation of the new list of data frame

$Dataframe1

y1 y2

1 1 4

2 2 5

3 3 6

$Dataframe2

y1 y2

1 7 1

2 8 4

3 9 6

After concatenation of the new list of data frame

$Dataframe1

y1 y2

1 1 4

2 2 5

3 3 6

$Dataframe2

y1 y2

1 7 1

2 8 4

3 9 6

$Dataframe3

y1 y2

R-PROGRAMMING(DS3101PC/AM3101PC)

132

CSE,NRCM Mr. P.THIRUPATHI, ASSIT.PROF.

1 7 10

2 8 44

3 98 6

Deleting components from a list of Dataframes

To delete components of a list of data frames, first of all, we need to access those components

and then insert a negative sign before those components. It indicates that we had to delete that

component.

Example:

R program to delete components

of a list of data frames

Create dataframe

df1 =data.frame(

y1 =c(1, 2, 3),

y2 =c(4, 5, 6)

)

Create another dataframe

df2 =data.frame(

y1 =c(7, 8, 9),

y2 =c(1, 4, 6)

)

Creating a list of data frames

by naming all its components

listOfDataframe =list(

"Dataframe1"=df1,

R-PROGRAMMING(DS3101PC/AM3101PC)

133

CSE,NRCM Mr. P.THIRUPATHI, ASSIT.PROF.

"Dataframe2"=df2

)

cat("Before deletion the list is\n")

print(listOfDataframe)

Deleting a top level components

cat("After Deleting Dataframe1\n")

print(listOfDataframe[[-1]])

Deleting a inner level components

cat("After Deleting first column from Dataframe2\n")

print(listOfDataframe[[2]][-1])

Output:

Before deletion the list is

$Dataframe1

y1 y2

1 1 4

2 2 5

3 3 6

$Dataframe2

y1 y2

1 7 1

2 8 4

3 9 6

R-PROGRAMMING(DS3101PC/AM3101PC)

134

CSE,NRCM Mr. P.THIRUPATHI, ASSIT.PROF.

After Deleting Dataframe1

y1 y2

1 7 1

2 8 4

3 9 6

After Deleting first column from Dataframe2

y2

1 1

2 4

3 6

MATRIX

Matrices are the R objects in which the elements are arranged in a two-dimensional rectangular

layout. They contain elements of the same atomic types. Though we can create a matrix

containing only characters or only logical values, they are not of much use. We use matrices

containing numeric elements to be used in mathematical calculations.

A Matrix is created using the matrix() function.

Syntax

The basic syntax for creating a matrix in R is −

matrix(data, nrow, ncol, byrow, dimnames)

Following is the description of the parameters used −

data is the input vector which becomes the data elements of the matrix.

nrow is the number of rows to be created.

ncol is the number of columns to be created.

byrow is a logical clue. If TRUE then the input vector elements are arranged by row.

dimname is the names assigned to the rows and columns.

Example

Create a matrix taking a vector of numbers as input.

Elements are arranged sequentially by row.

M <- matrix(c(3:14),nrow=4,byrow= TRUE)

R-PROGRAMMING(DS3101PC/AM3101PC)

135

CSE,NRCM Mr. P.THIRUPATHI, ASSIT.PROF.

print(M)

Elements are arranged sequentially by column.

N <- matrix(c(3:14),nrow=4,byrow= FALSE)

print(N)

Define the column and row names.

rownames=c("row1","row2","row3","row4")

colnames=c("col1","col2","col3")

P <- matrix(c(3:14),nrow=4,byrow= TRUE,dimnames= list(rownames,colnames))

print(P)

When we execute the above code, it produces the following result −

[,1] [,2] [,3]

[1,] 3 4 5

[2,] 6 7 8

[3,] 9 10 11

[4,] 12 13 14

[,1] [,2] [,3]

[1,]

3

7

11

[2,] 4 8 12

[3,] 5 9 13

[4,] 6 10 14

col1 col2 col3

row1

3

4

5

row2 6 7 8

row3 9 10 11

row4 12 13 14

R-PROGRAMMING(DS3101PC/AM3101PC)

136

CSE,NRCM Mr. P.THIRUPATHI, ASSIT.PROF.

Accessing Elements of a Matrix

Elements of a matrix can be accessed by using the column and row index of the element. We

consider the matrix P above to find the specific elements below.

Define the column and row names.

rownames=c("row1","row2","row3","row4")

colnames=c("col1","col2","col3")

Create the matrix.

P <- matrix(c(3:14),nrow=4,byrow= TRUE,dimnames= list(rownames,colnames))

Access the element at 3rd column and 1st row.

print(P[1,3])

Access the element at 2nd column and 4th row.

print(P[4,2])

Access only the 2nd row.

print(P[2,])

Access only the 3rd column.

print(P[,3])

When we execute the above code, it produces the following result −

[1] 5

[1] 13

col1 col2 col3

6 7 8

row1 row2 row3 row4

5 8 11 14

R-PROGRAMMING(DS3101PC/AM3101PC)

137

CSE,NRCM Mr. P.THIRUPATHI, ASSIT.PROF.

Matrix Computations

Various mathematical operations are performed on the matrices using the R operators. The result

of the operation is also a matrix.

The dimensions (number of rows and columns) should be same for the matrices involved in the

operation.

Matrix Addition & Subtraction

Create two 2x3 matrices.

matrix1 <-matrix(c(3,9,-1,4,2,6),nrow=2)

print(matrix1)

matrix2 <-matrix(c(5,2,0,9,3,4),nrow=2)

print(matrix2)

Add the matrices.

result <- matrix1 + matrix2

cat("Result of addition","\n")

print(result)

Subtract the matrices

result <- matrix1 - matrix2

cat("Result of subtraction","\n")

print(result)

When we execute the above code, it produces the following result −

[,1] [,2] [,3]

[1,] 3 -1 2

[2,] 9 4 6

[,1] [,2] [,3]

[1,] 5 0 3

R-PROGRAMMING(DS3101PC/AM3101PC)

138

CSE,NRCM Mr. P.THIRUPATHI, ASSIT.PROF.

