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Prerequisites 

For Machine Learning Course were commend that students meet the 
following prerequisites: 

• Basic programming skills(in Python) 

• Algorithm design 

• Basics of probability & statistics 
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Machine Learning 
Introduction 

Ever since computers were invented, we have wondered whether they might be 
Made to learn. If we could understand how to program them to learn-to improve 
automatically with experience-the impact would be dramatic. 

• Imagine computers learning from medical records which treatments are most 
effective for new diseases 

• Houses learning from experience to optimize energy costs based on the of their 
occupants. 

• Personal software assistants learning the evolving interests of their to highlight 
especially relevant stories from the online morning newspaper 
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Examples of Successful Applications of 
Machine Learning 

 
• Learning to recognize spoken words 

• Learning to drive an autonomous vehicle 

• Learning to classify new astronomical structures 

• Learning to playworld-classback gammon 
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Why is Machine Learning Important? 

• Some tasks cannot be defined well, except by examples (e.g., 
recognizing people). 

• Relationships and correlations can be hidden within large amounts of 
data.Machine Learning/DataMining maybe able to find these 
relationships. 

• Human designers of ten produce machines that donot work as well as 
desired in the environments in which they are used. 

• The amount of knowledge available about certain tasks might be too large 
for explicit encoding by humans (e.g., medical diagnostic). 

• Environments change overtime. 

• New knowledge about tasks is constantly being discovered by humans. It 
may be difficult to continuously re-designsystems “by hand”. 
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Areas of Influence for Machine Learning 
 

• Statistics: How best touse samples drawn from unknown probability distributions to 

help decidefrom which distributionsomenewsampleisdrawn? 

• Brain Models: Non-linear elements with weighted inputs (Artificial

 NeuralNetworks) have been suggested as simple models of biological neurons. 

• AdaptiveControlTheory: How to deal with controlling aprocess having unknown 

parameters that must be estimated during operation? 

• Psychology: How to model human performance on various learning tasks? 

• ArtificialIntelligence: How to write algorithms to acquire the knowledge humans are 

able to acquire, atleast, as well as humans? 

• EvolutionaryModels: How to model certain aspects of biological evolution to 

improve the performance of computer programs? 
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Machine Learning: A Definition 

A computer program is said to learn from experience E 
with respect to some class of tasks T and performance 
measure P, if its performance at tasks in T, as measured 
by P, improves with experience E. 
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Why “Learn”? 

Learning issused when: 

• Human expertise does not exist(navigating on Mars) 

• Humans are unable to explain their expertise (speech recognition) 

• Solution changes intime(routing on a computernetwork) 

• Solution needs to be adapted to particular cases(userbiometrics) 
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Well-Posed Learning Problem 

Definition: A computer program is said to learn from experience E with respect to 

some class of tasks T and performance measure P, if its performance attasks in T, as 

measured by P, improves with experience E. 

 
To have a well-defined learning problem, three features needs to be identified: 

1. The classof tasks 

2. The measure of performance to be improved 

3. The source of experience 
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Checkers Game 
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Game Basics 
• Checkers is played by two players. Each player begins the game with 12 

coloreddiscs. (One set of pieces is black and the other red.) Each player places his 

or her pieces on the 12 dark squares closest to him or her. Black moves first. 

Players then alternate moves. 

• The board consists of 64 squares, alternating between 32dark and 32lightsquares. 

• It is positioned so that each player has a light square on the right side corner closest 

to him or her. 

• A player wins the game when the opponent cannot make a move. In most cases, 

this is because all of the opponent's pieces have been captured, but it could also be 

because all of his pieces are blocked in. 
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Rules of the Game 
• Moves are allowed only on the dark squares, so pieces always move diagonally. 

Single pieces are always limited to forward moves (toward the opponent). 

• A piece making a non-capturing move (not involving a jump) may move only one 

square. 

• A piece making a capturing move (a jump) leaps over one of the opponent'spieces, 

landing in a straight diagonal line on the other side. Only one piece maybe captured 

in a single jump; however, multiple jumps are allowed during a single turn. 

• When a piece is captured, it is removed from the board. 

• If a player is able to make a capture, there is no option; the jump must be made. 

• If more than one capture is available, the player is free to choose whichever he or 

she prefers. 
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Rules of the GameCont. 
• When a piece reaches the furthest row from the player who controls that piece, itis 

crowned and becomes a king. One of the pieces which had been captured is placed 

on top of the king so that it is twice as high as a single piece. 

• Kings are limited to moving diagonally but may move both forward and backward. 

(Remember that single pieces, i.e. non-kings, are always limited to forward 

moves.) 

• Kings may combine jumps in several directions, forward and backward, on the 

same turn. Single pieces may shift direction diagonally during a multiple 

captureturn, but must always jump forward (toward the opponent). 
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Well-Defined Learning Problem 

A checkers learning problem: 

 TaskT:playing checkers 

 Performance measure P: percent of games won against opponents 

 Training experience E:playing practice games against itself 

 
A handwriting recognition learning problem: 

 TaskT:recognizing and classifying hand written words within images 

 Performance measureP:percent of words correctly classified 

 Training experienceE: a database of handwritten words with 

given classifications 
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A robot driving learning problem: 

 TaskT:driving on public four-lane highways using vision sensors 

 Performance measureP:average distance travelled before  anerror (as judged by 

human overseer) 

 Training experienceE:a sequence of images and steering commands recorded 

While observing a human driver 
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Designing a Learning System 

1. Choosing theTrainingExperience 

2. Choosing theTargetFunction 

3. Choosing a Representation for theTarget Function 

4. Choosing a Function ApproximationAlgorithm 

1. Estimating training values 

2. Adjusting the weights 

5. The Final Design 
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The basic design issues and approaches to machinelearning is illustrated by 
considering designing a program to learn to play checkers,with the goal of entering it 
in the world checkers tournament 
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1. Choosing the Training Experience 
• The first design choice is to choose the type of training experience from which 

the system will learn. 

• The type of training experience available can have a significant impact 

on success or failure of the learner. 

 
There are three attributes which impact on successor failure of the learner 

 

 

1. Whether the training experience provides director indirect feedback regarding 

the choices made by the performance system. 

2. The degree to which the learner controls the sequence of training examples 

3. How well it represents the distribution of examples over which the final 

system performance mustbe measured. 
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1. Whether the training experience provides director indirect feedback regarding 

the choices madeby the performance system. 

Forexample, in checkers game: 

• In learning to playcheckers,the system might learn from direct training examples consisting of individual 

Checkers boardstates and the correct move foreach. 

 
• Indirect training examples consisting of the move sequences and final outcomes of various games played. 

 
• The information about the correctness of specific moves early in the game must be inferred indirectly 

from the fact that the game was eventually won or lost. 

 
• Here the learner faces an additional problem of credit assignment, or determining the degree to which each 

move in the sequence deserves creditor blame for the finaloutcome. 

 
• Creditassignment can be aparticularly difficult problem because the game can be lost even when early 

moves are optimal,if the seare followed later by poor moves. 

 
• Hence, learning from direct training feedback is typically easier than learning from indirect feedback. 
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2. Asecond important attribute of the training experience is the degree to which 

the learner controls the sequence of training examples 

For example, in checkers game: 

• The learner might depends on the teacher to select informative board states and to provide the correct move 

foreach. 

 
• Alternatively, the learner might itself propose board states that it finds particularly confusing and ask the 

teacher for the correct move. 

 
• The learner may have complete control over both the board states and (indirect) training classifications, as it 

does when it learns by playing against itself with no teacher present. 

  
• Notice in this last case the learner may choose between experimenting with novel board states that it has notyet 

considered, or honing its skill by playing minor variations of lines of play it currently finds mostpromising. 
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3. A third attribute of the training experience is how well it represents the 

distribution of examples over which the final system performance must be 

measured. 

Learning is most reliable when the training examples follow a distribution similar to that of future 

test examples. 

 
For example, in checkers game: 

• In checkers learning scenario, the performance metric P is the percent of games the system wins in the 

worldtournament. 

 
• If its training experience E consists only of games played against itself, there is an danger that this training 

experience might not be fully representative of the distribution of situations over which it will later be tested. 

For example, the learner might never encounter certain crucial board states that are very likely to be played by 

the human checkers champion. 

 
• It is necessary to learn from a distribution of examples that is somewhat different from those on which the 

final system will be evaluated. Such situations are problematic because mastery of one distribution of examples 

will not necessary lead to strong performance over some other distribution. 
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3. Choosing the Target Function 
The next design choice is to determine exactly what type of knowledge will be 

learned and how this will be used by the performance program. 

• Let’s begin with a checkers-playing program that can generate the legal moves 

from any boardstate. 

• The program needs only to learn how to choose the best move from among these 

legal moves. This learning task is representative of a large class of tasks for which 

the legal moves that define some large search space are known a priori, but for 

which the best search strategy is not known. 
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Given this setting where we must learn to choose among the legal moves, the most 

obvious choice for the type of information to be learned is a program, or function,that 

chooses the best move for any given board state. 

 
1. Let Choose Move be the target function and the notation is 

ChooseMove: B M 

Which indicate that this function accepts as input any board from the set of legal 

boardstates Band produces as output somemove from the set of legal moves M. 

 
ChooseMove is an choice for the target function in checkers example, but this 

function will turn out to be very difficult to learn given the kind of indirect training 

experience available to our system 
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2. An alternative targetfunction is an evaluationfunction that assigns a 

numericalscore to any given boardstate 

Let the target functionVand the notation 

V: B R 

Which denote that Vmaps any legal board state from the setB to some real value 

 
We intend for this target function V to assign higher scores to better board states. If 

the system can successfully learn such a target functionV, it can easily use it to select 

the best move from any current board position. 



 

T.Aparna , Assistant Professor, CSE, NRCM 

                                                                                                                                                                                                                       

Let us define the target valueV (b) for an arbitrary board state binB, as follows: 

1. If b is a finalboard state that is won,thenV(b)=100 

2. If b is a finalboard state that is lost,thenV(b)=-100 

3. If b is a finalboard state that is drawn,thenV(b)=0 

4. If b is a not a final state in the game,thenV(b)=V(b'), 

Where b'is the best final board state that can be achieved starting from band 

playing optimally until the end of the game 
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3. Choosing a Representation for the 
Target Function 

Let us choose a simple representation-for any givenboard state,the function will 

be calculated as a linear combination of the following board features: 

 
XL: the number of black pieces on the 

boardx2: the number of red pieces on the 

boardx3: the number of black kings on the 

boardx4: the number of red kings on the 

board 

X5: the number of black pieces threatened byred (i.e., which can 

be captured on red's next turn) 

x6: the number of red pieces threatened by black 
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Thus, learning program will represent as a linearfunction of the form 
 
 

Where, 

• w0 through w6 are numerical coefficients,or weights,to be chosen by the 

learning algorithm. 

• Learned values for the weights w1 through w6 will determine  the relative 

Importance of the various board features in determining the value of the board 

• The weightw0 will provide an additive constant to the boardvalue 
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Partialdesignofacheckerslearningprogram: 
 

 

• TaskT:playing checkers 

• Performance measureP:percent of games won in the world tournament 

• Training experienceE:games played against itself 

• Target function:V:Board R 

• Target function representation 
 
 

 
The first three items above correspond to the specification of the learning task, 

where as the final two items constitute design choices for the implementation of 

the learning program. 
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4. Choosing a Function Approximation 
Algorithm 

• In order to learn the target function we require a set of training examples, each 

describing a specific board state band the training value Vtrain(b) for b. 

 
• Each training example is an ordered pair of the form (b,Vtrain(b)). 

 
• For instance, the following training example describes a board state b in 

which black has won the game (notex2=0 indicates that red has no remaining 

pieces) and for which the target function valueVtrain(b) is therefore +100. 

 
((x1=3,x2=0,x3=1,x4=0,x5=0,x6=0),+100) 
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Function Approximation Procedure 

1. Derive training examples from the indirect training experience available to 

the learner 

2. Adjusts the weights wi to best fit these training examples 



[Type here]  
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A simple approach for estimating training values for intermediate boardstates is 

to assign the training value of Vtrain(b) for any intermediate board state b to be 

V (̂Successor (b)) 

 
Where, 

V̂ is the learner's current approximation to V 

Successor (b) denotes the nextboard state following for which it is again the 

program's turn to move 

 
Rule for estimating trainingvalues 

 
Vtrain (b)←V̂(Successor(b)) 



2.Adjustingtheweights 
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Specify the learning algorithm for choosing the weights wi to best fit the set of 

training examples {(b, Vtrain (b))} 

 
A firststep is to define what we mean by the bestfit to the training data. 

• One common approach is to define the best hypothesis, or set of weights, as that 

which minimizes the squared error E between the training values and the values 

predicted by the hypothesis. 
 

 

• Several algorithms are known for finding weights of a linear function 

that minimizeE. 
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In our case, we require an algorithm that will incrementally refine the weights asnew 

training examples become available and that will be robust to errors in these 

estimated training values 

 
One such algorithm is called the least mean squares, or LMS training rule. For each 

observed training example it adjusts the weights asmall amount in the direction that 

reduces the error on this training example 

 
LMS weightupdate rule:-For each training example 

(b,Vtrain(b))Use the current weights to calculateV̂(b) 
For each weightwi, update it as 

 
wi←wi+ƞ (Vtrain (b)-V̂(b)) xi 
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Here ƞ is a small constant (e.g., 0.1) that moderates the size of the weight 

update.Working of weight update rule 

• When the error (Vtrain(b)-V̂(b))is zero,no weights are changed. 

• When (Vtrain(b)-V̂(b))is positive(i.e.,whenV ̂(b)is too low),then each weight is 

increased in proportion to the value of its corresponding feature. This will raise 

the value ofV ̂(b), reducing the error. 

• If the value of some featurexi is zero, then its weight is not altered regardless of 

the error, so that the only weights updated are those whose features actually 

occur on the training example board. 
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5. The Final Design 

The final design of checkers learning system can be described by four distinct 

program modules that represent the central components in many learning 

systems 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

T.Aparna, Assistant Professor, CSE, NRCM 
 

 

38 



 

T.Aparna, Assistant Professor, CSE, NRCM 

1. The Performance System is the module that must solve the given performance 

taskby using the learned target function(s). 

It takes an instance of a new problem (new game) as input and produces a trace of its 

solution (game history) as output. 

In checkers game, the strategy used by the Performance System to select its next 

move at each step is determined by the learned V̂ evaluation function. Therefore, 

weexpect its performance to improve as this evaluation function becomes 

increasingly accurate. 

 

2. The Critic takes as input the history or trace of the game and produces as output a 

set of training examples of the target function. As shown in the diagram, each training 

example in this case corresponds to some game state in the trace, along with an 

estimateVtrain of the target function value for this example. 
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3. The Generalizer takes as input the training examples and produces an 

output hypothes is that is its estimate of the target function. 

It generalizes from the specific training examples, hypothesizing a general 

function that covers these examples and other cases beyond the training examples. 

Inour example, the Generalizer corresponds to the LMS algorithm, and the output 

hypothesis is the functionV ̂ described bythe learned weightsw0, .. . , W6. 

 
4. The Experiment Generator takes as input the current hypothesis and outputs anew 

problem (i.e., initial board state) for the Performance System to explore.Its role is to 

pick new practice problems that will maximize the learning rate of the over all 

system. 

In our example, the Experiment Generatoral ways proposes the same initial game 

board to begin a new game. 



 

T.Aparna, Assistant Professor, CSE, NRCM 

 
 

 

The sequence of design choices made for the checkers program is summarized 

in below figure 
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Perspectives of Machine Learning 
 

Perspective of machine learning involves searching very 

large space of possible hypothesis to determine one that  

Best fits the observed data and any prior knowledge heldby 

learner. 
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Issues in MachineLearning 

• What algorithms exist for learning general target functions from specific training 

examples? In what settings will particular algorithms converge to the desired 

function, given sufficient training data?Which algorithms perform best for which 

types of problems and representations? 

 
• How much training data is sufficient? What general bounds can be found to relate 

the confidence in learned hypotheses to the amount of training experience and the 

character of the learner's hypothesis space? 

 
• When and how can prior knowledge held by the learner guide the process of 

generalizing from examples? Can prior knowledge be helpful even when it is only 

approximately correct? 
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• What is the best strategy for choosing a useful next training experience, and how 

does the choice of this strategy alter the complexity of the learning problem? 

 
• What is the best way to reduce the learning task to one or more function 

approximation problems? Put another way, what specific functions should the 

system attempt tolearn? Can this process itself be automated? 

 
• How can the learner automatically alter its representation to improve its ability to 

represent and learn the target function? 
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Concept Learning 
 

• Learning involves acquiring general concepts from specific training examples. 
Example: People continually learn general concepts or categories such as 
"bird,""car,""situations in which I should study more in order to pass the exam,"etc. 