[2,] 2 9 4

Result of addition

[,1] [,2] [,3]

[1,] 8 -1 5

[2,] 11 13 10

Result of subtraction

[,1] [,2] [,3]

[1,] -2 -1 -1

[2,] 7 -5 2

Matrix Multiplication & Division

 Live Demo

Create two 2x3 matrices.

matrix1 <-matrix(c(3,9,-1,4,2,6),nrow=2)

print(matrix1)

matrix2 <-matrix(c(5,2,0,9,3,4),nrow=2)

print(matrix2)

Multiply the matrices.

result <- matrix1 * matrix2

cat("Result of multiplication","\n")

print(result)

Divide the matrices

result <- matrix1 / matrix2

cat("Result of division","\n")

print(result)

When we execute the above code, it produces the following result −

http://tpcg.io/sMc3RL

R-PROGRAMMING(DS3101PC/AM3101PC)

139

CSE,NRCM Mr. P.THIRUPATHI, ASSIT.PROF.

[,1] [,2] [,3]

[1,] 3 -1 2

[2,] 9 4 6

[,1] [,2] [,3]

[1,] 5 0 3

[2,] 2 9 4

Result of multiplication

[,1] [,2] [,3]

[1,] 15 0 6

[2,] 18 36 24

Result of division

[,1] [,2] [,3]

[1,] 0.6 -Inf 0.6666667

[2,] 4.5 0.4444444 1.5000000

UNIT-IV

R factors

The factor is a data structure which is used for fields which take only predefined finite number of

values. These are the variable which takes a limited number of different values. These are the

data objects which are used to categorize the data and to store it on multiple levels. It can store

both integers and strings values, and are useful in the column that has a limited number of unique

values.

R-PROGRAMMING(DS3101PC/AM3101PC)

140

CSE,NRCM Mr. P.THIRUPATHI, ASSIT.PROF.

Factors have labels which are associated with the unique integers stored in it. It contains

predefined set value known as levels and by default R always sorts levels in alphabetical order.

Attributes of a factor

There are the following attributes of a factor in R

R-PROGRAMMING(DS3101PC/AM3101PC)

141

CSE,NRCM Mr. P.THIRUPATHI, ASSIT.PROF.

X

It is the input vector which is to be transformed into a factor.

levels

It is an input vector that represents a set of unique values which are taken by x.

labels

It is a character vector which corresponds to the number of labels.

Exclude

It is used to specify the value which we want to be excluded,

ordered

It is a logical attribute which determines if the levels are ordered.

nmax

It is used to specify the upper bound for the maximum number of level.

How to create a factor?

In R, it is quite simple to create a factor. A factor is created in two steps

1. In the first step, we create a vector.

2. Next step is to convert the vector into a factor,

R provides factor() function to convert the vector into factor. There is the following syntax of

factor() function

factor_data<- factor(vector)

Let's see an example to understand how factor function is used.

Example

Creating a vector as input.

data <-

c("Shubham","Nishka","Arpita","Nishka","Shubham","Sumit","Nishka","Shubham","Sumit","A

rpita","Sumit")

print(data)

print(is.factor(data))

Applying the factor function.

factor_data<- factor(data)

R-PROGRAMMING(DS3101PC/AM3101PC)

142

CSE,NRCM Mr. P.THIRUPATHI, ASSIT.PROF.

print(factor_data)

print(is.factor(factor_data))

Output

[1] "Shubham" "Nishka" "Arpita" "Nishka" "Shubham" "Sumit" "Nishka"

[8] "Shubham" "Sumit" "Arpita" "Sumit"

[1] FALSE

[1] Shubham Nishka Arpita Nishka Shubham SumitNishka Shubham Sumit

[10] Arpita Sumit

Levels: Arpita Nishka Shubham Sumit

[1] TRUE

Accessing components of factor

Like vectors, we can access the components of factors. The process of accessing components of

factor is much more similar to the vectors. We can access the element with the help of the

indexing method or using logical vectors. Let's see an example in which we understand the

different-different ways of accessing the components.

Example

Creating a vector as input.

data <-

c("Shubham","Nishka","Arpita","Nishka","Shubham","Sumit","Nishka","Shubham","Sumit","A

rpita","Sumit")

Applying the factor function.

factor_data<- factor(data)

#Printing all elements of factor

print(factor_data)

#Accessing 4th element of factor

print(factor_data[4])

R-PROGRAMMING(DS3101PC/AM3101PC)

143

CSE,NRCM Mr. P.THIRUPATHI, ASSIT.PROF.

#Accessing 5th and 7th element

print(factor_data[c(5,7)])

#Accessing all elemcent except 4th one

print(factor_data[-4])

#Accessing elements using logical vector

print(factor_data[c(TRUE,FALSE,FALSE,FALSE,TRUE,TRUE,TRUE,FALSE,FALSE,FALSE,

TRUE)])

Output

[1] Shubham Nishka Arpita Nishka Shubham SumitNishka Shubham Sumit

[10] Arpita Sumit

Levels: Arpita Nishka Shubham Sumit

[1] Nishka

Levels: Arpita Nishka Shubham Sumit

[1] Shubham Nishka

Levels: Arpita Nishka Shubham Sumit

[1] Shubham Nishka Arpita Shubham SumitNishka Shubham Sumit Arpita

[10] Sumit

Levels: Arpita Nishka Shubham Sumit

[1] Shubham ShubhamSumitNishkaSumit

Levels: Arpita Nishka Shubham Sumit

Modification of factor

R-PROGRAMMING(DS3101PC/AM3101PC)

144

CSE,NRCM Mr. P.THIRUPATHI, ASSIT.PROF.

Like data frames, R allows us to modify the factor. We can modify the value of a factor by

simply re-assigning it. In R, we cannot choose values outside of its predefined levels means we

cannot insert value if it's level is not present on it. For this purpose, we have to create a level of

that value, and then we can add it to our factor.

Let's see an example to understand how the modification is done in factors.