• Each such concept can be viewed as describing some subset of objects or events 
defined over a larger set 

• Alternatively, each concept can be though to fasaBoolean-valued function defined 
over this larger set. (Example: A function defined over all animals, whose value is 
true for birds and false for other animals). 

           Conceptlearning-Inferring a Boolean-valued function from training examples of   
its input andoutput
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                 A Concept Learning Task 

Consider the example task of learning the target concept 

"Dayson which my friend Aldoenjoysh is favorite watersport." 
 

Example Sky AirTemp Humidity Wind Water Forecast EnjoySport 

 

1 Sunny Warm  Normal Strong Warm Same Yes 

 
2 Sunny Warm High Strong Warm Same Yes 

 
3 Rainy Cold High Strong Warm Change No 

 
4 Sunny Warm High Strong Cool Change Yes 

Table-Describes a set ofDeeexpaakDm,Apsstl.eProdf.,aDeypts.o,fCeSEa,cCahnarraeEnpggr.Ceoslleegented by a set of attributes 47 
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The attribute EnjoySport indicates whether or not a Person enjoys his favorite 

watersport on this day. 

 

 
 

The task is toleranto predict thevalue of EnjoySport for 

an arbitrary day, based on the values of its other 

attributes? 



What hypothes is representation is provided to the learner? 

48 
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Let’s consider as imple representation in which each hypothesis consists of a conjunction 

of constraints on the instance attributes. 

 
Let each hypothes is be a vectorof six constraints, specifying the values of the six 

attributes Sky, AirTemp, Humidity,Wind,Water, and Forecast. 

 
For each attribute, the hypothes is will either 

• Indicate bya"?'that any valueis acceptable for this attribute, 
• Specify a single required value(e.g.,Warm)for the attribute,or 

• Indicate bya"Φ"that novalueis acceptable 



Ifsomeinstancexsatisfiesalltheconstraintsofhypothesish,thenhclassifies 

49 
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Xasapositive example(h(x) =1). 

 
The hypothesis that PERSON enjoys his favo rite sport only on cold days with 

highhumidity (independent of the values of the other attributes) is represented by 

theexpression 

(?, Cold, High,?,?,?) 

 
Themostgeneral hypothesis-that everydayisapositiveexample-isrepresentedby 

(?,?,?,?,?,?) 
 

 

The most specific possible hypothesis-that

 norepresented by 

day is a positive example-is 



Ifsomeinstancexsatisfiesalltheconstraintsofhypothesish,thenhclassifies 

50 
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(Φ,Φ,Φ,Φ,Φ,Φ) 
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Notation 

The set of items over which the concept is defined is called the set of 

instances, which we denote by X. 

Example:X is the set of all possible days, each represented by the attributes:Sky, 

AirTemp, Humidity,Wind,Water,and Forecast 

 
The concept or function to be learned is called the targetconcept, which we denote 

by c. 

c can be any Boolean valued function defined 

overtheinstancesXc: X {O, 1} 

 
Example: The target concept corresponds to the value of the attribute EnjoySport 

(i.e.,c(x)=1ifEnjoySport=Yes, and c(x)=0 if EnjoySport=No). 
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• Instances for which c(x)=1  are called positive examples,or members of the 

target concept. 

• Instancesforwhichc(x)=0 are called negative examples,or non-members of the 

target concept. 

• The ordered pair(x,c(x)) to describe the training example consisting of the 

instancex and its target conceptvalue c(x). 

• D to denote the set of available training examples 

• The symbol H to denote the set of all possible hypotheses that the learner 

may consider regarding the identity of the target concept. Each hypothesis h 

in Hrepresents a Boolean-valued function defined over X 

h:X {O,1} 

 
• The goal of the learner is to find a hypothesis such that h(x)=c(x)forall x in 

X. 
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Example Sky AirTemp Humidity Wind Water Forecast EnjoySport 

 

1 Sunny Warm Normal Strong Warm Same Yes 

 
2 Sunny Warm High Strong Warm Same Yes 

 
3 Rainy Cold High Strong Warm Change No 

 
4 Sunny Warm High Strong Cool Change Yes 
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The Inductive Learning Hypothesis 
 

 
Any hypothesis found to approximate the target function well over a sufficiently 

large set of training examples will also approximate the target function well 

overother unobserved examples. 



 

T.Aparna, Assistant Professor, CSE, NRCM 
 

Concept learning as Search 

• Concept learning can be viewed as the task of searching through a large space 

of hypotheses implicitly defined bythe hypothesis representation. 

• The goal of this search is to find the hypothesis that best fits the training 

examples. 

 
Example, the instances X and hypotheses H in the EnjoySport learningtask. 

The attribute Sky has three possible values, and AirTemp,Humidity 

,Wind,WaterForecast each have two  possible values, the instance space X 

contains exactly 

• 3.2.2.2.2.2=96 Distinct instances 

• 5.4.4.4.4.4=5120 syntactically distinct hypotheses within H. 

Every hypothesis containing one or more"Φ"symbols represents the empty set of 
instances; that is, it classifies every instance as negative. 
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• 1 +(4.3.3.3.3.3)=973. SeDemepaaknD,tAiscsta. Plrolfy,.De dpti.softCiSnE,cCatnahrayEnpggo.Ctohlleegeses 56 



General-to-SpecificOrderingofHypotheses 
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• Considerthetwohypotheses 

h1= (Sunny,?,?,Strong,?,?) 

h2= (Sunny,?,?,?,?,?) 

 
• Considerthesetsofinstancesthatareclassifiedpositivebyhlandbyh2. 

• h2imposesfewerconstraintsontheinstance, itclassifies more instancesaspositive. 

So, any instance classified positive by hl will also be classified positiveby 

h2.Therefore, h2is more generalthan hl. 



General-to-SpecificOrderingofHypotheses 
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• Givenhypotheses hjandhk,hjismore-general-thanor-

equaldohkifandonlyifanyinstancethatsatisfies hkalsosatisfieshi 

 
Definition:Let hjandhkbeBoolean-
valuedfunctionsdefinedoverX.Thenhjismoregeneral-than-or-equal-

tohk(writtenhj≥ hk)ifand only if 
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• Inthe figure, thebox on the 

leftrepresentsthesetXofallinstances, 

the box on the right theset H ofall 

hypotheses. 

 
• Eachhypothesiscorrespondstosomes

ubsetofX-

thesubsetofinstancesthatitclassifies 

positive. 

 
• The arrows connecting 

hypothesesrepresent the more - 

general -

thanrelation,withthearrowpointingt

owardthelessgeneralhypothesis. 

 
• Notethesubsetofinstancescharacteri

zedbyh2subsumesthesubset 

characterized by h l , henceh2 is 

more-general–thanh1 
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FIND-S: Finding a Maximally Specific 
Hypothesis 

 

FIND-SAlgorithm 

1. InitializehtothemostspecifichypothesisinH 

2. Foreachpositivetraininginstancex 

Foreachattributeconstraint aiinh 

Iftheconstraintaiissatisfiedbyx 

Thendonothing 

Elsereplaceaiinh bythenextmoregeneralconstraintthatissatisfiedby x 

3. Outputhypothesish 
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Toillustratethisalgorithm,assumethelearnerisgiventhesequenceoftrainingexamp
lesfrom theEnjoySporttask 

 

Example Sky AirTemp Humidity Wind Water Forecast EnjoySport 

1 Sunny Warm Normal Strong Warm Same Yes 

2 Sunny Warm High Strong Warm Same Yes 

3 Rainy Cold High Strong Warm Change No 

4 Sunny Warm High Strong Cool Change Yes 

ThefirststepofFIND-SistoinitializehtothemostspecifichypothesisinH 

h-(Ø,Ø,Ø, Ø,Ø,Ø) 
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x1=<SunnyWarmNormalStrongWarmSame>,+ 

Observing the first training example, it is clear that our hypothesis is too specific. 
Inparticular, none of the "Ø" constraints in h are satisfied by this example, so each 
isreplacedbythe nextmore general constraintthat fitsthe example 

h1=<SunnyWarmNormalStrongWarmSame> 

This h is still very specific; it asserts that all instances are negative except for 
thesinglepositive training example 

 

x2=<Sunny,Warm,High,Strong,Warm,Same>,+ 

The second training example forces the algorithm to further generalize h, this 
timesubstituting a "?' in place of any attribute value in h that is not satisfied by the 
newexample 

h2=<SunnyWarm?StrongWarmSame> 
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x3=<Rainy,Cold,High,Strong,Warm,Change>,- 

Uponencounteringthethirdtrainingthealgorithmmakesnochangetoh.TheFIND-
Salgorithm simply ignores everynegative example. 

h3=<SunnyWarm?StrongWarmSame> 

 

x4=<SunnyWarmHighStrongCoolChange>,+ 

Thefourthexampleleadstoafurthergeneralizationof h 

h4=<SunnyWarm?Strong??> 
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ThekeypropertyoftheFIND-Salgorithmis 

• FIND-S is guaranteed to output the most specific hypothesis within H that 
isconsistentwith thepositive training examples 

• FIND-S algorithm’s final hypothesis will also be consistent with the 
negativeexamples provided the correct target concept is contained in H, and 
provided thetrainingexamples are correct. 
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UnansweredbyFIND-S 
 

1. Has the learner convergedtothecorrecttargetconcept? 

2. Why prefer the mostspecifichypothesis? 

3. Arethetrainingexamplesconsistent? 

4. Whatifthereareseveralmaximallyspecificconsistenthypotheses? 



66 

 

T.Aparna, Assistant Professor, CSE, NRCM  

VersionSpaceandCANDIDATEE
LIMINATIONAlgorithm 

ThekeyideaintheCANDIDATE-
ELIMINATIONalgorithmistooutputadescriptionofthesetofallhypothesesconsistentwiththetr
ainingexamples 

 
Representation 

• Definition:AhypothesishisconsistentwithasetoftrainingexamplesDifandonlyif 
h(x)=c(x)foreachexample(x,c(x))inD. 

Consistent (h,D)(x,c(x)D)h(x)=c(x)) 

 
Notedifferencebetweendefinitionsofconsistentandsatisfies 

• Anexample xissaidtosatisfyhypothesishwhenh(x) =1, regardless 
ofwhetherxisapositiveornegativeexampleofthetargetconcept. 

• anexamplexissaidtoconsistentwithhypothesishiffh(x)=c(x) 
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VersionSpace 

 
ArepresentationofthesetofallhypotheseswhichareconsistentwithD 

 

Definition: The version space, denoted VSH,Dwith respect to hypothesisspace Hand 
training examples D, is the subset of hypotheses from H consistent with thetraining 
examplesin D 

VSH,D{hH| Consistent(h,D)} 
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The LIST-THEN-ELIMINATE Algorithm 
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TheLIST-THEN-ELIMINATEalgorithmfirstinitializestheversionspacetocontainall 
hypotheses in H and then eliminates any hypothesis found inconsistent with 
anytraining example. 



The LIST-THEN-ELIMINATE Algorithm 
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1. VersionSpacecalistcontainingeveryhypothesisinH 

2. Foreachtrainingexample,(x,c(x)) 

removefromVersionSpaceanyhypothesishforwhichh(x)≠c(x) 

3. OutputthelistofhypothesesinVersionSpace 
 

TheLIST-THEN-ELIMINATEAlgorithm 

 

 

• List-Then-Eliminateworksinprinciple,solongasversionspaceisfinite. 

• However,sinceitrequiresexhaustiveenumerationofallhypothesesinpracticeitisnot 
feasible. 



AMoreCompactRepresentationforVersionSpaces 
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• Theversionspaceisrepresentedbyitsmostgeneralandleastgeneralmembers. 

• Thesemembersformgeneralandspecificboundarysetsthatdelimittheversionspace 
withinthe partiallyordered hypothesis space. 



72 

 

T.Aparna, Assistant Professor, CSE, NRCM  

• Aversionspacewithitsgeneral 

and specific boundarysets. 

• The version space includes 

allsix hypotheses shown here, 

butcanberepresentedmoresimpl

yby SandG. 

• Arrows indicate instance of 

themore-general-than 

relation.Thisistheversion

spaceforthe 

Enjoysportconceptlearning 

• problemandtrainingexamples

describedinbelowtable 

Example Sky AirTemp Humidity Wind Water Forecast EnjoySport 

1 Sunny Warm Normal Strong Warm Same Yes 

2 Sunny Warm High Strong Warm Same Yes 

3 Rainy Cold High Strong Warm Change No 

4 Sunny Warm High 
Deepak 

Strong 
D,Asst.Prof 

Cool Change Yes 
College .,Dept.ofC SE,CanaraEngg. 
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Definition:ThegeneralboundaryG,withrespecttohypothesisspaceHandtrainingdataD
,is the setof maximallygeneral members ofHconsistentwithD 

G{gH|Consistent(g,D)(g'H)[(g'gg)Consistent(g',D)]} 

 

 
 

Definition:ThespecificboundaryS,withrespecttohypothesisspaceHandtraining data 
D, is the set of minimally general (i.e., maximally specific) members 
ofHconsistentwithD. 

S{sH|Consistent(s,D)(s'H)[(sgs')Consistent(s',D)]} 
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VersionSpacerepresentationtheorem 

 
Theorem: Let X be an arbitrary set of instances and Let H be a set ofBoolean-valued 

hypotheses defined over X. Let c : X →{O, 1} be an arbitrary target conceptdefined 

over X, and let D be an arbitrary set of training examples {(x, c(x))). For allX, H,c, 

and D such that Sand G are well defined, 

 

VSH,D={hH|(sS)(gG)(gghgs)} 
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ToProve: 

VSH,D={hH|(sS)(gG)(gghgs)} 

1. EveryhsatisfyingtherighthandsideoftheaboveexpressionisinVSH,D 

2. EverymemberofVSH,Dsatisfiestheright-handsideoftheexpression 

 

Sketchofproof: 

1. letg,h,sbearbitrarymembersofG,H,Srespectivelywithgghgs 

By the definition of S, s must be satisfied by all positive examples in D. Because h gs ,h must alsobe 

satisfied byall positive examples inD. 

By the definition of G, g cannot be satisfied by any negative example in D, and because g g h hcannot 
be satisfied by any negative example in D. Because h is satisfied by all positive examples in 
Dandbynonegativeexamples inD,his consistent with D,and thereforehisa memberofVSH,D 

 

2. ItcanbeprovenbyassumingsomehinVSH,D,thatdoesnotsatisfytheright-
handsideoftheexpression,thenshowing thatthis leadstoan inconsistency 
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TheCANDIDATE-ELIMINATIONLearningAlgorithm 

 
The CANDIDATE-ELIMINTION algorithm computes the version space 
containingall hypotheses from H that are consistent with an observed sequence of 
trainingexamples. 



 77 

 

T.Aparna, Assistant Professor, CSE, NRCM  

Initialize G to the set of maximally general hypotheses in 

HInitialize S to the set of maximally specific hypotheses in 

HForeachtraining example d, do 

• Ifdisapositiveexample 

• RemovefromGanyhypothesisinconsistentwithd 

• Foreach hypothesissinSthatisnotconsistentwithd 

• RemovesfromS 

• AddtoSallminimalgeneralizationshofssuchthat 

• hisconsistentwithd,andsomememberofGismoregeneralthanh 

• RemovefromSany hypothesisthatismoregeneralthananotherhypothesisinS 

 

• Ifdisanegativeexample 

• Removefrom Sany hypothesisinconsistentwithd 

• ForeachhypothesisginGthatisnotconsistentwithd 

• RemovegfromG 

• AddtoGallminimalspecializationshofgsuchthat 

• hisconsistentwithd,andsomememberofSismorespecificthanh 

• RemovefromGanyhypothesisthatislessgeneral thananotherhypothesisinG 
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AnIllustrativeExample 

TheboundarysetsarefirstinitializedtoGoandSo,themostgeneralandmostspecifichypoth
esesin H. 

 

S0 

 
 
 
 
 
 
 

G0 ?,?,?,?,?,?

,,,,,
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?,?,?,?,?,?

Fortrainingexampled,  
 

Sunny,Warm,Normal,Strong,Warm,Same+ 
 

 

 

S0 
 

S1 

 
 
 
 
 

 
G0,G1 

Sunny,Warm,Normal,Strong,Warm,Same

,,,,.



Fortrainingexampled, 
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?,?,?,?,?,?

 

Sunny,Warm,High,Strong,Warm,Same+ 
 

 

 
 

S1

S2 

 
 
 

 
G1,G2 

Sunny,Warm,?,Strong,Warm,Same

Sunny,Warm,Normal,Strong,Warm,Same



Fortrainingexampled, 
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Rainy,Cold,High,Strong,Warm,Change







S2,S3 
 
 
 
 
 
 
 
 
 
 
 

 

G3 
 

G2 ?,?,?,?,?,?