Example

Creating a vector as input.

data <- c("Shubham","Nishka","Arpita","Nishka","Shubham")

Applying the factor function.

factor_data<- factor(data)

#Printing all elements of factor

print(factor_data)

#Change 4th element of factor with sumit

factor_data[4] <-"Arpita"

print(factor_data)

#change 4th element of factor with "Gunjan"

factor_data[4] <- "Gunjan" # cannot assign values outside levels

print(factor_data)

#Adding the value to the level

levels(factor_data) <- c(levels(factor_data),"Gunjan")#Adding new level

factor_data[4] <- "Gunjan"

print(factor_data)

Output

[1] Shubham Nishka Arpita Nishka Shubham

R-PROGRAMMING(DS3101PC/AM3101PC)

145

CSE,NRCM Mr. P.THIRUPATHI, ASSIT.PROF.

Levels: Arpita Nishka Shubham

[1] Shubham Nishka Arpita Arpita Shubham

Levels: Arpita Nishka Shubham

Warning message:

In `[<-.factor`(`*tmp*`, 4, value = "Gunjan") :

invalid factor level, NA generated

[1] Shubham NishkaArpita Shubham

Levels: Arpita Nishka Shubham

[1] Shubham Nishka Arpita Gunjan Shubham

Levels: Arpita Nishka Shubham Gunjan

Factor in Data Frame

When we create a frame with a column of text data, R treats this text column as categorical data

and creates factor on it.

Example

Creating the vectors for data frame.

height <- c(132,162,152,166,139,147,122)

weight <- c(40,49,48,40,67,52,53)

gender <- c("male","male","female","female","male","female","male")

Creating the data frame.

input_data<- data.frame(height,weight,gender)

print(input_data)

Testing if the gender column is a factor.

print(is.factor(input_data$gender))

Printing the gender column to see the levels.

print(input_data$gender)

R-PROGRAMMING(DS3101PC/AM3101PC)

146

CSE,NRCM Mr. P.THIRUPATHI, ASSIT.PROF.

Output

height weight gender

1 132 40 male

2 162 49 male

3 152 48 female

4 166 40 female

5 139 67 male

6 147 52 female

7 122 53 male

[1] TRUE

[1] male male female female male female male

Levels: female male

Changing order of the levels

In R, we can change the order of the levels in the factor with the help of the factor function.

Example

data <- c("Nishka","Gunjan","Shubham","Arpita","Arpita","Sumit","Gunjan","Shubham")

Creating the factors

factor_data<- factor(data)

print(factor_data)

Apply the factor function with the required order of the level.

new_order_factor<-

factor(factor_data,levels = c("Gunjan","Nishka","Arpita","Shubham","Sumit"))

print(new_order_factor)

Output

[1] Nishka Gunjan Shubham Arpita ArpitaSumit Gunjan Shubham

Levels: Arpita Gunjan Nishka Shubham Sumit

[1] Nishka Gunjan Shubham Arpita ArpitaSumit Gunjan Shubham

R-PROGRAMMING(DS3101PC/AM3101PC)

147

CSE,NRCM Mr. P.THIRUPATHI, ASSIT.PROF.

Levels: Gunjan Nishka Arpita Shubham Sumit

Generating Factor Levels

R provides gl() function to generate factor levels. This function takes three arguments i.e., n, k,

and labels. Here, n and k are the integers which indicate how many levels we want and how

many times each level is required.

There is the following syntax of gl() function which is as follows

gl(n, k, labels)

n indicates the number of levels.

k indicates the number of replications.

labels is a vector of labels for the resulting factor levels.

Example

gen_factor<- gl(3,5,labels=c("BCA","MCA","B.Tech"))

gen_factor

Output

[1] BCA BCABCABCABCA MCA MCAMCAMCAMCA

[11] B.TechB.TechB.TechB.TechB.Tech

Levels: BCA MCA B.Tech

R Functions

A set of statements which are organized together to perform a specific task is known as a

function. R provides a series of in-built functions, and it allows the user to create their own

functions. Functions are used to perform tasks in the modular approach.

Functions are used to avoid repeating the same task and to reduce complexity. To understand and

maintain our code, we logically break it into smaller parts using the function. A function should

be

 Written to carry out a specified task.

 May or may not have arguments

 Contain a body in which our code is written.

 May or may not return one or more output values.

"An R function is created by using the keyword function." There is the following syntax of R

function:

R-PROGRAMMING(DS3101PC/AM3101PC)

148

CSE,NRCM Mr. P.THIRUPATHI, ASSIT.PROF.

func_name <- function(arg_1, arg_2, ...) {

Function body

}

Components of Functions

There are four components of function, which are as follows:

Function Name

The function name is the actual name of the function. In R, the function is stored as an object

with its name.

Arguments

In R, an argument is a placeholder. In function, arguments are optional means a function may or

may not contain arguments, and these arguments can have default values also. We pass a value to

the argument when a function is invoked.

Function Body

The function body contains a set of statements which defines what the function does.

Return value

It is the last expression in the function body which is to be evaluated.

Function Types

R-PROGRAMMING(DS3101PC/AM3101PC)

149

CSE,NRCM Mr. P.THIRUPATHI, ASSIT.PROF.

Similar to the other languages, R also has two types of function, i.e. Built-in Function and User-

defined Function. In R, there are lots of built-in functions which we can directly call in the

program without defining them. R also allows us to create our own functions.

Built-in function

The functions which are already created or defined in the programming framework are known as

built-in functions. User doesn't need to create these types of functions, and these functions are

built into an application. End-users can access these functions by simply calling it. R have

different types of built-in functions such as seq(), mean(), max(), and sum(x) etc.

Creating sequence of numbers from 32 to 46.

print(seq(32,46))

Finding the mean of numbers from 22 to 80.

print(mean(22:80))

Finding the sum of numbers from 41 to 70.

print(sum(41:70))

Output:

R-PROGRAMMING(DS3101PC/AM3101PC)

150

CSE,NRCM Mr. P.THIRUPATHI, ASSIT.PROF.

User-defined function

R allows us to create our own function in our program. A user defines a user-define function to

fulfill the requirement of user. Once these functions are created, we can use these functions like

in-built function.

Creating a function without an argument.

new.function <- function() {

for(i in 1:5) {

print(i^2)

}

}

new.function()

Output:

Function calling with an argument

We can easily call a function by passing an appropriate argument in the function. Let see an

example to see how a function is called.

Creating a function to print squares of numbers in sequence.

R Built-in Functions

R-PROGRAMMING(DS3101PC/AM3101PC)

151

CSE,NRCM Mr. P.THIRUPATHI, ASSIT.PROF.

The functions which are already created or defined in the programming framework are known as

a built-in function. R has a rich set of functions that can be used to perform almost every task for

the user. These built-in functions are divided into the following categories based on their

functionality.

Math Functions

R provides the various mathematical functions to perform the mathematical calculation. These

mathematical functions are very

helpful to find absolute value, square value and much more calculations. In R, there are the

following functions which are used:

S.

No

Function Description Example

1. abs(x) It returns the absolute value of

input x.

x<- -4

print(abs(x))

Output

[1] 4

2. sqrt(x) It returns the square root of input x. x<- 4

R-PROGRAMMING(DS3101PC/AM3101PC)

152

CSE,NRCM Mr. P.THIRUPATHI, ASSIT.PROF.

print(sqrt(x))

Output

[1] 2

3. ceiling(x) It returns the smallest integer which

is larger than or equal to x.

x<- 4.5

print(ceiling(x))

Output

[1] 5

4. floor(x) It returns the largest integer, which

is smaller than or equal to x.

x<- 2.5

print(floor(x))

Output

[1] 2

5. trunc(x) It returns the truncate value of

input x.

x<- c(1.2,2.5,8.1)

print(trunc(x))

Output

[1] 1 2 8

6. round(x,

digits=n)

It returns round value of input x. x<- -4

print(abs(x))

Output

4

7. cos(x),

sin(x),

tan(x)

It returns cos(x), sin(x) value of

input x.

x<- 4

print(cos(x))

print(sin(x))

print(tan(x))

Output

R-PROGRAMMING(DS3101PC/AM3101PC)

153

CSE,NRCM Mr. P.THIRUPATHI, ASSIT.PROF.

[1] -06536436

[2] -0.7568025

[3] 1.157821

8. log(x) It returns natural logarithm of input

x.

x<- 4

print(log(x))

Output

[1] 1.386294

9. log10(x) It returns common logarithm of

input x.

x<- 4

print(log10(x))

Output

[1] 0.60206

10. exp(x) It returns exponent. x<- 4

print(exp(x))

Output

[1] 54.59815

String Function

R provides various string functions to perform tasks. These string functions allow us to extract

sub string from string, search pattern etc.

There are the following string functions in R:

S.

No

Function Description Example

1. substr(x,

start=n1,stop=n2)

It is used to extract substrings

in a character vector.

a <- "987654321"

substr(a, 3, 3)

Output

R-PROGRAMMING(DS3101PC/AM3101PC)

154

CSE,NRCM Mr. P.THIRUPATHI, ASSIT.PROF.

[1] "3"

2. grep(pattern, x ,

ignore.case=FALSE,

fixed=FALSE)

It searches for pattern in x. st1 <-

c('abcd','bdcd','abcdabcd')

pattern<- '^abc'

print(grep(pattern, st1))

Output

[1] 1 3

3. sub(pattern,

replacement, x,

ignore.case =FALSE,

fixed=FALSE)

It finds pattern in x and

replaces it with replacement

(new) text.

st1<- "England is beautiful

but no the part of EU"

sub("England', "UK", st1)

Output

[1] "UK is beautiful but

not a part of EU"

4. paste(..., sep="") It concatenates strings after

using sep string to separate

them.

paste('one',2,'three',4,'five')

Output

[1] one 2 three 4 five

5. strsplit(x, split) It splits the elements of

character vector x at split

point.

a<-"Split all the character"

print(strsplit(a, ""))

Output

[[1]]

[1] "split" "all" "the"

"character"

6. tolower(x) It is used to convert the string

into lower case.

st1<- "shuBHAm"

print(tolower(st1))

Output

[1] shubham

R-PROGRAMMING(DS3101PC/AM3101PC)

155

CSE,NRCM Mr. P.THIRUPATHI, ASSIT.PROF.

7. toupper(x) It is used to convert the string

into upper case.

st1<- "shuBHAm"

print(toupper(st1))

Output

[1] SHUBHAM

Statistical Probability Functions

R provides various statistical probability functions to perform statistical task. These statistical

functions are very helpful to

find normal density,

normal quantile and many more calculation. In R, there are following functions which are used:

795.3K

One in three children in the UK lie about their age on social media, Ofcom says

S.

No

Function Description Example

1. dnorm(x, m=0, sd=1,

log=False)

It is used to find the height of the

probability distribution at each

point to a given mean and

standard deviation

a <- seq(-7, 7, by=0.1)

b <- dnorm(a,

mean=2.5, sd=0.5)

png(file="dnorm.png")

plot(x,y)

dev.off()

2. pnorm(q, m=0, sd=1,

lower.tail=TRUE,

log.p=FALSE)

it is used to find the probability of

a normally distributed random

numbers which are less than the

value of a given number.

a <- seq(-7, 7, by=0.2)

b <- dnorm(a,

mean=2.5, sd=2)

png(file="pnorm.png")

plot(x,y)

dev.off()

R-PROGRAMMING(DS3101PC/AM3101PC)

156

CSE,NRCM Mr. P.THIRUPATHI, ASSIT.PROF.