Sunny,?,?,?,?,??,Warm,?,?,?,??,?,?,?,?,Same

Sunny,Warm,?,Strong,Warm,Same



Fortrainingexampled, 
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Sunny,Warm,High,Strong,CoolChange+ 
 

 

 

 

 

S3 
 

S4 
 
 
 
 
 
 

G4 
 

G3 Sunny,?,?,?,?,??,Warm,?,?,?,??,?,?,?,?,Same

Sunny,?,?,?,?,??,Warm,?,?,?,?

Sunny,Warm,?,Strong,?,?

Sunny,Warm,?,Strong,Warm,Same



 

 

 
 
 
 
 

The final version space for the EnjoySportconcept learning problem and 

trainingexamplesdescribedearlier.
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InductiveBias 

Thefundamentalquestionsforinductiveinference 

• Whatifthetargetconceptisnotcontainedinthehypothesisspace? 

• Canweavoidthisdifficultybyusing 

ahypothesisspacethatincludeseverypossiblehypothesis? 

• Howdoesthesizeofthishypothesisspaceinfluencetheabilityofthealgorithmtogeneralizet

ounobservedinstances? 

• Howdoesthesizeofthehypothesisspaceinfluencethenumberoftrainingexamples 

thatmustbeobserved? 
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Effectofincompletehypothesisspace 

PrecedingalgorithmsworkiftargetfunctionisinH 

WillgenerallynotworkiftargetfunctionnotinH 

Considerfollowingexampleswhichrepresenttargetfunction 
“sky=sunnyorsky=cloudy”: 

SunnyWarmNormalStrongCoolChange Y 
Cloudy WarmNormalStrongCoolChange Y 

RainyWarmNormalStrongCoolChange N 

IfapplyCandidateEliminationalgorithmasbefore,endupwithemptyVersionSpaceAfterf

irst twotrainingexample 

S=?WarmNormalStrongCoolChange

Newhypothesisisoverly generalanditcoversthethirdnegativetrainingexample!Our 
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Hdoesnot includetheappropriatec 
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Incompletehypothesisspace 

AnUnbiasedLearner 

• IfcnotinH,thenconsidergeneralizingrepresentationofHtocontainc 

• The size of the instance space X of days described by the six available attributes is 
96.The number of distinct subsets that can be defined over a set X containing |X| 
elements(i.e., thesizeofthepowersetofX)is2|X| 

• Recallthatthereare96instancesinEnjoySport;hencethereare296possiblehypothesesinfullsp

aceH 

• CandothisbyusingfullpropositionalcalculuswithAND,OR,NOT 

• HenceHdefinedonlybyconjunctionsofattributesisbiased(containingonly973h’s) 
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• Let us reformulate the Enjoysportlearning task in an unbiased way by defining a 
newhypothesisspaceH'thatcanrepresenteverysubsetofinstances;thatis,letH'correspondtoth
epowersetofX. 

• Onewayto definesuchan 

H'istoallowarbitrarydisjunctions,conjunctions,andnegationsofourearlierhypothes

es. 

 

Forinstance,thetargetconcept"Sky=SunnyorSky=Cloudy"couldthenbedescribedas 

(Sunny,?,?,?,?,?)V(Cloudy,?,?,?,?,?) 
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Definition: 

ConsideraconceptlearningalgorithmLforthesetofinstancesX. 

• LetcbeanarbitraryconceptdefinedoverX 

• LetDc={(x,c(x))}beanarbitrarysetoftrainingexamplesofc. 

• LetL(xi,Dc)denotetheclassificationassignedtotheinstancexibyLaftertrainingonthedataDc. 

• TheinductivebiasofLisany minimalsetofassertionsBsuch 
thatforanytargetconceptcandcorrespondingtrainingexamplesDc 

 
(xiX)[(BDcxi)├L(xi,Dc)] 
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Modelling inductive systems

 byequivalentdeductivesy

stems. 

Theinput-

outputbehavioroftheCANDIDA

TE-ELIMINATION 

algorithm using a hypothesis space 

His identical to that of a 

deductivetheorem prover utilizing the 

assertion"H contains the target 

concept." Thisassertion is

 therefore called

 theinductive bias of the 

CANDIDATE-ELIMINATION 

 algorithm. 

. 
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characterizinginductive systems 

by their inductive bias allowsmodelling them by their equivalentdeductive systems. This provides awayto compare inductive 

systemsaccording to their policies forgeneralizing beyond the observedtrainingdata 

 

 

 

 

 

 

 

 

 

 

 

 

 

DECISIONTREELEARNING 
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Decision tree learning is a method for 
approximatingdiscrete-valued target functions,in which 
thelearnedfunction is representedby adecision tree. 
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DECISIONTREEREPRESENTATION 
 

FIGURE: A 

decision tree for 

theconcept 

PlayTennis.Anexam

pleisclassified by 

sortingit through the 

tree 

totheappropriateleaf

node, then 

returningtheclassific

ationassociated with 

thisleaf 
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• Decision trees classify instances by sorting them down the tree from the root 

tosome leaf node, which provides the classificationof the instance. 

 
• Each node in the tree specifies a test of some attribute of the instance, and 

eachbranch descending from that node corresponds to one of the possible values 

forthisattribute. 

 
• An instance is classified by starting at the root node of the tree, testing theattribute 

specified by this node, then moving down the tree branch 

correspondingtothevalueoftheattributeinthegivenexample.Thisprocessisthenrepea

tedforthe subtree rootedat the new node. 
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• Decisiontreesrepresentadisjunctionofconjunctionsofconstraintsontheattrib

utevalues of instances. 

• Eachpathfromthetreeroottoaleafcorrespondstoaconjunctionofattributetests,an

d the treeitself toa disjunction of these conjunctions 

 
Forexample, 

The decision trees how n in above figure corresponds to the 

expression (Outlook =Sunny 𝖠Humidity = Normal) 

(Outlook=Overcast) 

(Outlook=Rain𝖠Wind=Weak) 
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APPROPRIATEPROBLEMSFOR 
DECISIONTREELEARNING 

 
Decisiontreelearningisgenerallybestsuitedtoproblemswiththefollowingcharacteristics: 

 

1. Instancesarerepresentedbyattribute-valuepairs–Instancesaredescribedbyafixed 
set of attributes and their values 

2. The target function has discrete output values – The decision tree assigns 
aBoolean classification (e.g., yes or no) to each example. Decision tree 
methodseasilyextendtolearningfunctions withmorethantwo possibleoutputvalues. 

3. Disjunctivedescriptionsmayberequired 
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4. The training data may contain errors – Decision tree learning methods arerobust 

to errors, both errors in classifications of the training examples and errorsinthe 

attribute values that describe these examples. 

 
5. Thetrainingdatamaycontainmissingattributevalues–

Decisiontreemethodscanbe used evenwhen some training 

exampleshaveunknown values 

 
• Decision tree learning has been applied to problems such as learning to 

classifymedical patients by their disease, equipment malfunctions by their cause, 

andloan applicants by their likelihood ofdefaulting on payments. 

 
• Such problems, in which the task is to classify examples into one of a discrete 

setofpossible categories, are often referred toasclassification problems. 
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THEBASICDECISIONTREE LEARNING 
ALGORITHM 

 
• Mostalgorithmsthathavebeendevelopedforlearningdecisiontreesarevariations on a 

core algorithm that employs a top-down, greedy search through 
thespaceofpossibledecisiontrees.ThisapproachisexemplifiedbytheID3algorithmand 
itssuccessor C4.5 
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WhatistheID3algorithm? 
 

• ID3standsforIterativeDichotomiser3 

• ID3isaprecursortotheC4.5Algorithm. 

• TheID3algorithmwasinventedbyRossQuinlanin1975 

• Used to generate a decision tree from a given data set by employing a top-

down,greedysearch, to test each attribute at every nodeof thetree. 

• Theresultingtreeisusedtoclassifyfuturesamples. 
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ID3algorithm 

ID3(Examples,Target_attribute,Attributes) 

 
Examples are the training examples. Target_attribute is the attribute whose value is tobe predictedby 

the tree. Attributes is a list of other attributes that may be tested by the learned decision 

tree.Returnsadecisiontree that correctlyclassifies thegiven Examples. 

 
 CreateaRootnodeforthetree 

 IfallExamplesarepositive,Returnthesingle-nodetreeRoot,with label=+ 

 IfallExamplesarenegative,Returnthesingle-nodetreeRoot,withlabel=- 

 IfAttributesisempty,Returnthesingle-

nodetreeRoot,withlabel=mostcommonvalueofTarget_attributein Examples 
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 OtherwiseBegin 

 A←theattributefromAttributesthatbest*classifiesExamples 

 ThedecisionattributeforRoot←A 

 Foreachpossiblevalue,vi,ofA, 

 AddanewtreebranchbelowRoot,correspondingtothetestA=vi 

 LetExamplesvi,bethesubsetofExamplesthathavevalueviforA 

 IfExamplesvi,isempty 

 Thenbelowthisnewbranchaddaleafnodewithlabel=mostcommonvalueofTarget_attri

buteinExamples 

 Elsebelowthisnewbranchaddthesubtree 

ID3(Examplesvi,Targe_tattribute,Attributes–{A})) 

 
 End 

 ReturnRoot 

 
* Thebestattributeistheonewithhighestinformation gain 
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WhichAttributeIstheBestClassifier? 

• The central choice in the ID3 algorithm is selecting which attribute to test at 
eachnode in thetree. 

• Astatisticalpropertycalledinformationgainthatmeasureshowwellagivenattributese
paratesthetraining examples accordingto theirtargetclassification. 

• ID3usesinformationgainmeasuretoselectamongthecandidateattributesateach 
step while growingthe tree. 
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ENTROPYMEASURESHOMOGENEITYOFEXAMPLES 

 
• Todefineinformationgain,webeginbydefiningameasurecalledentropy. 

Entropymeasurestheimpurityofacollectionofexamples. 

• GivenacollectionS,containingpositiveandnegativeexamplesofsometargetconce
pt,theentropy of Srelative to this Booleanclassificationis 

 

 
 

 

 
 

Where,  
p+istheproportionofpositiveexamplesinS 

p- istheproportionofnegativeexamplesinS. 
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Example:Entropy 

• Suppose S is a collection of 14 examples of some boolean concept, including 
9positive and 5 negative examples. Then the entropy of S relative to this 
booleanclassificationis 
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• Theentropyis0ifallmembersofSbelongtothesameclass 

• Theentropyis1whenthecollectioncontainsanequalnumberofpositiveandnegativ
e examples 

• Ifthecollectioncontainsunequalnumbersofpositiveandnegativeexamples,theentro
pyis between 0 and 1 
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INFORMATIONGAINMEASURESTHEEXPECTEDREDUCTIO
NINENTROPY 

 
• Information gain, is the expected reduction in entropy caused by partitioning 

theexamplesaccording tothis attribute. 

• Theinformationgain,Gain(S,A)ofanattributeA,relativetoacollectionofexamples S, 
is defined as 
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Example:Informationgain 
 

 

Let,Values(Wind)={Weak,Strong} 

S 

SWeak

SStrong 

=[9+,5−] 

=[6+,2−] 

=[3+,3−] 

 

InformationgainofattributeWind: 

 
Gain(S,Wind)=Entropy(S)−8/14Entropy(SWeak)−6/14Entropy(SStrong) 

=0.94–(8/14)*0.811–(6/14)*1.00 

=0.048 
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AnIllustrativeExample 

• Toillustratetheoperation ofID3,considerthelearningtask 

representedbythetrainingexamples of below table. 

• HerethetargetattributePlayTennis,which canhave values yes 

ornofordifferentdays. 

• Considerthefirststepthroughthealgorithm,inwhichthetopmostnodeofthedecision 

treeis created. 
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Day Outlook Temperature Humidity Wind PlayTennis 

D1 Sunny Hot High Weak No 

D2 Sunny Hot High Strong No 

D3 Overcast Hot High Weak Yes 

D4 Rain Mild High Weak Yes 

D5 Rain Cool Normal Weak Yes 

D6 Rain Cool Normal Strong No 

D7 Overcast Cool Normal Strong Yes 

D8 Sunny Mild High Weak No 

D9 Sunny Cool Normal Weak Yes 

D10 Rain Mild Normal Weak Yes 

D11 Sunny Mild Normal Strong Yes 

D12 Overcast Mild High Strong Yes 

D13 Overcast Hot Normal Weak Yes 

D14 Rain Mild High Strong No 
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ID3 determines the information gain for each candidate attribute (i.e., 

Outlook,Temperature, Humidity, and Wind), then selects the one with highest 

informationgain 
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Theinformationgainvaluesforallfourattributesare 
 

 

• Gain(S,Outlook) 

 
• Gain(S,Humidity) 

 
• Gain(S,Wind) 

=0.246 

 
=0.151 

 
=0.048 

 

 

• Gain(S,Temperature) =0.029 

• According to the information gain measure, the Outlook attribute provides thebest 

prediction of the target attribute, PlayTennis, over the training 

examples.Therefore, Outlook is selected as the decision attribute for the root node, 

andbranches are created below the root for each of its possible values i.e., 
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Sunny,Overcast,and Rain. 



DeepakD,Asst.Prof.,Dept.ofCSE,CanaraEngg.College 24 

 

T.Aparna, Assistant Professor, CSE  

 



 25 

 

T.Aparna, Assistant Professor, CSE  

 
 

 

 

 
 

SRain={D4,D5,D6,D10, D14} 

 
Gain(SRain,Humidity)=0.970–(2/5)1.0–(3/5)0.917=0.019 

Gain(SRain,Temperature)=0.970–(0/5)0.0–(3/5)0.918–(2/5)1.0=0.019 

Gain(SRain,Wind)=0.970–(3/5)0.0–(2/5)0.0=0.970 



 

T.Aparna, Assistant Professor, CSE 
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HYPOTHESISSPACESEARCHINDECISIONTREEL
EARNING 

 
• ID3 can be characterized as searching a space of hypotheses for one that fits 

thetraining examples. 

• ThehypothesisspacesearchedbyID3isthesetofpossibledecisiontrees. 

• ID3 performs a simple-to complex, hill-climbing search through this 
hypothesisspace,beginningwiththeemptytree,thenconsideringprogressivelymoreela
boratehypothesesinsearchofadecisiontreethatcorrectlyclassifiesthetraining data 



 28 

 

T.Aparna, Assistant Professor, CSE  

Figure: 

• HypothesisspacesearchbyID3. 

• ID3searchesthroughthespaceofpossible 

decision trees from simplest 

toincreasinglycomplex,guidedbytheinfo

rmationgain heuristic 
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ByviewingID3intermsofitssearchspaceandsearchstrategy,wecanget 
someinsightintoits capabilities andlimitations 

 

1. ID3's hypothesis space of all decision trees is a complete space of finite discrete-
valued functions, relative to the available attributes. Because every finite discrete-
valuedfunction can be represented by some decision tree 

• ID3avoids oneofthemajorrisksofmethodsthatsearchincompletehypothesisspaces 

:that thehypothesis space mightnotcontain thetarget function. 
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2. ID3maintainsonlyasinglecurrenthypothesisasitsearchesthroughthespaceof 
decision trees. 

Forexample,withtheearlierversionspacecandidateeliminationmethod,whichmaint
ains the set of all hypotheses consistent with the available trainingexamples. 

Bydeterminingonlyasinglehypothesis,ID3losesthecapabilitiesthatfollowfromexplici
tlyrepresenting allconsistenthypotheses. 

For example, it does not have the ability to determine how many 
alternativedecision trees are consistent with the available training data, or to 
pose newinstancequeriesthat 
optimallyresolveamongthesecompetinghypotheses 
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3. ID3 in its pure form performs no backtracking in its search. Once it selects 
anattribute to test at a particular level in the tree, it never backtracks to reconsider 
thischoice. 

• In the case of ID3, a locally optimal solution corresponds to the decision tree 
itselects along the single search path it explores. However, this locally 
optimalsolution may be less desirable than trees that would have been encountered 
along adifferentbranch of the search. 

 

4. ID3usesalltrainingexamplesateachstepinthesearchtomakestatisticallybaseddecis
ions regarding how to refineits current hypothesis. 

• Oneadvantageofusingstatisticalpropertiesofalltheexamplesisthattheresultingsearc
h ismuch less sensitiveto errorsinindividualtraining examples. 

• ID3 can be easily extended to handle noisy training data by 
modifyingitsterminationcriteriontoaccepthypotheses 
thatimperfectlyfitthetrainingdata. 
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INDUCTIVEBIASINDECISIONTREELEARNING 
 

Inductive bias is the set of assumptions that, together with the training 
data,deductivelyjustifytheclassificationsassignedbythelearnertofutureinstances 

 

Givenacollectionoftrainingexamples,therearetypicallymanydecisiontreesconsistent
with theseexamples.Which ofthese decisiontreesdoes ID3choose? 

 

ID3searchstrategy 

(a) selectsinfavourofshortertreesoverlongerones 

(b) selectstreesthatplacethe attributeswith highestinformationgainclosesttotheroot. 
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ApproximateinductivebiasofID3:Shortertreesarepreferredoverlargertrees 

 
• Consideranalgorithmthatbeginswiththeemptytreeandsearchesbreadthfirst 

throughprogressivelymorecomplextrees. 