3. qnorm(p, m=0, sd=1) It is used to find a number whose

cumulative value matches with

the probability value.

a <- seq(1, 2, by=002)

b <- qnorm(a,

mean=2.5, sd=0.5)

png(file="qnorm.png")

plot(x,y)

dev.off()

4. rnorm(n, m=0, sd=1) It is used to generate random

numbers whose distribution is

normal.

y <- rnorm(40)

png(file="rnorm.png")

hist(y, main="Normal

Distribution")

dev.off()

5. dbinom(x, size, prob) It is used to find the probability

density distribution at each point.

a<-seq(0, 40, by=1)

b<- dbinom(a, 40, 0.5)

png(file="pnorm.png")

plot(x,y)

dev.off()

6. pbinom(q, size, prob) It is used to find the cumulative

probability (a single value

representing the probability) of an

event.

a <- pbinom(25,

40,0.5)

print(a)

Output

[1] 0.9596548

7. qbinom(p, size, prob) It is used to find a number whose

cumulative value matches the

probability value.

a <- qbinom(0.25,

40,01/2)

print(a)

Output

[1] 18

R-PROGRAMMING(DS3101PC/AM3101PC)

157

CSE,NRCM Mr. P.THIRUPATHI, ASSIT.PROF.

8. rbinom(n, size, prob) It is used to generate required

number of random values of a

given probability from a given

sample.

a <- rbinom(6,

140,0.4)

print(a)

Output

[1] 55 61 46 56 58

49

9. dpois(x, lamba) it is the probability of x successes

in a period when the expected

number of events is lambda (λ)

dpois(a=2,

lambda=3)+dpois(a=3,

lambda=3)+dpois(z=4,

labda=4)

Output

[1] 0.616115

10. ppois(q, lamba) It is a cumulative probability of

less than or equal to q successes.

ppois(q=4, lambda=3,

lower.tail=TRUE)-

ppois(q=1, lambda=3,

lower.tail=TRUE)

Output

[1] 0.6434504

11. rpois(n, lamba) It is used to generate random

numbers from the poisson

distribution.

rpois(10, 10)

[1] 6 10 11 3 10 7

7 8 14 12

12. dunif(x, min=0,

max=1)

This function provide information

about the uniform distribution on

the interval from min to max. It

gives the density.

dunif(x, min=0,

max=1, log=FALSE)

13. punif(q, min=0,

max=1)

It gives the distributed function punif(q, min=0,

max=1,

lower.tail=TRUE,

log.p=FALSE)

14. qunif(p, min=0, It gives the quantile function. qunif(p, min=0,

R-PROGRAMMING(DS3101PC/AM3101PC)

Other Statistical Function

Apart from the functions mentioned above, there are some other useful functions which helps for

statistical purpose.

There are the following functions:

S. Function Description Example

No

1. mean(x,

trim=0,

na.rm=FALSE)

It is used to find the mean for x

object

a<-c(0:10, 40)

xm<-mean(a)

print(xm)

Output

[1] 7.916667

2. sd(x) It returns standard deviation of

an object.

a<-c(0:10, 40)

xm<-sd(a)

print(xm)

Output

[1] 10.58694

3. median(x) It returns median. a<-c(0:10, 40)

xm<-meadian(a)

print(xm)

Output

158

max=1)

max=1,

lower.tail=TRUE,

log.p=FALSE)

15. runif(x, min=0,

max=1)

It generates random deviates. runif(x, min=0,

max=1)

R-PROGRAMMING(DS3101PC/AM3101PC)

[1] 5.5

4. quantilie(x, It returns quantile where x is the

 probs) numeric vector whose quantiles

 are desired and probs is a

 numeric vector with

 probabilities in [0, 1]

5. range(x) It returns range. a<-c(0:10, 40)

xm<-range(a)

print(xm)

Output

[1] 0 40

6. sum(x) It returns sum. a<-c(0:10, 40)

xm<-sum(a)

print(xm)

Output

[1] 95

7. diff(x, lag=1) It returns differences with lag a<-c(0:10, 40)

 indicating which lag to use.
xm<-diff(a)

print(xm)

Output

[1] 1 1 1 1 1 1 1 1 1 1 30

8. min(x) It returns minimum value. a<-c(0:10, 40)

xm<-min(a)

print(xm)

Output

[1] 0

159

R-PROGRAMMING(DS3101PC/AM3101PC)

9. max(x) It returns maximum value a<-c(0:10, 40)

xm<-max(a)

print(xm)

Output

[1] 40

10. scale(x,

center=TRUE,

scale=TRUE)

Column center or standardize a

matrix.

a <- matrix(1:9,3,3)

scale(x)

Output

[,1]

[1,] -0.747776547

[2,] -0.653320562

[3,] -0.558864577

[4,] -0.464408592

[5,] -0.369952608

[6,] -0.275496623

[7,] -0.181040638

[8,] -0.086584653

[9,] 0.007871332

[10,] 0.102327317

[11,] 0.196783302

[12,] 3.030462849

attr(,"scaled:center")

[1] 7.916667

attr(,"scaled:scale")

[1] 10.58694

new.function <- function(a) {

160

R-PROGRAMMING(DS3101PC/AM3101PC)

161

CSE,NRCM Mr. P.THIRUPATHI, ASSIT.PROF.

for(i in 1:a) {

b <- i^2

print(b)

}

Calling the function new.function supplying 10 as an argument.

new.function(10)

Output:

Function calling with no argument

In R, we can call a function without an argument in the following way

Creating a function to print squares of numbers in sequence.

new.function <- function() {

for(i in 1:5) {

a <- i^2

print(a)

}

}

R-PROGRAMMING(DS3101PC/AM3101PC)

162

CSE,NRCM Mr. P.THIRUPATHI, ASSIT.PROF.

Calling the function new.function with no argument.

new.function()

Output:

Function calling with Argument Values

We can supply the arguments to a function call in the same sequence as defined in the function or

can supply in a different sequence but assigned them to the names of the arguments.

Creating a function with arguments.

new.function <- function(x,y,z) {

result <- x * y + z

print(result)

}

Calling the function by position of arguments.

new.function(11,13,9)

Calling the function by names of the arguments.

new.function(x = 2, y = 5, z = 3)

Output:

R-PROGRAMMING(DS3101PC/AM3101PC)

163

CSE,NRCM Mr. P.THIRUPATHI, ASSIT.PROF.