• Firstconsideringalltreesofdepth1,thenalltrees ofdepth2,etc. 

• Once itfinds a decision tree consistent with thetraining data, it returns 
thesmallestconsistenttreeatthatsearchdepth(e.g.,thetreewiththefewestnodes). 

• Letuscallthisbreadth-firstsearchalgorithmBFS-ID3. 

• BFS-ID3findsashortest decision treeand thus exhibitsthe bias"shortertrees 
arepreferredover longer trees. 
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A closer approximation to the inductive bias of ID3: Shorter trees are preferredover 
longer trees. Trees that place high information gain attributes close to the rootare 
preferred over those thatdo not. 

 

• ID3 can be viewed as an efficient approximation to BFS-ID3, using a 
greedyheuristic search to attempt to find the shortest tree without conducting the 
entirebreadth-firstsearchthrough thehypothesis space. 

• Because ID3 uses the information gain heuristic and a hill climbing strategy, 
itexhibitsa more complexbiasthan BFS-ID3. 

• In particular, it does not always find the shortest consistent tree, and it is biased 
tofavourtreesthat place attributeswithhigh informationgain closest tothe root. 



RestrictionBiasesandPreferenceBiases 
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DifferencebetweenthetypesofinductivebiasexhibitedbyID3andbytheCANDIDATE-

ELIMINATIONAlgorithm. 

ID3 

• ID3searchesacompletehypothesisspace 

• Itsearchesincompletelythroughthisspace,fromsimpletocomplexhypotheses,untilitstermin

ation condition ismet 

• Itsinductivebiasissolelyaconsequenceoftheorderingofhypothesesbyitssearchstrategy. 
Itshypothesisspace introducesno additional bias 

CANDIDATE-ELIMINATIONAlgorithm 

• TheversionspaceCANDIDATE-
ELIMINATIONAlgorithmsearchesanincompletehypothesisspace 

• Itsearchesthisspacecompletely,findingeveryhypothesisconsistentwiththetrainingdata. 

• Its inductive bias is solely a consequence of the expressive power of its
 hypothesisrepresentation.Its search strategy introducesno additionalbias 



RestrictionBiasesandPreferenceBiases 
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• The inductive bias of ID3 is a preference for certain hypotheses over others 
(e.g.,preference for shorter hypotheses over larger hypotheses), with no hard 
restrictionon the hypotheses that can be eventually enumerated. This form of bias is 
called apreferencebiasor a search bias. 

 

• The bias of the CANDIDATE ELIMINATION algorithm is in the form of 
acategorical restriction on the set of hypotheses considered. This form of bias 
istypicallycalled arestriction biasor alanguage bias. 
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Whichtypeofinductivebiasispreferredinordertogeneralizebeyondthetrainingdata,a 
preference bias or restriction bias? 

 

 

 

• A preference bias is more desirable than a restriction bias, because it allows 
thelearner to work within a complete hypothesis space that is assured to contain 
theunknown target function. 

• In contrast, a restriction bias that strictly limits the set of potential hypotheses 
isgenerally less desirable, because it introduces thepossibilityofexcluding 
theunknown target function altogether. 
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Occam'srazor 
 

Occam's razor: is the problem-solving principle that the simplest solution tends to 
bethe right one. When presented with competing hypotheses to solve a problem, 
oneshouldselect the solution with the fewest assumptions. 

 

Occam'srazor:“Preferthesimplesthypothesisthatfitsthedata”. 
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WhyPreferShortHypotheses? 
 

Argumentinfavour: 

Fewershorthypothesesthanlongones: 

• Shorthypothesesfitsthetrainingdatawhicharelesslikelytobecoincident 

• Longerhypothesesfitsthetrainingdatamightbecoincident. 

Manycomplexhypothesesthatfitthecurrenttrainingdatabutfailtogeneralizecorrec
tly tosubsequent data. 
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Argumentopposed: 

• There are few small trees, and our priori chance of finding one consistent with 
anarbitrary set of data is therefore small. The difficulty here is that there are 
verymanysmallsetsofhypothesesthatonecandefinebutunderstoodbyfewerlearner. 

• The size of a hypothesis is determined by the representation used internally by 
thelearner.Occam'srazorwillproducetwodifferenthypothesesfromthesametrainingex
ampleswhenitisappliedbytwolearners,bothjustifyingtheircontradictory conclusions 
by Occam's razor. On this basis we might be tempted torejectOccam's razor 
altogether. 
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ISSUESINDECISIONTREELEARNING 

1. AvoidingOverfittingtheData

Reduced error 

pruningRulepost-pruning 

2. IncorporatingContinuous-ValuedAttributes 

3. AlternativeMeasuresforSelectingAttributes 

4. HandlingTrainingExampleswithMissingAttributeValues 

5. HandlingAttributeswithDifferingCosts 
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1. AvoidingOverfittingtheData 

 
• The ID3 algorithm grows each branch of the tree just deeply enough to 

perfectlyclassify the training examples but it can lead to difficulties when there is 
noise inthe data, or when the number of training examples is too small to produce 
arepresentative sample of the true target function. This algorithm can produce 
treesthatoverfitthe training examples. 

 

• Definition - Overfit: Given a hypothesis space H, a hypothesis h ∈ H is said tooverfit 
the training data if there exists some alternative hypothesis h' ∈H, 
suchthathhassmallererrorthanh'overthetrainingexamples,buth'hasasmallererrorthan 
hover the entire distribution of instances. 



 43 

 

T.Aparna, Assistant Professor, CSE  

• Thebelowfigureillustratestheimpactofoverfittinginatypicalapplicationofdecisiontreelearnin
g. 

• Thehorizontalaxisofthis 
plotindicatesthetotalnumberofnodesinthedecisiontree,asthetreeisbeingconstructed.Theverticalaxis indicates 
theaccuracy ofpredictionsmadebythe tree. 

• Thesolidlineshowstheaccuracyofthedecisiontreeoverthetrainingexamples.Thebrokenlineshowsaccuracymeas
uredoveranindependentsetoftestexample 

• Theaccuracyofthetreeoverthetrainingexamplesincreasesmonotonicallyasthetreeisgrown.The 
accuracymeasuredovertheindependenttestexamplesfirstincreases,thendecreases. 
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Howcanitbepossiblefortreehtofitthetrainingexamplesbetterthanh',butforittoperformmorepoorl

y over subsequentexamples? 

1. Overfittingcanoccurwhenthetrainingexamplescontainrandomerrorsornoise 

2. Whensmallnumbersofexamplesareassociatedwithleafnodes. 

 

NoisyTrainingExample 

Example15:<Sunny,Hot,Normal,Strong,-> 

• Exampleisnoisybecausethecorrectlabelis+ 

• Previouslyconstructedtreemisclassifiesit 
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Approaches toavoidingoverfittingindecisiontreelearning 

• Pre-pruning(avoidance):Stopgrowingthetree earlier,beforeitreachesthe point whereit 

perfectly classifies thetrainingdata 

• Post-pruning(recovery):Allowthetreetooverfitthedata,andthenpost-prunethetree 

 
Criterionusedtodeterminethecorrectfinaltreesize 

• Use a separate set of examples, distinct from the training examples, to evaluate the utility ofpost-
pruningnodes from the tree 

• Usealltheavailabledatafortraining,butapplyastatisticaltesttoestimatewhetherexpanding (or 
pruning) a particular node is likely to produce an improvement beyond thetrainingset 

• Use measure of the complexity for encoding the training examples and the decision tree,halting 
growth of the tree when this encoding size is minimized. This approach is called 
theMinimumDescription Length 

MDL–Minimize: size(tree)+size(misclassifications(tree)) 
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Reduced-ErrorPruning 

• Reduced-error pruning, is to consider each of the decision nodes in the tree to 
becandidates for pruning 

• Pruning a decision node consists of removing the subtree rooted at that 
node,making it a leaf node, and assigning it the most common classification of 
thetrainingexamples affiliated with that node 

• Nodes are removed only if the resulting pruned tree performs no worse than-
theoriginalover the validation set. 

• Reduced error pruning has the effect that any leaf node added due to 
coincidentalregularitiesinthetrainingsetislikelytobeprunedbecausethesesamecoinci
dencesare unlikelyto occur inthe validation set 
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Theimpactofreduced-errorpruningontheaccuracyofthedecisiontreeisillustratedinbelowfigure 

 

• The additional line in figure shows accuracy over the test examples as the tree is pruned. 
Whenpruning begins, the tree is at its maximum size and lowest accuracy over the test set. As 
pruningproceeds,the numberofnodes isreduced andaccuracy overthetestset increases. 

• The available data has been split into three subsets: the training examples, the validation 
examplesused for pruning the tree, and a set of test examples used to provide an unbiased estimate 
ofaccuracyoverfutureunseen examples.Theplotshowsaccuracyoverthetrainingandtestsets. 
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ProsandCons 

Pro:ProducessmallestversionofmostaccurateT(subtreeofT)Con: 

Uses less datato constructT 

CanaffordtoholdoutDvalidation?.If not(dataistoolimited),maymakeerrorworse(insufficient 
Dtrain) 
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RulePost-Pruning 

Rulepost-pruningissuccessfulmethodforfindinghighaccuracyhypotheses 

 

Rulepost-pruninginvolvesthefollowingsteps: 

1. Inferthedecisiontreefromthetrainingset,growingthetreeuntil thetrainingdata is fit 
aswell aspossibleand allowing overfittingtooccur. 

2. Convertthe learnedtreeinto anequivalent setofrulesbycreating oneruleforeach 
path from the rootnode to aleaf node. 

3. Prune(generalize)eachrulebyremovinganypreconditionsthatresultinimprovingits 
estimatedaccuracy. 

4. Sorttheprunedrulesbytheirestimatedaccuracy, 
andconsidertheminthissequencewhen classifying subsequent instances. 
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ConvertingaDecisionTreeintoRules 
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Forexample,considerthedecisiontree.Theleftmostpathofthetreeinbelowfigureistransl
ated intothe rule. 

IF(Outlook=Sunny)^(Humidity=High)TH

ENPlayTennis= No 

 
Giventheaboverule,rulepost-

pruningwouldconsiderremovingthepreconditions(Outlook=

Sunny) and (Humidity = High) 

 
• Itwouldselectwhicheverofthesepruningstepsproducedthegreatestimprovementinesti

matedruleaccuracy,thenconsiderpruningthesecondpreconditionas a furtherpruning 
step. 

• Nopruningstepisperformedifitreducestheestimatedruleaccuracy. 
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There are three main advantages by converting the decision tree to rules 
beforepruning 

• Converting to rules allows distinguishing among the different contexts in which 
adecision node is used. Because each distinct path through the decision tree 
nodeproduces a distinct rule, the pruning decision regarding that attribute test can 
bemade differently for eachpath. 

• Converting to rules removes the distinction between attribute tests that occur 
nearthe root of the tree and those that occur near the leaves. Thus, it avoid 
messybookkeeping issues such as how to reorganize the tree if the root node is 
prunedwhileretaining part ofthe subtree belowthis test. 

• Convertingtorulesimprovesreadability. Rulesareofteneasierfortounderstand. 
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2.IncorporatingContinuous-ValuedAttributes 

 
Continuous-valueddecisionattributescanbeincorporatedintothelearnedtree. 

 

TherearetwomethodsforHandling ContinuousAttributes 

1. Definenewdiscretevaluedattributesthatpartitionthecontinuousattributevalueintoa 
discrete set ofintervals. 

E.g.,{high≡Temp>35ºC,med≡10ºC<Temp≤35ºC,low≡Temp≤10ºC} 

 

2. Usingthresholdsforsplittingnodese.g.,A

≤aproducessubsetsA≤aandA>a 
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Whatthreshold-basedbooleanattributeshouldbedefinedbasedonTemperature? 
 

 

 
Pickathreshold,c,thatproduces thegreatestinformationgain 

• In the current example, there are two candidate thresholds, corresponding to 
thevalues of Temperature at which the value of PlayTennischanges: (48 + 60)/2, 
and(80 + 90)/2. The information gain can then be computed for each of the 
candidateattributes,Temperature>54,andTemperature>85andthebestcanbeselected(Te
mperature>54) 
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3. AlternativeMeasuresforSelectingAttributes 

 
Theproblemisifattributeswithmanyvalues,Gainwillselectit? 

Example: consider the attribute Date, which has a very large number of 
possiblevalues. (e.g.,March 4, 1979). 

• IfthisattributeisaddedtothePlayTennisdata,itwouldhavethehighestinformation gain 
of any of the attributes. This is because Date alone perfectlypredicts the target 
attribute over the training data. Thus, it would be selected as 
thedecisionattributefortherootnodeofthetreeandleadtoatreeofdepthone,whichperfect
ly classifies thetraining data. 

• This decision tree with root node Date is not a useful predictor because it 
perfectlyseparates thetraining data,butpoorlypredict onsubsequent examples. 
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OneApproach:UseGainRatioinsteadofGain 

 

• Thegainratiomeasurepenalizesattributesbyincorporatingasplitinformation,that is 
sensitiveto how broadlyand uniformlytheattribute splitsthe data 

 
 

 
 

• where SiissubsetofS,forwhich attributeAhasvaluevi 
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4. HandlingTrainingExampleswithMissingAttributeValues 

 
Thedatawhichisavailablemaycontainmissingvaluesforsomeattributes 

 

Example:Medicaldiagnosis 

• <Fever=true,Blood-Pressure=normal,…,Blood-Test=?,…> 

• Sometimesvaluestrulyunknown,sometimeslowpriority(orcosttoohigh) 
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Example:PlayTennis 
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Strategiesfordealingwiththemissingattributevalue 

• If node n test A, assign most common value of A among other training 
examplessortedto noden 

• Assignmostcommonvalue ofAamong other trainingexamples with 
sametargetvalue 

• AssignaprobabilitypitoeachofthepossiblevaluesviofAratherthansimplyassigningth
e most common value toA(x) 
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5. HandlingAttributeswithDifferingCosts 

 
Insomelearningtaskstheinstanceattributesmayhaveassociatedcosts.Fore

xample: 

• In learning to classify medical diseases, the patients described in terms 
ofattributessuchasTemperature,BiopsyResult,Pulse,BloodTestResults,etc. 

• Theseattributesvarysignificantlyintheircosts,bothintermsofmonetarycostandco
stto patient comfort 

• Decisiontreesuselow-costattributeswherepossible,dependsonlyonhigh-
costattributesonlywhen needed to producereliable classifications 
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HowtoLearnAConsistentTreewithLowExpectedCost? 

 
OneapproachisreplaceGainbyCost-Normalized-Gain 

 

Examplesofnormalizationfunctions 
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ArtificialNeuralNetworks 



 

 

Overview 
 

1. Introduction 

2. ANNrepresentations 

3. PerceptronTraining 

4. GradientDescentandDelta Rule 

5. MultilayernetworksandBackpropagationalgorithm 

6. Remarksonthebackpropagationalgorithm 

7. Anillustrativeexample:facerecognition 

8. Advancedtopicsinartificialneuralnetworks 
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Introduction 
 

 

 

 

 

 

 

-Humanbrain 

:denselyinterconnectednetworkof1011neuron
seachconnected to 104others 

(neuronswitchingtime:approx.10-3sec.) 
 

 

-Propertiesofartificialneuralnets(ANN’s): 

• Manyneuron-likethresholdswitchingunits 

• Manyweightedinterconnectionsamongunits 

• Highlyparallel,distributedprocess 
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Appropriateproblemsforneuralnetworklearning 

 
• Inputishigh-dimensionaldiscreteorreal-valued 

(e.g.raw sensorinput) 

• Outputisdiscreteorrealvalued 

• Outputisavectorofvalues 

• Possiblynoisydata 

• Longtrainingtimesaccepted 

• Fastevaluationofthelearnedfunctionrequired. 

• Notimportantforhumanstounderstandtheweights 

 
Examples: 

• Speechphonemerecognition 

• Imageclassification 

• Financialprediction 
 T.Aparna, Assistant Professor, CSE 



 

 

 

 



 

 

Appropriateproblemsforneuralnetworklearning 

 

 
-ALVINNdrives70mphonhighways 

-TheALVINNsystemusesbackpropagationalgorithmtolearntosteeran 

antonomousvehicledriving at speedsupto 70 miles perhour 
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Perceptron 
 

 

 

 

 

 

• Inputvalues→Linearweightedsum→Threshold 
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Decisionsurfaceofaperceptron 

 
• Representationalpowerofperceptrons 

- Linearly separable case like (a) 

:possibletoclassifybyhyperplane, 

- Linearlyinseparablecaselike(b):im

possibleto classify 
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Perceptrontrainingrule(deltarule) 
 

 

 

wiwi+ wi 

wherewi=(t– o)xi 

Where: 

• t=c(x)istargetvalue 

• oisperceptronoutput 

• issmallconstant(e.g.,0.1)calledlearningrate 

Canproveitwillconverge 
Iftrainingdataisl  

• inearlyseparable 
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Gradientdescent 
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Derivationofgradientdescent 

 
 Gradientdescent 

- Error(foralltrainingexamples.):  

- thegradientofE( partialdifferentiating): 
 

- direction:steepestincreaseinE. 