Function calling with default arguments

To get the default result, we assign the value to the arguments in the function definition, and then

we call the function without supplying argument. If we pass any argument in the function call,

then it will get replaced with the default value of the argument in the function definition.

Creating a function with arguments.

new.function <- function(x = 11, y = 24) {

result <- x * y

print(result)

}

Calling the function without giving any argument.

new.function()

Calling the function with giving new values of the argument.

new.function(4,6)

Output:

R-PROGRAMMING(DS3101PC/AM3101PC)

164

CSE,NRCM Mr. P.THIRUPATHI, ASSIT.PROF.

UNIT-V

What is Object-Oriented Programming in R?

Object-Oriented Programming (OOP) is the most popular programming language. With the help

of oops concepts, we can construct the modular pieces of code which are used to build blocks for

large systems. R is a functional language, and we can do programming in oops style. In R, oops

is a great tool to manage the complexity of larger programs.

In Object-Oriented Programming, S3 and S4 are the two important systems.

R-PROGRAMMING(DS3101PC/AM3101PC)

165

CSE,NRCM Mr. P.THIRUPATHI, ASSIT.PROF.

S3

In oops, the S3 is used to overload any function. So that we can call the functions with different

names and it depends on the type of input parameter or the number of parameters.

Play Videox

S4

S4 is the most important characteristic of oops. However, this is a limitation, as it is quite

difficult to debug. There is an optional reference class for S4.

Objects and Classes in R

In R, everything is an object. Therefore, programmers perform OOPS concept when they write

code in R. An object is a data structure which has some methods that can act upon its attributes.

In R, classes are the outline or design for the object. Classes encapsulate the data members, along

with the functions. In R, there are two most important classes, i.e., S3 and S4, which play an

important role in performing OOPs concepts.

Let's discuss both the classes one by one with their examples for better understanding.

1) S3 Class

With the help of the S3 class, we can take advantage of the ability to implement the generic

function OO. Furthermore, using only the first argument, S3 is capable of dispatching. S3 differs

from traditional programming languages such as Java, C ++, and C #, which implement OO

passing messages. This makes S3 easy to implement. In the S3 class, the generic function calls

the method. S3 is very casual and has no formal definition of classes.

S3 requires very little knowledge from the programmer.

Creating an S3 class

In R, we define a function which will create a class and return the object of the created class. A

list is made with relevant members, class of the list is determined, and a copy of the list is

returned. There is the following syntax to create a class

variable_name <- list(member1, member2, member3. memberN)

Example

s <- list(name = "Ram", age = 29, GPA = 4.0)

class(s) <- "Faculty"

s

Output

R-PROGRAMMING(DS3101PC/AM3101PC)

166

CSE,NRCM Mr. P.THIRUPATHI, ASSIT.PROF.

There is the following way in which we define our generic function print.

print

function(x, ...)

UseMethod("Print")

When we execute or run the above code, it will give us the following output:

R-PROGRAMMING(DS3101PC/AM3101PC)

167

CSE,NRCM Mr. P.THIRUPATHI, ASSIT.PROF.

Like print function, we will make a generic function GPA to assign a new value to our GPA

member. In the following way we will make the generic function GPA

GPA <- function(obj1){

UseMethod("GPA")

}

Once our generic function GPA is created, we will implement a default function for it

GPA.default <- function(obj){

cat("We are entering in generic function\n")

}

After that we will make a new method for our GPA function in the following way

GPA.faculty <- function(obj1){

cat("Final GPA is ",obj1$GPA,"\n")

}

And at last we will run the method GPA as

GPA(s)

Output

Inheritance in S3

Inheritance means extracting the features of one class into another class. In the S3 class of R,

inheritance is achieved by applying the class attribute in a vector.

For inheritance, we first create a function which creates new object of class faculty in the

following way

faculty<- function(n,a,g) {

value <- list(nname=n, aage=a, GPA=g)

R-PROGRAMMING(DS3101PC/AM3101PC)

168

CSE,NRCM Mr. P.THIRUPATHI, ASSIT.PROF.

attr(value, "class") <- "faculty"

value

}

After that we will define a method for generic function print() as

print.student <- function(obj1) {

cat(1obj$name, "\n")

cat(1obj$age, "years old\n")

cat("GPA:", obj1$GPA, "\n")

}

Now, we will create an object of class InternationalFaculty which will inherit from faculty class.

This process will be done by assigning a character vector of class name as:

class(Objet) <- c(child, parent)

so,

create a list

fac <- list(name="Shubham", age=22, GPA=3.5, country="India")

make it of the class InternationalFaculty which is derived from the class Faculty

class(fac) <- c("InternationalFaculty","Faculty")

print it out

fac

When we run the above code which we have discussed, it will generate the following output:

https://www.javatpoint.com/r-object-oriented-programming

R-PROGRAMMING(DS3101PC/AM3101PC)

169

CSE,NRCM Mr. P.THIRUPATHI, ASSIT.PROF.

We can see above that, we have not defined any method of form print. InternationalFaculty (),

the method called print.Faculty(). This method of class Faculty was inherited.

So our next step is to defined print.InternationalFaculty() in the following way:

print.InternationalFaculty<- function(obj1) {

cat(obj1$name, "is from", obj1$country, "\n")

}

The above function will overwrite the method defined for class faculty as

R-PROGRAMMING(DS3101PC/AM3101PC)

170

CSE,NRCM Mr. P.THIRUPATHI, ASSIT.PROF.

Fac

getS3method and getAnywhere function

There are the two most common and popular S3 method functions which are used in R. The first

method is getS3method() and the second one is getAnywhere().

S3 finds the appropriate method associated with a class, and it is useful to see how a method is

implemented. Sometimes, the methods are non-visible, because they are hidden in a namespace.

We use getS3method or getAnywhere to solve this problem.

R-PROGRAMMING(DS3101PC/AM3101PC)

171

CSE,NRCM Mr. P.THIRUPATHI, ASSIT.PROF.

getS3method

getAnywhere function

getAnywhere("simpleloess")

2) S4 Class

The S4 class is similar to the S3 but is more formal than the latter one. It differs from S3 in two

different ways. First, in S4, there are formal class definitions which provide a description and

representation of classes. In addition, it has special auxiliary functions for defining methods and

generics. The S4 also offers multiple dispatches. This means that common functions are capable

of taking methods based on multiple arguments which are based on class.

Creating an S4 class

In R, we use setClass() command for creating S4 class. In S4 class, we will specify a function for

verifying the data consistency and also specify the default value. In R, member variables are

called slots.

R-PROGRAMMING(DS3101PC/AM3101PC)

172

CSE,NRCM Mr. P.THIRUPATHI, ASSIT.PROF.

To create an S3 class, we have to define the class and its slots. There are the following steps to

create an S4 class

Step 1:

In the first step, we will create a new class called faculty with three slots name, age, and GPA.

setClass("faculty", slots=list(name="character", age="numeric", GPA="numeric"))

There are many other optional arguments of setClass() function which we can explore by

using ?setClass command.

Step 2:

In the next step, we will create the object of S4 class. R provides new() function to create an

object of S4 class. In this new function we pass the class name and the values for the slots in the

following way:

setClass("faculty", slots=list(name="character", age="numeric", GPA="numeric"))

creating an object using new()

providing the class name and value for slots

s <- new("faculty",name="Shubham", age=22, GPA=3.5)

R-PROGRAMMING(DS3101PC/AM3101PC)

173

CSE,NRCM Mr. P.THIRUPATHI, ASSIT.PROF.

s

It will generate the following output

Creating S4 objects using a generator function

The setClass() function returns a generator function. This generator function helps in creating

new objects. And it acts as a constructor.

A <- setClass("faculty", slots=list(name="character", age="numeric", GPA="numeric"))

A

It will generate the following output:

https://www.javatpoint.com/r-object-oriented-programming

R-PROGRAMMING(DS3101PC/AM3101PC)

174

CSE,NRCM Mr. P.THIRUPATHI, ASSIT.PROF.

Now we can use the above constructor function to create new objects. The constructor in turn

uses the new() function to create objects. It is just a wrap around. Let's see an example to

understand how S4 object is created with the help of generator function.

Example

faculty<-setClass("faculty", slots=list(name="character", age="numeric", GPA="numeric"))

creating an object using generator() function

providing the class name and value for slots

faculty(name="Shubham", age=22, GPA=3.5)

Output

Inheritance in S4 class

Like S3 class, we can perform inheritance in S4 class also. The derived class will inherit both

attributes and methods of the parent class. Let's start understanding that how we can perform

inheritance in S4 class. There are the following ways to perform inheritance in S4 class:

Step 1:

In the first step, we will create or define class with appropriate slots in the following way:

setClass("faculty",

slots=list(name="character", age="numeric", GPA="numeric")

)

R-PROGRAMMING(DS3101PC/AM3101PC)

175

CSE,NRCM Mr. P.THIRUPATHI, ASSIT.PROF.

Step 2:

After defining class, our next step is to define class method for the display() generic function.

This will be done in the following manner:

setMethod("show",

"faculty",

function(obj) {

cat(obj@name, "\n")

cat(obj@age, "years old\n")

cat("GPA:", obj@GPA, "\n")

}

)

Step 3:

In the next step, we will define the derived class with the argument contains. The derived class is

defined in the following way

setClass("Internationalfaculty",

slots=list(country="character"),

contains="faculty"

)

In our derived class we have defined only one attribute i.e. country. Other attributes will be

inherited from its parent class.

s <- new("Internationalfaculty",name="John", age=21, GPA=3.5, country="India")

show(s)

R-PROGRAMMING(DS3101PC/AM3101PC)

176

CSE,NRCM Mr. P.THIRUPATHI, ASSIT.PROF.

When we did show(s), the method defines for class faculty gets called. We can also define

methods for the derived class

of the base class as in the case of the S3 system.