- Thus,trainingruleis asfollows. 
 

(Thenegativesign:thedirectionthatdecreasesE) 
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Derivationofgradientdescent 

 

 

 

 

 

wherexiddenotes the single 

inputcomponentsxifortrainingexampled 

 
- Theweightupdaterulefor gradientdescent 




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Gradient descent anddeltarule 

 

 

 

 

 

 

Because the error surfacecontains only a single globalminimum, this algorithm 

willconvergetoaweightvectorwithminimum error, given asufficientlysmall is used 
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HypothesisSpace 
 

 

 

 

- Errorofdifferenthypotheses 

- Foralinearunitwithtwoweights, thehypothesisspaceHisthewo,w1plane. 

- Thiserrorsurfacemustbeparabolicwithasingleglobal 

minimum(wedesireahypothesis with minimumerror). 
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Stochasticapproximationtogradientdescent 
 

 

 
 

- Stochastic gradient descent (i.e. incremental mode) can 

sometimesavoidfallingintolocalminimabecauseitusesthevariousgradien

tofErather than overallgradientofE. 
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Summary 

 
• Perceptrontrainingruleguaranteedtosucceedif 

– trainingexamplesarelinearlyseparable 

– Sufficientlysmalllearningrateη 

• Linearunittrainingruleusinggradientdescent 

– Converge asymptotically to min. error 

hypothesis(Guaranteedtoconvergetohypothesiswithm

inimumsquarederror) 
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Multilayernetworksandthebackpropagationalgorithm 

 

 
 Speechrecognitionexampleofmultilayernetworkslearnedbyt

hebackpropagation algorithm 

 Highlynonlineardecisionsurfaces 
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SigmoidThresholdUnit 
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TheBackpropagationalgorithm 
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AddingMomentum 

 
 Oftenincludeweightmomentumα 

 

- nthiterationupdatedependon (n-1)thiteration 

- :constantbetween0and1(momentum) 

Rolesofmomentumterm 

 Theeffectofkeepingtheballrollingthroughsmalllocalmini

mainthe error surface 

 The effect of gradually increasing the step size of 

thesearchinregions(greatlyimprovesthespeedoflearning) 
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ConvergenceandLocalMinima 

 
 Gradientdescenttosomelocalminimum 

– Perhapsnotglobalminimum... 

– Addmomentum 

– Stochasticgradientdescent 
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ExpressiveCapabilitiesofANNs 
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Hiddenlayerrepresentations 

 
Hiddenlayerrepresentations 

- This8x3x8networkwas trainedtolearntheidentityfunction. 

- 8trainingexamplesareused. 

- After5000trainingiterations,thethreehiddenunitvaluesencode 

theeightdistinctinputsusingtheencodingshownontheright. 
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Learningthe8x3x8network 

- Mostoftheinterestingweightc

hanges occurred during thefirst 

2500iterations. 
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Generalization,Overfitting,andStoppingCriterion 

 

• Terminationcondition 

–UntiltheerrorEfallsbelowsomepredeterminedthreshold 

• Techniquestoaddresstheoverfittingproblem 

• Weightdecay:Decreaseeachweightbysomesmallfactordurin

g each iteration. 

• Cross-validation(k-foldcross-validation) 
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NeuralNetsforFaceRecognition 
(http://www.cs.cmu.edu/tom/faces.html) 

 

 

 

 

 

 

 

 

 

 

 

 
• Trainingimages:20differentpersonswith32imagesperperson. 

• After 

260trainingimages,thenetworkachievesanaccuracyof90%over 

test set. 

http://www.cs.cmu.edu/tom/faces.html)
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• Algorithmparameters:η=0.3,α=0.3 
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

AlternativeErrorFunctions 

 
• Penalizelargeweights:(weightdecay) 

:Reducingtheriskofoverfitting 

 
 

• Trainontarget slopesaswellasvalues: 
 

• Minimizingthecrossentropy 

:Learningaprobabilisticoutputfunction 

(chapter6)td
logod(1td)log(1od) 

d∈D 
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RecurrentNetworks 

 

(a) (b) 

 

 

 

 

 
(a) Feedforwardnetwork 

(b) Recurrentnetwork 

(c) Recurrentnetworkunfoldedi

n time 

(c) 
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DynamicallyModifyingNetworkStructure 

 
• Toimprovegeneralizationaccuracyandtrainingeff

iciency 

• Cascade-Correlationalgorithm(FahlmanandLebiere1990) 

–Startwiththesimplestpossiblenetwork 

(nohiddenunits)andaddcomplexity 

• Lecunetal.1990 

– Start with the complex network and prune it as we find 

thatcertainconnectives areinessential. 
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EvaluatingHypotheses 



 

T.Aparna, Assistant Professor, CSE 
 

 
 
 
 
 

 

Context 

 
➔ Motivation 

' EstimatingHypothesisAccuracy 

' BasicsofSamplingTheory 

' DifferenceinErrorofTwoHypotheses 

' ComparingLearningAlgorithms 

' Summary 



Motivation 
 

 

 

 

 

 

 

 

 

 

'

 Goal:Introductiontostatisticalmethodsforestimating

hypothesisaccuracy,focusingonthefollowings: 

✔ Given the observed accuracy of a hypothesis over a 

limitedsampleofdata,howwelldoesthisestimateitsaccuracyov

eradditionalexamples? 

✔ Given that one hypothesis outperforms another over 

somesampleofdata,howprobableisitthatthishypothesisismorea

ccuratein general? 

✔

 Whendataislimitedwhatisthebestwaytousethisdatatobothlea

rn ahypothesisandestimate its accuracy? 
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T.Aparna, Assistant Professor, CSE 
 

 

 

 
 

' It 

isimportanttoevaluatetheperformanceofthelearnedhypoth

eses as preciselyas possible: 

✔ Tounderstandwhethertousethehypothesis 

✗ Example:Learningfromlimited-

sizedatabaseindicatingtheeffectivenessofdifferentmedicaltrea

tments 

✔

 Evaluatinghypothesesisanintegralcomponentofmanylearningmet

hods 

✗ Example:inpost-pruningdecisiontreestoavoidoverfiting 

✔ Methodsforcomparingtheaccuracyoftwohypotheses 

 Methodsforcomparingtwolearningalgorithmswhenonlylimiteddatai

s available 
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'

 Estimatingtheaccuracyofhypothesisisrelativelystraightforwardw

hen datais plentiful. 

' Givenonlyalimitedsetofdata,twokeydifficultiesarise: 

✔ Biasintheestimate: 

✗

 Observedaccuracyofthelearnedhypothesisoverthetrainingexamplesisoft

enapoorestimatorof its accuracy overfuture examples. 

✗ To obtain an unbiased estimate of future accuracy, we typically test 

thehypothesisonsomesetoftestexampleschosenindependentlyoftrainingex

amples and thehypothesis. 

✔ Varianceintheestimate: 

✗

 Themeasuredaccuracycanstillvaryfromthetrueaccuracy,dependingonth

emakeupofthe particularsetoftestexamples. 
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Context 

 
' Motivation 

➔ EstimatingHypothesisAccuracy 

✔ SampleErrorandTrueError 

' Basics ofSamplingTheory 

' DifferenceinErrorofTwoHypotheses 

' ComparingLearningAlgorithms 

' Summary 
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EstimatingHypothesisAccuracy 

' Setting: 

✔ Somesetof

 possibleinstancesXoverwhichvarioustargetfunctionsma

y bedefined 

✔

 DifferentinstancesinXmaybeencounteredwithdifferentf

requencies: 

✗  Unknown the probability distribution D that defines the probability 

ofencountering each instance inX 

✗ Dsaysnothingaboutwhetherxisapositiveoranegativeexample 

✔

 Learningtask:Learntargetconceptortargetfunctionfbyconsideringas

paceH of possiblehypotheses 

✔ Trainingexamplesareprovidedtothelearnerbyatrainer 

✗ whogiveseachinstanceindependently 
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h tot ) f lue a 

✗ accordingtothedistributionD, 
 

✗ thenforwardstheinstancexalongwithitscorrecttargetv (x

 elearner 



SampleErrorandTrueError 
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'

 ThesampleerrorofahypothesiswithrespecttosomesampleSofinsta

ncesgiven fromXisthe fractionofS thatit misclassifies: 

 
✔

 Def:Thesampleerrorofahypothesishwithrespecttothetargetfunctio

nf anddatasampleS is 
 

errorS h fx ,hx 
 

 
 

Where 

' nisthenumberofexamplesinS, 

' thequantity fx ,hx is1iffx h xand0otherwise 
 

 

 

 

 

 



SampleErrorandTrueError 
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SampleErrorandTrueError2 
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'

 Thetrueerrorofahypothesisistheprobabilitythatitwillmis

classify a single randomly given instance from 

thedistributionD. 

✔ Def:Thetrueerrorofhypothesishwithrespecttotargetfunctionfand 

distribution D, is the probability that h will misclassify 

aninstancedrawnatrandomaccordingtoD 

errorDh PrxD fx hx  

HerethenotationPrx

 Ddenotesthattheprobabilityistakenovertheinstan

cedistributionD. 

' TowishtoknowisthetrueerrorerrorDh . 

' Mainquestion: Howgood is an estimateof errorD h

providedbyerrorSh? 
 



SampleErrorandTrueError2 
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Context 
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' Motivation 

' EstimatingHypothesisAccuracy 

➔ BasicsofSamplingTheory 

✔ ErrorEstimationandEstimatingBinomialProportions 

✔ TheBinomialDistribution 

✔ MeanandVariance 

✔ ConfidenceIntervals 

✔ Two-SidedandOne-SidedBounds 

' DifferenceinErrorofTwoHypotheses 

' ComparingLearningAlgorithms 

' Summary 



BasicsofSamplingTheory 
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th 

 

' Question: How does the derivation between sample error and 

trueerrordependon thesizeof the data sample? 

'Equal with the statistical problem: The problem of estimating 

theproportion of a population that exhibits some property, given 

theobservedproportionoversomerandom sampleofthepopulation. 

'  Here:Thepropertyofinterestisthathmisclassifiestheexample 

'  Answer: 

✔When measuring the sample error we are performing an 

experimentwitharandomoutcome. 

✔Repeating this experiment many times, each time drawing a 

differentrandomsamplesetSiof size n,wewouldexpecttoobserve 

differentvaluesforthevarious errorS i
 

differencesinthemakeupofthevarious 
h dependingonrandom 

S 

i 

✔ InsuchcaseserrorSi 
h theoutcomeofthei suchexperimentisa 

 



BasicsofSamplingTheory 
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randomvariable 
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S S S 

 

ErrorEstimationandEstimatingBinomial 

Proportions2 
 

' Imagine: 

✔ Runkrandomexperiments, 

✔ Measuringtherandomvariableserror h ,error h error h  
1 2 k 

✔ Plotahistogramdisplayingthefrequencywithwhichweobservedeach 

possibleerrorvalue 

' Result:histogram 
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TheBinomialDistribution 

' GeneralsettingtowhichtheBinomialdistributionapplies: 

✔ Thereisabaseorunderlying 

experimentwhoseoutcomecanbedescribedbyarandomvariable, sayY.It can take 

ontwopossible values. 

✔ TheprobabilitythatY=1onanysingletrialoftheunderlying experimentisgiven 

by some constant p, independent of the outcome of any otherexperiment. 

TheprobabilitythatY=0istherefore1-p. 

Typically,pisnotknowninadvance,andtheproblemistoestimateit. 

✔ Aseriesofnindependenttrialsoftheunderlyingexperimentisperformed, 

producingthesequenceofindependent,identicallydistributedrandomvari

ables Y1,Y2 Y.k 

LetR denotethe numberof trialsfor whichYi 1in 

thisseriesofnexperiments 
R 

 

i 1 

 

✔ TheprobabilitythatRwilltakeonaspecificvaluerisgivenbytheBinomial 

distribution: PrRr
 n! 

 

r! n r ! 
pr 1 pn  r 



MeanandVariance 
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' Def:Consider Y y1,y2, yn 

EY 

The expectedvalueofY,E[Y],is 

i 1 

 

' Example:IfYtakes onthevalue1withprobability0.7andthevalue 

2 with probability0.3 then itsexpected value is 

10.720.31.3 

 
'

 IncaseofarandomvariableYgovernedbyaBinomialdist

ributionthe expected value is: 

E Y np 



MeanandVariance2 
 

T.Aparna, Assistant Professor, CSE 
 

 

 

'Variance captures the „width“ or „spread“ of the 

probabilitydistribution; that is it captures how far the random 

variable isexpectedtovary from its mean value 

'    Def:ThevarianceofY,Var[Y],is 
Var Y E Y E Y 2 

' Thesquarerootofthevarianceiscalledthestandard 

deviationofY,denoted by Y 

' Def:ThestandarddeviationofarandomvariableY, Yis 

E Y EY 2 
Y 

 

 

 

' In caseofarandomvariableYgovernedbyBinomialdistribution 

thevariancVeaarnYd then 
 

 

Y 

spta1ndarpddeviationaredefinedasfollows: 

np1 p 



ConfidenceIntervals 
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n 

D 

 

 

 

' Describe: 

✔

 Giveanintervalwithinwhichthetruevalueisexpectedtofall,alongwit

htheprobabilitywithwhichitisexpectedtofallintothisinterval 

'

 Def:AnN%confidenceintervalforsomeparameterspisaninte

rvalthatis expected with probabilityN%to containp. 

' Howconfidenceintervalsforerrorhcanbederived: 

✔ Binomialprobabilitydistributiongoverningtheestimator errorS h
 

✔ Themeanvalueofdistributionis 

✔ Standarddeviationis 

erroD 

errorSh 

' Goal: Derivea95%confidenceinterval=> 

find the interval centered around the mean valueerrorD h 
,whichiswideenoughtocontain95%oftotalprobabilityunderthisdist



ConfidenceIntervals 
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ribution 
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'

 Question:HowcanthesizeofintervalthatcontainsN%ofthepro

bability mass befoundforgivenN? 

' Problem: Unfortunately for

 theBinomialdistributionthisca

lculation can be quitetedious. 

'

 But:BinomialdistributioncanbecloselyapproximatedbyN

ormal distribution 



ConfidenceIntervals3 
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ConfidenceIntervals4 
 

T.Aparna, Assistant Professor, CSE 
 

 

 

 

 

 

' Normalorgaussian distributionisabell-

shapeddistributiondefinedbytheprobabilitydensityfun2ction 

 1 
1x  

px e2 
 

 

' IftherandomvariableXfollowsanormaldistributionthen: 

✔ TheprobabilitythatXbwillfallintotheinterval(a,b)isgivenby 
p X dx 

a 

 

✔ Theexpected,ormeaEnvXalueofX,E[X],is 
 

 

✔ ThevarianceofX,VVaarr(XX)is 2 

 
✔ ThestandarddeviationofX, 

X 
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Two-SidedandOne-SidedBounds 
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' Two-sidedbound:Itboundstheestimatedquantityfromaboveand 

below 

' One-

sidedbound:Ifweareinterestedinquestionslike:Whatistheprobabili

tythaterrorD h is atmostU 
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' If thesampleerror isconsideredasnormaldistributedindicatingthat: 

✔ the errorD h coucheswithN%probabilityintheinterval 

errorS hzn 
 

 

where 
zN 

isaconstant 

 

 

 

ConfidencelevelN% 50.00%68.00%80.00%90.00%95.00%98.00%99.00% 

Constant 0.67 1 1.28 1.64 1.96 2.33 2.58 

Table1:Valuesof zNfortwosidedN%confidenceintervals 
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Two-SidedandOne-SidedBounds4 
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' Example: 

✔ n=50 

✔ Hypothesishmakesr=16errors=> 

✔ UsingthevaluesfromTable1 

 
errorSh 

50
 

✗ With99%probabilityis 

0.322.58 

errorD h intheinterval 

 

 
✗

 Ifthenumbersoferrorsis12then

probability 

0.240.67 0.240.04 

errorDh
isintheintervalwith50% 
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D 

 

' One-sidederrorbound 

It canbecomputed 

withhalfoftheprobabilityoftheerrorfromnormaldistributed two-sided 

error bound 

' Example: 

✔ hdelivers12errors,n=40 

✔ Itleadstoa(twosided)95%confidenceintervalof 
1001 95 0.05 

✔ Inthiscase so 

0.300.14 
=>

 

✔ eTrhrours,whecanapplyth0.e30ru0l.e1 

1001 297.5 
with confidencethat 

D isatmost errorh 

✔ Makingnoassumptionaboutthelowerboundon
erroD

 

✔ Thuswehaveaone-sidederrorboundonerror 

withdoubletheconfidencethatwehad inthecorrespondingtwo-

sidedbound 
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Context 

 
' Motivation 

' EstimatingHypothesisAccuracy 

' BasicsofSamplingTheory 

➔ DifferenceinErrorofTwoHypotheses 

✔ HypothesisTesting 

' ComparingLearningAlgorithms 

' Summary 
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DifferenceinErrorsofTwoHypotheses 

' Consider: 

✔ twohypothesesh1 andh2forsomediscrete-valuedtargetfunction 

✔  
h1hasbeentestedonasample S1containing n1randomly 

drawnexamples 

✔ h2hasbeentestedonasample 
S2 containing 

n2randomlydrawn 

examples 

' Supposewewishtoestimatethedifference 

dbetweenthetrueerrorsof these two hypotheses 

derrorD h1 errorD h2  

' 4-stepproceduretoderive confidenceintervalestimatesford 
 
 

 

✔ Choosetheestimator derrorS 
h1 errorS h2 

1 2 

 
 

✔ Wedonotprovebutitcan beshown that
 dgivesanunbiasedestimateofd;thatis E
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HypothesisTesting 
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'

 Question:Whatistheprobabilitydistributiongoverningthera

ndom variabled? 

' Answer: 
✔ n1,n2 botherrorserrorSh1 and errorS h2 followa 

1 2 

distributionthatisapproximatelynormal 

✔ Differenceoftwonormaldistributionsisalsonormal=> 
d 

isalsoapproximatelynormal 

✔ Thevarianceofthisdistributionisthesumofthevariancesof 

errorh and errorS h2 

S1 1 

✔ Wehave error
S
h

2 
1error

S
h

2
 

2    2 2  

d 
d n2

 

✔ Forrandomvari2able obeyinganormaldistributionwithmeand 

andvariance 

2 



HypothesisTesting 
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theN%confidenceintervalestimatefordis d zN 

  



HypothesisTesting 2 
 

[Type here] 
 

2 

 

 

 

 
 

✔ So dzN 

zNisthesameconstantasdescribedinTable1 

' Testoversamedata 

✔ h1

 Andh2aretestedonasinglesampleS(whereSisstillindepe

ndentof h1 andh2) 

✔ Redefine d:
d
 

errorh errorh 
S 1 S 2 

d 

✔ The variance in this 
newdvarianceoftheorigin
al 

willusuallybesmallerthanthe 

 

✔ UsingasinglesampleSeliminatesSth1evarianSceduetorandom 
differencesinthecompositionsof and 
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[Type here] 
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ComparingLearningAlgorithms 

' Goal: Comparingtheperformanceoftwolearningalgorithm 
LA andLB 

' Question: 

✔ Whatisanappropriatetestforcomparinglearningalgorithms? 

✔

 Howcanwedeterminewhetheranobserveddifferencebetweenthea

lgorithmsisstatisticallysignificant? 

' Activedebatewithinthemachine-
learningresearchcommunityregardingthe best method for 
comparison 

LA LB 
' Task:Determinewhichof and isthebetterlearning 

methodonaverageforlearningsomeparticulartargetfunctionf 

✔ „On average“ is to consider the relative performance of these 

twoalgorithmsaveragedoverallthetrainingsetofsizen 

thatmightbedrawnfromtheunderlyinginstancedistributionD 
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ESD errorD LAS errorD LB S  



ComparingLearningAlgorithms2 
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0 

' Inpractice: 

✔ Wehaveonlyalimitedsample D0 

✔ DivideD0intoatrainingset S0andadisjointtest set T0 

✔ Thetrainingdatacanbeusedtotrainboth LA and LB 

✔ Testsetcanbeusedtocomparetheaccuracyofthetwolearned 

hypothesis error 
0 

' Improvement: 

LA S0 
error

T LB S0  

✔ Partitiontheavailabledata
D0intokdisjointsubsets

T1,T2, ,Tkofequal 

size,wherethissizeisatleast30 

✔ ForiTfrom1tok,do S 
use iforthetestandtheremainingdatafortrainingset i 

Si D0Ti 

hA LASi 

hB LBSi 
i errorThA errorThB 

k 

1 

T 

i i 
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k i 



ComparingLearningAlgorithms4 
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0 0 

 

' TheapproximateN%confidenceintervalforestimatingthe 

quantityin errorTLA S0 errorT 

tN,k 1s 

LB S0 using isgivenby 

 

where
tN,k1 isaconstantthatplaysaroleanalogoustothatof 

zN
 

S  1 k 2 

' definedasfollowing S kk 1i1 
i
 

 

 

   
 

Confidencelev 
 

 

   90% 95% 

 = 2 2,92 4,3 

 = 5 2,02 2,57 

 = 10 1,81 2,23 

 = 20 1,72 2,09 

 = 30 1,7 2,04 

 = ## 1,66 1,98 

 = 

 1,64 1,96 
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2 

 

 

Summary 

' Statisticaltheoryprovidesabasisforestimatingthetrueerror 

(errorD h )ofhypothesish,basedonitsobservederror(errorSh ) 

overasampleSofdata. 

' In general, the problem of estimating confidence intervals 

isapproachedbyidentifyingtheparametertobeestimated(
errorDh

)and

anestimator(errorSh)forthisquantity. 
'

 Becausetheestimatorisarandomvariableitcanbecharacterisedbyt

heprobability distributionthat governs its value. 

'

 Confidenceintervalscanthenbecalculatedbydeterminingthein

terval that containsthe desired probability mass under 

thisdistribution. 

' Acause ofestimationerroristhevarianceintheestimate.Evenwithan 

unbiased estimator, the observed value ofthe estimator is likelyto 

vary fromone experimentto another. 
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The variance of the distribution governing theestiamt

 orcharacteriseshow widely this 

estimateislikely to 
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Summary2 

 
' Comparingtherelativeeffectivenessoftwolearningalgorithmsisan 

estimation problem that is relatively easy when data and timeare 

unlimited, but more difficultwhen these resourcesarelimited. 

'   One approach to runthe learning algorithms on different subsetsof 

available data, testing the learned hypotheses on the 

remainingdata,then averagingthe resultof these experiments. 

'In most cases considered here, deriving confidence 

intervalsinvolvesmakinganumberofassumptionsandapproximat

ions. 
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CONTENT 
• Introduction 

• Bayestheorem 

• Bayestheoremandconceptlearning 

• MaximumlikelihoodandLeastSquaredErrorHypothesis 

• MaximumlikelihoodHypothesesforpredictingprobabilities 

• MinimumDescriptionLengthPrinciple 

• NaiveBayesclassifier 

• Bayesianbeliefnetworks 

• EMalgorithm 
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INTRODUCTION 
Bayesianlearningmethodsarerelevanttostudyofmachinelearningfortwodifferentreaso
ns. 

• First,Bayesianlearningalgorithmsthatcalculateexplicitprobabilitiesforhypotheses,su
chasthenaiveBayesclassifier,areamongthemostpracticalapproachestocertain types 
of learning problems 

• The second reason is that they provide a useful perspectivefor 
understandingmanylearning algorithms thatdo not 
explicitlymanipulateprobabilities. 
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FeaturesofBayesianLearningMethods 

• Each observed training example can incrementally decrease or increase the 
estimatedprobability that a hypothesis is correct. This provides a more flexible 
approach tolearning than algorithms that completely eliminate a hypothesis if it is found 
to beinconsistentwith any singleexample 

• Priorknowledgecanbecombinedwithobserveddatatodeterminethefinalprobability of a 
hypothesis. In Bayesian learning, prior knowledge is provided byasserting (1) a prior 
probability for each candidate hypothesis, and (2) a probabilitydistribution over 
observed data for each possiblehypothesis. 

• Bayesianmethodscanaccommodatehypothesesthatmakeprobabilisticpredictions 

• New instances can be classified by combining the predictions of multiple 
hypotheses,weightedbytheir probabilities. 

• Even in cases where Bayesian methods prove computationally intractable, they 
canprovide a standard of optimal decision making against which other practical 
methodscan bemeasured. 
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PracticaldifficultyinapplyingBayesianmethods 

 
• One practical difficulty in applying Bayesian methods is that they typically 

requireinitialknowledgeofmanyprobabilities.Whentheseprobabilitiesarenotknowni
n advance they are often estimated based on background knowledge, 
previouslyavailabledata, andassumptions aboutthe formof theunderlying 
distributions. 

 

• Asecondpracticaldifficultyisthesignificantcomputationalcostrequiredtodetermine 
the Bayes optimal hypothesis in the general case. In certain 
specializedsituations,this computational costcan be significantly reduced. 
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BAYESTHEOREM 
 
Bayes theorem provides a way to calculate the probability of a hypothesis based onits 
prior probability, the probabilities of observing various data given the 
hypothesis,andtheobserved dataitself. 

Notations 

• P(h)priorprobabilityofh,reflectsanybackgroundknowledgeaboutthechancethat h is 
correct 

• P(D)priorprobabilityofD,probabilitythatDwillbeobserved 

• P(D|h)probabilityofobservingD givenaworldinwhichhholds 

• P(h|D) posterior probability of h, reflects confidence that h holds after D has 
beenobserved 
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Bayes theorem is the cornerstone of Bayesian learning methods because it providesa 
way to calculate the posterior probability P(h|D), from the prior probability 
P(h),togetherwith P(D) and P(D(h). 

 

 

 

 
P(h|D)increaseswithP(h) andwithP(D|h)accordingtoBayestheorem. 

P(h|D)decreasesasP(D)increases,becausethemoreprobableitisthatDwillbeobserve
dindependentofh, the lessevidenceDprovidesin support ofh. 



MaximumaPosteriori(MAP)Hypothesis 
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• Inmanylearningscenarios,thelearnerconsiderssomeset ofcandidatehypothesesH 
and is interested in finding the most probable hypothesis h ∈ H given 
theobserveddataD.Anysuch maximallyprobablehypothesisiscalledamaximuma 
posteriori(MAP)hypothesis. 

• BayestheoremtocalculatetheposteriorprobabilityofeachcandidatehypothesisishMAP 
isaMAPhypothesisprovided 

 

 

 

 

 

 
 

• P(D)canbedropped,becauseitisaconstantindependentofh 



MaximumLikelihood(ML)Hypothesis 
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Insomecases,it isassumedthateveryhypothesisinHisequallyprobableapriori 

(P(hi)=P(hj)forallhiandhjinH). 

Inthiscasethebelowequationcanbesimplifiedandneedonlyconsidertheterm 

P(D|h)tofindthemostprobablehypothesis. 
 
 

 

P(D|h)isoftencalledthelikelihoodofthedataDgivenh,andanyhypothesisthatmaximiz
esP(D|h)is called amaximum likelihood(ML)hypothesis 
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Example 

Consideramedical diagnosisprobleminwhichtherearetwo alternativehypotheses 
• Thepatienthasaparticularformofcancer(denotedbycancer) 
• Thepatientdoesnot(denotedby¬cancer) 

 
Theavailabledataisfromaparticularlaboratorywithtwopossibleoutcomes: 
+(positive)and- (negative) 
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• Supposeanewpatientisobservedforwhomthe labtestreturnsapositive(+)result. 

• Shouldwediagnosethepatientashavingcancerornot? 
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BAYESTHEOREMANDCONCEPTLEARNING 

WhatistherelationshipbetweenBayestheoremandtheproblemofconceptlearning

? 

 
SinceBayestheoremprovidesaprincipledwaytocalculatetheposteriorprobabilityof 

each hypothesis given the training data, and can use it as the basis for 

astraightforward learning algorithm that calculates the probability for each 

possiblehypothesis,then outputsthe most probable. 
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Brute-ForceBayesConceptLearning 

 
Wecandesignastraightforwardconceptlearningalgorithmtooutputthemaximumapost
eriorihypothesis,based on Bayes theorem,as follows: 

 

 

 



InorderspecifyalearningproblemfortheBRUTE-FORCEMAPLEARNING 
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algorithmwemustspecifywhatvaluesaretobeused for P(h)andfor P(D|h)? 

 
LetschooseP(h)andforP(D|h)tobeconsistentwiththefollowingassumptions: 

• ThetrainingdataDisnoisefree(i.e.,di=c(xi)) 

• ThetargetconceptciscontainedinthehypothesisspaceH 

• Wehavenoapriorireasontobelievethatanyhypothesisismoreprobablethananyother. 



WhatvaluesshouldwespecifyforP(h)? 
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• Givennopriorknowledgethatonehypothesisismorelikelythananother,itisreasona
bleto assign thesameprior probabilitytoeveryhypothesishinH. 

• AssumethetargetconceptiscontainedinHandrequirethatthesepriorprobab
ilitiessum to 1. 
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WhatchoiceshallwemakeforP(D|h)? 

 
• P(D|h)istheprobabilityof observingthe targetvalues D=(d1. ..dm) 

forthefixedset ofinstances(x1.. . xm),given a worldinwhich hypothesishholds 

• Since we assume noise-free training data, the probability of observing 

classificationdigivenhisjust1ifdi=h(xi)and0ifdi#h(xi).Therefore, 
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GiventhesechoicesforP(h)andforP(D|h)wenowhaveafully-definedproblemfor the 
aboveBRUTE-FORCEMAPLEARNING algorithm. 

 
Inafirststep,wehavetodeterminetheprobabilitiesforP(h|D) 
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Tosummarize,BayestheoremimpliesthattheposteriorprobabilityP(h|D)underouras
sumedP(h) and P(D|h) is 

 
 

where |VSH,D|isthenumberofhypotheses fromHconsistentwithD 
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TheEvolutionofProbabilitiesAssociatedwithHypotheses 

 
• Figure(a)allhypotheseshavethesameprobability. 

• Figures (b) and (c), As training data accumulates, the posterior probability 
forinconsistenthypothesesbecomeszerowhilethetotalprobabilitysummingto1 
issharedequally among the remainingconsistent hypotheses. 
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MAPHypothesesandConsistent Learners 

A learning algorithm is a consistent learner if it outputs a hypothesisthat commits zero errors 
overthetraining examples. 

EveryconsistentlearneroutputsaMAPhypothesis,ifweassumeauniformpriorprobabilitydistributionover
H(P(hi)=P(hj)foralli,j),anddeterministic,noisefreetrainingdata(P(D|h)=1ifD and h areconsistent, and0 
otherwise). 

 

Example: 

• FIND-S outputs a consistent hypothesis, it will output a MAP hypothesis under the 
probabilitydistributionsP(h) andP(D|h)defined above. 

• Are there other probability distributions for P(h) and P(D|h) under which FIND-S outputs 
MAPhypotheses?Yes. 

• BecauseFIND-Soutputsamaximallyspecifichypothesisfromtheversionspace,itsoutputhypothesis 
willbeaMAPhypothesisrelativetoanypriorprobabilitydistributionthatfavoursmorespecifichypotheses
. 
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• Bayesianframeworkis awaytocharacterizethebehaviouroflearningalgorithms 

• ByidentifyingprobabilitydistributionsP(h)andP(D|h)underwhich theoutput isa 
optimal hypothesis, implicit assumptions of the algorithm can be 
characterized(InductiveBias) 

• Inductiveinferenceismodelledbyanequivalentprobabilisticreasoningsystembase
d on Bayes theorem 
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MAXIMUMLIKELIHOODANDLEAST-
SQUAREDERRORHYPOTHESES 

Consider the problem of learning a continuous-valued target function such as 

neuralnetworklearning, linearregression, and polynomial curvefitting 

 
A straightforward Bayesian analysis will show that under certain assumptions 

anylearning algorithm that minimizes the squared error between the output 

hypothesispredictionsandthetrainingdata willoutput 

amaximumlikelihood(ML)hypothesis 
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LearningAContinuous-ValuedTargetFunction 

 
• LearnerLconsidersaninstancespaceXandahypothesisspaceHconsistingofsomeclassofreal-

valuedfunctionsdefinedoverX, i.e.,(∀h∈H)[h:X → R] andtrainingexamplesofthe form 

<xi,di> 

• TheproblemfacedbyListolearnanunknowntargetfunctionf:X→ R 

• A set of m training examples is provided, where the target value of each example is corrupted 

byrandomnoisedrawnaccordingtoaNormalprobabilitydistributionwithzero mean(di=f(xi)+ei) 

• Eachtrainingexample isapairoftheform(xi,di)wheredi= f(xi)+ei . 

– Heref(xi)isthenoise-freevalueofthetargetfunctionandeiisarandomvariablerepresentingthe 
noise. 

– Itisassumedthatthevaluesoftheeiaredrawnindependentlyandthattheyaredistributedaccordin
gtoaNormaldistribution with zeromean. 

• Thetaskofthelearneristooutputamaximumlikelihoodhypothesis,or,equivalently,aMAPhypothe
sisassumingallhypotheses are equally probable apriori. 
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LearningALinearFunction 

 
 
• Thetargetfunctionfcorrespondstothesolidline. 

• The training examples (xi , di ) are assumed 

tohaveNormallydistributednoiseeiwithzeromeana

ddedto thetruetargetvalue f(xi). 

• ThedashedlinecorrespondstothehypothesishML 

with least-squared training error, hence 

themaximum likelihood hypothesis. 
• Notice that the maximum likelihood hypothesis 

isnotnecessarilyidenticaltothecorrecthypothesis, f, 

because it is inferred from only 

alimitedsampleofnoisytraining data 
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Beforeshowingwhyahypothesisthatminimizesthesumofsquarederrorsinthissettingisalsoamaximu
m likelihood hypothesis, let us quickly review probability densities and Normaldistributions 

 

ProbabilityDensityforcontinuousvariables 

e:arandomnoisevariablegeneratedbyaNormalprobabilitydistribution 

<x1...xm>:thesequenceofinstances(asbefore) 

<d1. ..dm>:thesequenceoftargetvalueswithdi=f(xi)+ei 
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NormalProbabilityDistribution(GaussianDistribution) 

 
ANormal distributionisasmooth,bell-
shapeddistributionthatcanbecompletelycharacterizedby itsmean μand itsstandard 
deviation σ 
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UsingthepreviousdefinitionofhMLwehave 
 

 
Assumingtrainingexamplesaremutuallyindependentgivenh,wecanwriteP(D|h)astheproductofthe 
various(di|h) 

 

 
 

Given the noise ei obeys a Normal distribution with zero mean and unknown variance σ2 , each 
dimustalsoobeyaNormaldistributionaroundthetruetargetvaluef(xi).Becausewearewritingtheexpress
ion for P(D|h), we assumehisthe correctdescriptionoff.Hence, µ = f(xi)=h(xi) 
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Itiscommontomaximizethelesscomplicatedlogarithm,whichisjustifiedbecauseofthemonotonici
tyoffunctionp. 

 

Thefirstterminthisexpressionisaconstantindependentofhandcanthereforebediscarded 
 

Maximizingthisnegativetermisequivalenttominimizingthecorrespondingpositiveterm. 
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FinallyDiscardconstantsthatareindependentofh 
 

• thehMLisonethatminimizes thesumofthesquarederrors 

 

WhyisitreasonabletochoosetheNormaldistributiontocharacterizenoise? 

• goodapproximationofmanytypesofnoiseinphysicalsystems 

• CentralLimitTheoremshowsthatthesumofasufficientlylargenumberofindependent,identic
ally distributedrandomvariables itselfobeysaNormaldistribution 

Onlynoiseinthetargetvalueisconsidered,notintheattributesdescribingtheinstancesthemsel
ves 
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MAXIMUMLIKELIHOODHYPOTHESESFORP
REDICTINGPROBABILITIES 

Considerthesettinginwhichwewishtolearnanondeterministic(probabilistic)functi
onf :X→ {0,1}, which has two discreteoutput values. 

 
Wewantafunctionapproximatorwhoseoutputistheprobabilitythatf(x)=1Inother 

words , learnthe target function 

f’:X→[0,1] suchthatf’(x)=P(f(x)=1) 

 
Howcanwelearnf'usinganeuralnetwork? 

Useofbruteforcewaywouldbetofirst collecttheobservedfrequenciesof1's and0's for 
each possible value of x and to then train the neural network to output 
thetargetfrequency for eachx. 
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Whatcriterionshouldweoptimizeinordertofindamaximumlikelihoodhypothesisfor f'in 
thissetting? 

• FirstobtainanexpressionforP(D|h) 

• AssumethetrainingdataDisoftheformD ={(x1,d1) ...(xm,dm)},wherediis theobserved 0or1 valuefor f 
(xi). 

• Bothxianddiasrandomvariables,andassumingthateachtrainingexampleisdrawnindepen
dently,we can writeP(D|h) as 

 

Applyingtheproductrule 

 



TheprobabilityP(di|h,xi) 
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Re-expressitinamoremathematicallymanipulableform,as 
 

 
Equation(4)tosubstituteforP(di|h,xi)inEquation(5)toobtain 

 

 



Wewriteanexpressionforthemaximumlikelihoodhypothesis 
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Thelasttermisaconstantindependentofh, so itcanbedropped 
 

 

Iteasiertoworkwiththelogofthelikelihood,yielding 
 

Equation(7)describesthequantitythatmustbemaximizedinordertoobtainthemaximumlikeliho
od hypothesis in our currentproblemsetting 
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GradientSearchtoMaximizeLikelihoodinaNeuralNet 

 
Deriveaweight-
trainingruleforneuralnetworklearningthatseekstomaximizeG(h,D)usinggradientascent 

• ThegradientofG(h,D)isgivenbythevectorofpartialderivativesofG(h,D) 
withrespecttothevariousnetwork weights thatdefinethehypothesishrepresentedby thelearned 
network 

• Inthiscase,thepartialderivativeofG(h,D)withrespecttoweightwjkfrominputktounitjis 
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Supposeourneuralnetworkisconstructedfromasinglelayerofsigmoidunits.Then, 
 
 

 
wherexijkisthekthinputtounitjfortheithtrainingexample,andd(x)isthederivativeofthesigmoidsquashingfunc
tion. 

Finally,substitutingthisexpressionintoEquation(1),weobtainasimpleexpressionforthederivat
ives thatconstitute the gradient 
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Because we seek to maximize rather than minimize P(D|h), we perform gradient ascent rather 
thangradient descent search. On each iteration of the search the weight vector is adjusted in the 
directionof the gradient,usingthe weight update rule 

 

whereηisasmallpositiveconstantthatdeterminesthestepsizeoftheigradientascentsearch 
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Itisinterestingtocomparethisweight-updateruletotheweight-
updateruleusedbytheBACKPROPAGATION algorithm to minimize the sum of squared errors 
between predicted andobservednetwork outputs. 

The BACKPROPAGATION update rule for output unit weights, re-expressed using our 
currentnotation, is 
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MINIMUMDESCRIPTIONLENGTHPRINCIPLE 

• ABayesianperspectiveonOccam’srazor 

• Motivatedbyinterpreting thedefinitionofhMAPinthelightofbasicconceptsfrominformationtheory. 

 

 
whichcanbeequivalentlyexpressedintermsofmaximizingthelog2 

 
 

oralternatively,minimizingthenegativeofthisquantity 
 

• Thisequationcanbeinterpretedasastatementthatshorthypothesesarepreferred,assumingaparticul
arrepresentationscheme forencoding hypothesesand data 
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Introductiontoabasicresultofinformationtheory 

 
• Considertheproblemofdesigningacodetotransmitmessagesdrawnatrandom 

• iisthemessage 

• Theprobabilityofencounteringmessageiispi 

• Interested in the most compact code; that is, interested in the code that minimizes 
theexpectednumberofbitswemusttransmitinordertoencodeamessagedrawnatrandom 

• Tominimizetheexpectedcodelengthweshouldassignshortercodestomessagesthataremorepr
obable 

• ShannonandWeaver(1949)showedthattheoptimalcode(i.e.,thecodethatminimizestheexp
ectedmessagelength)assigns- log, pibitsttoencodemessagei. 

• ThenumberofbitsrequiredtoencodemessageiusingcodeCasthedescriptionlengthofmessa

geiwithrespectto C,which wedenotebyLc(i). 
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Interpretingtheequation 
 

• -log2P(h):thedescriptionlengthofhunder theoptimal encodingforthehypothesis 
spaceHLCH(h)= −log2P(h),whereCH is the optimal codeforhypothesis space H. 

• -log2P(D | h): the description length of the training data D given hypothesis h, under 
theoptimal encoding fro the hypothesis space H: LCH (D|h) = −log2P(D| h) , where C D|h is 
theoptimal code for describing data D assuming that both the sender and receiver know 
thehypothesish. 

 
RewriteEquation(1)toshowthathMAPisthehypothesishthatminimizesthesumgivenbythedescription 
lengthof thehypothesis plusthedescription lengthof thedatagiventhehypothesis. 

 
 

whereCHand CD|haretheoptimalencodingsforHandforDgivenh 
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TheMinimumDescriptionLength(MDL)principlerecommendschoosingthehypothesisthatmini
mizes thesumof thesetwo description lengthsof equ. 

 

MinimumDescriptionLengthprinciple: 
 

 
 

 

Where,codesC1andC2torepresentthehypothesisandthedatagiventhehypothesis 

 

TheaboveanalysisshowsthatifwechooseC1tobetheoptimalencodingofhypothesesCH, andifwe 
choose C2 to betheoptimalencoding CD|h,then hMDL= hMAP 
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ApplicationtoDecisionTreeLearning 

 
ApplytheMDLprincipletotheproblemoflearningdecisiontreesfromsometrainingdata. 

WhatshouldwechoosefortherepresentationsC1andC2 ofhypothesesanddata? 

• For C1: C1 might be some obvious encoding, in which the description length grows with 
thenumberof nodes and withthenumber ofedges 

• For C2: Suppose that the sequence of instances (x1 . . .xm) is already known to both the 

transmitterandreceiver,sothatwe need onlytransmittheclassifications(f(x1)...f (xm)). 

Nowifthetrainingclassifications(f(x1)...f(xm))areidenticaltothepredictionsofthehypothesis,thentherei
snoneedtotransmitanyinformationabouttheseexamples.Thedescriptionlengthof 
theclassificationsgiventhehypothesis ZERO 

If examples are misclassified by h, then for each misclassification we need to transmit a 
messagethatidentifieswhichexample is misclassifiedaswellas itscorrectclassification 

ThehypothesishMDL undertheencodingC1andC2isjusttheonethatminimizesthesumofthesedescription 
lengths. 
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• MDLprincipleprovidesawayfortradingoffhypothesiscomplexityforthenumberoferrorscommit
tedbythe hypothesis 

• MDLprovidesawaytodealwiththeissueofoverfittingthedata. 

• Shortimperfecthypothesismaybeselectedoveralongperfecthypothesis. 
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MachineLearning:Lecture8 
 

 

 

 

 

 

 

 

 

 

 

 

Theory 

(BasedonChapter7ofMitchellT..,MachineL

earning, 1997) 
 

 

 

 

 

1 

ComputationalLearning 
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Overview 
 Aretheregenerallawsthatgovernlearning? 

 SampleComplexity:Howmanytrainingexamplesareneededfora 

learner to converge (with high probability) to a 

successfulhypothesis?

 ComputationalComplexity:Howmuchcomputationaleffortisne

eded for a learner to converge (with high probability) to 

asuccessful hypothesis?

 MistakeBound:Howmanytrainingexampleswillthelearnermis

classifybefore convergingtoasuccessful hypothesis?

 Thesequestions 

willbeansweredwithintwoanalyticalframeworks: 

 TheProbablyApproximatelyCorrect(PAC)framework

 TheMistakeBoundframework
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Overview(Cont’d) 
Rather than answering these questions 
forindividual learners, we will answer them 
forbroadclassesoflearners.Inparticularwewillc
onsider: 
 Thesizeorcomplexityofthehypothesisspacecon

sideredby thelearner. 

 Theaccuracytowhichthetargetconceptmustbeappr
oximated. 

 Theprobabilitythatthelearnerwilloutputasuc
cessfulhypothesis. 

 Themannerinwhichtrainingexamplesarepre
sentedto thelearner. 
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ThePACLearningModel 

 Definition:Consider a concept class Cdefined 
over a set of instances X of length 
nandalearnerLusinghypothesisspaceH.CisPA
C-learnable by L using H if for all 

cC,distributions D over X, such that 0<< 

1/2,and such that 0<<1/2, learner L will, 

withprobability at least (1- ), output a 

hypothesishHsuch that errorD(h) , in 

time that ispolynomialin1/, 1/,n,andsize(c). 
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SampleComplexityforFinite 
HypothesisSpaces 
 Given any consistent learner, the number of 

examplessufficienttoassurethatanyhypothesiswillbepro
bably(withprobability(1-

))approximately(withinerror)correctism=1/(ln|H|+l

n(1/)) 

 Ifthelearnerisnotconsistent,m=1/22(ln|H|+ln(1/)) 

 ConjunctionsofBooleanLiteralsarealsoPAC-

Learnableandm=1/(n.ln3+ln(1/)) 

 k-

termDNFexpressionsarenotPAClearnablebecauseeven 

though they have polynomial sample 

complexity,theircomputationalcomplexityisnotpolyno
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mial. 

 Surprisingly,however,k-termCNFisPAClearnable. 
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Sample Complexity for 
InfiniteHypothesisSpacesI:VC-
Dimension 

 ThePACLearningframeworkhas2disadvantages: 
 Itcanleadtoweakbounds
 SampleComplexityboundcannotbeestablishedforinf

initehypothesisspaces
 Weintroducenewideasfordealingwiththeseproblems: 

 Definition:AsetofinstancesSisshatteredbyhypothesisspace 
H iff for every dichotomy of S there exists 
somehypothesisinHconsistentwiththisdichotomy.

 Definition:The Vapnik-Chervonenkis 
dimension,VC(H),ofhypothesisspaceHdefinedoveri
nstancespaceXisthesizeofthelargestfinitesubset of 
X
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shatteredbyH.Ifarbitrarilylargefinitesetsof Xcan
 b
shatteredby H,thenVC(H)=


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SampleComplexityforInfiniteHypothes
isSpacesII 

 Upper-Boundonsamplecomplexity,usingtheVC-

Dimension:m1/(4log2(2/)+8VC(H)log2(13/) 

 LowerBoundonsamplecomplexity,usingtheVC-

Dimension: 

Consider any concept class C such that VC(C) 2, 

anylearnerL,andany0<<1/8,and0<<1/100.Then 

thereexistsadistributionDandtargetconceptinCsuch 

that if L observes fewer examples 

thanmax[1/log(1/),(VC(C)-1)/(32)] 

thenwithprobabilityatleast,Loutputsahypothesis 
hhavingerrorD(h)>. 
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VC-DimensionforNeuralNetworks 
 Let G be a layered directed acyclic graph with 

ninput nodes and s2 internal nodes, each 

havingatmost 

rinputs.LetCbeaconceptclassoverRrof VC 

dimension d, corresponding to the set 

offunctions that can be described by each of the 

sinternal nodes. Let CGbe the G-composition 

ofC, corresponding to the set of functions that 

canbe represented by G. Then VC(CG)2ds 

log(es),where eisthebaseofthenatural logarithm. 

 This theorem can help us bound the VC-

Dimensionofaneuralnetworkandthus,itssam
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plecomplexity(See,[Mitchell,p.219])! 
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TheMistakeBoundModelofLearning 
 

 TheMistakeBoundframeworkisdifferentfromthe 

PAC framework as it considers learners 

thatreceive a sequence of training examples and 

thatpredict, upon receiving each example, what 

itstargetvalueis. 

 The question asked in this setting is: 

“Howmany mistakes will the learner make in 

itspredictionsbeforeitlearnsthetargetconcept?” 

 This question is significant in practical 

settingswherelearningmust 

bedonewhilethesystemisinactualuse. 
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OptimalMistakeBounds 

  Definition:Let C be an arbitrary 

nonemptyconcept class. The optimal 

mistake boundfor C, denoted Opt(C), is the 

minimum 

overallpossiblelearningalgorithmsAofMA(C

). 
Opt(C)=minALearning_AlgorithmMA(C) 

 ForanyconceptclassC,theoptimalmi

stakeboundisboundasfollows: 

VC(C)Opt(C)log2(|C|) 
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ACaseStudy:TheWeighted- 
MajorityAlgorithm 

aidenotestheithpredictionalgorithminthepoolAofalgorith
m.widenotestheweightassociatedwithai. 

 Foralliinitializewi<--1 
 Foreachtrainingexample<x,c(x)> 

 Initializeq0andq1to0 
 Foreachpredictionalgorithmai 

• Ifai(x)=0thenq0<--q0+wi 
• Ifai(x)=1thenq1<--q1+wi 

 Ifq1>q0thenpredictc(x)=1 
 Ifq0>q1thenpredictc(x)=0 
 Ifq0=q1thenpredict0or1atrandomforc(x) 
 ForeachpredictionalgorithmaiinAdo 

• Ifai(x)c(x)thenwi<--wi 
11 
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RelativeMistakeBoundfortheW
eighted-MajorityAlgorithm 

 

 

 LetDbeanysequenceoftrainingexamples,letAbe 

any set of n prediction algorithms, and let k bethe 

minimum number of mistakes made by 

anyalgorithm in A for the training sequence D. 

Thenthe number of mistakes over D made by 

theWeighted-Majority algorithm using =1/2 is 

atmost 2.4(k+log2n). 

 Thistheoremcanbegeneralizedforany01 

wheretheboundbecomes 

(klog21/+log2n)/log2(2/(1+)) 
12 
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INSTANCE-BASELEARNING 
 
• Instance-

basedlearningmethodssimplystorethetrainingexamplesinsteadof 

learningexplicitdescriptionof the target function. 

– Generalizingtheexamplesispostponeduntilanewinstancemustbeclassified. 

– Whenanewinstanceisencountered,itsrelationshiptothestoredexamplesisexami

ned in orderto assign atargetfunctionvalue for the newinstance. 

• Instance-

basedlearningincludesnearestneighbor,locallyweightedregressiona

nd case-based reasoning methods. 

• Instance-based methods are sometimes referred to as lazy 

learningmethodsbecausetheydelayprocessinguntilanewinstancemust

beclassified. 

• Akeyadvantageoflazylearningisthatinsteadofestimatingthe 
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targetfunction once for the entire instance space, these methods can 

estimateit locally anddifferentlyfor each newinstance tobeclassified. 



k-NearestNeighborLearning 
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ir jr
2

 

n 

r1 

 

 

• k-
NearestNeighborLearningalgorithmassumesallinstancescorre

spondtopoints in the n-dimensionalspaceRn 

• ThenearestneighborsofaninstancearedefinedintermsofEuclideandistan

ce. 

• Euclideandistancebetweentheinstancesxi=<xi1,…,xin>andxj= 

<xj1,…,xjn>are: 

d(xi,xj)




• Foragivenquery instancexq,f(xq)iscalculatedthefunctionvaluesofk-

nearestneighbor ofxq 



k-NearestNeighborLearning 
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• Storealltrainingexamples<xi,f(xi)> 

• Calculatef(xq)foragivenqueryinstancexqusingk-nearestneighbor 

• Nearest neighbor:(k=1) 

– Locatethenearesttraingexamplexn,andestimate f(xq)as 

– f(xq)f(xn) 

• k-Nearestneighbor: 

– Locateknearest traingexamples,andestimatef(xq)as 

– Ifthetargetfunctionisreal-valued,takemeanoff-

valuesofknearestneighbors. 

f(xq)= 

– If thetargetfunctionisdiscrete-valued,takeavoteamongf-valuesof k 

nearestneighbors. 



WhenToConsiderNearestNeighbor 
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• InstancesmaptopointsinRn 

• Lessthan20attributesperinstance 

• Lotsoftrainingdata 

• Advantages 

– Trainingisveryfast 

– Learn complextargetfunctions 

– Canhandlenoisydata 

– Doesnotlooseanyinformation 

• Disadvantages 

– Slowatquerytime 

– Easilyfooledbyirrelevantattributes 



Distance-Weighted kNN 
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CurseofDimensionality 
 

T.Aparna, Assistant Professor, CSE 

  

 



LocallyWeightedRegression 
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• KNNformslocalapproximationtofforeachquerypointxq 

• Whynotforman explicitapproximationf(x)forregionsurroundingxq 

LocallyWeightedRegression 

• Locallyweightedregressionusesnearbyordistance-weightedtrainingexamplestoform 

this localapproximation tof. 

• Wemight approximatethetargetfunctionintheneighborhoodsurroundingx,using 

alinearfunction,a quadraticfunction, amultilayer neuralnetwork. 

• Thephrase"locallyweightedregression"iscalled 

– localbecausethe function 

isapproximatedbasedonlyondatanearthequerypoint, 

– weighted because the contribution of each training example is weighted by 

itsdistancefromthequerypoint,and 

– regressionbecausethisisthetermusedwidely 

inthestatisticallearningcommunityfortheproblemof approximatingreal-

valued functions. 



LocallyWeightedRegression 
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• Given a new query instance xq, the general approach in 

locallyweightedregressionistoconstruct 

anapproximationfthatfitsthetrainingexamplesin theneighborhood 

surrounding xq. 

• Thisapproximationisthenusedtocalculatethevalue 

f(xq),whichisoutput asthe estimated target value for the 

queryinstance. 



LocallyWeightedLinearRegression 
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KernelfunctionK isthefunctionofdistancethatisusedtodetermine 

theweightofeach training example. 
 

 
 



RadialBasisFunctions 
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• One approach to function approximation that is closely related to distance-

weightedregressionandalsotoartificialneuralnetworksislearningwithradialbasisfunctio

ns. 

• Thelearnedhypothesisisafunctionoftheform 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



RadialBasisFunctions 
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RadialBasisFunctionNetworks 
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Eachhiddenunitproducesanactivationdeter

mined by a Gaussian functioncentered 

atsomeinstancexu. 

 
Therefore,itsactivationwillbeclosetozer

o unless theinputxisnearxu. 

 
Theoutputunitproducesalinearco

mbination of the hidden 

unitactivations. 



Case-basedreasoning 
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• Instance-basedmethods 

– lazy 

– classificationbasedonclassificationsofnear(similar)instances 

– data:pointsinn-dim.space 

• Case-basedreasoning 

– asabove,butdatarepresentedinsymbolicform 

• Newdistancemetricsrequired 



Lazy&eagerlearning 
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• Lazy: generalizeatquerytime 

– kNN,CBR 

• Eager:generalizebeforeseeingquery 

– Radialbasis,ID3,… 

• Difference 

– eagermustcreateglobalapproximation 

– lazycancreatemanylocalapproximation 

– lazycanrepresentmorecomplexfunctionsusingsameH(H=linearfuncti

ons) 
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MachineLearning:Lecture12 

 

 

GeneticAlgorithms 

(BasedonChapter9ofMitchell,T., 

MachineLearning,1997) 
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OverviewofGeneticAlgorithms(GAs) 

 GAisalearningmethodmotivated 

byanalogyto biologicalevolution. 

 GAs search the hypothesis space 

bygenerating successor hypotheses 

whichrepeatedlymutateandrecombinepar

tsofthebestcurrently known hypotheses. 

 In Genetic Programming (GP), 

entirecomputerprogramsareevolvedtocert

ainfitnesscriteria. 
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GeneralOperationofGAs 
 InitializePopulation:generatephypothesesatrandom. 

 Evaluate:foreachp,computefitness(p) 

 WhileMaxhFitness(h)<Thresholddo 

 Select:probabilisticallyselectafractionofthebestp’sinP.Callthis 

new generationPNew

 Crossover: probabilistically form pairs of the selected p’s 

andproducetwooffspringsbyapplyingthecrossoveroperator.Addallo

ffsprings toPnew.

 Mutate:Choosem%ofPNewwithuniformprobability.Foreach,inve
rtone randomly selected bit inits representation.

 Update:P<-Pnew

 Evaluate:foreachpinP,computefitness(p)

 ReturnthehypothesisfromPthathasthehighestfitness. 
  3 
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RepresentingHypotheses 

 In GAs, hypotheses are often represented by 
bitstrings so that they can be easily manipulated 
bygeneticoperatorssuchasmutationandcrossover. 

 Examples: 

(Outlook=OvercastvRain)^(Wind=Strong) 

<=>01110 

IFWind=StrongTHENPlayTennis=yes 
<=> 1111010 

where group 1 = 3-valued 
outlook,group 2 = 2-valued 
Windgroup3=2-
valuedPlayTennis 
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GeneticOperators 
 CrossoverTechniques: 

 Single-

pointCrossover.Maskexample

:11111000000 

 Two-pointCrossover. 

Maskexample:00111110000 

 UniformCrossover. 

Maskexample:10011010011 

 MutationTechniques: 

 PointMutation 

 OtherOperators: 

 SpecializationOperator 

 GeneralizationOperator 
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FitnessFunctionandSelection 

 A simple measure for modeling the probability that 

ahypothesis will be selected is given by the 

fitnessproportionateselection(orroulettewheelselecti

on): 

Pr(hi)=Fitness(hi)/j=1
pFitness(hj) 

 Othermethods:TournamentSelectionandRankSe

lection. 

 Inclassificationtasks,theFitnessfunctiontypicallyhas 

a component that scores the classificationaccuracy 

over a set of provided training examples.Other 

criteria can be added (e.g., complexity 

orgeneralityoftherule) 



 

T.Aparna, Assistant Professor, CSE 

 
 

6 



 

T.Aparna, Assistant Professor, CSE,NRCM 

 
 

HypothesisSpaceSearch(I) 

 GA search can move very abruptly (as compared 
toBackpropagation, for example), replacing a 
parenthypothesisbyanoffspringthatmayberadicallydiffere
ntfromtheparent. 

 TheproblemofCrowding:whenoneindividualismorefitthan 
others, this individual and closely related ones 
willtakeupalargefractionofthepopulation. 

 Solutions: 
 Usetournamentorrankselectioninsteadofroulettesele

ction.
 Fitnesssharing
 restrictiononthekindsofindividualsallowedtoreco

mbinetoformoffsprings.
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HypothesisSpaceSearch(II): 

TheSchemaTheorem [Holland,75] 
 

 

 Definition:Aschemaisanystringcomposedof0s,1s

and*swhere*means‘don’tcare’.

 Example:schema0*10representsstrings0010an

d0110.

 The Schema Theorem:More fit schemas 

willtend to grow in influence, especially 

schemascontaining a small number of defined 

bits 

(i.e.,containingalargenumberof*s),andespeciall

ywhen these defined bits are near one 
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anotherwithinthebit string.
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Genetic 

Programming:Represe

ntingPrograms 

 Example: sin(x)+sqrt(x2+y)
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GeneticProgramming:Crossover

Operation 
 Example: 
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ModelsofEvolutionandLearningI:Lama

rckian Evolution [Late 19th C] 

  Proposition:Experiencesofasingleorganismdir

ectly affect the genetic makeup of 

theiroffsprings.

 Assessment: This proposition is wrong: 

thegenetic makeup of an individual is unaffected 

bythelifetimeexperienceofone’sbiologicalparents.

 However: Lamarckian processes can 

sometimesimprovetheeffectivenessofcomputerize

dgeneticalgorithms.
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ModelsofEvolutionandLearningII:Bald
winEffect [1896] 

 If a species is evolving in a changing environment, 
therewillbeevolutionarypressuretofavorindividualswithth
ecapabilitytolearnduringtheirlifetime. 

 Those individuals who are able to learn many traits 
willrely less strongly on their genetic code to “hard-
wire”traits. As a result, these individuals can support a 
morediverse gene pool, relying on individual learning of 
the“missing” or “sub-optimized” traits in the genetic 
code.This more diverse gene pool can, in turn, support 
morerapid evolutionary adaptation. Thus the capability 
oflearningcanacceleratetherateofevolutionaryadaptationo
f apopulation. 

12 
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ParallelizingGeneticAlgorithms 

GAsarenaturallysuitedtoparallelimplementation.Dif

ferentapproaches were tried: 

 Coarse Grain: subdivides the population into 

distinctgroups of individuals (demes) and conducts a GA 

searchin each deme. Transfer between demes occurs 

(thoughinfrequently)byamigrationprocessinwhichindivid

ualsfromonedemearecopiedortransferredtootherdemes

 FineGrain:Oneprocessorisassignedperindividualinthe 

population and recombination takes place 

amongneighboringindividuals.
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MachineLearning 

Chapter10.LearningSetsofRules 

 

TomM.Mitchell 
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LearningDisjunctiveSetsofR

ules 

Method1:Learndecisiontree,converttorules 

 Method2:Sequentialcoveringalgorithm:

1. Learnonerulewithhighaccuracy,anyco
verage 

2. Removepositiveexamplescoveredbythisrul
e 

3. Repeat 
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SequentialCoveringAlgorithm 

SEQUENTIAL- 

COVERING(Targetattribute;Attributes;Examples;Threshold) 

 Learnedrules{}

 Rule  LEARN-ONE-
RULE(Target_attribute,Attributes,Examples)

 whilePERFORMANCE(Rule,Examples)

> Threshold,do 

– Learned_rulesLearned_rules+Rule 

– ExamplesExamples–{examplescorrectlyclassifiedbyRule} 

– RuleLEARN-ONE- 

RULE(Target_attribute,Attributes,Examples) 

– Learned_rulessortLearned_rulesaccordtoP
ERFORMANCEoverExamples 
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– returnLearned_rules 
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Learn-One-Rule 
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 PospositiveExamples

 NegnegativeExamples

 whilePos,do
LearnaNewRule 

- NewRulemostgeneralrulepossible 

- NewRuleNeg 

- whileNewRuleNeg,do 

AddanewliteraltospecializeNewRule 

1. Candidateliteralsgeneratecandidates 

2. Best_literalargmaxLCandidateliterals 

Performance(SpecializeRule(NewRule;L)) 

3. addBest_literaltoNewRulepreconditions 

4. NewRuleNegsubsetofNewRuleNeg 

thatsatisfiesNewRulepreconditions 

- Learned_rulesLearned_rules+NewRule 

- PosPos–{membersof PoscoverdbyNewRule} 

 
Learn-One-Rule(Cont.) 
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 ReturnLearned_rules
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Subtleties:LearnOneRule 

1. Mayusebeamsearch 

2. Easilygeneralizestomulti-valuedtargetfunctions 

3. Chooseevaluationfunctiontoguidesearch: 

– Entropy(i.e.,informationgain) 

– Sampleaccuracy: 

 
wherenc=correctrulepredictions,n=allpredictions 

 mestimate:
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VariantsofRuleLearningPrograms 
 

 Sequentialorsimultaneouscoveringofdata?

 Generalspecific,orspecificgeneral?

 Generate-and-test,orexample-

driven?Whether and how to post-

prune?

 Whatstatisticalevaluationfunction?
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LearningFirstOrderRules 

Whydothat? 

 Canlearnsetsofrulessuchas

Ancestor(x,y)Parent(x;y) 

Ancestor(x;y)Parent(x;z)^Ancestor(z;y) 

 General purpose programming 

languagePROLOG:programsaresetsofsuch

rules
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FirstOrderRuleforClassifyingWebPa

ges 

[Slattery,1997] 

course(A)

has-word(A, 

instructor),Not has-

word(A, good),link-

from(A,B), 

has-word(B, 

assign),Notlink-
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from(B,C) 

Train:31/31,Test:31/34 



 

T.Aparna, Assistant Professor, CSE,NRCM 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

T.Aparna, Assistant Professor, CSE,NRCM 

  

 

 

 



SpecializingRulesinFOIL 
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InformationGaininFOIL 
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InformationGaininFOIL 
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InductionasInvertedDeduction 



InductionasInvertedDeduction(Cont’) 
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InductionasInvertedDeduction(Cont’) 
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Induction is, in fact, the inverse operation of deduction, 
andcannot be conceivedto 
existwithoutthecorrespondingoperation, so that the question 
of relative importance 
cannotarise.Whothinksofaskingwhetheradditionorsubtraction
isthe more important process in arithmetic? But at the 
sametime much difference in difficulty may exist between a 
directand inverse operation; : : : it must be allowed that 
inductiveinvestigations are of a far higher degree of 
difficulty andcomplexitythan any questions of deduction…. 

 

(Jevons1874) 



InductionasInvertedDeduction(Cont’) 
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InductionasInvertedDeduction(Cont’) 
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InductionasInvertedDeduction(Cont’) 
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Deduction:ResolutionRule 
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InvertingResolution 
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InvertedResolution(Propositio

nal) 
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Firstorderresolution 
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InvertingFirstorderresolution 
 

 

 

 

 

 

 

 

 

 

 

 

 



Cigol 
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Progol 
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Progol 
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MachineLearning 

Chapter13.ReinforcementLearnin

g 

 
 

TomM.Mitchell 
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ControlLearning 

Considerlearningtochooseactions,e.g., 

 Robotlearningtodockonbatterycharger

 Learningtochooseactionstooptimizefactoryoutput

 LearningtoplayBackgammon

Noteseveralproblemcharacteristics: 

 Delayedreward

 Opportunityforactiveexploration

 Possibilitythatstateonlypartiallyobservable

 Possibleneedtolearnmultipletaskswithsamesen
sors/effectors
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OneExample:TD-Gammon 

LearntoplayBackgammonI

mmediatereward 

 +100ifwin

 -100iflose

 0forallotherstates

Trainedbyplaying1.5milliongamesagainstitselfNow 

approximatelyequaltobesthumanplayer 
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ReinforcementLearningProblem 
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MarkovDecisionProcesses 

Assume 

 finitesetofstatesS

 setofactions A

 ateachdiscretetimeagent 

observesstatestSandchooses actionatA

 thenreceivesimmediaterewardrt

 andstatechangestost+1

 Markov assumption:st+1=(st,at)andrt=r(st,at)
– i.e.,rtandst+1dependonlyoncurrentstateandaction 

– functionsandrmaybenondeterministic 

– functionsandrnotnecessarilyknowntoagent 
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Agent'sLearningTask 
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ValueFunction 
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WhattoLearn 
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QFunction 
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TrainingRuletoLearnQ 
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QLearningforDeterministic

Worlds 
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NondeterministicCase 
 

 

 
 



NondeterministicCase(Cont’) 
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TemporalDifferenceLearning 
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Learning(Cont’) 
 

TemporalDifference 
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SubtletiesandOngoingResearch 
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