	UNIT WISE SUBJECT NOTES UNIT-I
	Why R Programming Language?
	Features of R Programming Language Statistical Features of R:
	Programming Features of R:
	Programming in R:
	R file_name.r Example:
	Disadvantages of R:
	Applications of R:
	R DATATYPES AND OBJECTS
	Vectors
	Matrices
	Arrays
	Factors
	Data Frames
	READING AND WRITING DATA IN R
	data <-read.table("foo.txt")
	Who this course is for:
	Install R and RStudio – A Step-by-Step Guide for Beginners
	Install R on Linux
	sudo apt-get update
	Install RStudio on Linux
	Installing R and RStudio on Windows
	Step – 1: Go to CRAN R project website.
	Read the license agreement and click Next.
	Enter/browse the folder/path you wish to install R into and then confirm by clicking Next.
	Install RStudio on Windows
	Installing R and RStudio on Mac OS X
	Step – 1: Go to CRAN R Project Website.
	Some useful Packages in R
	>install.packages(“<package name>”)
	Summary
	Using R as a Calculator
	Arithmetic Operators
	More Math functions.
	On Your Own: Swirl Practice
	Logical Operators
	On Your Own: Swirl Practice (1)
	swirl()
	Further Operators
	Powered by DataCamp Math Functions in R
	# what is the exponential of the log of b?
	Arithmetic Operators (1)
	Relational Operators
	Logical Operators (1)
	Assignment Operators
	Miscellaneous Operators
	You can use the following functions to round numbers in R:
	The following examples show how to use each of these functions in practice.
	The following code shows how to use the signif() function to round values to a specific number of significant digits in R:
	The following code shows how to use the ceiling() function to round values up to the nearest integer:
	Example 4: floor() Function in R
	Example 5: trunc() Function in R
	Report this ad
	Data Type of a Variable
	Finding Variables
	Deleting Variables
	UNIT-II
	if and else: testing a condition and acting on it for: execute a loop a fixed number of times while: execute a loop while a condition is true
	next: skip an interation of a loop
	Nested for loops
	while Loops
	repeat Loops
	next, break
	R Functions
	Creating a Function
	Call a Function
	OUTPUT:
	Example
	OUTPUT: (1)
	Parameters or Arguments?
	From a function's perspective:
	Number of Arguments
	Example (1)
	OUTPUT: (2)
	Example (2)
	OUTPUT: (3)
	Default Parameter Value
	Example (3)
	OUTPUT: (4)
	Return Values
	Nested Functions
	Example (4)
	OUTPUT: (5)
	Example Explained
	Example (5)
	OUTPUT: (6)
	Example Explained (1)
	Recursion
	Example (6)
	Variable:
	Variables in R
	R Variables Syntax:
	Example: Creating Variables in R
	Output:
	Important Methods for Variables
	class() function
	Example:
	Output: (1)
	rm() function
	Output: (2)
	Scope of Variables in R programming
	Global Variables:
	Output: (3)
	Local Variables:
	Declaring local variables:
	Example: (1)
	Output: (4)
	Naming convention for Variables
	Example: (2)
	Scope of a variable
	Global Variable
	Output: (5)
	Local Variable
	Example: (3)
	Output: (6)
	Example: (4)
	Output: (7)
	Accessing Global Variables
	Output: (8)
	How super assignment operator works?
	Output: (9)
	Dynamic Scoping in R Programming
	Output: (10)
	Let’s consider another example:
	What is the value of y in this case?
	If we call g(2) it will give an error like the following:
	After assigning value to y call g(2) as follows:
	Output: (11)
	Lexical Scoping in R Programming
	Why Lexical Scoping?
	x and y are formal arguments z as the free variable
	Principles of Lexical Scoping
	4. Dynamic Lookup
	Name Masking
	Output: (12)
	Example: (5)
	Output: (13)
	When one function is defined inside another function:
	Output: (14)
	When functions are created by another function:
	Functions vs Variables
	Output: (15)
	Output: (16)
	Dynamic Lookup
	Example: (6)
	Output: (17)
	Output: (18)
	Dates and Times
	Dates in R
	Times in R
	 weekdays: give the day of the week
	 quarters: give the quarter number (“Q1”, “Q2”, “Q3”, or “Q4”)
	Operations on Dates and Times
	Time difference of 2 days
	Time difference of 1 hours Summary
	R DATA STRUCTURES
	Data Frames are data displayed in a format as a table.
	Summarize the Data
	Training Pulse Duration
	Example (7)
	Output: (19)
	# Add a new row
	Output: (20)
	Output: (21)
	Remove Rows and Columns
	Example (8)
	Output: (22)
	Amount of Rows and Columns
	Example (9)
	Output: (23)
	Data Frame Length
	Example (10)
	Output: (24)
	Combining Data Frames
	Example (11)
	Output: (25)
	Example (12)
	Matrices (1)
	Example (13)
	output:
	Access Matrix Items
	Example (14)
	thismatrix[1, 2] output:
	output: (1)
	Example (15)
	output: (2)
	Example (16)
	output: (3)
	Access More Than One Column
	Example (17)
	Add Rows and Columns
	Example (18)
	output: (4)
	Example (19)
	output: (5)
	Remove Rows and Columns (1)
	Example (20)
	output: (6)
	Example (21)
	output: (7)
	Number of Rows and Columns
	Example (22)
	output: (8)
	Matrix Length
	Example (23)
	output: (9)
	Loop Through a Matrix
	Example (24)
	output: (10)
	Combine two Matrices
	Output: (26)
	Lists
	Access Lists
	Example (25)
	Change Item Value
	Example (26)
	List Length
	Example (27)
	Check if Item Exists
	Add List Items
	Example (28)
	Example (29)
	output: (11)
	Example (30)
	output: (12)
	Loop Through a List
	Example (31)
	output: (13)
	Join Two Lists
	output: (14)
	Vectors (1)
	Example (32)
	Output: (27)
	Example (33)
	numbers
	Example (34)
	Result:
	Example (35)
	log_values Output:
	Vector Length
	Sort a Vector
	output: (15)
	Example (36)
	Example (37)
	Change an Item
	Example (38)
	Example (39)
	Example (40)
	Example (41)
	output: (16)
	Vector Creation Single Element Vector
	Multiple Elements Vector
	Using sequence (Seq.) operator
	Accessing Vector Elements
	Vector Manipulation Vector arithmetic
	Vector Element Recycling
	Vector Element Sorting
	UNIT-III
	Example: (7)
	Accessing components of a list
	Accessing name components using $ command
	Accessing name components using indices
	Modifying components of a list
	After modified the list
	Concatenation of lists
	Deleting components of a list
	Example: (8)
	After Deleting Total staff components
	After Deleting sandeep from name
	Converting List to Vector
	R List to matrix
	List of Dataframes in R
	Creating a list of Dataframes
	Accessing components of a list of Dataframes
	Modifying components of a list of Dataframes
	Concatenation of lists of Dataframes
	Example: (9)
	Deleting components from a list of Dataframes
	Example: (10)
	MATRIX
	Syntax
	data is the input vector which becomes the data elements of the matrix. nrow is the number of rows to be created.
	Accessing Elements of a Matrix
	Matrix Computations
	Matrix Addition & Subtraction
	UNIT-IV
	Attributes of a factor
	X
	levels
	labels
	Exclude
	ordered
	nmax
	How to create a factor?
	Example (42)
	Output
	Accessing components of factor
	Output (1)
	Output (2)
	Output (3)
	Changing order of the levels
	Generating Factor Levels
	R Functions (1)
	Components of Functions
	Function Name
	Arguments
	Function Body
	Return value
	Function Types
	Built-in function
	User-defined function
	Function calling with an argument
	Math Functions
	String Function
	Statistical Probability Functions
	Function calling with no argument
	Function calling with Argument Values
	Function calling with default arguments
	UNIT-V
	S3
	Play Videox
	1) S3 Class
	S3 requires very little knowledge from the programmer. Creating an S3 class
	Inheritance in S3
	getS3method and getAnywhere function
	getAnywhere function getAnywhere("simpleloess")
	Step 1:
	Step 2:
	Creating S4 objects using a generator function
	Inheritance in S4 class
	Step 2: (1)
	Step 3:

