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Prerequisites

For Machine Learning Course were commend that students meet the
following prerequisites:

« Basic programming skills(in Python)
« Algorithm design
« Basics of probability & statistics

T.Aparna, Assistant Professor, CSE, NRCM



Content

Unit-1 Introduction, Concept Learning, Decision Tree
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Networks-2, Evaluating Hypothesis,
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Instance Based Learning,
Unit-4 Genetic Algorithms, Learning Sets of Rules,
Reinforcement Learning
Unit-5 AnalyticalLearning-1, Analytical Learning-2, Combining Inductive and

Analytical Learning
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Machine Learning
Introduction

Ever since computers were invented, we have wondered whether they might be
Made to learn. If we could understand how to program them to learn-to improve
automatically with experience-the impact would be dramatic.

* Imagine computers learning from medical records which treatments are most
effective for new diseases

* Houses learning from experience to optimize energy costs based on the of their
occupants.

 Personal software assistants learning the evolving interests of their to highlight
especially relevant stories from the online morning newspaper
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Examples of Successful Applications of
Machine Learning

Learning to recognize spoken words

Learning to drive an autonomous vehicle
Learning to classify new astronomical structures
Learning to playworld-classback gammon
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Why is Machine Learning Important?

« Some tasks cannot be defined well, except by examples (e.g.,
recognizing people).
* Relationships and correlations can be hidden within large amounts of

data.Machine Learning/DataMining maybe able to find these
relationships.

« Human designers of ten produce machines that donot work as well as
desired in the environments in which they are used.

« The amount of knowledge available about certain tasks might be too large
for explicit encoding by humans (e.g., medical diagnostic).

« Environments change overtime.

* New knowledge about tasks is constantly being discovered by humans. It
may be difficult to continuously re-designsystems “by hand”.

T.Aparna , Assistant Professor, CSE, NRCM



Areas of Influence for Machine Learning

« Statistics: How best touse samples drawn from unknown probability distributions to
help decidefrom which distributionsomenewsampleisdrawn?

* Brain Models: Non-linear elements with weighted inputs (Artificial
NeuralNetworks) have been suggested as simple models of biological neurons.

 AdaptiveControlTheory: How to deal with controlling aprocess having unknown
parameters that must be estimated during operation?

 Psychology: How to model human performance on various learning tasks?

« Artificiallntelligence: How to write algorithms to acquire the knowledge humans are
able to acquire, atleast, as well as humans?

 EvolutionaryModels: How to model certain aspects of biological evolution to
Improve the performance of computer programs?
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Machine Learning: A Definition

A computer program Is said to learn from experience E
with respect to some class of tasks T and performance
measure P, If its performance at tasks In T, as measured
by P, improves with experience E.
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Why “Learn”?

Learning issused when:
« Human expertise does not exist(navigating on Mars)
« Humans are unable to explain their expertise (speech recognition)
« Solution changes intime(routing on a computernetwork)
 Solution needs to be adapted to particular cases(userbiometrics)

T.Aparna , Assistant Professor, CSE, NRCM



Well-Posed Learning Problem

Definition: A computer program is said to learn from experience E with respect to
some class of tasks T and performance measure P, if its performance attasks in T, as

measured by P, improves with experience E.

To have a well-defined learning problem, three features needs to be identified:

1. The classof tasks
2. The measure of performance to be improved

3. The source of experience
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Checkers Game
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Game Basics

* Checkers is played by two players. Each player begins the game with 12
coloreddiscs. (One set of pieces is black and the other red.) Each player places his
or her pieces on the 12 dark squares closest to him or her. Black moves first.
Players then alternate moves.

« The board consists of 64 squares, alternating between 32dark and 32lightsquares.

* |tis positioned so that each player has a light square on the right side corner closest
to him or her.

« A player wins the game when the opponent cannot make a move. In most cases,
this is because all of the opponent's pieces have been captured, but it could also be
because all of his pieces are blocked in.
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Rules of the Game

* Moves are allowed only on the dark squares, so pieces always move diagonally.
Single pieces are always limited to forward moves (toward the opponent).

A piece making a non-capturing move (not involving a jump) may move only one
square.

« A piece making a capturing move (a jump) leaps over one of the opponent'spieces,
landing in a straight diagonal line on the other side. Only one piece maybe captured
In a single jump; however, multiple jumps are allowed during a single turn.

« When a piece Is captured, it is removed from the board.

 |f a player is able to make a capture, there is no option; the jump must be made.

 If more than one capture Is available, the player is free to choose whichever he or
she prefers.
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Rules of the GameCont.

* When a piece reaches the furthest row from the player who controls that piece, itis
crowned and becomes a king. One of the pieces which had been captured is placed
on top of the king so that it is twice as high as a single piece.

 Kings are limited to moving diagonally but may move both forward and backward.
(Remember that single pieces, i.e. non-kings, are always limited to forward
moves.)

« Kings may combine jumps in several directions, forward and backward, on the
same turn. Single pieces may shift direction diagonally during a multiple
captureturn, but must always jump forward (toward the opponent).
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Well-Defined Learning Problem

A checkers learning problem:

e TaskT:playing checkers

e Performance measure P: percent of games won against opponents
e Training experience E:playing practice games against itself

A handwriting recognition learning problem:
e TaskT:recognizing and classifying hand written words within images
e Performance measureP:percent of words correctly classified

e Training experiencekE: a database of handwritten words with
given classifications
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A robot driving learning problem:

e TaskT:driving on public four-lane highways using vision sensors

e Performance measureP:average distance travelled before anerror (as judged by
human overseer)

e Training experienceE:a sequence of images and steering commands recorded
While observing a human driver
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Designing a Learning System

1. Choosing theTrainingExperience
2. Choosing theTargetFunction
3. Choosing a Representation for theTarget Function
4. Choosing a Function ApproximationAlgorithm
1 Estimating training values
2 Adjusting the weights
5. The Final Design
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The basic design issues and approaches to machinelearning is illustrated by
considering designing a program to learn to play checkers,with the goal of entering it
In the world checkers tournament
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1. Choosing the Training Experience

« The first design choice is to choose the type of training experience from which
the system will learn.

« The type of training experience available can have a significant impact
on success or failure of the learner.

There are three attributes which impact on successor failure of the learner

1. Whether the training experience provides director indirect feedback regarding

the choices made by the performance system.

The degree to which the learner controls the sequence of training examples

3. How well it represents the distribution of examples over which the final
system performance mustbe measured.

N
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1. Whether the training experience provides director indirect feedback regarding
the choices madeby the performance system.

Forexample, in checkers game:
 In learning to playcheckers,the system might learn from direct training examples consisting of individual
Checkers boardstates and the correct move foreach.

 Indirect training examples consisting of the move sequences and final outcomes of various games played.

» The information about the correctness of specific moves early in the game must be inferred indirectly
from the fact that the game was eventually won or lost.

» Here the learner faces an additional problem of credit assignment, or determining the degree to which each
move in the sequence deserves creditor blame for the finaloutcome.

» Creditassignment can be aparticularly difficult problem because the game can be lost even when early
moves are optimal,if the seare followed later by poor moves.

» Hence, learning from direct training feedback is typically easier than learning from indirect feedback.
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2. Asecond important attribute of the training experience is the degree to which

the learner controls the sequence of training examples

For example, in checkers game:

« The learner might depends on the teacher to select informative board states and to provide the correct move
foreach.

» Alternatively, the learner might itself propose board states that it finds particularly confusing and ask the
teacher for the correct move.

« The learner may have complete control over both the board states and (indirect) training classifications, as it
does when it learns by playing against itself with no teacher present.

» Notice in this last case the learner may choose between experimenting with novel board states that it has notyet
considered, or honing its skill by playing minor variations of lines of play it currently finds mostpromising.
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3. A third attribute of the training experience is how well it represents the
distribution of examples over which the final system performance must be
measured.

Learning is most reliable when the training examples follow a distribution similar to that of future
test examples.

For example, in checkers game:
* In checkers learning scenario, the performance metric P is the percent of games the system wins in the

worldtournament.

 If its training experience E consists only of games played against itself, there is an danger that this training
experience might not be fully representative of the distribution of situations over which it will later be tested.
For example, the learner might never encounter certain crucial board states that are very likely to be played by
the human checkers champion.

« |t is necessary to learn from a distribution of examples that is somewhat different from those on which the
final system will be evaluated. Such situations are problematic because mastery of one distribution of examples
will not necessary lead to strong performance over some other distribution.

T.Aparna , Assistant Professor, CSE, NRCM



3. Choosing the Target Function

The next design choice is to determine exactly what type of knowledge will be

learned and how this will be used by the performance program.

* Let’s begin with a checkers-playing program that can generate the legal moves
from any boardstate.

* The program needs only to learn how to choose the best move from among these
legal moves. This learning task is representative of a large class of tasks for which
the legal moves that define some large search space are known a priori, but for
which the best search strategy is not known.
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Given this setting where we must learn to choose among the legal moves, the most
obvious choice for the type of information to be learned is a program, or function,that
chooses the best move for any given board state.

1. Let Choose Move be the target function and the notation is

ChooseMove: B — M
Which indicate that this function accepts as input any board from the set of legal
boardstates Band produces as output somemove from the set of legal moves M.

ChooseMove is an choice for the target function in checkers example, but this
function will turn out to be very difficult to learn given the kind of indirect training
experience available to our system
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2. An alternative targetfunction is an evaluationfunction that assigns a
numericalscore to any given boardstate
Let the target functionVand the notation
V:B —R
Which denote that Vmaps any legal board state from the setB to some real value

We intend for this target function V to assign higher scores to better board states. If
the system can successfully learn such a target functionV, it can easily use it to select
the best move from any current board position.
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Let us define the target valueV (b) for an arbitrary board state binB, as follows:
1. If b isa finalboard state that is won,thenV(b)=100
2. If b is a finalboard state that is lost,thenV(b)=-100
3. If bis a finalboard state that is drawn,thenV(b)=0
4. If b is a not a final state in the game,thenV(b)=V(b'),
Where b'is the best final board state that can be achieved starting from band
playing optimally until the end of the game
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3. Choosing a Representation for the
Target Function

Let us choose a simple representation-for any givenboard state,the function will
be calculated as a linear combination of the following board features:

XL: the number of black pieces on the

boardx2: the number of red pieces on the

boardx3: the number of black kings on the

boardx4: the number of red kings on the

board

X5: the number of black pieces threatened byred (i.e., which can
be captured on red's next turn)

X6: the number of red pieces threatened by black
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Thus, learning program will represent as a linearfunction of the form

V(b) = wo + wixi + waxz + wixs3 + waxs + wsxs + wexe
Where,
* Wp through we are numerical coefficients,or weights,to be chosen by the
learning algorithm.
 Learned values for the weights ws through we will determine the relative
Importance of the various board features in determining the value of the board
« The weightwo will provide an additive constant to the boardvalue
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Partialdesignofacheckerslearningprogram:

« TaskT:playing checkers

« Performance measureP:percent of games won in the world tournament
« Training experienceE:games played against itself

« Target function:V:Board — R

 Target function representation

I:’(b) = wo -+ wix] + wax2 + wixz + waxs + wsxs + wexe

The first three items above correspond to the specification of the learning task,
where as the final two items constitute design choices for the implementation of
the learning program.
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4. Choosing a Function Approximation
Algorithm

 In order to learn the target function we require a set of training examples, each
describing a specific board state band the training value Vi.in(b) for b.

« Each training example is an ordered pair of the form (b,Virain(b)).

 For instance, the following training example describes a board state b In
which black has won the game (notex>=0 indicates that red has no remaining
pieces) and for which the target function valueVi.in(b) Is therefore +100.

((x1=3,%2=0,X3=1,X4=0,X5=0,Xs=0),+100)
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Function Approximation Procedure

1. Derive training examples from the indirect training experience available to
the learner
2. Adjusts the weights wito best fit these training examples
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[Type here]

A simple approach for estimating training values for intermediate boardstates is
to assign the training value of Vi.in(b) for any intermediate board state b to be
v {Successor (b))

Where,
v Is the learner's current approximation to V

Successor (b) denotes the nextboard state following for which it is again the
program’s turn to move

Rule for estimating trainingvalues

Virain (0)€V(Successor(b))
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2.Adjustingtheweights

Specify the learning algorithm for choosing the weights wito best fit the set of
training examples {(b, Virin (D))}

A firststep Is to define what we mean by the bestfit to the training data.

« One common approach is to define the best hypothesis, or set of weights, as that
which minimizes the squared error E between the training values and the values
predicted by the hypothesis.

E

> (Virain(®) — V (5))?

(b, Virain(b)) e training examples

 Several algorithms are known for finding weights of a linear function
that minimizeE.

T.Aparna Assistant Professor Dept Of CSE, NRCM



In our case, we require an algorithm that will incrementally refine the weights asnew

training examples become available and that will be robust to errors in these
estimated training values

One such algorithm is called the least mean squares, or LMS training rule. For each

observed training example it adjusts the weights asmall amount in the direction that
reduces the error on this training example

LMS weightupdate rule:-For each training example

(b,Virain(b))Use the current weights to calculateV(b)
For each weightw;, update it as

wi<—wi+n (Vtrain (b)-V(b)) X;
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Here ) Is a small constant (e.g., 0.1) that moderates the size of the weight

update.Working of weight update rule

* When the error (Vtrain(b)-v(b))is zero,no weights are changed.

« When (Vtrain(b)-v(b))is positive(i.e.,whenv(b)is too low),then each weight is
Increased In proportion to the value of its corresponding feature. This will raise
the value ofv(b), reducing the error.

« |If the value of some featurexi is zero, then its weight is not altered regardless of
the error, so that the only weights updated are those whose features actually
occur on the training example board.
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5. The Final Design

The final design of checkers learning system can be described by four distinct
program modules that represent the central components in many learning
systems
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1. The Performance System is the module that must solve the given performance
taskby using the learned target function(s).
It takes an instance of a new problem (new game) as input and produces a trace of its

solution (game history) as output.

In checkers game, the strategy used by the Performance System to select its next
move at each step Is determined by the learned ¥ evaluation function. Therefore,
weexpect its performance to improve as this evaluation function becomes

Increasingly accurate.

2. The Critic takes as input the history or trace of the game and produces as output a
set of training examples of the target function. As shown in the diagram, each training
example in this case corresponds to some game state in the trace, along with an
estimateVain Of the target function value for this example.
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3. The Generalizer takes as input the training examples and produces an

output hypothes is that is its estimate of the target function.

It generalizes from the specific training examples, hypothesizing a general
function that covers these examples and other cases beyond the training examples.
Inour example, the Generalizer corresponds to the LMS algorithm, and the output
hypothesis is the functionv described bythe learned weightswy, .. ., WG6.

4. The Experiment Generator takes as input the current hypothesis and outputs anew
problem (i.e., initial board state) for the Performance System to explore.lts role is to
pick new practice problems that will maximize the learning rate of the over all
system.

In our example, the Experiment Generatoral ways proposes the same initial game
board to begin a new game.
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The sequence of design choices made for the checkers program is summarized
In below figure [ —— ]

of Training Experience

Games against

experts Table of correct

Games against moves

self

Determine
Target Function
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programming

)

Gradient
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Perspectives of Machine Learning

Perspective of machine learning involves searching very
large space of possible hypothesis to determine one that

Best fits the observed data and any prior knowledge heldby
learner.
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Issues In MachineLearning

« What algorithms exist for learning general target functions from specific training
examples? In what settings will particular algorithms converge to the desired
function, given sufficient training data?Which algorithms perform best for which
types of problems and representations?

« How much training data is sufficient? What general bounds can be found to relate
the confidence in learned hypotheses to the amount of training experience and the
character of the learner's hypothesis space?

 When and how can prior knowledge held by the learner guide the process of
generalizing from examples? Can prior knowledge be helpful even when it is only
approximately correct?
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« What is the best strategy for choosing a useful next training experience, and how
does the choice of this strategy alter the complexity of the learning problem?

 What Is the best way to reduce the learning task to one or more function
approximation problems? Put another way, what specific functions should the
system attempt tolearn? Can this process itself be automated?

* How can the learner automatically alter its representation to improve its ability to
represent and learn the target function?
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Concept Learning

 Learning Involves acquiring general concepts from specific training examples.
Example: People continually learn general concepts or categories such as
"bird,'""car,""'situations in which I should study more in order to pass the exam,"etc.

 Each such concept can be viewed as describing some subset of objects or events
defined over a larger set

 Alternatively, each concept can be though to fasaBoolean-valued function defined
over this larger set. (Example: A function defined over all animals, whose value is
true for birds and false for other animals).

Conceptlearning-Inferring a Boolean-valued function from training examples of
Its Input andoutput
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A Concept Learning Task

Consider the example task of learning the target concept
"Dayson which my friend Aldoenjoysh is favorite watersport."

Sunny  Warm Normal Strong Warm  Same Yes
Sunny  Warm High  Strong Warm  Same Yes
Rainy  Cold High  Strong Warm Change No

Sunny  Warm High  Strong Cool Change Yes

Table-Describes a set of.exanple.days,each. represented by a set of attributes

T.Aparna, Assistant Professor, CSE, NRCM
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The attribute EnjoySport indicates whether or not a Person enjoys his favorite
watersport on this day.

The task Is toleranto predict thevalue of EnjoySport for
an arbitrary day, based on the values of its other
attributes?
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What hypothes is representation is provided to the learner?

Let’s consider as imple representation in which each hypothesis consists of a conjunction
of constraints on the instance attributes.

et each hypothes is be a vectorof six constraints, specifying the values of the six
attributes Sky, AirTemp, Humidity,Wind,Water, and Forecast.

For each attribute, the hypothes is will either

 Indicate bya"?'that any valueis acceptable for this attribute,
« Specify a single required value(e.g.,Warm)for the attribute,or
* Indicate bya"®"that novalueis acceptable
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Ifsomeinstancexsatisfiesalltheconstraintsofhypothesish,thenhclassifies
Xasapositive example(h(x) =1).

The hypothesis that PERSON enjoys his favo rite sport only on cold days with
highhumidity (independent of the values of the other attributes) is represented by

theexpression
(?, Cold, High,?,?,?)

Themostgeneral hypothesis-that everydayisapositiveexample-isrepresentedby

The most specific possible hypothesis-that day Is a positive example-is
norepresented by
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[fsomeinstancexsatisfiesal Ithecons‘(@tﬁgag),tby@gg)esish,thenhclassifies
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Notation

The set of items over which the concept is defined is called the set of
Instances, which we denote by X.

Example: X is the set of all possible days, each represented by the attributes:Sky,
AirTemp, Humidity,Wind,Water,and Forecast

The concept or function to be learned is called the targetconcept, which we denote
by c.
c can be any Boolean valued function defined
overthetnstancesXc: X{O, 1}

Example: The target concept corresponds to the value of the attribute EnjoySport
(i.e.,c(X)=1lifEnjoySport=Yes, and c(x)=0 if EnjoySport=No).
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Instances for which c(x)=1 are called positive examples,or members of the
target concept.
* Instancesforwhichc(x)=0 are called negative examples,or non-members of the
target concept.
« The ordered pair(x,c(x)) to describe the training example consisting of the
Instancex and its target conceptvalue c(x).
« D to denote the set of available training examples
« The symbol H to denote the set of all possible hypotheses that the learner
may consider regarding the identity of the target concept. Each hypothesis h
In Hrepresents a Boolean-valued function defined over X
h:X —{0O,1}

The goal of the learner is to find a hypothesis such that h(x)=c(x)forall x in
X.
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Sunny

Sunny

Rainy

Sunny
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Warm

Warm

Cold

Warm

Normal

High

High

High

Strong Warm  Same

Strong Warm  Same Yes

Strong Warm Change No

Strong Cool Change Yes
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e Given: -
e Instances X: Possible days, each described by the attributes
e Sky (with possible values Sunny, Cloudy, and Rainy),
® AirTemp (with vaives Warm and Cold),
® Humidity (with values Normal and High),
e Wind (with values Strong and Weak),
e Water (with values Warm and Cool), and
e Forecast (with values Same and Change).

e Hypotheses H: Each hypothesis is described by a conjunction of constraints on the at-
tributes Sky, AirTemp, Humidity, Wind, Water, and Forecast. The constraints may be “7”

(any value is acceptable), “@” (no value is acceptable), or a specific value.
e Target concept ¢: EnjoySport : X — {0, 1}
e Training examples D: Positive and negative examples of the target function (see Table 2.1).
¢ Determine: '
e A hypothesis i in H such that A(x) = c(x) for all x in X.

TABLE The EnjoySport concept learning task.

T.Aparna, Assistant Professor, CSE, NRCM
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The Inductive Learning Hypothesis

Any hypothesis found to approximate the target function well over a sufficiently
large set of training examples will also approximate the target function well
overother unobserved examples.
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Concept learning as Search

« Concept learning can be viewed as the task of searching through a large space
of hypotheses implicitly defined bythe hypothesis representation.

« The goal of this search is to find the hypothesis that best fits the training
examples.

Example, the instances X and hypotheses H in the EnjoySport learningtask.
The attribute Sky has three possible values, and AirTemp,Humidity
,Wind,WaterForecast each have two possible values, the instance space X
contains exactly

« 3.2.2.2.2.2=96 Distinct instances

« 5.4.4.4.4.4=5120 syntactically distinct hypotheses within H.

Every hypothesis containing one or more"®"symbols represents the empty set of
Instances; that is, it classifies every instance as negative.
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» 1+(4.3.3.3.3.3)=973. Sem.antically.ditincthy.potheses
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General-to-SpecificOrderingofHypotheses

« Considerthetwohypotheses
h:= (Sunny,?,?,Strong,?,?)
ho= (Sunny,?,?,?,?,?

 Considerthesetsofinstancesthatareclassifiedpositivebyh;andbyhs.

* hoimposesfewerconstraintsontheinstance, itclassifies more instancesaspositive.
So, any instance classified positive by h; will also be classified positiveby
ho. Therefore, hois more generalthan h.
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General-to-SpecificOrderingofHypotheses

» Givenhypotheses hjandhg,hjismore-general-thanor-
equaldohgifandonlyifanyinstancethatsatisfies hxalsosatisfiesh;

Definition:Let h;andhbeBoolean-
valuedfunctionsdefinedoverX.Thenhjismoregeneral-than-or-equal-

tohk(writtenh;> hy)ifand only if
(Vx € X)[(he(x) = 1) = (Bi(x) = 1)]
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Instances X Hypotheses H
[ S
® Specific
®
° General
Y

x = <Sunny, Warm, High, Strong, Cool, Same> h 1= <Sumny, ?, ?, Strong, ?, 7>

2 9 9 9 .)A:V)
g woyag ey v

X, = <Sunny, Warm, High, Light, Warm, Same=> h g Sunny, :

h 3~ <Sunny, ?, ?, 2, Cool, 7>

T.Aparna, Assistant Professor, CSE, NRCM

Inthe figure, thebox on the
leftrepresentsthesetXofallinstances,
the box on the right theset H ofall
hypotheses.

Eachhypothesiscorrespondstosomes
ubsetofX-
thesubsetofinstancesthatitclassifies
positive.

The arrows connecting
hypothesesrepresent the more -
general -

thanrelation,withthearrowpointingt
owardthelessgeneralhypothesis.

Notethesubsetofinstancescharacteri
zedbyh,subsumesthesubset
characterized by h ; , henceh; is
more-general-thanh;
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FIND-S: Finding a Maximally Specific
Hypothesis

FIND-SAlgorithm
1. InitializehtothemostspecifichypothesisinH
2. Foreachpositivetraininginstancex
Foreachattributeconstraint a;inh

Iftheconstraintajissatisfiedbyx

Thendonothing

Elsereplaceaiinh bythenextmoregeneralconstraintthatissatisfiedby x
3. Outputhypothesish

T.Aparna, Assistant Professor, CSE, NRCM



Toillustratethisalgorithm,assumethelearnerisgiventhesequenceoftrainingexamp

lesfrom theEnjoySporttask

Sunny
Sunny
Rainy

Sunny

Warm

Warm

Cold

Warm

Normal
High
High

High

Strong
Strong
Strong

Strong

Warm  Same Yes

Warm  Same Yes
Warm  Change No
Cool Change Yes

ThefirststepofFIND-SistoinitializehtothemostspecifichypothesisinH

T.Aparna, Assistant Professor, CSE, NRCM

h-(9,9,9, 3,9,0)
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X1=<SunnyWarmNormalStrongWarmSame=>,+

Observing the first training example, it Is clear that our hypothesis iIs too specific.
Inparticular, none of the "@" constraints in h are satisfied by this example, so each
Isreplacedbythe nextmore general constraintthat fitsthe example

hi=<SunnyWarmNormalStrong\WarmSame>

This h is still very specific; it asserts that all instances are negative except for
thesinglepositive training example

Xo=<Sunny,Warm,High,Strong,Warm,Same>,+

The second training example forces the algorithm to further generalize h, this
timesubstituting a "?' in place of any attribute value in h that is not satisfied by the
newexample

ho=<SunnyWarm?StrongWarmSame>

T.Aparna, Assistant Professor, CSE, NRCM



x3=<Rainy,Cold,High,Strong,Warm,Change>,-

Uponencounteringthethirdtrainingthealgorithmmakesnochangetoh. TheFIND-
Salgorithm simply ignores everynegative example.

h3=<SunnyWarm?StrongWarmSame>
x4=<SunnyWarmHighStrongCoolChange>,+

Thefourthexampleleadstoafurthergeneralizationof h
h4=<SunnyWarm?Strong??>

T.Aparna, Assistant Professor, CSE, NRCM



Instances X Hypotheses H

b -
Specific
General
Y
/10 =<, 0,9, DD D>
X = <Sunny Warm Normal Strong Warm Same>, + /I] = <Sunny Warm Normal Strong Warm San
X o= <Sunny Warm High Strong Warm Same>, + hr = <Sunny Warm ? Strong Warm Same>
X = <Rainy Cold High Strong Warm Change>, - h% = <Sunny Warm ? Strong Warm Same>
x = <Sunny Warm High Strong Cool Change>, + h, = <Sunny Warm ? Strong ? ? >
T.Aparna, Assis 4 i : - 4 - &
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ThekeypropertyoftheFIND-Salgorithmis

 FIND-S Is guaranteed to output the most specific hypothesis within H that
Isconsistentwith thepositive training examples

* FIND-S algorithm’s final hypothesis will also be consistent with the
negativeexamples provided the correct target concept Is contained in H, and
provided thetrainingexamples are correct.

T.Aparna, Assistant Professor, CSE, NRCM



UnansweredbyFIND-S

Has the learner convergedtothecorrecttargetconcept?

Why prefer the mostspecifichypothesis?
Arethetrainingexamplesconsistent?
Whatifthereareseveralmaximallyspecificconsistenthypotheses?

B~ w e

T.Aparna, Assistant Professor, CSE, NRCM



VersionSpaceandCANDIDATEE
LIMINATIONAIgorithm

ThekeyideaintheCANDIDATE-

ELIMINATIONalgorithmistooutputadescriptionofthesetofallhypothesesconsistentwiththetr
ainingexamples

Representation
« Definition: AhypothesishisconsistentwithasetoftrainingexamplesDifandonlyif
h(Xx)=c(x)foreachexample(x,c(x))inD.

Consistent (h,D)=(V(x,c(x))eD)h(x)=c(x))

Notedifferencebetweendefinitionsofconsistentandsatisfies

» Anexample xissaidtosatisfyhypothesishwhenh(x) =1, regardless
ofvvhetherX|sapos|t|veornegat|veexampIeofthetargetconcept

 anexamplexissaidtoconsistentwithhypothesishiffh(x)=c(x)
T.Aparna, Assistant Professor, CSE, NRCM



VersionSpace
ArepresentationofthesetofallhypotheseswhichareconsistentwithD

Definition: The version space, denoted VSypwith respect to hypothesisspace Hand

training examples D, is the subset of hypotheses from H consistent with thetraining
examplesin D

VSh p={heH| Consistent(h,D)}

T.Aparna, Assistant Professor, CSE, NRCM



Hypothesis Space

T.Aparna, Assistant Professor, CSE, NRCM

Version Space

VS, ,
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The LIST-THEN-ELIMINATE Algorithm

TheLIST-THEN-ELIMINATEalgorithmfirstinitializestheversionspacetocontainall
hypotheses in H and then eliminates any hypothesis found inconsistent with
anytraining example.

T.Aparna, Assistant Professor, CSE, NRCM DeepakD,Asst.Prof.,Dept.ofCSE,CanaraEngg.College
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The LIST-THEN-ELIMINATE Algorithm

1. VersionSpacecalistcontainingeveryhypothesisinH
2. Foreachtrainingexample,(x,c(x))
removefromVersionSpaceanyhypothesishforwhichh(x)=c(x)

3. OutputthelistofhypothesesinVersionSpace

TheLIST-THEN-ELIMINATEAIgorithm

 List-Then-Eliminateworksinprinciple,solongasversionspaceisfinite.

« However,sinceitrequiresexhaustiveenumerationofallhypothesesinpracticeitisnot
feasible.

T.Aparna, Assistant Professor, CSE, NRCM



AMoreCompactRepresentationforVersionSpaces

» Theversionspaceisrepresentedbyitsmostgeneralandleastgeneralmembers.

« Thesemembersformgeneralandspecificboundarysetsthatdelimittheversionspace
withinthe partiallyordered hypothesis space.

T.Aparna, Assistant Professor, CSE, NRCM



S: | { <Sunny, Warm, ?, Strong, ?, 7> } Aversionspacewithitsgeneral
and specific boundarysets.

The wversion space includes
allsix hypotheses shown here,
butcanberepresentedmoresimpl

<Sunny, ?, ?, Strong, ?, ?> <Sunny, Warm, 2, ?, 2, 7> <?, Warm, ?, Strong, ?, ?> yby SandG.

« Arrows indicate instance of
themore-general-than
relation. Thisistheversion
spaceforthe

Enjoysportconceptlearning
« problemandtrainingexamples

describedinbelowtable
Humidity  Wind Forecast EnjoySport

G:| {<Sunny, 2,2 2, 2 7>, <? Warm, ?, 2, 2, 7>

Sunny Warm Normal Strong Warm  Same

Sunny Warm High Strong  Warm Same Yes
Rainy Cold High Strong Warm Change No
Sunny  Warm High Strong Cool Change Yes

Deepak D,Asst.Prof . Dept.ofC SE,CanarakEngg. College
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Definition: ThegeneralboundaryG,withrespecttohypothesisspaceHandtrainingdataD
IS the setof maximallygeneral members ofHconsistentwithD

G={geH)|Consistent(g,D)A(—-39'e H)[(g">¢g9)AConsistent(g',D)]}

Definition: ThespecificooundaryS,withrespecttohypothesisspaceHandtraining data
D, Is the set of minimally general (i.e., maximally specific) members
ofHconsistentwithD.

S={seH|Consistent(s,D)A(—3s'eH)[(s>¢s")AConsistent(s',D)] }

T.Aparna, Assistant Professor, CSE, NRCM



VersionSpacerepresentationtheorem

Theorem: Let X be an arbitrary set of instances and Let H be a set ofBoolean-valued
hypotheses defined over X. Let ¢ : X {0, 1} be an arbitrary target conceptdefined
over X, and let D be an arbitrary set of training examples {(X, c¢(x))). For allX, H,c,
and D such that Sand G are well defined,

VSp={heH|(3seS)(IgeG)(g>,h>.5)}

T.Aparna, Assistant Professor, CSE, NRCM



VSpo={heH|(3seS)(3geG)(g>,h>.5)}

ToProve:

1. EveryhsatisfyingtherighthandsideoftheaboveexpressionisinVSu,p
2. EverymemberofVSh psatisfiestheright-handsideoftheexpression

Sketchofproof:

1. letg,h,sbearbitrarymembersofG,H,Srespectivelywithg>gh>¢s

By the definition of S, s must be satisfied by all positive examples in D. Because h >4s ,h must alsobe
satisfied byall positive examples inD.

By the definition of G, g cannot be satisfied by any negative example in D, and because g >4 h hcannot
be satisfied by any negative example in D. Because h is satisfied by all positive examples in
Dandbynonegativeexamples inD,his consistent with D,and thereforehisa memberofVSh p

2. ItcanbeprovenbyassumingsomehinVSh p,thatdoesnotsatisfytheright-
handsideoftheexpression,thenshowing thatthis leadstoan inconsistency

T.Aparna, Assistant Professor, CSE, NRCM



TheCANDIDATE-ELIMINATIONLearningAlgorithm

The CANDIDATE-ELIMINTION algorithm computes the version space
containingall hypotheses from H that are consistent with an observed sequence of
trainingexamples.

T.Aparna, Assistant Professor, CSE, NRCM



Initialize G to the set of maximally general hypotheses in
Hinitialize S to the set of maximally specific hypotheses in
HForeachtraining example d, do
« Ifdisapositiveexample
« RemovefromGanyhypothesisinconsistentwithd
 Foreach hypothesissinSthatisnotconsistentwithd
* RemovesfromS
« AddtoSallminimalgeneralizationshofssuchthat
* hisconsistentwithd,andsomememberofGismoregeneralthanh
* RemovefromSany hypothesisthatismoregeneralthananotherhypothesisinS

- [fdisanegativeexample
« Removefrom Sany hypothesisinconsistentwithd
 ForeachhypothesisginGthatisnotconsistentwithd
* RemovegfromG
« AddtoGallminimalspecializationshofgsuchthat
* hisconsistentwithd,andsomememberofSismorespecificthanh

« RemovefromGanyhypothesisthatislessgeneral thananotherhypothesisinG
T.Aparna, Assistant Professor, CSE, NRCM
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AnlllustrativeExample

TheboundarysetsarefirstinitializedtoG.andS,,themostgeneralandmostspecifichypoth
esesin H.

So (0,,8,3,,)

Go <? ?7? ?,?,?>

LI ALY B A . .

T.Aparna, Assistant Professor, CSE, NRCM



Fortrainingexampled,

(Sunny,Warm,Normal,Strong,Warm,Same)+

S1 (Sunny,Warm,Normal,Strong,Warm,Same)

Gl <?I?I?I?I?I?>

T.Aparna, Assistant Professor, CSE, NRCM



Fortrainingexampled,

(Sunny,Warm,High,Strong,Warm,Same)+

S2 (Sunny,Warm,?,Strong,Warm,Same)

G> <7,?,7,?,?,?>

T.Aparna, Assistant Professor, CSE, NRCM



Fortrainingexampled,

(Rainy,Cold,High,Strong,Warm,Change)—

(Sunny,Warm,?,Strong,\Warm,Same)

Gs  [(Sunny,

2.2.2,2,2%?,Warm,?,2,2,2)(?,2,2,2,2,Same)

T.Aparna, Assistant Professor, CSE, NRCM




Fortrainingexampled,

(Sunny,Warm,High,Strong,CoolChange)+

S4 (Sunny,Warm,?,Strong,?,?)

Gy (Sunny,?,?,?2,?2,?%? Warm,?,?,?2,?)

T.Aparna, Assistant Professor, CSE, NRCM



S4 | { <Sunny, Warm, ?, Strong, ?, 7> |

A

<Sunny, ?, ?, Strong, 7, 7> <Sunny, Warm, ?, ?, 7, 7> <2, Warm, ?, Strong, ?, ?>

NN

{ <Sunny, ?, 2,2, 2, 7>, <? Warm, ?, ?, 7, 7>}

The final version space for the EnjoySportconcept learning problem and

trainingexamplesdescrlbedearl|er.

DeepakD, Asst.Prof.,Dept.of CSE,CanaraEngg.College 84



InductiveBias

Thefundamentalquestionsforinductiveinference

« Whatifthetargetconceptisnotcontainedinthehypothesisspace?
« Canweavoidthisdifficultybyusing
ahypothesisspacethatincludeseverypossiblehypothesis?

« Howdoesthesizeofthishypothesisspaceinfluencetheabilityofthealgorithmtogeneralizet
ounobservedinstances?

« Howdoesthesizeofthehypothesisspaceinfluencethenumberoftrainingexamples
thatmustbeobserved?

CSE, NRCM



Effectofincompletehypothesisspace

PrecedingalgorithmsworkiftargetfunctionisinH
WillgenerallynotworkiftargetfunctionnotinH

Considerfollowingexampleswhichrepresenttargetfunction
“sky=sunnyorsky=cloudy”:
(SunnyWarmNormalStrongCoolChange) Y
(Cloudy WarmNormalStrongCoolChange) Y
N

(RainyWarmNormalStrongCoolChange)

IfapplyCandidateEliminationalgorithmasbefore,endupwithemptyVersionSpaceAfterf

Irst twotrainingexample
S=(?WarmNormalStrongCoolChange)

Newhypothesisisoverly generalanditcoversthethirdnegativetrainingexample!Our

T.Aparna, Assistant Professor, CSE,NRCM



Hdoesnot includetheappropriatec

T.Aparna, Assistant Professor, CSE,NRCM
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AnUnbiasedLearner

Incompletehypothesisspace

« IfcnotinH,thenconsidergeneralizingrepresentationofHtocontainc

* The size of the instance space X of days described by the six available attributes is
96.The number of distinct subsets that can be defined over a set X containing |X]
elements(i.e., thesizeofthepowersetofX)is2/Xl

 Recallthatthereare96instancesinEnjoySport;hencethereare2%possiblehypothesesinfullsp
aceH

« CandothisbyusingfullpropositionalcalculuswithAND,OR,NOT
 HenceHdefinedonlybyconjunctionsofattributesisbiased(containingonly973h’ s)



* Let us reformulate the Enjoysportlearning task in an unbiased way by defining a
newhypothesisspaceH'thatcanrepresenteverysubsetofinstances;thatis,letH'correspondtoth

epowersetofX.

* Onewayto definesuchan
H'istoallowarbitrarydisjunctions,conjunctions,andnegationsofourearlierhypothes

€sS.

Forinstance,thetargetconcept™ Sky=SunnyorSky=Cloudy"''couldthenbedescribedas
(Sunny,?,?,?,?,?2)V(Cloudy,?,?,?,?,?

T.Aparna, Assistant Professor, CSE
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Definition:
ConsideraconceptlearningalgorithmLforthesetofinstancesX.

* LetcbeanarbitraryconceptdefinedoverX

» LetDc={(x,c(x))}beanarbitrarysetoftrainingexamplesofc.

« LetL(xi,Dc)denotetheclassificationassignedtotheinstancexibyLaftertrainingonthedataDe.

 TheinductivebiasofLisany minimalsetofassertionsBsuch
thatforanytargetconceptcandcorrespondingtrainingexamplesDc

(V{xie X)[(BADcAXi) FL(xi,Dc)]

T.Aparna, Assistant Professor, CSE
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Traming examples

New instance

Traming examples

New mstance

Assertion " H contains
the target concept"

/

Inductive bias
made explicit

Inductive system

Candidate

»  Elimination

Algorithm

Using Hypothesis
Space H

Classification of
new instance. or
"don’t know"

Equivalent deductive system

Theorem Prover

Classification of
new mstance. or
"don’t know"

T.Aparna, Assistant Professor, CSE

Modelling inductive systems
byequivalentdeductivesy
stems.
Theinput-
outputbehavioroftheCANDIDA
TE-ELIMINATION
algorithm using a hypothesis space
His identical to that of a
deductivetheorem prover utilizing the
assertion'"H contains the target
concept.” Thisassertion s
therefore called
theinductive bias of the
CANDIDATE-ELIMINATION
algorithm.
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characterizinginductive systems
by theirinductive bias allowsmodelling them by their equivalentdeductive systems. This provides awayto compare inductive
systemsaccording to theirpolicies forgeneralizing beyond the observedtrainingdata

DECISIONTREELEARNING



Decision tree learning 1S a method for
approximatingdiscrete-valued target functions,in which
thelearnedfunction is representedby adecision tree.



DECISIONTREEREPRESENTATION

T.Aparna, Assistant Professor, CSE

Sunny

e

Humidity

High

/

No

Normal

\

Yes

Outlook

Overcast

Yes

Rain
Wind
Strong Weak
No Yes

FIGURE: A
decision tree for
theconcept

PlayTennis.Anexam
pleisclassified by
sortingit through the
tree
totheappropriateleaf
node, then
returningtheclassific
ationassociated with
thisleaf



« Decision trees classify instances by sorting them down the tree from the root
tosome leaf node, which provides the classificationof the instance.

« Each node iIn the tree specifies a test of some attribute of the instance, and
eachbranch descending from that node corresponds to one of the possible values
forthisattribute.

« An instance is classified by starting at the root node of the tree, testing theattribute
specified by this node, then moving down the tree Dbranch
correspondingtothevalueoftheattributeinthegivenexample. Thisprocessisthenrepea
tedforthe subtree rootedat the new node.



 Decisiontreesrepresentadisjunctionofconjunctionsofconstraintsontheattrib
utevalues of instances.

« Eachpathfromthetreeroottoaleafcorrespondstoaconjunctionofattributetests,an
d the treeitself toa disjunction of these conjunctions

Forexample,
The decision trees how n in above figure corresponds to the
expression (Outlook =Sunny AHumidity = Normal)
(Outlook=0vercast)
(Outlook=RainAWind=Weak)



APPROPRIATEPROBLEMSFOR
DECISIONTREELEARNING

Decisiontreelearningisgenerallybestsuitedtoproblemswiththefollowingcharacteristics:

1. Instancesarerepresentedbyattribute-valuepairs—Instancesaredescribedbyafixed
set of attributes and their values

2. The target function has discrete output values — The decision tree assigns
aBoolean classification (e.g., yes or no) to each example. Decision tree
methodseasilyextendtolearningfunctions withmorethantwo possibleoutputvalues.

3. Disjunctivedescriptionsmayberequired



4. The training data may contain errors — Decision tree learning methods arerobust
to errors, both errors In classifications of the training examples and errorsinthe
attribute values that describe these examples.

5. Thetrainingdatamaycontainmissingattributevalues—
Decisiontreemethodscanbe used evenwhen some training
exampleshaveunknown values

« Decision tree learning has been applied to problems such as learning to
classifymedical patients by their disease, equipment malfunctions by their cause,
andloan applicants by their likelihood ofdefaulting on payments.

« Such problems, in which the task is to classify examples into one of a discrete
setofpossible categories, are often referred toasclassification problems.



THEBASICDECISIONTREE LEARNING
ALGORITHM

« Mostalgorithmsthathavebeendevelopedforlearningdecisiontreesarevariations on a

core algorithm that employs a top-down, (greedy search through
thespaceofpossibledecisiontrees. Thisapproachisexemplifiedbythel D3algorithmand
Itssuccessor C4.5



WhatisthelD3algorithm?

|D3standsforlterativeDichotomiser3
ID3isaprecursortotheC4.5Algorithm.
ThelD3algorithmwasinventedbyRossQuinlanin1975

Used to generate a decision tree from a given data set by employing a top-
down,greedysearch, to test each attribute at every nodeof thetree.

Theresultingtreeisusedtoclassifyfuturesamples.



ID3algorithm

ID3(Examples, Target_attribute,Attributes)

Examples are the training examples. Target_attribute is the attribute whose value is tobe predictedby
the tree. Attributes is a list of other attributes that may be tested by the learned decision
tree.Returnsadecisiontree that correctlyclassifies thegiven Examples.

e CreateaRootnodeforthetree
o IfallExamplesarepositive,Returnthesingle-nodetreeRoot,with label=+

o IfallExamplesarenegative,Returnthesingle-nodetreeRoot,withlabel=-
o IfAttributesisempty,Returnthesingle-
nodetreeRoot,withlabel=mostcommonvalueofTarget_attributein Examples



e OtherwiseBegin

o A« theattributefromAttributesthatbest*classifiesExamples
e ThedecisionattributeforRoot«—A
e [Foreachpossiblevalue,vi,ofA,
e AddanewtreebranchbelowRoot,correspondingtothetestA=vi;

o | etExamples,i,bethesubsetofExamplesthathavevalueviforA
o IfExamples,i,isempty

e Thenbelowthisnewbranchaddaleafnodewithlabel=mostcommonvalueofTarget_attri
buteinExamples

e Elsebelowthisnewbranchaddthesubtree
ID3(Examplesi, Targe_tattribute, Attributes—{A}))

e End
e ReturnRoot

* Thebestattributeistheonewithhighestinformation gain

T.Aparna, Assistant Professor, CSE
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WhichAttributelstheBestClassifier?

 The central choice in the ID3 algorithm is selecting which attribute to test at
eachnode in thetree.

« Astatisticalpropertycalledinformationgainthatmeasureshowwellagivenattributese
paratesthetraining examples accordingto theirtargetclassification.

* ID3usesinformationgainmeasuretoselectamongthecandidateattributesateach
step while growingthe tree.



ENTROPYMEASURESHOMOGENEITYOFEXAMPLES

 Todefineinformationgain,webeginbydefiningameasurecalledentropy.
Entropymeasurestheimpurityofacollectionofexamples.

 GivenacollectionS,containingpositiveandnegativeexamplesofsometargetconce
pt,theentropy of Srelative to this Booleanclassificationis

Emropy (S) = — p@ ngz p@— Pe 1082}9@

Where,
p+IstheproportionofpositiveexamplesinS
p- iIstheproportionofnegativeexamplesinS.



Example:Entropy

« Suppose S is a collection of 14 examples of some boolean concept, including
9positive and 5 negative examples. Then the entropy of S relative to this
booleanclassificationis

Entropy([9+, 5-]) = —(9/14) log,(9/14) — (5/14) log,(5/14)
= (.940



* TheentropyisOifallmembersofSbelongtothesameclass

» Theentropyislwhenthecollectioncontainsanequalnumberofpositiveandnegativ
e examples

« Ifthecollectioncontainsunequalnumbersofpositiveandnegativeexamples,theentro
pyis between 0 and 1



FIGURE

T.Aparna, Assistant Professor, CSE

L.OT

0.0 0.5 1.0

The entropy function relative to a boolean classification,
as the proportion, pg, of positive examples varies between O and 1.
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INFORMATIONGAINMEASURESTHEEXPECTEDREDUCTIO
NINENTROPY

 Information gain, is the expected reduction in entropy caused by partitioning
theexamplesaccording tothis attribute.

« Theinformationgain,Gain(S,A)ofanattributeA,relativetoacollectionofexamples S,
IS defined as

S,
Gain(S, A) = Entropy(S) — 2 —: Entropy(S,)
v € Values(4) |5‘

T.Aparna, Assistant Professor, CSE 17



Example:Informationgain

Let,Values(Wind)={Weak,Strong}

S =[9+,5~
SWeak =[6+,2—
SStrong =[3+,3—]

InformationgainofattributeWind:

Gain(S,Wind)=Entropy(S)—8/14Entropy(Sweak)—6/14Entropy(Sstrong)
=0.94—(8/14)*0.811—(6/14)*1.00
=0.048



AnlllustrativeExample

 Toillustratetheoperation ofID3,considerthelearningtask
representedbythetrainingexamples of below table.

» HerethetargetattributePlayTennis,which canhave values yes
ornofordifferentdays.

 Considerthefirststepthroughthealgorithm,inwhichthetopmostnodeofthedecision
treeis created.



Day
D1
D2
D3

D4
D5
D6
D7
D8
D9
D10
D11

D12

D13
D14

Outlook
Sunny
Sunny

Overcast

Rain
Rain
Rain

Overcast
Sunny
Sunny

Rain
Sunny
Overcast

Overcast

Rain

Temperature
Hot
Hot
Hot
Mild
Cool
Cool
Cool
Mild
Cool
Mild
Mild
Mild
Hot
Mild

Humidity
High
High
High
High

Normal
Normal
Normal
High
Normal
Normal
Normal

High
Normal
High

Wind
Weak
Strong
Weak
Weak
Weak
Strong
Strong
Weak
Weak
Weak
Strong

Strong

Weak
Strong

PlayTennis

No
No
Yes
Yes
Yes
No
Yes
No
Yes
Yes
Yes

Yes

Yes
No



ID3 determines the

Information gain for each candidate attribute (i.e.,

Outlook, Temperature, Humidity, and Wind), then selects the one with highest

Which attribute is the best classifier?

Informationgain
S: [9+.5-]
E =0.940
Humidity
Normal
[3+.4-] [6+.1-]
E =0.985 E=0.592

T.Aparna, Assistant Professor, CSE

Gain (S, Humidity )

940 - (7/14).985 - (7/14).592
51

S: [9+.5-]
E=0.940

Wind

Strong

[6+.2-] [3+.,3-]
E=038I11 E=1.00

Gain (S, Wind)

=.940 - (8/14).811 - (6/14)1.0
=.048
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Theinformationgainvaluesforallfourattributesare

» Gain(S,Outlook) =0.246
* Gain(S,Humidity) =0.151
* Gain(S,Wind) =0.048
* Gain(S,Temperature) =0.029

« According to the information gain measure, the Outlook attribute provides thebest
prediction of the target attribute, PlayTennis, over the training
examples.Therefore, Outlook is selected as the decision attribute for the root node,
andbranches are created below the root for each of its possible values i.e.,



Sunny,Overcast,and Rain.

T.Aparna, Assistant Professor, CSE
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{D1,D2, ..., D14}
[9+,5—]

Outlook

Sunny Overcast

/

{D1.D2.D8.D9.D11}

[2+.3-]

?

/

{D3.D7.D12,D13}
[4+.0—]

<&

Which attribute should be tested here?

DeepakD,Asst.Prof.,Dept.ofCSE,CanaraEngg.College

Rain

I

{D4.D5.D6.D10.D14}

3+.2-]

>
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Rszin: ={D1 D2 DEDEDIL}

Gain (Sgyppy , Humidity) = 970 — (3/5)0.0 — (2/5)0.0 = 970
Gain (Ssun;n'; Té’ﬂ?]_)é’}‘(‘lf[{]‘e) = 970 — (25) 0.0 — (25) 1.0 — (15) 0.0 = .570

Gain (Sgypny, Wind) = 970 — (2/5) 1.0 — (3/5) 918 = .019

Srain={D4,D5,D6,D10, D14}
Gain(Srain, HuMidity)=0.970—(2/5)1.0(3/5)0.917=0.019

Gain(Srain, Temperature)=0.970—(0/5)0.0—(3/5)0.918—(2/5)1.0=0.019
Gain(Srain, Wind)=0.970—(3/5)0.0—(2/5)0.0=0.970

T.Aparna, Assistant Professor, CSE
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Outlook

Sunny Overcast Rain
Humidity Virs Wind
High Normal Strong Weak
No Yes No Yes

T.Aparna, Assistant Professor, CSE



HYPOTHESISSPACESEARCHINDECISIONTREEL
EARNING

« ID3 can be characterized as searching a space of hypotheses for one that fits
thetraining examples.

» ThehypothesisspacesearchedbylD3isthesetofpossibledecisiontrees.

« ID3 performs a simple-to complex, hill-climbing search through this
hypothesisspace,beginningwiththeemptytree,thenconsideringprogressivelymoreela
boratehypothesesinsearchofadecisiontreethatcorrectlyclassifiesthetraining data



Figure:

* HypothesisspacesearchbylD3.

 |D3searchesthroughthespaceofpossible
decision trees  from simplest
toincreasinglycomplex,guidedbytheinfo
rmationgain heuristic

T.Aparna, Assistant Professor, CSE 28



ByviewinglD3intermsofitssearchspaceandsearchstrategy,wecanget
someinsightintoits capabilities andlimitations

1. ID3's hypothesis space of all decision trees is a complete space of finite discrete-
valued functions, relative to the available attributes. Because every finite discrete-

valuedfunction can be represented by some decision tree

 ID3avoids oneofthemajorrisksofmethodsthatsearchincompletehypothesisspaces
:that thehypothesis space mightnotcontain thetarget function.



2. ID3maintainsonlyasinglecurrenthypothesisasitsearchesthroughthespaceof
decision trees.

Forexample,withtheearlierversionspacecandidateeliminationmethod,whichmaint
ains the set of all hypotheses consistent with the available trainingexamples.

Bydeterminingonlyasinglehypothesis,|D3losesthecapabilitiesthatfollowfromexplici
tlyrepresenting allconsistenthypotheses.

For example, it does not have the ability to determine how many
alternativedecision trees are consistent with the available training data, or to
pose newinstancequeriesthat

optimallyresolveamongthesecompetinghypotheses



3. ID3 In its pure form performs no backtracking in its search. Once it selects
anattribute to test at a particular level In the tree, it never backtracks to reconsider

thischoice.

 In the case of ID3, a locally optimal solution corresponds to the decision tree
Itselects along the single search path it explores. However, this locally
optimalsolution may be less desirable than trees that would have been encountered
along adifferentbranch of the search.

4. ID3usesalltrainingexamplesateachstepinthesearchtomakestatisticallybaseddecis
lons regarding how to refineits current hypothesis.

« Oneadvantageofusingstatisticalpropertiesofalltheexamplesisthattheresultingsearc
h ismuch less sensitiveto errorsinindividualtraining examples.

 1D3 can be easily extended to handle noisy training data by
modifyingitsterminationcriteriontoaccepthypotheses
thatimperfectlyfitthetrainingdata.



INDUCTIVEBIASINDECISIONTREELEARNING

Inductive bias is the set of assumptions that, together with the training
data,deductivelyjustifytheclassificationsassignedbythelearnertofutureinstances

Givenacollectionoftrainingexamples,therearetypicallymanydecisiontreesconsistent
with theseexamples.Which ofthese decisiontreesdoes ID3choose?

|D3searchstrategy
(a) selectsinfavourofshortertreesoverlongerones

(b) selectstreesthatplacethe attributeswith highestinformationgainclosesttotheroot.



ApproximateinductivebiasoflD3:Shortertreesarepreferredoverlargertrees

 Consideranalgorithmthatbeginswiththeemptytreeandsearchesbreadthfirst
throughprogressivelymorecomplextrees.

* Firstconsideringalltreesofdepthl,thenalltrees ofdepth?2,etc.

 Once Itfinds a decision tree consistent with thetraining data, it returns
thesmallestconsistenttreeatthatsearchdepth(e.qg.,thetreewiththefewestnodes).

» Letuscallthisbreadth-firstsearchalgorithmBFS-1D3.

 BFS-I1D3findsashortest decision treeand thus exhibitsthe bias'shortertrees
arepreferredover longer trees.



A closer approximation to the inductive bias of ID3: Shorter trees are preferredover
longer trees. Trees that place high information gain attributes close to the rootare
preferred over those thatdo not.

 ID3 can be viewed as an efficient approximation to BFS-ID3, using a
greedyheuristic search to attempt to find the shortest tree without conducting the
entirebreadth-firstsearchthrough thehypothesis space.

« Because ID3 uses the information gain heuristic and a hill climbing strategy,
Itexhibitsa more complexbiasthan BFS-1D3.

* In particular, it does not always find the shortest consistent tree, and it Is biased
tofavourtreesthat place attributeswithhigh informationgain closest tothe root.



RestrictionBiasesandPreferenceBiases

DifferencebetweenthetypesofinductivebiasexhibitedbylD3andbytheCANDIDATE-
ELIMINATIONAIgorithm.

1D3
 |ID3searchesacompletehypothesisspace

* [tsearchesincompletelythroughthisspace,fromsimpletocomplexhypotheses,untilitstermin
ation condition ismet

« [tsinductivebiasissolelyaconsequenceoftheorderingofhypothesesbyitssearchstrategy.
Itshypothesisspace introducesno additional bias

CANDIDATE-ELIMINATIONAIgorithm

* TheversionspaceCANDIDATE-
ELIMINATIONAIgorithmsearchesanincompletehypothesisspace

« Itsearchesthisspacecompletely,findingeveryhypothesisconsistentwiththetrainingdata.

 Its inductive bias is solely a consequence of the expressive power of its
hypothesisrepresentation.|ts search strategy introducesno additionalbias



RestrictionBiasesandPreferenceBiases

* The Inductive bias of ID3 is a preference for certain hypotheses over others
(e.g.,preference for shorter hypotheses over larger hypotheses), with no hard
restrictionon the hypotheses that can be eventually enumerated. This form of bias is
called apreferencebiasor a search bias.

 The bias of the CANDIDATE ELIMINATION algorithm is in the form of
acategorical restriction on the set of hypotheses considered. This form of bias
Istypicallycalled arestriction biasor alanguage bias.



Whichtypeofinductivebiasispreferredinordertogeneralizebeyondthetrainingdata.a
preference bias or restriction bias?

« A preference bias is more desirable than a restriction bias, because it allows
thelearner to work within a complete hypothesis space that Is assured to contain
theunknown target function.

* In contrast, a restriction bias that strictly limits the set of potential hypotheses

Isgenerally less desirable, because it iIntroduces thepossibilityofexcluding
theunknown target function altogether.



Occam'srazor

Occam's razor: Is the problem-solving principle that the simplest solution tends to
bethe right one. When presented with competing hypotheses to solve a problem,
oneshouldselect the solution with the fewest assumptions.

Occam'srazor:“Preferthesimplesthypothesisthatfitsthedata”.



WhyPreferShortHypotheses?

Argumentinfavour:
Fewershorthypothesesthanlongones:

 Shorthypothesesfitsthetrainingdatawhicharelesslikelytobecoincident
 Longerhypothesesfitsthetrainingdatamightbecoincident.

Manycomplexhypothesesthatfitthecurrenttrainingdatabutfailtogeneralizecorrec
tly tosubsequent data.




Argumentopposed:

* There are few small trees, and our priori chance of finding one consistent with
anarbitrary set of data is therefore small. The difficulty here is that there are
verymanysmallsetsofhypothesesthatonecandefinebutunderstoodbyfewerlearner.

* The size of a hypothesis is determined by the representation used internally by
thelearner.Occam'srazorwillproducetwodifferenthypothesesfromthesametrainingex
ampleswhenitisappliedbytwolearners,bothjustifyingtheircontradictory conclusions

by Occam's razor. On this basis we might be tempted torejectOccam's razor
altogether.




ISSUESINDECISIONTREELEARNING

1. AvoidingOverfittingtheData
Reduced error
pruningRulepost-pruning
2. IncorporatingContinuous-ValuedAttributes
3. AlternativeMeasuresforSelectingAttributes
4. HandlingTrainingExampleswithMissingAttributeValues
5. HandlingAttributeswithDifferingCosts



1. AvoidingOverfittingtheData

 The ID3 algorithm grows each branch of the tree just deeply enough to
perfectlyclassify the training examples but it can lead to difficulties when there is
noise inthe data, or when the number of training examples is too small to produce
arepresentative sample of the true target function. This algorithm can produce
treesthatoverfitthe training examples.

 Definition - Overfit: Given a hypothesis space H, a hypothesis h € H is said tooverfit
the training data If there exists some alternative hypothesis h' €H,
suchthathhassmallererrorthanh'overthetrainingexamples,buth'hasasmallererrorthan
hover the entire distribution of instances.



» Thebelowfigureillustratestheimpactofoverfittinginatypicalapplicationofdecisiontreelearnin

g.
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plotindicatesthetotalnumberofnodesinthedecisiontree,asthetreeisbeingconstructed. Theverticalaxis indicates

theaccuracy ofpredictionsmadebythe tree.

» Thesolidlineshowstheaccuracyofthedecisiontreeoverthetrainingexamples. Thebrokenlineshowsaccuracymeas

uredoveranindependentsetoftestexample

» Theaccuracyofthetreeoverthetrainingexamplesincreasesmonotonicallyasthetreeisgrown.The
accuracymeasuredovertheindependenttestexamplesfirstincreases,thendecreases.
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Howcanitbepossiblefortreehtofitthetrainingexamplesbetterthanh',butforittoperformmorepoorl

y over subsequentexamples?

1. Overfittingcanoccurwhenthetrainingexamplescontainrandomerrorsornoise

2. Whensmallnumbersofexamplesareassociatedwithleafnodes.

NoisyTrainingExample
Examplel5:<Sunny,Hot,Normal,Strong,->

« Exampleisnoisybecausethecorrectlabelis+
 Previouslyconstructedtreemisclassifiesit

T.Aparna, Assistant Professor, CSE

1,2,3,4,5,6,7,8,9,10,11,12,13,14
[9+,5-] @
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Approaches toavoidingoverfittingindecisiontreelearning

* Pre-pruning(avoidance):Stopgrowingthetree earlier,beforeitreachesthe point whereit
perfectly classifies thetrainingdata

 Post-pruning(recovery):Allowthetreetooverfitthedata,andthenpost-prunethetree

Criterionusedtodeterminethecorrectfinaltreesize

« Use a separate set of examples, distinct from the training examples, to evaluate the utility ofpost-
pruningnodes from the tree

 Usealltheavailabledatafortraining,butapplyastatisticaltesttoestimatewhetherexpanding (or
pruning) a particular node is likely to produce an improvement beyond thetrainingset

« Use measure of the complexity for encoding the training examples and the decision tree,halting
growth of the tree when this encoding size is minimized. This approach is called
theMinimumDescription Length

MDL—-Minimize: size(tree)+size(misclassifications(tree))



Reduced-ErrorPruning

» Reduced-error pruning, is to consider each of the decision nodes In the tree to
becandidates for pruning

* Pruning a decision node consists of removing the subtree rooted at that
node,making it a leaf node, and assigning it the most common classification of
thetrainingexamples affiliated with that node

* Nodes are removed only if the resulting pruned tree performs no worse than-
theoriginalover the validation set.

* Reduced error pruning has the effect that any leaf node added due to
coincidentalregularitiesinthetrainingsetislikelytobeprunedbecausethesesamecoinci
dencesare unlikelyto occur inthe validation set



Theimpactofreduced-errorpruningontheaccuracyofthedecisiontreeisillustratedinbelowfigure

Accuracy

0.6 F On tranning data
On test data
055 F On test data (during prunming)

0.3

{) 10 20 30) 40 50 6O1) 70 st ) 100

Size of tree (number of nodes)

« The additional line in figure shows accuracy over the test examples as the tree is pruned.
Whenpruning begins, the tree Is at its maximum size and lowest accuracy over the test set. As
pruningproceeds,the numberofnodes isreduced andaccuracy overthetestset increases.

 The available data has been split into three subsets: the training examples, the validation
examplesused for pruning the tree, and a set of test examples used to provide an unbiased estimate
ofaccuracyoverfutureunseen examples.Theplotshowsaccuracyoverthetrainingandtestsets.
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ProsandCons

Pro:Producessmallestversionofmostaccurate T(subtreeof T)Con:

Uses less datato constructT

CanaffordtoholdoutDyaiidgation?. If not(dataistoolimited),maymakeerrorworse(insufficient
Dtrain)



RulePost-Pruning

Rulepost-pruningissuccessfulmethodforfindinghighaccuracyhypotheses

Rulepost-pruninginvolvesthefollowingsteps:

1.

Inferthedecisiontreefromthetrainingset,growingthetreeuntil thetrainingdata is fit
aswell aspossibleand allowing overfittingtooccur.

Convertthe learnedtreeinto anequivalent setofrulesbycreating oneruleforeach
path from the rootnode to aleaf node.

Prune(generalize)eachrulebyremovinganypreconditionsthatresultinimprovingits
estimatedaccuracy.

Sorttheprunedrulesbytheirestimatedaccuracy,
andconsidertheminthissequencewhen classifying subsequent instances.
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ConvertingaDecisionTreeintoRules

Boolean Decision Tree
for Concept PlayTennis

Sunny Overcast Rain
|
—
High Normal Strong Light
y 0 L X
(No)(Yes) CNo)(Yes)

Example
— IF (Outlook = Sunny) A (Humidity = High) THEN PlayTennis = No
— IF (Outlook = Sunny) A (Humidity = Normal) THEN PlayTennis = Yes

50



Forexample,considerthedecisiontree. Theleftmostpathofthetreeinbelowfigureistransl

ated intothe rule.
|F(Outlook=Sunny)*(Humidity=High)TH

ENPlayTennis= No

Giventheaboverule,rulepost-
pruningwouldconsiderremovingthepreconditions(Outlook=

Sunny) and (Humidity = High)

* Itwouldselectwhicheverofthesepruningstepsproducedthegreatestimprovementinesti
matedruleaccuracy,thenconsiderpruningthesecondpreconditionas a furtherpruning

step.
* Nopruningstepisperformedifitreducestheestimatedruleaccuracy.



There are three main advantages by converting the decision tree to rules
beforepruning

« Converting to rules allows distinguishing among the different contexts in which
adecision node Is used. Because each distinct path through the decision tree
nodeproduces a distinct rule, the pruning decision regarding that attribute test can
bemade differently for eachpath.

« Converting to rules removes the distinction between attribute tests that occur
nearthe root of the tree and those that occur near the leaves. Thus, it avoid
messybookkeeping issues such as how to reorganize the tree if the root node is
prunedwhileretaining part ofthe subtree belowthis test.

 Convertingtorulesimprovesreadability. Rulesareofteneasierfortounderstand.



2.IncorporatingContinuous-ValuedAttributes

Continuous-valueddecisionattributescanbeincorporatedintothelearnedtree.

TherearetwomethodsforHandling ContinuousAttributes

1. Definenewdiscretevaluedattributesthatpartitionthecontinuousattributevalueintoa
discrete set ofintervals.

E.g.,{high=Temp>35°C,med=10°C<Temp<35°C,low=Temp<10°C}

2. Usingthresholdsforsplittingnodese.g.,A

<aproducessubsetsA<aandA>a



Whatthreshold-basedbooleanattributeshouldbedefinedbasedonTemperature?

Temperature: 40 48 60 72 80 90
PlayTennis: No No Yes Yes Yes No

Pickathreshold,c,thatproduces thegreatestinformationgain

 In the current example, there are two candidate thresholds, corresponding to
thevalues of Temperature at which the value of PlayTennischanges: (48 + 60)/2,
and(80 + 90)/2. The information gain can then be computed for each of the

candidateattributes, Temperaturess4,andTemperaturesgsandthebestcanbeselected(Te
mperaturess4)



3. AlternativeMeasuresforSelectingAttributes

Theproblemisifattributeswithmanyvalues,Gainwillselectit?

Example: consider the attribute Date, which has a very large number of
possiblevalues. (e.g.,March 4, 1979).

IfthisattributeisaddedtothePlayTennisdata,itwouldhavethehighestinformation gain
of any of the attributes. This is because Date alone perfectlypredicts the target
attribute over the training data. Thus, 1t would be selected as
thedecisionattributefortherootnodeofthetreeandleadtoatreeofdepthone,whichperfect
ly classifies thetraining data.

This decision tree with root node Date is not a useful predictor because it
perfectlyseparates thetraining data,butpoorlypredict onsubsequent examples.



OneApproach:UseGainRatioinsteadofGain

« Thegainratiomeasurepenalizesattributesbyincorporatingasplitinformation,that is
sensitiveto how broadlyand uniformlytheattribute splitsthe data

Gain(S, A)
SplitIn formation(S, A)

| . Sil, S]]
SplitIn formation(S, A) = — I
plitIn formation(S, A) El 5| 0g5 5]

GainRatio(S, A) =

« where SjissubsetofS, forwhich attribute Ahasvaluev;



4. HandlingTrainingeExampleswithMissingAttributeValues

Thedatawnhichisavailablemaycontainmissingvaluesforsomeattributes

Example:Medicaldiagnosis
« <Fever=true,Blood-Pressure=normal,...,Blood-Test=",...>
« Sometimesvaluestrulyunknown,sometimeslowpriority(orcosttoohigh)




Example:PlayTennis

Outlook Temperature Humidity PlayTennis?
1 sSunny Hot High Light No
2 sSunny Hot High Strong No
3 Overcast Hot High Light Yes
4 Rain Mild High Light Yes
5 Rain Cool Normal Light Yes
6 Rain Cool Normal Strong No
7 Overcast Cool Normal Strong Yes
8 Sunny Mild 277 Light No
9 Sunny Cool Normal Light Yes
10 Rain Mild Normal Light Yes
11 sSunny Mild Normal Strong Yes
12 Overcast Mild High Strong Yes
13 Overcast Hot Normal Light Yes
14 Rain Mild High Strong No

T.Aparna, Assistant Professor, CSE
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Strategiesfordealingwiththemissingattributevalue

* If node n test A, assign most common value of A among other training
examplessortedto noden

 Assignmostcommonvalue ofAamong other trainingexamples with
sametargetvalue

 AssignaprobabilitypitoeachofthepossiblevaluesviofAratherthansimplyassigningth
e most common value toA(X)



5. HandlingAttributeswithDifferingCosts

Insomelearningtaskstheinstanceattributesmayhaveassociatedcosts.Fore

xample:

* In learning to classify medical diseases, the patients described in terms
ofattributessuchas Temperature,BiopsyResult,Pulse,BloodTestResults,etc.

 Theseattributesvarysignificantlyintheircosts,bothintermsofmonetarycostandco
stto patient comfort

 Decisiontreesuselow-costattributeswherepossible,dependsonlyonhigh-
costattributesonlywhen needed to producereliable classifications



HowtolLearnAConsistentTreewithLowEXxpectedCost?
OneapproachisreplaceGainbyCost-Normalized-Gain

Examplesofnormalizationfunctions

e Tan and Schlimmer

Gain*(S, A)
Cost(A)

e Nunez

2(7'(//'11( S5.4) 1

(Cost(A) + 1)«

where w € [0, 1] determines importance of cost
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ArtificialNeuralNetworks




Overview

Introduction

ANNTrepresentations

PerceptronTraining

GradientDescentandDelta Rule
MultilayernetworksandBackpropagationalgorithm
Remarksonthebackpropagationalgorithm
Anillustrativeexample:facerecognition
Advancedtopicsinartificialneuralnetworks
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Introduction

-Humanbrain
:denselyinterconnectednetworkof10'tneuron
seachconnected to 10%others

(neuronswitchingtime:approx.10-3sec.)

Call body

Dandrites
l Thrashold
A

-Propertiesofartificialneuralnets(ANN’s):

« Manyneuron-likethresholdswitchingunits

« Manyweightedinterconnectionsamongunits
Highlyparallel,distributedprocess
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Appropriateproblemsforneuralnetworklearning

* Inputishigh-dimensionaldiscreteorreal-valued
(e.g.raw sensorinput)

 Qutputisdiscreteorrealvalued

 Qutputisavectorofvalues

 Possiblynoisydata

 Longtrainingtimesaccepted

» Fastevaluationofthelearnedfunctionrequired.

* Notimportantforhumanstounderstandtheweights

Examples:

« Speechphonemerecognition
 Imageclassification
 Financialprediction
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Appropriateproblemsforneuralnetworklearning

-ALVINNdrives70mphonhighways

-TheALVINNSsystemusesbackpropagationalgorithmtolearntosteeran
antonomousvehicledriving at speedsupto 70 miles perhour

T.Aparna, Assistant Professor, CSE



Perceptron

Cell body
Deandritas
Thrashakd
] Y
—
= |0 )—"? N O
Lif x>0
fn Axon i:EOwlx i
— .
Summation -1 cthetwize

 Inputvalues—Linearweightedsum— Threshold
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1 if wy+wixr+ -+ wpx, >0
—1 otherwise.

O(Q:Iv' * .,Ql',,) — {

Sometimes we'll use simpler vector notation:

o(¥) = {

lifw-2>0
—1 otherwise.

T.Aparna, Assistant Professor, CSE
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Decisionsurfaceofaperceptron

» Representationalpowerofperceptrons
- Linearly separable case like (a)
.possibletoclassifybyhyperplane,
- Linearlyinseparablecaselike(b):im
possibleto classify

.J'E‘. I_Ell
/
+
- “+
.
/ J:r Ty
- +

{a} ()
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Perceptrontrainingrule(deltarule)

Wi<—Wi+ AW;

whereAwi=n(t— 0)X;i
Where:

 t=c(x)istargetvalue
e Olsperceptronoutput

 missmallconstant(e.g.,0.1)calledlearningrate
frainfFgRRAI lIconverge
* Inearlyseparable
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Gradientdescent

To understand, consider simpler [linear unit, where

0= wy+waxr + -+ wyr,

Let’s learn w;’s that minimize the squared error
1
Flw| = - tqi — 04)°
W =5 e o)

Where D is set of training examples
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Derivationofgradientdescent

¢ Gradientdescent

.. 1 .
- Error(foralltrainingexamples.): Ef] =5 X (ta— 01)”

- thegradientofE( partialdifferentiating):
AL

Owy’ dw,  Ow,

- direction:steepestincreaseinE.

- Thus,trainingruleis asfollows.

VE[W] =

AW = —nVE[W] Aw; = Now

(Thenegativesign:thedirectionthatdecreasesE)
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Derivationofgradientdescent

OF
311}.2-_

oE
819_5_

01

8‘w2
1 0

d@

d — 'C"ci) 2

d
52 = 2(1‘.:; - Od)_(t:i — 04)

Z(td — 0.:;) (t:i — W0+ Zy7)

= Zif(td — 04) (—i?f-s..:f)

wherexigdenotes the single
inputcomponentsx;fortrainingexampled

- Theweightupdaterulefor gradientdescent

obw = ?;FZ (¢, —o; 1%,

e 5
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Gradient descent anddeltarule

GRADIENT-DESCENT(training_examples, n)

FEach training example is a pair of the form
(Z,t), where T is the vector of input values,
and t is the target output value. n is the
learning rate (e.g., .05).

e Initialize each w; to some small random value
e Until the termination condition is met, Do

— Initialize each Aw; to zero.
— For each (#,t) in training_examples, Do
+* Input the instance ¥ to the unit and
compute the output o

* For each linear unit weight w;, Do
Aw; <+ Aw; +n(t — o)x;

— For each linear unit weight w,;, Do

w; — w; + Aw; . . . .
Because the error surfacecontains only a single globalminimum, this algorithm
willconvergetoaweightvectorwithminimum error, given asufficientlysmalln is used
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HypothesisSpace

2

20-]

15-]

E [w]

10

- Errorofdifferenthypotheses
- Foralinearunitwithtwoweights, thehypothesisspaceHisthew,,wiplane.

- Thiserrorsurfacemustbeparabolicwithasingleglobal
minimum(wedesireahypothesis with minimumerror).
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Stochasticapproximationtogradientdescent

Batch mode Gradient Descent:
Do until satisfied

1. Compute the gradient V Ep[]
2.0 + W —nVEp[u]

Incremental mode Gradient Descent:
Do until satisfied

e For each training example d in D
1. Compute the gradient V E,[«]

—— ! .
Etl[w] = ;(t" a Otl)z 4

- Stochastic gradient descent (i.e. incremental mode) can
sometimesavoidfallingintolocalminimabecauseitusesthevariousgradien
tofErather than overallgradientofE.
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Summary

 Perceptrontrainingruleguaranteedtosucceedif
— trainingexamplesarelinearlyseparable

— Sufficientlysmalllearningraten

 Linearunittrainingruleusinggradientdescent

— Converge asymptotically to min. error
hypothesis(Guaranteedtoconvergetohypothesiswithm
Inimumsquarederror)
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Multilayernetworksandthebackpropagationalgorithm

¢ Speechrecognitionexampleofmultilayernetworkslearnedbyt
hebackpropagation algorithm

¢ Highlynonlineardecisionsurfaces

o head
a hid

+ hod

» had

¢ hawed
* heard
o heed
< hud

» who'd
~ hood

head hid + who’d hood
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Sigmoid ThresholdUnit

1

] -net
+e

= o(net) =

o(x) is the sigmoid function
1

1 + 6—;1,’
Nice property: dﬂ I} =o(z)(1 —o(x))

We can derive gradient decent rules to train
e One sigmoid unit

o Multilayer networks of sigmoid units —
Backpropagation
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TheBackpropagationalgorithm

Initialize all weights to small random numbers.
Until satisfied, Do

e For each training example, Do

1. Input the training example to the network
and compute the network outputs

2. For each output unit k&
O + o1(1 — op)(tr — or)
3. For each hidden unit A

op «—op(l—o0p) X wpiby
kE€outputs

4. Update each network weight w; ; " ot
Wi < Wy + A’w,f__,'
where

Aw; j = 1oz,
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AddingMomentum

¢ Oftenincludeweightmomentumo

ﬁiﬂg__f(ﬂ) = né_;:r;__; + &ﬁ‘lﬂg__f(ﬂ — l)
- ntiterationupdatedependon (n-1)Miteration
- a..constantbetweenOand1(momentum)

~ Rolesofmomentumterm

¢ Theeffectofkeepingtheballrollingthroughsmalllocalmini
mainthe error surface

¢ The effect of gradually increasing the step size of
thesearchinregions(greatlyimprovesthespeedoflearning)
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ConvergenceandLocalMinima

¢ Gradientdescenttosomelocalminimum
— Perhapsnotglobalminimum...
— Addmomentum
— Stochasticgradientdescent
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ExpressiveCapabilitiesof ANNS

Boolean functions:

e Every boolean function can be represented by
network with single hidden layer

e but might require exponential (in number of
inputs) hidden units
Continuous functions:
e Every bounded continuous function can be
approximated with arbitrarily small error, by

network with one hidden layer [Cybenko 1989;
Hornik et al. 1989]

e Any function can be approximated to arbitrary
accuracy by a network with two hidden layers
[Cybenko 1988].
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Hiddenlayerrepresentations

Hiddenlayerrepresentations

- This8x3x8networkwas trainedtolearntheidentityfunction.
- 8trainingexamplesareused.

- After5000trainingiterations,thethreehiddenunitvaluesencode

theeightdistinctinputsusingtheencodingshownontheright.

T.Aparna, Assistant Professor, CSE

Input

10000000
01000000
00100000
00010000
00001000
00000100
00000010
00000001

Jdiiddld

.89
01 .11
01 .97
.99
.03
.22 .99
.80 .01
.60

Hidden

Values

.04 .08
.88
27
97 Tl
.05 .02
.99
98
94 .01

Jiddldlld

Output

10000000
01000000
00100000
00010000
00001000
00000100
00000010
00000001




Learningthe8x3x8network

- Mostoftheinterestingweightc
hanges occurred during thefirst

2500iterations.

Hidden unit encoding for input 0 1LODCDDD
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Generalization,Overfitting,andStoppingCriterion

« Terminationcondition
—UntiltheerrorEfallsbelowsomepredeterminedthreshold

 Techniguestoaddresstheoverfittingproblem

» Weightdecay:Decreaseeachweightbysomesmallfactordurin
g each iteration.

 Cross-validation(k-foldcross-validation)

Error versus weight updates (example 1) Error versus weight updates (example 2)
0.0l N T T T 0.08 ﬁ\.

0.009 | Tfain?ng set error . . 007 F % Training set error *

0.008 YValidation:set.error y . 0.06 :“"Hﬁ: Validation set error

0.007 Tt 0.05 F ‘:"""MMM\M il
E 9406, T \ — g 004 F e Mm .

0.005 | ' ‘ o 17 003 F * e

0.004 \ 1 o002 ... !

LA
0.003 1 oo F LN
0.002 = ; = 0 L

O 3000 10000 15000 2001
Number of weight updates
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NeuralNetsforFaceRecognition

AVAVAVAYA (1] alan allagn

Learned Weights

Typical input images
 Trainingimages:20differentpersonswith32imagesperperson.

« After
260trainingimages,thenetworkachievesanaccuracyof90%over
test set.
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http://www.cs.cmu.edu/tom/faces.html)

« Algorithmparameters:n=0.3,a=0.3
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AlternativeErrorFunctions

» Penalizelargeweights:(weightdecay)
:Reducingtheriskofoverfitting

| - ;
E == Y (tra—om)”+ ’)wai'

_ 2 deD keoutputs t.J
 Trainontarget slopesaswellasvalues:

E(w)

Mpa 601;(5)2
o) Ou)

1 .
— ). ) (tkd — Okd)z + [ _ > (

2 deD keoutputs J€inputs

« Minimizingthecrossentropy
:Learningaprobabilisticoutputfunction

(chapter6)t l0gog+(1-td)log(1—0a)

deD
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RecurrentNetworks

(a) Feedforwardnetwork

(b) Recurrentnetwork

(c) Recurrentnetworkunfoldedi
n time
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DynamicallyModifyingNetworkStructure

« Toimprovegeneralizationaccuracyandtrainingeff
iciency
« Cascade-Correlationalgorithm(FahlmanandLebiere1990)

—Startwiththesimplestpossiblenetwork
(nohiddenunits)andaddcomplexity

e Lecunetal.1990

— Start with the complex network and prune it as we find
thatcertainconnectives areinessential.
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EvaluatingHypotheses
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Context

- Motivation
EstimatingHypothesisAccuracy
BasicsofSamplingTheory
DifferenceinErrorof TwoHypotheses
ComparingLearningAlgorithms
Summary
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Motivation

Goal:Introductiontostatisticalmethodsforestimating
hypothesisaccuracy,focusingonthefollowings:

v Given the observed accuracy of a hypothesis over a
limitedsampleofdata,howwelldoesthisestimateitsaccuracyov
eradditionalexamples?

v Given that one hypothesis outperforms another over
somesampleofdata,howprobableisitthatthishypothesisismorea
ccuratein general?

Whendataislimitedwhatisthebestwaytousethisdatatobothlea
rn ahypothesisandestimate its accuracy?




Motivation
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Motivation?2

Isimportanttoevaluatetheperformanceofthelearnedhypoth
eses as preciselyas possible:

v Tounderstandwhethertousethehypothesis

X Example:Learningfromlimited-
sizedatabaseindicatingtheeffectivenessofdifferentmedicaltrea
tments

Evaluatinghypothesesisanintegralcomponentofmanylearningmet
hods

X Example:inpost-pruningdecisiontreestoavoidoverfiting

v Methodsforcomparingtheaccuracyoftwohypotheses

Methodsforcomparingtwolearningalgorithmswhenonlylimiteddatali
s available
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Motivation3
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Motivation4

Estimatingtheaccuracyofhypothesisisrelativelystraightforwardw
hen datais plentiful.

Givenonlyalimitedsetofdata,twokeydifficultiesarise:

v Biasintheestimate:

X
Observedaccuracyofthelearnedhypothesisoverthetrainingexamplesisoft

enapoorestimatorof its accuracy overfuture examples.

X To obtain an unbiased estimate of future accuracy, we typically test
thehypothesisonsomesetoftestexampleschosenindependentlyoftrainingex
amples and thehypothesis.

v Varianceintheestimate:

X
Themeasuredaccuracycanstillvaryfromthetrueaccuracy,dependingonth

emakeupofthe particularsetoftestexamples.
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Motivation5

T.Aparna, Assistant Professor, CSE



Context

Motivation

- EstimatingHypothesisAccuracy
v SampleErrorandTrueError
Basics ofSamplingTheory
DifferenceinErrorof TwoHypotheses
ComparingLearningAlgorithms

Summary
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EstimatingHypothesisAccuracy

© Setting:

v Somesetof
possibleinstancesXoverwhichvarioustargetfunctionsma
y bedefined

DifferentinstancesinXmaybeencounteredwithdifferentf
requencies:

X Unknown the probability distribution D that defines the probability
ofencountering each instance inX

X Dsaysnothingaboutwhetherxisapositiveoranegativeexample

v
Learningtask:Learntargetconceptortargetfunctionfbyconsideringas
paceH of possiblehypotheses

v Trainingexamplesareprovidedtothelearnerbyatrainer

X whogiveseachinstanceindependently
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X accordingtothedistributionD,

X thenforwardstheinstancexalongwithitscorrecttargetv !XI
I
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SampleErrorandTrueError

ThesampleerrorofahypothesiswithrespecttosomesampleSofinsta
ncesgiven fromXisthe fractionofS thatit misclassifies:

Def:Thesampleerrorofahypothesishwithrespecttothetargetfunctio
nf anddatasampleS is

N C PP
errors )= n; SO 1 1)

Where

nisthenumberofexamplesins,
thequantity & { fXI,hx]lis1iffix i# hixlandOotherwise

Pl .Aparna, Assistant Professor, CSE



SampleErrorandTrueError
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SampleErrorandTrueError2

Thetrueerrorofahypothesisistheprobabilitythatitwillmis
classify a single randomly given instance from
thedistributionD.

v Def:Thetrueerrorofhypothesishwithrespecttotargetfunctionfand
distribution D, is the probability that h will misclassify
aninstancedrawnatrandomaccordingtoD

errorbhi= Pryp!fxJ#hx i

HerethenotationPx -
Ddenotesthattheprobabilityistakenovertheinstan
cedistributionD.

Towishtoknowisthetrueerrorefrorphi. |

Mainquestion: Howgood Is an estimateof errorgh
providedPYyerrorsh/?
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SampleErrorandTrueError2
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Context

Motivation

EstimatingHypothesisAccuracy
- BasicsofSamplingTheory
ErrorEstimationandEstimatingBinomialProportions
TheBinomialDistribution
MeanandVariance
Confidencelntervals
Two-SidedandOne-SidedBounds
 DifferenceinErrorof TwoHypotheses

S N N

ComparingLearningAlgorithms

© Summary
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BasicsofSamplingTheory

' Question: How does the derivation between sample error and
trueerrordependon thesizeof the data sample?

'Equal with the statistical problem: The problem of estimating
theproportion of a population that exhibits some property, given
theobservedproportionoversomerandom sampleofthepopulation.

' Here: Thepropertyofinterestisthathmisclassifiestheexample

© AnNsSwer:

vWhen measuring the sample error we are performing an
experimentwitharandomoutcome.

vRepeating this experiment many times, each time drawing a

differentrandomsamplesetS;of size n,wewouldexpecttoobserve

differentvaluesforthevarious errors h dependingonrandom
differencesinthemakeupofthevarious l3

[
v Insuchcases€rrorg {h-ltheoutcomeofthei + Suchexperimentisa

s
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random%%i gsofSam plingTheory
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ErrorEstimationandEstimatingBinomial
Proportions?2

* Imagine:
v Runkrandomexperiments,
v Measuringtherandomvariables€rror —_ihierror  { hierror

(hi

v Plotahistogramdisplayingthefrequencywithwhichweobservedeach
possibleerrorvalue

Result:histogram

0.14 Binomial distribution for n =40, p =0.3

0.12 |
0.1} ~ .
0.08 - i -
0.06
0.04} -
0.02

o adll e,

0 5 10 15 20 25 30 35 40
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TheBinomialDistribution

GeneralsettingtowhichtheBinomialdistributionapplies:

v Thereisabaseorunderlying
experimentwhoseoutcomecanbedescribedbyarandomvariable, sayY.It can take
ontwopossible values.

v TheprobabilitythatY=1onanysingletrialoftheunderlying experimentisgiven
by some constant p, independent of the outcome of any otherexperiment.
TheprobabilitythatY=0isthereforel-p.
Typically,pisnotknowninadvance,andtheproblemistoestimateit.

v Aseriesofnindependenttrialsoftheunderlyingexperimentisperformed,
producingthesequenceofindependent,identicallydistributedrandomvari
ables Y1,Y2 N
LetR denotethe numberof trialsfor whichY’ — lin
thisseriesofnexperiments

R
i 1

v TheprobabilitythatRwilltakeonaspecificvaluerisgivenbytheBinomial
distribution: n! |
PrRr :I | ﬁ prl:l pT r
rin - rll
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MeanandVariance

Def:Consider Y= Yu¥» - Y4 The expectedvalueofY,E[Y],is
BY |=2

Example:IfYtakes onthevaluelwithprobabilityO.7andthevalue
2 with probability0.3 then itsexpected value is

10.720.31:3

IncaseofarandomvariableYgovernedbyaBinomialdist
ributionthe expected value is:

EY Enp
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MeanandVariance?2

‘Variance captures the ,width® or ,spread“ of the

probabilitydistribution; that is it captures how far the random
variable isexpectedtovary from its mean value

Def:ThevarianceofY,Var[Y],is
varlY|=E[(Y  EY]e |

ThesquarerootoffthevarianceiscalIedthestandard
deviationofy,dénoted by ¥

Def:ThestandarddeviationofarandomvariableY, TYis

e =VEIY BY 1

In caseofarandomvariableYgovernedbyBinomialdistribution
thevarianceanylthe  sptalndarpddeviationaredefinedasfollows:

Fy=vnpll  p]
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Confidencelntervals

Describe:

v
Giveanintervalwithinwhichthetruevalueisexpectedtofall,alongwit
htheprobabilitywithwhichitisexpectedtofallintothisinterval

Def: AnN%confidenceintervalforsomeparameterspisaninte
rvalthatis expected with probabilityN%to containp.

Howconfldencelntervalsforerrorhcspbfderlved:

v Binomialprobabilitydistributiongoverningtheestimator error hi
v Themeanvalueofdistributionis errop .

v Standarddeviationis . \/errorif (1 errorsih ]
. .
errorgh

Goal: Derivea95%confidenceinterval=>
find the interval centered around the mean valueerrory h
,whichiswideenoughtocontain95%oftotalprobabilityunderthisdist

S .Aparna, Assistant Professor, CSE




I Confidencelntervals
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Confidencelntervals?

Question:HowcanthesizeofintervalthatcontainsN%ofthepro
bability mass befoundforgivenN?

Problem: Unfortunately for

theBinomialdistributionthisca
Iculation can be quitetedious.

But:BinomialdistributioncanbecloselyapproximatedbyN
ormal distribution

T .Aparna, Assistant Professor, CSE



Confidencelntervals3

Einomiakeriilung [n=40, p=0.3) - Normakereilung
':'.15 T T T T T T

binompx) ——
normalfx - 0.8 —-—
014

02

Q08 -

008

008 -

002 -

000 L
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Confidencelntervals4

Normalorgaussian distributionisabell-
shapeddistributiondefinedbytheprobabilitydensityfunction

IftherandomvariableXfollowsanormaldistributionthen:
v TheprobabilitythatX,willfallintotheinterval(a,b)isgivenby

i

| P X;ydx

pk =

v Theexpected,ormeglwal u ng)Lg,E[X],is

v Thevarianceof X \afOR§__ 5 °

v Thestandarddeviatior],g)l‘x,r
P ¥
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Confidencelntervalss
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Two-SidedandOne-SidedBounds

 Two-sidedbound:Itboundstheestimatedquantityfromaboveand
below

One-
sidedbound: Ifweareinterestedinquestionslike:Whatistheprobabili

tythat€rrorplhlis atmostU

04 | ' Ny ] 04 i_ | ' ' ]
0.35 ||| | i 035 b ” 4
03 I ] 03t | |
025 ||| | 025 I" _
0zt ||| i 02 ||| .
o1s I I I 1 7 Al | I ]
.l I I I 1 s A fille | |
L I m I ‘ I 1 m .
0 1 .
3 2 -1 0 1 2 3 - 2 -1 O N iR Y.
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Two-SidedandOne-SidedBounds?2

 If thesampleerror isconsideredasnormaldistributedindicatingthat:
v the errOer.h.:'coucheswithN%probabiIityintheinterval

errord hil errors b |

errorshag \/

ZN
where Isaconstant

n

ConfidencelevelN%  50.00%68.00%80.00%90.00%95.00%98.00%99.00%
Constant 0.67 1 1.28 164 196 233 258

Tablel:Valuesof ZnfortwosidedN%confidenceintervals
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Two-SidedandOne-SidedBounds3
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Two-SidedandOne-SidedBounds4

Example:
v n=50

v Hypothesishmakesr=16errors=> errorsh 50

v UsingthevaluesfromTablel -

X Witho9%probabilityis €O Nintheinterval
0.322.58 |——
258 | —;

errorDﬁ_q

Isintheintervalwith50%
Ifthenumbers 1IS12then
probability ,}0-24'0-76%
0.240.67' 0 0.240.04
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Two-SidedandOne-SidedBoundsb5
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Two-SidedandOne-SidedBounds6

One-sidederrorbound

It canbecomputed
withhalfoftheprobabilityoftheerrorfromnormaldistributed two-sided
error bound

Example:
v hdeliversl2errors,n=40
Itleadstoa(twosided)95%confidenceintervalof 0.380.14 =>
_ 1001 ;95 4 0.05
Inthiscase S SO
1001 /2975 |
v @ﬁﬁ@ﬁ’waca”applytbgoﬂd% \Nth confidencethat
o
Isatmost erro[nh ]

Makingnoassumptionaboutthelowerboundon
errop

Thuswehaveaone-sidederrorboundonerror
withdoubletheconfidencethatwehad inthecorrespondingtwo-
sidedbound
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Two-SidedandOne-SidedBounds?7
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Context

Motivation
EstimatingHypothesisAccuracy
BasicsofSamplingTheory

- DifferenceinErrorof TwoHypotheses
v HypothesisTesting
ComparingLearningAlgorithms

Summary
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DifferenceinErrorsofTwoHypotheses

Consider:
v twohypothesesh;  andhxforsomediscrete-valuedtargetfunction
v h1hasbeentestedonasampIe S1containing N randomly
drawnexamples
S .. n
v hZha:~:beentestedonasampIe 2 containing  “randomlydrawn
examples

Supposewewishtoestimatethedifference
dbetweenthetrueerrorsof these two hypotheses

derrorpthilerrorpthy]

4-stepproceduretoderive confidenceintervalestimatesford

v Choosetheestimator ~ defrorg  (hierrors  {ho]

A

v Wedonotprovebutitcan beshown that
dgivesanunbiasedestimateofd;thatis g
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HypothesisTesting

Question:Whatistheprobabilitydistributiongoverningthera
ndom variabled?

ANSWer:
v N, j botherrorserrorshlﬁland error%:‘ h2| followa

distributionthatisapproximatelynormal
v Differenceoftwonormaldistributionsisalsonormal=>

Isalsoapproximatelynormal

v Thevarianceofthisdistributionisthesumofthevariancesof

errorh ; and errorgh,
St 1, 2
v Wehave errordh (1 - errorfsh%f lerror.h, )
error{h,|| Lo (]l
(F £ — | : :
d n n,

v Forrandomvarifable obeyinganormaldistributionwithmeand
andvariance

A
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theN%confiderll?:Ié( rft%R/Hgs n%zlit%f-(l)-rgétl ng dtzyeF
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HypothesisTesting 2

A errors \l UL errors U 11 errors 1o UL errors Ui 1)
v So dzy |
n n,
ZnisthesameconstantasdescribedinTablel
Testoversamedata
v h

AndhzarAetestedonasinglesampIeS(whereSisstiIIindepe

ndentof . hiandh,)

v Redefine errorh . errorh .,

d—':\ st 1) d 2l
d

v The variance in this " willusuallybesmallerthanthe
newgvarianceoftheorigin
al

v UsingasinglesampleSeliminates$hevariargedueforandom
differencesinthecompositionsof and



HypothesisTesting 2

[Type here]



Context

Motivation

EstimatingHypothesisAccuracy

BasicsofSamplingTheory

DifferenceinErrorof TwoHypotheses
- ComparingLearningAlgorithms

Summary
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ComparingLearningAlgorithms

Goal: Comparingtheperformanceoftwolearningalgorithm
L, andle

Question:

v Whatisanappropriatetestforcomparinglearningalgorithms?

v

Howcanwedeterminewhetheranobserveddifferencebetweenthea
Igorithmsisstatisticallysignificant?

Activedebatewithinthemachine-

learningresearchcommunityregardingthe best method for
comparison
La Ls

Task:Determinewhichof and  isthebetterlearning
methodonaverageforlearningsomeparticulartargetfunctionf

v ,,0n average* is to consider the relative performance of these
twoalgorithmsaveragedoverallthetrainingsetofsizen
thatmightbedrawnfromtheunderlyinginstancedistributionD
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ComparingLearningAlgorithms?2
Inpractice:

Wehaveonlyalimitedsample D,

S

DivideDointoatrainingset oandadisjointtest set To

Thetrainingdatacanbeusedtotrainboth Ly and Ls
Testsetcanbeusedtocomparetheaccuracyofthetwolearned

hypothesis  [EFTOF (S 11 error.(| g/Sq)]]
Improvement:

LS <L

.- - D.. o T ’T ’ ,T
v Partitiontheavailabledata ~ “intokdisjointsubsets ' :

size,wherethissizeisatleast30

v Foritfromltok,do S
use ‘'forthetestandtheremainingdatafortrainingset !
Si= DoT;
ha= LAS; |
heg=Lg5;i .:'
jie= BITOrThA errors,

“ofequal

- - 1 k
A . {Ij % — 4
- Sl .Aparna, Assistant Professor, CSE (I) 2 h



ComparingLearnngAiIgoritthB
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ComparingLearningAlgorithms4

 TheapproximateN%confidenceintervalforestimatingthe

guantityin [errorTOLAf.'_so I erroryLgiSolllusing ¥ isgivenby
: Z
wherelvkt Isaconstantthatplaysareleanalogoustothatof :
S 1 2
" defi i S.=\kk L., I8 6]
definedasfollowing A (LN QIR
| Confidencelev
90%0 9520
v = 2 2,92 14,3
v = 5 2,02 2,57
v = 10 1,81 2,23
v = 20 1,72 2,09
v o = 30 1,7 2,04
v | = #H 1,66 1,98
N — oo 1,64 1,96
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Context

Motivation
EstimatingHypothesisAccuracy
BasicsofSamplingTheory
DifferenceinErrorof TwoHypotheses
ComparingLearningAlgorithms

- Summary
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Summary

Statisticﬂaltheoryprovidesabasisforestimatingthetrueerror |
(errorgh)ofhypothesish, basedonitsobservederror(€rrorshy |
overasampleSofdata.

In general, the problem of estimating confidence intervals

]
isapproachedbyidentifyipgtt?eparametertobeestimated(errorDhSahd
anestimator(errorSh)forthiSquantity.

Becausetheestimatorisarandomvariableitcanbecharacterisedbyt
heprobability distributionthat governs its value.

Confidenceintervalscanthenbecalculatedbydeterminingthein
terval that containsthe desired probability mass under
thisdistribution.

Acause ofestimationerroristhevarianceintheestimate.Evenwithan
unbiased estimator, the observed value ofthe estimator is likelyto
vary fromone“experimentto another.
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The variance  of the distribution governing theesti OoF
orcharacteriseshow widely this |
estimateislikely to
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Summary?2

 Comparingtherelativeeffectivenessoftwolearningalgorithmsisan
estimation problem that is relatively easy when data and timeare
unlimited, but more difficultwhen these resourcesarelimited.

One approach to runthe learning algorithms on different subsetsof
available data, testing the learned hypotheses on the
remainingdata,then averagingthe resultof these experiments.

'In  most cases considered here, deriving confidence
Intervalsinvolvesmakinganumberofassumptionsandapproximat
lons.
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ABAYEIANLEARNING
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Introduction
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Bayestheoremandconceptlearning
MaximumlikelihoodandLeastSquaredErrorHypothesis
MaximumlikelihoodHypothesesforpredictingprobabilities
MinimumDescriptionLengthPrinciple
NaiveBayesclassifier

Bayesianbeliefnetworks

EMalgorithm



INTRODUCTION

Bayesianlearningmethodsarerelevanttostudyofmachinelearningfortwodifferentreaso
ns.

* First,Bayesianlearningalgorithmsthatcalculateexplicitprobabilitiesforhypotheses,su
chasthenaiveBayesclassifier,areamongthemostpracticalapproachestocertain  types
of learning problems

« The second reason Is that they provide a useful perspectivefor
understandingmanylearning algorithms thatdo not
explicitlymanipulateprobabilities.



FeaturesofBayesianlLearningMethods

« Each observed training example can incrementally decrease or increase the
estimatedprobability that a hypothesis is correct. This provides a more flexible
approach tolearning than algorithms that completely eliminate a hypothesis if it is found
to beinconsistentwith any singleexample

* Priorknowledgecanbecombinedwithobserveddatatodeterminethefinalprobability of a
hypothesis. In Bayesian learning, prior knowledge is provided byasserting (1) a prior
probability for each candidate hypothesis, and (2) a probabilitydistribution over
observed data for each possiblehypothesis.

« Bayesianmethodscanaccommodatehypothesesthatmakeprobabilisticpredictions

 New instances can be classified by combining the predictions of multiple
hypotheses,weightedbytheir probabilities.

 Even in cases where Bayesian methods prove computationally intractable, they
canprovide a standard of optimal decision making against which other practical
methodscan bemeasured.



PracticaldifficultyinapplyingBayesianmethods

* One practical difficulty in applying Bayesian methods is that they typically
requireinitialknowledgeofmanyprobabilities.\Whentheseprobabilitiesarenotknowni
n advance they are often estimated based on background knowledge,
previouslyavailabledata, andassumptions aboutthe formof theunderlying

distributions.

 Asecondpracticaldifficultyisthesignificantcomputationalcostrequiredtodetermine
the Bayes optimal hypothesis in the general case. In certain
specializedsituations,this computational costcan be significantly reduced.



BAYESTHEOREM

Bayes theorem provides a way to calculate the probability of a hypothesis based onits
prior probability, the probabilities of observing various data given the
hypothesis,andtheobserved dataitself.

Notations

« P(h)priorprobabilityofh,reflectsanybackgroundknowledgeaboutthechancethat h is
correct

« P(D)priorprobabilityofD,probabilitythatDwillbeobserved
« P(DJ|h)probabilityofobservingD givenaworldinwhichhholds

« P(h|D) posterior probability of h, reflects confidence that h holds after D has
beenobserved



Bayes theorem is the cornerstone of Bayesian learning methods because it providesa
way to calculate the posterior probability P(h|D), from the prior probability
P(h),togetherwith P(D) and P(D(h).

Bayes Theorem:

P(D|h)P(h)
P(D)

P(h|D) =

P(h|D)increaseswithP(h) andwithP(D|h)accordingtoBayestheorem.

P(h|D)decreasesasP(D)increases,becausethemoreprobableitisthatDwillbeobserve
dindependentofh, the lessevidenceDprovidesin support ofh.

T.Aparna, Assistant Professor, CSE



MaximumaPosteriori(MAP)Hypothesis

* Inmanylearningscenarios,thelearnerconsiderssomeset ofcandidatehypothesesH

and is interested in finding the most probable hypothesis h. € H glven _
theobserveddataD.Anysuch maximallyprobablehypothesisiscalledamaximuma

posteriori(MAP)hypothesis.
« Bayestheoremtocalculatetheposteriorprobabilityofeachcandidatehypothesisishmap

IsaMAPhypothesisprovided _
hyrap = argmax P(h|D)

he H
_  P(D|h)P(h)
= (Ill.gjélllj(l-tl PD)
= argmax P(D|h)P(h)
heH

» P(D)canbedropped,becauseitisaconstantindependentofh
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MaximumLikelihood(ML)Hypothesis

Insomecases, it isassumedthateveryhypothesisinHisequallyprobableapriori
(P(hi)=P(h;)forallhiandh;inH).
Inthiscasethebeloweqguationcanbesimplifiedandneedonlyconsidertheterm
P(D|h)tofindthemostprobablehypothesis.

hyrap = argmax P(D|h)P(h)
heH

the equation can be simplified

har, = argmax P(D|h)
heH

P(D|h)isoftencalledthelikelihoodofthedataDgivenh,andanyhypothesisthatmaximiz
esP(D|h)is called amaximum likelihood(ML)hypothesis
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Example

Consideramedical diagnosisprobleminwhichtherearetwo alternativehypotheses
 Thepatienthasaparticularformofcancer(denotedbycancer)
 Thepatientdoesnot(denotedby—-cancer)

Theavailabledataisfromaparticularlaboratorywithtwopossibleoutcomes:
+(positive)and- (negative)

P(cancer) = .008 P(—cancer) = 0.992

P(&%|cancer) = .98 P(&|cancer) = .02

P(®|—cancer) = .03 P(S|-cancer) = .97
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 Supposeanewpatientisobservedforwhomthe labtestreturnsapositive(+)result.
 Shouldwediagnosethepatientashavingcancerornot?

P(&|cancer)P(cancer) = (.98).008 = .0078
P(&|—cancer)P(—cancer) = (.03).992 = .0298
= hprap = —ecancer
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BAYESTHEOREMANDCONCEPTLEARNING

WhatistherelationshipbetweenBayestheoremandtheproblemofconceptlearning
?

SinceBayestheoremprovidesaprincipledwaytocalculatetheposteriorprobabilityof
each hypothesis given the training data, and can use it as the basis for
astraightforward learning algorithm that calculates the probability for each
possiblehypothesis,then outputsthe most probable.



Brute-ForceBayesConceptlLearning

Wecandesignastraightforwardconceptlearningalgorithmtooutputthemaximumapost
eriorihypothesis,based on Bayes theorem,as follows:

Brute-Force MAP LEARNING algorithm

1. For each hypothesis h in H calculate the posterior probability

P(D|h)P(h)

P(h|D) = =

2. Output the hypothesis hy4p with the highest posterior probability

hyrap = argmax P(h|D)
heH
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InorderspecifyalearningproblemfortheBRUTE-FORCEMAPLEARNING
algorithmwemustspecifywhatvaluesaretobeused for P(h)andfor P(D|nh)?

LetschooseP(h)andforP(D|h)tobeconsistentwiththefollowingassumptions:

 ThetrainingdataDisnoisefree(i.e.,di=c(x;))
 ThetargetconceptciscontainedinthehypothesisspaceH
« Wehavenoapriorireasontobelievethatanyhypothesisismoreprobablethananyother.



WhatvaluesshouldwespecifyforP(h)?

 Givennopriorknowledgethatonehypothesisismorelikelythananother,itisreasona
bleto assign thesameprior probabilitytoeveryhypothesishinH.

« AssumethetargetconceptiscontainedinHandrequirethatthesepriorprobab
Iitiessum to 1.

1
P(h) = T forallh € H



WhatchoiceshallwemakeforP(D|h)?

« P(DJh)istheprobabilityof observingthe targetvalues D=(d1. ..dm)
forthefixedset ofinstances(Xi.. . Xm),given a worldinwhich hypothesishholds

« Since we assume noise-free training data, the probability of observing
classificationdigivenhisjustlifdi=h(xi)andOifdi#h(xi). Therefore,

1 ifd; =h(x;) foralld; € D
P(D|h) =
0 otherwise
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GiventhesechoicesforP(h)andforP(D|h)wenowhaveafully-definedproblemfor the
aboveBRUTE-FORCEMAPLEARNING algorithm.

Inafirststep,wehavetodeterminetheprobabilitiesforP(h|D)
h is inconsistent with training data D
0-P(h)

Pl L)) = BD) =i}

h is consistent with training data D

P(h|D) = —]
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Tosummarize,BayestheoremimpliesthattheposteriorprobabilityP(h|D)underouras
sumedP(h) and P(D|h) is

—L1 __ if h is consistent with D
|VSH. DI

P(h\D) =
0 otherwise

where |V Sy p|isthenumberofhypotheses fromHconsistentwithD
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TheEvolutionofProbabilitiesAssociatedwithHypotheses

 Figure(a)allhypotheseshavethesameprobability.

 Figures (b) and (c), As training data accumulates, the posterior probability
forinconsistenthypothesesbecomeszerowhilethetotalprobabilitysummingtol
Issharedequally among the remainingconsistent hypotheses.

P(h) P(h|D1)

P(h|D1,D2)

[ —
| hypotheses
(a)
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hypotheses
(b)

hypotheses
(c)



MAPHypothesesandConsistent Learners

A learning algorithm is a consistent learner if it outputs a hypothesisthat commits zero errors
overthetraining examples.

EveryconsistentlearneroutputsaMAPhypothesis,ifweassumeauniformpriorprobabilitydistributionover
H(P(hi)=P(h;)foralli,j),anddeterministic,noisefreetrainingdata(P(D|h)=1ifD and h areconsistent, and0
otherwise).

Example:

 FIND-S outputs a consistent hypothesis, it will output a MAP hypothesis under the
probabilitydistributionsP(h) andP(D|nh)defined above.

« Are there other probability distributions for P(h) and P(D|h) under which FIND-S outputs
MAPhypotheses?Yes.

» BecauseFIND-Soutputsamaximallyspecifichypothesisfromtheversionspace,itsoutputhypothesis
willbeaMAPhypothesisrelativetoanypriorprobabilitydistributionthatfavoursmorespecifichypotheses



 Bayesianframeworkis awaytocharacterizethebehaviouroflearningalgorithms

 ByidentifyingprobabilitydistributionsP(h)andP(D|h)underwhich theoutput isa
optimal hypothesis, implicit assumptions of the algorithm can be
characterized(InductiveBias)

* Inductiveinferenceismodelledbyanequivalentprobabilisticreasoningsystembase
d on Bayes theorem



MAXIMUMLIKELIHOODANDLEAST-
SQUAREDERRORHYPOTHESES

Consider the problem of learning a continuous-valued target function such as
neuralnetworklearning, linearregression, and polynomial curvefitting

A straightforward Bayesian analysis will show that under certain assumptions
anylearning algorithm that minimizes the squared error between the output
hypothesispredictionsandthetrainingdata willoutput
amaximumlikelihood(ML)hypothesis



LearningAContinuous-ValuedTargetFunction

LearnerLconsidersaninstancespaceXandahypothesisspaceHconsistingofsomeclassofreal-
valuedfunctionsdefinedoverX, i.e.,(VheH)[h:X — R] andtrainingexamplesofthe form

<x;,di>

TheproblemfacedbyListolearnanunknowntargetfunctionf: X— R

A set of m training examples is provided, where the target value of each example is corrupted
byrandomnoisedrawnaccordingtoaNormalprobabilitydistributionwithzero mean(di=f(x;)+ei)
Eachtrainingexample isapairoftheform(x;,di)wheredi= f(xi)+e; .

— Heref(xi)isthenoise-freevalueofthetargetfunctionandeilsarandomvariablerepresentingthe
noise.

— Itisassumedthatthevaluesoftheeiaredrawnindependentlyandthattheyaredistributedaccordin
gtoaNormaldistribution with zeromean.

Thetaskofthelearneristooutputamaximumlikelinoodhypothesis,or,equivalently,aMAPhypothe
sisassumingallhypotheses are equally probable apriori.



_earningALinearFunction

« Thetargetfunctionfcorrespondstothesolidline. A

« The training examples (xi , di ) are assumed y
tohaveNormallydistributednoiseeiwithzeromeana
ddedto thetruetargetvalue f(xi).

« Thedashedlinecorrespondstothehypothesishme
with  least-squared training error, hence
themaximum likelihood hypothesis.

* Notice that the maximum likelihood hypothesis
isnotnecessarilyidenticaltothecorrecthypothesis, f,
because it is  inferred  from  only
alimitedsampleofnoisytraining data
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Beforeshowingwhyahypothesisthatminimizesthesumofsquarederrorsinthissettingisalsoamaximu
m likelihood hypothesis, let us quickly review probability densities and Normaldistributions

ProbabilityDensityforcontinuousvariables

p(xg) = Iin?) 1P(xo < X< Xg+€)
e—0 €

e.arandomnoisevariablegeneratedbyaNormalprobabilitydistribution
<X1...Xm>:thesequenceofinstances(asbefore)
<di. ..dm>:thesequenceoftargetvalueswithdi=f(x;)+ei
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NormalProbabilityDistribution(GaussianDistribution)

ANormal distributionisasmooth,bell-
shapeddistributionthatcanbecompletelycharacterizedby itsmean pand itsstandard
deviation ¢

p(E) = \/27(_78 '

Normal distribution with mean 0, standard deviation 1

0.4
035
03
025 [
02 F
015
0.1
0.05
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* A Normal distribution is fully determined by two parameters in the formula: pand ¢ .

* [fthe random variable X follows a normal distribution:

- The probability that X will fall into the interval (a, b) is /(,b p(x)dx
- The expected, or mean value of X, E[X] =

- The variance of X, Var(X) = o2

- The standard deviation of X, 6, = G

* The Central Limit Theorem states that the sum of a large number of independent, identically
distributed random variables follows a distribution that i1s approximately Normal.
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Usingthepreviousdefinitionofhm wehave

hyr = argmaz p(D|h)
heH

Assumingtrainingexamplesaremutuallyindependentgivenh,wecanwriteP(D|h)astheproductofthe
various(di|h)

m

hyr = argmax Hp(di]h)
heH i—1

Given the noise ej obeys a Normal distribution with zero mean and unknown variance o2, each
dimustalsoobeyaNormaldistributionaroundthetruetargetvaluef(xi).Becausewearewritingtheexpress
ion for P(DJh), we assumehisthe correctdescriptionoff.Hence, u = f(x;)=h(x;)

m

1 L (di—h(:)?

hyr = argmazx

heH ;5 V2mo?
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1 i 2
hp. = argmax g 2
heH EVZ’/TO’Z
m
1 _ A EE 2
= argmax g™ 202 I hX)
2
heH iy V2rmo

Itiscommontomaximizethelesscomplicatedlogarithm,whichisjustifiedbecauseofthemonotonici
tyoffunctionp.

m
1 1
—argmax > In _ d: — h(x;))?
s Y e — i B

i=1

Thefirstterminthisexpressionisaconstantindependentofhandcanthereforebediscarded
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FinallyDiscardconstantsthatareindependentofh

h]\[L = CL'T’.(]'TTZ'Z"TZV Z(dl — h’(mi))Q
heH i—1

* thehmiisonethatminimizes thesumofthesquarederrors

WhyisitreasonabletochoosetheNormaldistributiontocharacterizenoise?
 goodapproximationofmanytypesofnoiseinphysicalsystems

 CentralLimitTheoremshowsthatthesumofasufficientlylargenumberofindependent,identic
ally distributedrandomvariables itselfobeysaNormaldistribution

Onlynoiseinthetargetvalueisconsidered,notintheattributesdescribingtheinstancesthemsel
Ves
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MAXIMUMLIKELIHOODHYPOTHESESFORP
REDICTINGPROBABILITIES

Considerthesettinginwhichwewishtolearnanondeterministic(probabilistic)functi
onf :X— {0,1}, which has two discreteoutput values.

Wewantafunctionapproximatorwhoseoutputistheprobabilitythatf(x)=1Inother

words , learnthe target function
7:X—[0,1] suchthatf’(x)=P(f(x)=1)

Howcanwelearnf'usinganeuralnetwork?

Useofbruteforcewaywouldbetofirst collecttheobservedfrequenciesofl's andQ's for
each possible value of x and to then train the neural network to output

thetargetfrequency for eachx.



Whatcriterionshouldweoptimizeinordertofindamaximumlikelihoodhypothesisfor f'in
thissetting?

* FirstobtainanexpressionforP(D]|h)
 AssumethetrainingdataDisoftheformD ={(X1,d1) ...(Xm,dm) },wherediis theobserved Oorl valuefor f

(Xi).

 Bothx;anddiasrandomvariables,andassumingthateachtrainingexampleisdrawnindepen
dently,we can writeP(D|h) as
m

P(D | h)=]] P(xi.d| h)
i=1

Applyingtheproductrule

P(D | h) = ﬁp(di | h. x;)P(x;)

=1
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TheprobabilityP(di|h,xi)
h(x,-) if di = &
P(dilh, x;) = "
(1 - h(x,)) lf d,‘ = O

Re-expressitinamoremathematicallymanipulableform,as

P(d;th, x;) = h(x)% (1 — h(x;)) ™% equ (4)

Equation(4)tosubstituteforP(di|h,xi)inEquation(5)toobtain

P(DIk) = [ [rG)* (1 =)'~ P(x:) cqu ()
i=l
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Wewriteanexpressionforthemaximumlikelihoodhypothesis
m

hyr = argmax | [ )% (1 — r(x))' =% P(x:)
heH R

Thelasttermisaconstantindependentofh, so itcanbedropped

m

hyr = argmax [ [ A(x)% (1 — h(x))' ™4 equ (6)

Iteasiertoworkwiththelogofthelikelihood,yielding

m

hyr =argmax » dilnh(x;))+ (1 —d;))In(1 — h(x;)) equ)
Equation(7)describesthequantitythatmustbemaximizedinordertoobtainthemaximumlikeliho
od hypothesis in our currentproblemsetting
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GradientSearchtoMaximizeLikelihoodinaNeuralNet

Deriveaweight-
trainingruleforneuralnetworklearningthatseekstomaximizeG(h,D)usinggradientascent

» ThegradientofG(h,D)isgivenbythevectorofpartialderivativesofG(h,D)

withrespecttothevariousnetwork weights thatdefinethehypothesishrepresentedby thelearned
network

* Inthiscase,thepartialderivativeofG(h,D)withrespecttoweightwjfrominputktounitjis

9G(h, D) dh(x))
oh(x;)  Ow

dG(h,D)
'c’)w,-k

d(d;In h(x;) + (1 — d;) In(1 — h(x;))) Oh(x;)
Ih(x;) Wi
d;— h(x;) 9oh(x;)
h(x;)(1 — h(x;)) Ow equ (1)

_
Il
—t

= 1]=

|
.MB

i=1
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Supposeourneuralnetworkisconstructedfromasinglelayerofsigmoidunits. Then,

dh(x;)
Bwjk

= &' (x; )xijk = h(xi)(1 — h(x;))xijx
wherexijkisthek™inputtounitjfortheit"trainingexample,andd(x)isthederivativeofthesigmoidsquashingfunc

tion.

Finally,substitutingthisexpressionintoEquation(1),weobtainasimpleexpressionforthederivat
Ives thatconstitute the gradient

dG(h, D)
awjk

=) (di — h(x)) xij
i=l1

T.Aparna, Assistant Professor, CSE



Because we seek to maximize rather than minimize P(D|h), we perform gradient ascent rather
thangradient descent search. On each iteration of the search the weight vector is adjusted in the
directionof the gradient,usingthe weight update rule

Wik < Wik + Awjg

Where,

m
Awjr =1 Z(di — h(x;)) xijk equ (2)
i=1

wherenisasmallpositiveconstantthatdeterminesthestepsizeoftheigradientascentsearch
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Itisinterestingtocomparethisweight-updateruletotheweight-
updateruleusedbytheBACKPROPAGATION algorithm to minimize the sum of squared errors

between predicted andobservednetwork outputs.

The BACKPROPAGATION update rule for output unit weights, re-expressed using our

currentnotation, Is
Wik < Wik + Awjg

Where,

Awje =1 ) h(x)(1 —h(x))di = k() *ijk

i=1
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MINIMUMDESCRIPTIONLENGTHPRINCIPLE

* ABayesianperspectiveonOccam’srazor

« Motivatedbyinterpreting thedefinitionofhmarinthelightofbasicconceptsfrominformationtheory.
hyrap = argmazx P(D|h)P(h)
heH

whichcanbeequivalentlyexpressedintermsofmaximizingthelog:

hyrap = argmaz logy, P(D|h) + logy P(h)
he H
oralternatively,minimizingthenegativeofthisquantity

hyap = argmin — log, P(D|h) — log, P(h) equ (1)
he H

 Thisequationcanbeinterpretedasastatementthatshorthypothesesarepreferred,assumingaparticul
arrepresentationscheme forencoding hypothesesand data
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Introductiontoabasicresultofinformationtheory

Considertheproblemofdesigningacodetotransmitmessagesdrawnatrandom
listhemessage
Theprobabilityofencounteringmessageiispi

Interested in the most compact code; that is, interested in the code that minimizes
theexpectednumberofbitswemusttransmitinordertoencodeamessagedrawnatrandom

Tominimizetheexpectedcodelengthweshouldassignshortercodestomessagesthataremorepr
obable

ShannonandWeaver(1949)showedthattheoptimalcode(i.e.,thecodethatminimizestheexp
ectedmessagelength)assigns- log, pibitsttoencodemessagei.

ThenumberofbitsrequiredtoencodemessageiusingcodeCasthedescriptionlengthofmessa
geiwithrespectto C,which wedenotebyLc(i).



Interpretingtheequation

hyrap = argmin — logy P(D|h) — log, P(h) equ (1)
he H
* -log2P(h):thedescriptionlengthofhunder theoptimal encodingforthehypothesis

spaceHLcn(h)= —log2P(h),whereCy is the optimal codeforhypothesis space H.

* -log2P(D | h): the description length of the training data D given hypothesis h, under
theoptimal encoding fro the hypothesis space H: Lcn (Dh) = —log2P(D| h) , where C pp is
theoptimal code for describing data D assuming that both the sender and receiver know
thehypothesish.

RewriteEquation(1)toshowthathmaristhehypothesishthatminimizesthesumgivenbythedescription
lengthof thehypothesis plusthedescription lengthof thedatagiventhehypothesis.

hyvap = a?“hggl’m Lo (h) + Lchh (D|h)
whereCnand CpparetheoptimalencodingsforHandforDgivenh
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TheMinimumDescriptionLength(MDL)principlerecommendschoosingthehypothesisthatmini
mizes thesumof thesetwo description lengthsof equ.

hyrap = argmin Loy, (h) + Lchh(D|h)
he H

MinimumDescriptionLengthprinciple:

hvpL = argmin L, (h) + L¢, (D | h)
heH

Where,codesCiandCatorepresentthehypothesisandthedatagiventhehypothesis

TheaboveanalysisshowsthatifwechooseCitobetheoptimalencodingofhypothesesCu, andifwe
choose C to betheoptimalencoding Cpjn,then hyprL= hmap
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ApplicationtoDecisionTreelearning

ApplytheMDLprincipletotheproblemoflearningdecisiontreesfromsometrainingdata.
WhatshouldwechoosefortherepresentationsCi;andC; ofhypothesesanddata?

 For Ci: C: might be some obvious encoding, in which the description length grows with
thenumberof nodes and withthenumber ofedges

 For C,: Suppose that the sequence of instances (X1 . . .Xm) IS already known to both the
transmitterandreceiver,sothatwe need onlytransmittheclassifications(f(x1)...f (Xm)).
Nowifthetrainingclassifications(f(x1)...f(xm))areidenticaltothepredictionsofthehypothesis,thentherei

snoneedtotransmitanyinformationabouttheseexamples.Thedescriptionlengthof
theclassificationsgiventhehypothesis ZERO

If examples are misclassified by h, then for each misclassification we need to transmit a
messagethatidentifieswhichexample is misclassifiedaswellas itscorrectclassification

ThehypothesishmpL undertheencodingCiandC.isjusttheonethatminimizesthesumofthesedescription
lengths.



« MDLprincipleprovidesawayfortradingoffhypothesiscomplexityforthenumberoferrorscommit
tedbythe hypothesis

« MDLprovidesawaytodealwiththeissueofoverfittingthedata.
 Shortimperfecthypothesismaybeselectedoveralongperfecthypothesis.
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Machinel_earning:Lecture8

ComputationalLearning
Theory

(BasedonChapter/ofMitchellT..,MachineL
earning, 1997)



Overview
= Aretheregenerallawsthatgovernlearning?

« SampleComplexity:Howmanytrainingexamplesareneededfora
learner to converge (with high probability) to a
successfulhypothesis?

« ComputationalComplexity:Howmuchcomputationaleffortisne
eded for a learner to converge (with high probability) to
asuccessful hypothesis?

» MistakeBound:Howmanytrainingexampleswillthelearnermis
classifybefore convergingtoasuccessful hypothesis?

= Thesequestions
willbeansweredwithintwoanalyticalframeworks:

« TheProbablyApproximatelyCorrect(PAC)framework
« TheMistakeBoundframework
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Overview(Cont’d)

_ Rather than answering these questions
forindividual learners, we will answer them
forbroadclassesoflearners.Inparticularwewillc
onsider:

» Thesizeorcomplexityofthehypothesisspacecon
sideredby thelearner.

» Theaccuracytowhichthetargetconceptmustbeappr
oximated.

» Theprobabilitythatthelearnerwilloutputasuc
cessfulhypothesis.

« Themannerinwhichtrainingexamplesarepre
sentedto thelearner.



ThePACLearningModel

= Definition:Consider a concept class Cdefined
over a set of instances X of length
nandalearnerLusinghypothesisspaceH.CisPA
C-learnable by L using H if for all

ceC,distributions D over X, esuch that O<e<
1/2,and osuch that 0<o0<1/2, learner L will,
withprobability at least (1- o), output a
hypothesisheHsuch that errorp(h) <g, In
time that iIspolynomialinl/e, 1/0,n,andsize(c).




SampleComplexityforFinite
HypothesisSpaces

= Glven any consistent learner, the number of
examplessufficienttoassurethatanyhypothesiswillbepro
bably(withprobability(1-
0))approximately(withinerrorg)correctism=1/e(In|H|+l
n(1/o))

= [fthelearnerisnotconsistent,m=1/2&4(In|H|+In(1/3))

= ConjunctionsofBooleanL iteralsarealsoPAC-
| earnableandm=1/e(n.In3+In(1/9))

» k-
termDNFexpressionsarenotP AClearnablebecauseeven
though they have polynomial sample

complexity,theircomputationalcomplexityisnotpolyno



mial.
= Surprisingly,however,k-termCNFisPACIearnable.
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Sample Complexity for
InfiniteHypothesisSpacesl:VC-
Dimension

* ThePACLearningframeworkhas2disadvantages:

« ltcanleadtoweakbounds

« SampleComplexityboundcannotbeestablishedforinf
Initehypothesisspaces

= Weintroducenewideasfordealingwiththeseproblems:

« Definition: AsetofinstancesSisshatteredbyhypothesisspace
H Iff for every dichotomy of S there exists
somehypothesisinHconsistentwiththisdichotomy.

« Definition:The Vapnik-Chervonenkis
dimension,VC(H),ofhypothesisspaceHdefinedoveri
nstancespaceXisthesizeofthelargestfinitesubset of
X




shatteredbyH.lIfarbitrarilylargefinitesetsof Xcan
shatteredby H,thenVC(H)=c
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SampleComplexityforinfiniteHypothes
IsSpacesl|

= Upper-Boundonsamplecomplexity,usingtheVC-
Dimension:m>1/¢(4logz(2/0)+8VC(H)log2(13/¢)

» LowerBoundonsamplecomplexity,usingtheVC-
Dimension:

Consider any concept class C such that VC(C) =2,
anylearnerL ,andany0<e<1/8,and0<0<1/100.Then
thereexistsadistributionDandtargetconceptinCsuch
that if L observes fewer examples
thanmax[1/elog(1/0),(VC(C)-1)/(32¢)]

thenwithprobabilityatleasto, Loutputsahypothesis
hhavingerrorp(h)>e.




VC-DimensionforNeuralNetworks

= Let G be a layered directed acyclic graph with

ninput nodes and s=2 internal nodes, each
havingatmost
rinputs.LetCbeaconceptclassoverR'of VC
dimension d, corresponding to the set
offunctions that can be described by each of the
sinternal nodes. Let Cgbe the G-composition
ofC, corresponding to the set of functions that

canbe represented by G. Then VC(Cg)<2ds
log(es),where eisthebaseofthenatural logarithm.

= This theorem can help us bound the VC-
Dimensionofaneuralnetworkandthus,itssam



plecomplexity(See,[Mitchell,p.219])!
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TheMistakeBoundModelofLearning

= TheMistakeBoundframeworkisdifferentfromthe
PAC framework as it considers learners
thatreceive a sequence of training examples and
thatpredict, upon receiving each example, what
Itstargetvaluels.

= The question asked In this setting Is:
“Howmany mistakes will the learner make in
itspredictionsbeforeitlearnsthetargetconcept?”

= This question Is significant in practical
settingswherelearningmust
bedonewhilethesystemisinactualuse.



OptimalMistakeBounds

= Definition:L et C be an arbitrary
nonemptyconcept class. The optimal
mistake boundfor C, denoted Opt(C), Is the
minimum
overallpossiblelearningalgorithmsAofMa(C

Opt(C):m | nAe Learning_Algorithm MA(C)

= ForanyconceptclassC,theoptimalmi
stakeboundisboundasfollows:

VC(C)<0pt(C)<logz(|C])
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ACasestudy: I hevvelgnted-
MajorityAlgorithm

aidenotestheipredictionalgorithminthepool Aofalgorith
m.widenotestheweightassociatedwitha;.
= Foralliinitializewi<--1
= Foreachtrainingexample<x,c(x)>
» Initializeqoandg:to0
» Foreachpredictionalgorithmai
e [fai(x)=0thengo<--(o+Wwi
e [fai(x)=1theng:<--g1+wi
fg1>qgothenpredictc(x)=1
fqo>githenpredictc(x)=0
fgo=qithenpredictOorlatrandomforc(x)
~oreachpredictionalgorithmaiinAdo

e [fai(x)=c(X)thenwi<--Bw;
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RelativeMistakeBoundfortheW
eighted-MajorityAlgorithm

= LetDbeanysequenceoftrainingexamples,letAbe
any set of n prediction algorithms, and let k bethe
minimum number of mistakes made by
anyalgorithm in A for the training sequence D.
Thenthe number of mistakes over D made by
theWeighted-Majority algorithm using =1/2 is
atmost  2.4(k+logzn).

= ThistheoremcanbegeneralizedforanyO<p<1
wheretheboundbecomes

(klog21/B+logzn)/log2(2/(1+p))
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INSTANCE-BASELEARNING

Instance-

basedlearningmethodssimplystorethetrainingexamplesinsteadof

learningexplicitdescriptionof the target function.

— Generalizingtheexamplesispostponeduntilanewinstancemustbeclassified.

— Whenanewinstanceisencountered,itsrelationshiptothestoredexamplesisexami
ned in orderto assign atargetfunctionvalue for the newinstance.

Instance-

basedlearningincludesnearestneighbor,locallyweightedregressiona

nd case-based reasoning methods.

Instance-based methods are sometimes referred to as lazy
learningmethodsbecausetheydelayprocessinguntilanewinstancemust
beclassified.

Akeyadvantageoflazylearningisthatinsteadofestimatingthe



targetfunction once for the entire instance space, these methods can
estimateit locally anddifferentlyfor each newinstance tobeclassified.
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k-NearestNeighborLearning

k-
NearestNeighborLearningalgorithmassumesallinstancescorre
spondtopoints in the n-dimensionalspaceR"

ThenearestneighborsofaninstancearedefinedintermsofEuclideandistan
ce.

Euclideandistancebetweentheinstancesxi=<Xis,. .., xin>andx;=

<Xi1,...,Xjn=>are:
n
d(Xi,Xj)Z \/Z(Xir—)ﬁr)z

Foragivenquery instancexq,f(Xq)iscalculatedthefunctionvaluesofk-
nearestneighbor ofxq



k-NearestNeighborLearning

Storealltrainingexamples<xi f(xi)>
Calculatef(xq)foragivengueryinstancexqusingk-nearestneighbor
Nearest neighbor:(k=1)

— Locatethenearesttraingexamplexn,andestimate f(Xq)as

— T(Xq)<F(Xn)

k-Nearestneighbor:

— Locateknearest traingexamples,andestimatef(xq)as

— Ifthetargetfunctionisreal-valued,takemeanoff-
valuesofknearestneighbors. ;. Fla)
.-—l . .-'_

flx)=——

— If thetargetfunctionisdiscrete-valued,takeavoteamongf-valuesof k
nearestneighbors.




WhenToConsiderNearestNeighbor

InstancesmaptopointsinR"
Lessthan20attributesperinstance
|_otsoftrainingdata

Advantages

— Trainingisveryfast

— Learn complextargetfunctions
— Canhandlenoisydata

— Doesnotlooseanyinformation
Disadvantages

— Slowatquerytime

— Easilyfooledbyirrelevantattributes



Distance-Weighted kNN

Might want weight nearer neighbors more heavily...

f\-“_f"__ 1 Wi / (-”‘i )

'{"/tz‘ T1Y .
v .[_l Il,

flxy) <

where |
1

(s, Ti)*

and d(x,. ;) is distance between x, and z;

Uy =

Note now it makes sense to use all training
examples instead of just k&
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CurseofDimensionality

Imagine instances described by 20 attributes. but
only 2 are relevant to target function

Curse of dimensionality: nearest nbr is easily
mislead when high-dimensional X
One approach:
e Stretch jth axis by weight z;, where 24, ..., 2,
chosen to minimize prediction error
e Use cross-validation to automatically choose
weights z;...., 2,
e Note sefting z; to zero eliminates this dimension

altogether

T.Ap



L_ocallyWeightedRegression

KNNformslocalapproximationtofforeachquerypointxq
Whynotforman explicitapproximationf(x)forregionsurroundingxq
=>» LocallyWeightedRegression

Locallyweightedregressionusesnearbyordistance-weightedtrainingexamplestoform
this localapproximation tof.

Wemight approximatethetargetfunctionintheneighborhoodsurroundingx,using
alinearfunction,a quadraticfunction, amultilayer neuralnetwork.
Thephrase"locallyweightedregression™iscalled

— localbecausethe function
Isapproximatedbasedonlyondatanearthequerypoint,

— weighted because the contribution of each training example is weighted by
itsdistancefromthequerypoint,and

— regressionbecausethisisthetermusedwidely
Inthestatisticallearningcommunityfortheproblemof approximatingreal-
valued functions.



L_ocallyWeightedRegression

« Glven a new guery instance xqg, the general approach in
locallyweightedregressionistoconstruct
anapproximationfthatfitsthetrainingexamplesin theneighborhood
surrounding Xxg.

« Thisapproximationisthenusedtocalculatethevalue
f(xq),whichisoutput asthe estimated target value for the
gueryinstance.



LocallyWeightedLinearRegression

f is approximated near x, using a linear function of the form

FxX) = wo + wiar(x) + - - - + Wyas (x)
a;(x) denotes the value of the ith attribute of the instance x.

Minimize the squared error

1 .
E3(xg) = 5 2. (f@) = f@))* K(d(xy, x))

x€ k nearest nbrs of x,

KernelfunctionK  isthefunctionofdistancethatisusedtodetermine
theweightofeach training example.

Aw; =7 > K (d(xg, )) (f(x) = () a;(x)

x€ k nearest nbrs of x,

T.Aparna, Assistant Professor, CSE



RadialBasisFunctions

« One approach to function approximation that is closely related to distance-
weightedregressionandalsotoartificialneuralnetworksislearningwithradialbasisfunctio

ns.
» Thelearnedhypothesisisafunctionoftheform

k
f(x) = wo T+ Z w, Ky (d(xy, x))
u=1

where each x, is an instance from X and where the kernel function X,(d(xy,x))
is defined so that it decreases as the distance d(x,, x) increases. Here k 1s a user-
provided constant that specifies the number of kernel functions to be included.
Even though f (x) is a global approximation to f(x), the contribution from each
of the K,(d(x,, x)) terms is localized to a region nearby the point x,. It is common

T.Aparna, Assistant Professor, CSE



RadialBasisFunctions

to choose each function K,(d(x,,x)) to be a Gaussian function
centered at the point x, with some variance o2

L d?(x,, x)
Ku(d(xg, x) = e¥

T.Aparna, Assistant Professor, CSE



RadialBasisFunctionNetworks

. % "I"- - _—
fle)=wy+ ¥ w, N, (dx,. 1))

u=1

|_.||I'lilj I: £y il

I‘!Lr“(n{(.}:”r ,]'::] :] — f'._J.'I”E'

Eachhiddenunitproducesanactivationdeter
mined by a Gaussian functioncentered
atsomeinstancexu.

Therefore,itsactivationwillbeclosetozer
0 unless theinputxisnearxu.

Theoutputunitproducesalinearco
mbination of the hidden
unitactivations.

T.Aparna, Assistant Professor, CSE



Case-basedreasoning

 Instance-basedmethods
— lazy
— classificationbasedonclassificationsofnear(similar)instances
— data:pointsinn-dim.space
« (Case-basedreasoning
— asabove,butdatarepresentedinsymbolicform
« Newdistancemetricsrequired



azy&eagerlearning

« Lazy: generalizeatquerytime
— kNN,CBR
« Eager:generalizebeforeseeingquery
— Radialbasis,ID3....
 Difference
— eagermustcreateglobalapproximation
— lazycancreatemanylocalapproximation

— lazycanrepresentmorecomplexfunctionsusingsameH(H=linearfuncti
ons)



Machinel_earning:Lecturel?

GeneticAlgorithms

(BasedonChapter9ofMitchell, T .,
MachinelLearning,1997)



OverviewofGeneticAlgorithms(GAS)

= GAisalearningmethodmotivated
byanalogyto biologicalevolution.

= GAs search the hypothesis space
bygenerating successor hypotheses
whichrepeatedlymutateandrecombinepar
tsofthebestcurrently known hypotheses.

= In Genetic Programming (GP),
entirecomputerprogramsareevolvedtocert
ainfitnesscriteria.



GeneralOperationofGAS

= |nitializePopulation:generatephypothesesatrandom.
= Evaluate:foreachp,computefitness(p)

= WhileMaxnFitness(h)<Thresholddo
» Select:probabilisticallyselectafractionofthebestp’sinP.Callthis
new generationPnew

o Crossover: probabilistically form pairs of the selected p’s

andproducetwooffspringsbyapplyingthecrossoveroperator.Addallo
ffsprings toPnew.

« Mutate:Choosem%ofPnewwithuniformprobability.Foreach,inve
rtone randomly selected bit inits representation.

o UQdate:P<-PneW
» Evaluate:foreachpinP,computefitness(p)
= ReturnthehypothesisfromPthathasthehighestfitness.

T.Aparna, Assistant Professor, CSE



RepresentingHypotheses

* |n GAs, hypotheses are often represented by
bitstrings so that they can be easily manipulated
bygeneticoperatorssuchasmutationandcrossover.

= Examples:
(Outlook=0OvercastvRain)*(Wind=Strong)

<=>01110

IFWind=StrongTHENPIlayTennis=yes
<=> 1111010

where group 1 = 3-valued
outlook,group 2 = 2-valued
Windgroup3=2-
valuedPlayTennis



T.Aparna, Assistant Professor, CSE



GeneticOperators

= CrossoverTechnigues:

« Single-
pointCrossover.Maskexample
;11111000000

» Two-pointCrossover.
Maskexample:00111110000

« UniformCrossover.
Maskexample:10011010011

= MutationTechniques:
 PointMutation

= OtherOperators:
« SpecializationOperator
« GeneralizationOperator

T.Aparna, Assistant Professor, CSE
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FithessFunctionandSelection

= A simple measure for modeling the probability that
ahypothesis will be selected Is given by the
fitnessproportionateselection(orroulettewheelselecti
on):
Pr(hi)=Fitness(hi)/Zj=1PFitness(h;)
= Othermethods: TournamentSelectionandRankSe
lection.

= |nclassificationtasks,theFitnessfunctiontypicallyhas
a component that scores the classificationaccuracy
over a set of provided training examples.Other
criteria can be added (e.g., complexity
orgeneralityoftherule)



T.Aparna, Assistant Professor, CSE



HypothesisSpaceSearch(l)

= GA search can move very abruptly (as compared
toBackpropagation, for example), replacing a
parenthypothesisbyanoffspringthatmayberadicallydiffere
ntfromtheparent.
= TheproblemofCrowding:whenoneindividualismorefitthan
others, this individual and closely related ones
willtakeupalargefractionofthepopulation.
= Solutions:
« Usetournamentorrankselectioninsteadofroulettesele
ction.
« Fitnesssharing
« restrictiononthekindsofindividualsallowedtoreco
mbinetoformoffsprings.




HypothesisSpaceSearch(l11):
TheSchemaTheorem [Holland, 75}

= Definition: Aschemaisanystringcomposedof0s,1s
and*swhere*means‘don’tcare’.

= Example:schema0*10representsstrings0010an
d0110.

* The Schema Theorem:More fit schemas
willtend to grow In influence, especially
schemascontaining a small number of defined
bits
(i.e.,containingalargenumberof*s),andespeciall
ywhen these defined bits are near one




anotherwithinthebit string.

T.Aparna, Assistant Professor, CSE,NRCM



Genetic
Programming:Represe
ntingPrograms

= Example: sin(x)+sqrt(x2+y)



T.Aparna, Assistant Professor, CSE,NRCM



GeneticProgramming:Crossover

Operation
= Example:

10



ModelsofEvolutionandlLearningl:Lama
rckian Evolution [Late 19th C]

= Proposition:Experiencesofasingleorganismdir
ectly affect the genetic makeup of
theiroffsprings.

= Assessment: This proposition Is wrong:
thegenetic makeup of an individual Is unaffected
bythelifetimeexperienceofone’sbiologicalparents.

= However: Lamarckian processes can
sometimesimprovetheeffectivenessofcomputerize
dgeneticalgorithms.

11



ModelsofEvolutionandLearningll:Bald
winEffect [1896]

= |f a species Is evolving in a changing environment,
therewillbeevolutionarypressuretofavorindividualswithth
ecapabilitytolearnduringtheirlifetime.

= Those individuals who are able to learn many traits
willrely less strongly on their genetic code to “hard-
wire”’traits. As a result, these individuals can support a
morediverse gene pool, relying on individual learning of
the*“missing” or “sub-optimized” traits in the genetic
code.This more diverse gene pool can, in turn, support
morerapid evolutionary adaptation. Thus the capability
oflearningcanacceleratetherateofevolutionaryadaptationo
f apopulation.

12
T.Aparna, Assistant Professor, CSE,NRCM



ParallelizingGeneticAlgorithms

_ GAsarenaturallysuitedtoparallelimplementation.Dif
ferentapproaches were tried:

« Coarse Grain: subdivides the population into
distinctgroups of individuals (demes) and conducts a GA
searchin each deme. Transfer between demes occurs
(thoughinfrequently)byamigrationprocessinwhichindivid
ualsfromonedemearecopiedortransferredtootherdemes

« FineGrain:Oneprocessorisassignedperindividualinthe
population and recombination takes place
amongneighboringindividuals.

13



Artificial Intelligence Laboratory

MachinelLearning

Chapterl0.LearningSetsofRules

TomM.Mitchell
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ules

| Methodl:Learndecisiontree,converttorules
= Method2:Sequentialcoveringalgorithm:

1. Learnonerulewithhighaccuracy,anyco
verage

2. Removepositiveexamplescoveredbythisrul
e

3. Repeat

T.Aparna, Assistant Professor, CSE,NRCM
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SequentialCoveringAlgorithm

SEQUENTIAL-
COVERING(Targetattribute; Attributes; Examples; Threshold)
= Learnedrules<—{}

= Rule <~ LEARN-ONE-
RULE(Target_attribute,Attributes,Examples)

=  whilePERFORMANCE(Rule,Examples)
> Threshold,do
— Learned _rules<—Learned rules+Rule

— Examples<—Examples—{examplescorrectlyclassifiedbyRule}
— Rule«<—LEARN-ONE-
RULE(Target_attribute,Attributes,Examples)

— Learned_rules<—sortLearned_rulesaccordtoP
ERFORMANCEoverExamples

T.Aparna, Assistant Professor, CSE,NRCM



— returnLearned_rules

T.Aparna, Assistant Professor, CSE,NRCM



B HA e ATAS 97l

borame.cs.pusan.ac. kr Artificial Intelligence Laboratory

earn-One-Rule

IF
THEN PlayTennis=yves

IF Wind=weak
THEN PlavTennis=yves

IF Wind=strong IF Humidity=high

THEN PlayTennis=no IF Humidity=normal THEN PlavTennis=no

THEN PlayTennis=ves

IF Humidity=normal /
Wind=weak
THEN PlayTennis=yes

IF Humidity=normal IF Humiditv=normal
Wind=strong IF Humidity=normal Outlook=rain
THEN PlayvTennis=ves Outlook=sunny THEN PlayTennis=yes

THEN PlayTennis=ves

T.Aparna, Assistant Professor, CSE,NRCM
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Learn-One-Rule(Cont.)

= Pos<—positiveExamples

= Neg<«—negativeExamples

= whilePos,do
LearnaNewRule
- NewRule<—maostgeneralrulepossible
- NewRule<—Neg
- whileNewRuleNeg,do

AddanewliteraltospecializeNewRule
1. Candidateliterals<—generatecandidates
2. Best_literal<—argmax_ccandidateliterals
Performance(SpecializeRule(NewRule;L))
3. addBest_literaltoNewRulepreconditions
4. NewRuleNeg<«—subsetofNewRuleNeg
thatsatisfiesNewRulepreconditions
- Learned_rules<—Learned_rules+NewRule
- Pos<—Pos—{membersof PoscoverdbyNewRule}

T.Aparna, Assistant Professor, CSE,NRCM



= ReturnLearned_rules

T.Aparna, Assistant Professor, CSE,NRCM
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Subtleties:LearnOneRule

1. Mayusebeamsearch
2. Easilygeneralizestomulti-valuedtargetfunctions

3. Chooseevaluationfunctiontoguidesearch:
— Entropy(i.e.,informationgain)

— Sampleaccuracy: T

n
wherenc=correctrulepredictions,n=allpredictions

= mestimate: e+ mp
n+1m

T.Aparna, Assistant Professor, CSE,NRCM
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VariantsofRuleLearningPrograms

= Sequentialorsimultaneouscoveringofdata?
= General—>specific,orspecific—general?
= Generate-and-test,orexample-
_ldriven?Whether and how to post-

prune?
= Whatstatisticalevaluationfunction?

T.Aparna, Assistant Professor, CSE,NRCM
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LearningFirstOrderRules

Whydothat?

= Canlearnsetsofrulessuchas
Ancestor(X,y)<—Parent(x;y)

Ancestor(x;y)«—Parent(x;z) Ancestor(z;y)

= General purpose programming
languagePRrRoLOG:programsaresetsofsuch
rules

T.Aparna, Assistant Professor, CSE,NRCM
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ges

[Slattery,1997]

course(A)<«—

has-word(A,

Instructor),Not has-

word(A, good),link-

from(A,B),

has-word(B,

assign),Notlink-

T.Aparna, Assistant Professor, CSE,NRCM




from(B,C)
Train:31/31,Test:31/34

T.Aparna, Assistant Professor, CSE,NRCM
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FOIL(T arget_predicate, Predicates, Examples)
e Pos < positive Examples
e Neg < negative Examples
e while Pos, do

Learn a NewRule
— NewRule < most general rule possible
— NewRuleNeg < Neg
—while NewRuleNeg, do
Add a new literal to specialize New Rule
1. Candidate_literals < generate candidates
2. Best_literal <
ArgMAX] c Cundidate literats £ OHU_Gain(L, N ew Rule)
3. add Best_literal to New Rule preconditions
4. NewRuleNeg < subset of NewRuleN eg
that satisfies New Rule preconditions
— Learned_rules < Learned_rules + New Rule
— Pos < Pos — {members of Pos covered by
NewRule}

T.Aparna, Assistant Professor, LJf,.Rg;.urn Learned_rules
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SpecializingRulesinFOIL

Learning rule: P(xi,@9,...,x;) < L1... L,
Candidate specializations add new literal of form:

e (vy,...,v,), where at least one of the v; in the
created literal must already exist as a variable in
the rule.

e Fqual(zj,x)), where x; and x, are variables
already present in the rule

e The negation of either of the above forms of
literals

T.Aparna, Assistant Professor, CSE,NRCM
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InformationGaininFOIL

T.Aparna, Assistant Professor, CSE,NRCM
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InformationGaininFOIL

)

Foil Gain(L,R) =t (log2 zﬁ — log, ﬁ)
Where

e L is the candidate literal to add to rule R

e py = nuwmber of positive bindings of R

e 19 = number of negative bindings of R

e p; = nuwmber of positive bindings of R + L

e ;7 = number of negative bindings of R + L

e ¢ is the number of positive bindings of R also
covered by R + L
Note
e —log, L= is optimal number of bits to indicate
the class of a positive binding covered by R
T.Aparna, Assistant Professor, CSE,NRCM
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InductionasinvertedDeduction
Induction is finding A such that
(V{(w;, f(x;)) € D) BAh Az F f(x;)
where
e r; 1s ¢th tralning instance
e f(x;) is the target function value for x;

e B is other background knowledge

So let’s design inductive algorithm by inverting
operators for automated deduction!

T Anarna Accictant Drnafa



Artificial Intelligence Laboratory

InductionasInvertedDeduction(Cont’)

“pairs of people, (u,v) such that child of u is v,”

flw;): Child(Bob, Sharon)
z;: Male(Bob), Female(Sharon), Father(Sharon, Bob)
B : Parent(u,v) < Father(u,v)

What satisfies (V(x;, f(z;)) € D) BAhAx; F f(x)?

hy : Child(u,v) < Father(v,u)
hy : Child(u,v) < Parent(v, w)

T.Aparna, Assistant Professor, CSE,NRCM
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InductionasInvertedDeduction(Cont’)

Induction is, in fact, the inverse operation of deduction,
andcannot be conceivedto
existwithoutthecorrespondingoperation, so that the question
of relative importance
cannotarise.Whothinksofaskingwhetheradditionorsubtraction
Isthe more important process in arithmetic? But at the
sametime much difference in difficulty may exist between a
directand inverse operation; : : : it must be allowed that
Inductiveinvestigations are of a far higher degree of
difficulty andcomplexitythan any questions of deduction....

(Jevons1874)

T.Aparna, Assistant Professor, CSE,NRCM
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InductionasInvertedDeduction(Cont’)

We have mechanical deductive operators
F(A,B)=C,where ANBFC

need inductive operators

O(B, D) = h where (Y(x;, f(2;)} € D) (BARAZ;) F f(2;)

T.Aparna, Assistant Professor, CSE,NRCM
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InductionasInvertedDeduction(Cont’)

Positives:

e Subsumes earlier idea of finding h that “fits”
training data

e Domain theory B helps define meaning of “fit”
the data
BANhANx;F flz;)

e Suggests algorithms that search H guided by B

T.Aparna, Assistant Professor, CSE,NRCM
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InductionasInvertedDeduction(Cont’)

Negatives:

e Doesn’t allow for noisy data. Consider
(V{wi, fl@i)) € D) (BARAw) b fe:)

e I'irst order logic gives a huge hypothesis space H

— overfitting...
— Intractability of calculating all acceptable h’s

T.Aparna, Assistant Professor, CSE,NRCM
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Deduction:ResolutionRule

T.Aparna, Assistant Professor, CSE,NRCM
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1. Given initial clauses C| and C5, find a literal L
from clause C'; such that —L occurs in clause C5

2. Form the resolvent C' by including all literals
from C| and C5, except for L and —L. More
precisely, the set of literals occurring in the
conclusion C' is

C=(C1—{L}) v (C:—{~L})

where U denotes set union, and “—" denotes set
difference.

T.Aparna, Assistant Professor, CSE,NRCM
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InvertingResolution

% : KnowMaterial V' " Study % KnowMaterial | = Study

C} : PassExam N "KnowMaterial C} :PassExam N —KnowMaterial

C: PassExam '\ T Study

C: PassExam \| —Study

T.Aparna, Assistant Professor, CSE,NRCM



B Pt A a7

borame.cs.pusan.ac. kr Artificial Intelligence Laboratory

BT I V WI LCWWUWIII \NWWWViIWULuIWwI I\I I\JI\J\J\JILIU

nal)

1. Given initial clauses C7 and (', find a literal L
that occurs in clause C, but not in clause C.

2. Form the second clause Cy by including the
following literals

Cy=(C = ()~ {L}) U {~L}

T.Aparna, Assistant Professor, CSE,NRCM
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Firstorderresolution

First order resolution:

1. Find a literal L from clause (', literal L. from

clause (5, and substitution @ such that
1160 = — L6

2. Form the resolvent C' by including all literals
from C160 and C50, except for L10 and —L-0.
More precisely, the set of literals occurring in
the conclusion C is

C = (C1—={L1})PU(C2 —{L2})0

T.Aparna, Assistant Professor, CSE,NRCM



InvertingFirstorderresolution

Cy = (C — (€, — {L1})0)05* U {~L,0,67")
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Cigol

Father (Tom, Bob) GrandChild(y,x) VI = Father(x,z) \ = Father(z,y)

{Bob/y, Tom/z}

Father (Shannon, Tom) GrandChild(Bob,x) V = Father(x,Tom)

{Shannon/x}

GrandChild(Bob, Shannon)

T.Aps
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Progol

T.Aparna, Assistant Professor, CSE,NRCM
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Progol

ProGoL: Reduce comb explosion by generating the
most specific acceptable h

1. User specifies H by stating predicates, functions,
and forms of arguments allowed for each
2. PROGOL uses sequential covering algorithm.
For each (w;, f(w;))
e F'ind most specific hypothesis h; s.t.
B A by e b flass)
— actually, considers only k-step entailment
3. Conduct general-to-specific search bounded by
specific hypothesis h;, choosing hypothesis with
minimum description length

T.Aparna, Assistant Professor, CSE,NRCM
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MachinelLearning

Chapterl3.ReinforcementlLearnin

9

TomM.Mitchell
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ControlLearning

Considerlearningtochooseactions,e.g.,

= Robotlearningtodockonbatterycharger

= Learningtochooseactionstooptimizefactoryoutput
= LearningtoplayBackgammon

Noteseveralproblemcharacteristics:

= Delayedreward

= Opportunityforactiveexploration

= Possibilitythatstateonlypartiallyobservable

= Possibleneedtolearnmultipletaskswithsamesen
sors/effectors

T.Aparna, Assistant Professor, CSE,NRCM
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OneExample: TD-Gammon

|_earntoplayBackgammonl

mmediatereward

= +1001fwin

= -100iflose

= Oforallotherstates
Trainedbyplayingl.smilliongamesagainstitselfNow
approximatelyequaltobesthumanplayer

T.Aparna, Assistant Professor, CSE,NRCM
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ReinforcementLearningProblem

Agent
State Reward Action
Environment
g 20 . 82
S0 = S 1 — — .52 = —
0 / 2

Goal: Learn to choose actions that maximize

.- 2 - -~ ~
T.Aparna, Assistant Pro r() +Y'1 L ’2+ .- » Where 0 <Y </



B Pt T4 A7

borame.cs.pusan.ac. kr Artificial Intelligence Laboratory

MarkovDecisionProcesses

Assume

= finitesetofstatesS

= setofactions A

= ateachdiscretetimeagent
observesstates;e Sandchooses actiona;e A

= thenreceivesimmediaterewardr;

= andstatechangestosi+1

= Markov assumption:sw+1=(St,ar)andr=r(st,ar)
— l.e.,randsw+1dependonlyoncurrentstateandaction
— functionsdandrmaybenondeterministic

— functionsoandrnotnecessarilyknowntoagent
T.Aparna, Assistant Professor, CSE,NRCM
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Agent'sLearningTask

Execute actions in environment, observe results,
and

e lecarn action policy 7 : .5 — A that maximizes
Elr + vyriv1r + Y22 + -]

from any starting state in S

e here O < v << 1 1s the discount factor for future
rewards

Note something new:

e Target function 1s @ : 5 — A

e but we have no training examples of form (s, a)

e training examples are of form ({(s, a), )

T.Aparna, Assistant Professor, CSE,NRCM
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ValueFunction

To begin, consider deterministic worlds...

For each possible policy 7w the agent might adopt,
we can define an evaluation function over states

N 2
V"T(s) — —+ YT 41 —+ Y 42 -+ ...
o ;
= > YTty
i=0
where r,r;41,... are generated by following policy

7w starting at state s
Restated, the task is to learn the optimal policy 7*
7" = argmax V" (s), (Vs)

T.Aparna, Assistant Professor, CSE,NRCM
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O -_Lool @
(8]
* Io * I:::
s} 8] 10(3*
O o 1y
G e ICH

(s, a) (Immediate reward) values

- i | & ’ S0 _:l:- 100 _"E} C@
«- Tt

21 __:t'" o0 __:: 100
Q(s,a) values V' (s) values
= .

One optimal policy
T.Aparna, Assistant Professor, CSE,NRCM
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WhattoLearn

We might try to have agent learn the evaluation
function V7™ (which we write as V™)

It could then do a lookahead search to choose best
action from any state s because
7w (s) = argmax|r(s,a) + vV (d(s, a))]
42
A problem:

e This works well if agent knows 0 : § x A — 5,
and 7 : S <x A — R

e But when it doesn’t, it can’t choose actions this
way

T.Aparna, Assistant Professor, CSE,NRCM
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QFunction

Define new tunction very similar to V*

Q(s,a) =r(s,a) +yV7(d(s,a))

If agent learns (2, it can choose optimal action even
without knowing 9!

w'(s) = argmax[r(s,a) +yV"(d(s, a))]

7 (s) = argmax Q(s, a)

( is the evaluation function the agent will learn

T.Aparna, Assistant Professor, CSE,NRCM
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TrainingRuletoLearnQ

Note @ and V¥ closely related:
V*i(s) = max Q(s,a’)

W hich allows us to write @ recursively as

Q(&t,at) ?"(Staﬂft) -+ ’YV*(CY(Sh“t)))

(s, ar) + 7y max Q(si41,a’)

Nice! Let @ denote learner’s current approximation
to . Consider training rule

-~ ) . ) -~ ;7

Q(s,a) < 1+ Y max Q(s',a’)
where s’ is the state resulting from applying action
a 1n state s

T.Aparna, Assistant Professor, CSE,NRCM
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\(h\lv\l 1101 Iﬂl\/l b \w G\WI1 11101 10 WLIEIWV

Worlds

For each s, a initialize table entry C?(S, a) <— 0
Observe current state s
Do forever:

e Select an action a and execute it

e Receive immediate reward r

e Observe the new state s’

e Update the table entry for @(5, a) as follows:
Q(s.a) + 7+ v max Q(s', a’)

e s «— s/

T.Aparna, Assistant Professor, CSE,NRCM
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Updating O

R S [
*&1 — — *e:.

rigzht

initial state: S, next state: S,

(:?(-Sl, (‘L,-,‘,g/,‘t) $— s oy max Q(Sz, (’L’)
<— O+ 0.9 max{63,81,100}
<— 90
notice if rewards non-negative, then
(Vs,a,n) C?,,__,_l (s,a) = C?,,_(S., a)

and

(Vs,a,n) 0 =< Q,,(s a) < Q(s,a)
T.Aparna, Assistant Professor, CSE,NRCM
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Q converges to . Counsider case of deterministic
world where see each (s, a) visited infinitely often.
LProof: Define a full interval to be an interval during
which each (s,a) is visited. During each full
interval the largest error in @ table is reduced by
factor of -~
Let Q,, be table after 7. updates, and A, be the
maximuin error in ¢2,,; that is
A, = max |Q2,.(s,a) — Q(s,a)|

For any table entry Q, (s, a) updated on iteration
72 + 1, the error in the revised estimate 2, (s,a) is
1@uri(s,a) — Q(s,a)| = | + vmax Q.u(s', a'))

—({r 4+ -ymaxQ(s,al))]

(&2

= =y} max &, (s" al) — max Q(s',a’)|

< ymax |Qu(s’, @) — Qs )|

= vmax|Q.(s",a’) — Q(s”,a’)|
|Qr+1(s, @) — Q(s,a)| = ~A,

T.Aparna, Assistant Professor, CSE,NRCM
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NondeterministicCase

What it reward and next state are
non-deterministic?

We redefine V, QQ by taking expected values

Vi(s) = Elre +yr + ’yzfer +...]
=L [Eo YT 4i)

Q(s,a) = Elr(s,a) +7V"(d(s,a))]

T.Aparna, Assistant Professor, CSE,NRCM
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NondeterministicCase(Cont’)

() learning generalizes to nondeterministic worlds
Alter training rule to
Q,,,(s,a) — (1—0:.,,,)@,,__1(3, a)+a, [r+max Q,,__l(s’,a,’)]

where

il
&, = —
Y1+ visits, (s, a)

Can still prove convergence of Q to Q [Watkins and
Dayan, 1992]

T.Aparna, Assistant Professor, CSE,NRCM
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TemporalDifferencelearning

( learning: reduce discrepancy between successive
Q estimates

One step time difference:
Q'Y (8¢, a¢) =7+ 7y max Q(S,H, a)

Why not two steps?

Q(Z)(St, at) =71+ Yreer + v¥? max C:)('SH—'Za @)
Or n?
Q(N)(St, at) = Te+Yri41+ '+’7("_1”"t+u—1+’7’” 111(§XQ('5't+u., @)
Blend all of these:
Q (5 ax) = (1—N) [Q‘“(st, ar) + XQ'? (8¢, ar) + N2QP) (8¢, ar)

T.Aparna, Assistant Professor, CSE,NRCM
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emporalpirrerence
Learning(Cont’)

Q'\(St, a:) = (1-A) [Q“)<3t, ar) + /\Qm(é‘t, at) + )\2(2(3)(3“ at)

Equivalent expression:

Q (st ar) = re+7[ (L= A) maxQ(se, ar)
+A Q’\(St+l» C'»t+l)]

TD(\) algorithm uses above training rule
e Sometimes converges faster than ) learning

e converges for learning V" for any 0 < A <1
(Dayan, 1992)

e Tesauro’s TD-Gammon uses this algorithm
T.Aparna, Assistant Professor, CSE,NRCM
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SubtletiesandOngoingResearch

e Replace Q table with neural net or other
generalizer

e Handle case where state only partially observable
e Design optimal exploration strategies

e Eixtend to continuous action, state

e Learn and use § : S x A — S

¢ Relationship to dynamic programming

T.Aparna, Assistant Professor, CSE,NRCM
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e Introduction

» Learning with Perfect Domain Theories
 Explanation-Based Learning
 Search Control Knowledge

e Summary

T.Aparna, Assistant Professor, CSE,NRCM



Introduction

Learning algorithms like neural networks, decision trees, inductive
logic programming, etc. all require a good number of examples to
be able to do good predictions.

@ . Learning h _—
Algorithm —~ ‘ypothesis

dataset

Dataset must be sufficiently large

T.Aparna, Assistant Professor, CSE,NRCM



Introduction

We don’t need a large dataset if besides taking examples as input,
the learning algorithm can take prior knowledge.

@ _ Learning . -
Algorithm ypothesis
dataset /

Prior knowledge

Dataset does not need to be large

T.Aparna, Assistant Professor, CSE,NRCM



Introduction

Explanation-based learning uses prior knowledge to reduce the
size of the hypothesis space.

Prior

Hypothesis Space | iwladis

HS

—  Reduced HS

It analyzes each example to infer which features are relevant
and which ones are irrelevant.

T.Aparna, Assistant Professor, CSE,NRCM



Example

Learning to Play Chess

Suppose we want to learn a concept like “what i1s a board position
in which black will lose the queen in X moves?”.

Chess 1s a complex game. Each piece can occupy many positions.
We would need many examples to learn this concept.

But humans can learn these type of concepts with very
few examples. Why?

T.Aparna, Assistant Professor, CSE,NRCM



Example

Humans can analyze an example and use prior knowledge
related to legal moves.

From there it can generalize with only few examples.

Example: why i1s this a positive example?

“Because the white king 1s attacking both king and queen;
black must avoid check, letting white capture the queen”

reasoning lﬁ

T.Aparna, Assistant Professor, CSE,NRCM



Example

What is the prior knowledge involved in playing chess?

It is knowledge about the rules of chess:
» Legal moves for the knight and other pieces.

» Players alternate moves in games.
»To win you must capture the opponent’s king.

T.Aparna, Assistant Professor, CSE,NRCM



Inductive and Analytical Learning

Inductive Learning Analytical Learning

Input: HS, D, Input: HS, D, B

Output: hypothesis h Output: h

h 1s consistent with D h 1s consistent with D and B
( ~h-I'B)

HS: Hypothesis Space
D: Training Set
B: Background knowledge

T.Aparna, Assistant Professor, CSE,NRCM



Example Analytical Learning

Input:

» Dataset where each instance is a pair of objects represented
by the following predicates: Color, Volume, Owner, Material,
Density, On. Example:

On(Obj1,0bj2) Owner(Objl,Fred)
Type(Obj1,Box) Owner(Obj2,Louise)
Type(Obj2,Endtable) Density(Obj1,0.3)
Color(Obj1,Red) Material(Obj1,Cardboard)
Color(Obj2,Blue) Material(Obj2,Wood)

Volume(Objl,2)

T.Aparna, Assistant Professor, CSE,NRCM



Example Analytical Learning

Hypothesis space: set of Horn clause rules.
The head of each rule has the predicate SafeToStack.
Example:

SafeToStack(x,y) € Volume(x,vx) ™ Volume(y,vy)

N LassThan(vx,vy)
Domain Theory:

SafeToStack(x,y) € ~Fragile(y)

SafeToStack(x,y) € Lighter(x,y)
Lighter(x,y) € Weight(x,wx) * Weight(y,wy) * LessThan(wx,wy)

T.Aparna, Assistant Professor, CSE,NRCM



Example Analytical Learning

Domain Theory:

SafeToStack(x,y) € ~Fragile(y)
SafeToStack(x,y) € Lighter(x,y)
Lighter(x,y) € Weight(x,wx) » Weight(y,wy) N LessThan(wx,wy)

Fragile(x) € Material(x,Glass)
Note:
* The domain theory refers to predicates not contained

in the examples.
 The domain theory is sufficient to prove the example is true.

T.Aparna, Assistant Professor, CSE,NRCM



Perfect Domain Theories

A domain theory is correct if each statement 1s true.
A domain theory is complete if it covers every positive
example of the instance space (w.r.t a target concept and

instance space).

A perfect domain theory is correct and complete.

T.Aparna, Assistant Professor, CSE,NRCM



Perfect Domain Theories

Examples of where to find perfect domain theories:
Rules of chess

Examples of where not to find perfect domain theories:
SafetoStack problem

We will look into learning problems with perfect
domain theories only.

T.Aparna, Assistant Professor, CSE,NRCM



Explanation Based Learning Algorithm

We consider an algorithm that has the following properties:

v" Tt is a sequential covering algorithm considering the data
incrementally
v" For each positive example not covered by the current rules
it forms a new rule by:
o Explaining the new positive example.
o Analyzing the explanation to find a generalization.
o Refining the current hypothesis by adding a new
Horn Clause rule to cover the example.

T.Aparna, Assistant Professor, CSE,NRCM



Explanation Based Learning Algorithm

Prolog-EBG (Kedar-Cabelli and McCarty 87).

1. LearnedRules €< {}
Pos € Positive examples from training examples
For each positive example X 1n Pos not covered
by LearnedRules do
a. Explain
Use the domain theory to explain that X
satisfies the target.

-l
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Explanation Based Learning Algorithm

Prolog-EBG (Kedar-Cabelli and McCarty 87).

b. Analyze
Find the most general set of features of X sufficient
to satisfy the target according to the explanation.

c. Refine
LearnedRules += NewHornClause
NewHornClause: Target € sufficient features

4. Return LearnedRules

T.Aparna, Assistant Professor, CSE,NRCM



Explaining the Example

1. For each positive example X in Pos not covered by
LearnedRules do
a. Explain
Use the domain theory to explain that X satisfies
the target concept.

T.Aparna, Assistant Professor, CSE,NRCM



Explaining the Example

The explanation is a proof that the example belongs to the
target (if the theory is perfect):

On(Obj1,0bj2) Owner(Obj1,Fred)
Type(Objl,Box) Owner(Obj2,Louise)
Type(Obj2,Endtable) Density(Obj1,0.3)
Color(Objl1,Red) Material(Objl,Cardboard)
Color(Obj2,Blue) Material(Obj2,Wood)
Volume(Obj1,2)

T.Aparna, Assistant Professor, CSE,NRCM



Explanation

SafeToStack(Obj1,0bj2)

|

Lighter(Obj1,0bj2)
f

| |

Weight(Obj1,0.6) Weight(Obj2,5)
LessThan(0.6,5) ‘

| |
Volume(Obj1,2) Density(Objl1,0.3) Equal(0.6,2*0.3)
Type(Obj2.Endtable)

T.Aparna, Assistant Professor, CSE,NRCM



Explanation

Considerations:

( There might be more than one explanation to the example.
In that case one or all explanations may be used.

(1 An explanation is obtained using a backward chaining
search as 1s done by Prolog. Prolog-EBG stops when it
finds the first proof.

T.Aparna, Assistant Professor, CSE,NRCM



Analyze

Many features appear in an example.
Of them, how many are truly relevant?

We consider as relevant those features that show in the
explanation.

Example:

Relevant feature: Density
Irrelevant feature: Owner

T.Aparna, Assistant Professor, CSE,NRCM



Analyze

Taking the leaves of the explanation and substituting
variables x and y for Obj1, and Obj2:

SafeToStack(x,y) € Volume(x,2) » Density(x,0.3)
A Type(y,Endtable)

T.Aparna, Assistant Professor, CSE,NRCM



Analyze

Considerations:

*** We omit features independent of x and y such as
Equal(0.6,times(2,0.3)) and LessThan(0.6,5).

**The rule is now more general and can serve to explain
other instances matching the rule.

**» A more general form of generalization called regression
finds the most general rule explaining the example.

T.Aparna, Assistant Professor, CSE,NRCM



Refine

= The current hypothesis is the set of Horn clauses that
we have constructed up to this point.

= Using sequential covering we keep adding more rules,
thus refining our hypothesis.

= A new instance is negative if it is not covered by
any rule.

I.Aparna, Assistant Protessor, LSkE,NKCLIVI



Remarks

= Explanation Based Learning (EBL) justifies the hypothesis
by using prior knowledge.

= The explanation or proof shows which features are relevant.

= Each Horn clause is a sufficient condition for satisfying
the target concept.

T.Aparna, Assistant Professor, CSE,NRCM



Remarks

= The success of the method depends on how the domain
theory 1s formulated.

= We assumed the theory is correct and complete.
If this 1s not the case the learned concept may be incorrect.

T.Aparna, Assistant Professor, CSE,NRCM



Analytical Learning

e Introduction

e Learning with Perfect Domain Theories
» Explanation-Based Learning

e Search Control Knowledge

e  Summary
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Discovering New Features

The Prolog-EBG system we described before can
formulate new features that do not show up in the
examples.

Example: Volume * Density > 5
(derived from the domain theory)

This 1s different from neural networks using hidden
nodes. why?

T.Aparna, Assistant Professor, CSE,NRCM



Discovering New Features

This 1s different from neural networks using hidden nodes. why?

Output nodes @

Internal nodes

Input nodes ®

T.Aparna, Assistant Professor, CSE,NRCM



Inductive Bias in Explanation-Based Learning

What is the inductive bias of explanation based learning?
The hypothesis h follows deductively from D and B
D: database B: Background knowledge

Bias: Prefer small sets of maximally general Horn Clauses

T.Aparna, Assistant Professor, CSE,NRCM



Search Control Knowledge

Problem: learning to speed up search programs.
This 1s also called “speedup learning”

Final

o state
Initial

state

How do we improve our search control strategy to
find a solution quickly?
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Search Control Knowledge

Examples include: playing chess scheduling and
optimization problems.

Problem formulation:
S: set of possible search states

O: set of legal operators (transform one state into another state)
G: predicate over S indicating the goal states

T.Aparna, Assistant Professor, CSE,NRCM



Example:

Search Control Knowledge

Learn an algorithm to stack the blocks
so that 1t reads “UNIVERSAL”

A T Z

T.Aparna, Assistant Professor, CSE,NRCM



Search Control Knowledge

S: all possible configurations of blocks on the table
O: {(MS x) move block x to stack if x 1s on table,
(MT x) move block x to table if x 1s on the stack}

G: G(si1) = true if si 1s the configuration where the blocks
read UNIVERSAL

Alim| Z
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Prodigy

Prodigy 1s a planning system.

Input: state space S and operators O.

Output: A sequence of operators that lead from the
initial state to the final state.

Prodigy uses a means-end planner: we decompose
goals into subgoals:

Goal

/ l\‘ Subproblems

T.Aparna, Assistant Professor, CSE,NRCM



Prodigy

Example: Goal: accommodate blocks to read

/ \ “UNIVERSAL”

On(U,N) On(N,J) On(,V) On(V,E) ... On(AL)
Question: what subgoal should be attacked first?

Answer 1s given by search control knowledge

T.Aparna, Assistant Professor, CSE,NRCM



Prodigy and Explanation Based Learning

Prodigy defines a set of target concepts to learn,
e.g., which operator given the current state takes
you to the goal state?

An example of a rule learned by Prodigy in the block-
stacking problem is:

IF One subgoal to be solved 1s On(x,y) AND
One subgoal to be solved 1s On(y,z)
THEN Solve the subgoal On(y,z) before On(x,y)

T.Aparna, Assistant Professor, CSE,NRCM



Prodigy and Explanation Based Learning

The rationale behind the rule 1s that it would avoid a
conflict when stacking blocks.

Prodigy learns by first encountering a conflict, then
explaining the reason for the conflict and creating a rule
like the one above.

Experiments show an improvement in efficiency by a
factor of two to four.

T.Aparna, Assistant Professor, CSE,NRCM



Problems with EBL

v" The number of control rules that must be learned is
very large.

v" If the control rules are many, much time will be spent
looking for the best rule.
Utility analysis 1s used to determine what rules to keep
and what rules to forget.

Prodigy:

328 possible rules — 69 pass test — 19 were retained

T.Aparna, Assistant Professor, CSE,NRCM



Problems with EBL

v Another problem with EBL is that it is sometimes
intractable to create an explanation for the target concept.

For example, in chess, learning a concept like:

“states for which operator A leads to a solution™
The search here grows exponentially.

T.Aparna, Assistant Professor, CSE,NRCM



Summary

** Different from inductive learning, analytical learning
looks for a hypothesis that fit the background knowledge
and covers the training examples.

L)

** Explanation based learning is one kind of analytical
learning that divides into three steps:

a. Explain the target value for the current example
b. Analyze the explanation (generalize)

c. Refine the hypothesis

L)
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Summary

** Prolog-EBG constructs intermediate features after
analyzing examples.

** Explanation based learning can be used to find search
control rules.

** In all cases we depend on a perfect domain theory.

T.Aparna, Assistant Professor, CSE,NRCM
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Machine Learning
Chapter 12. Combining Inductive

and Analytical Learning

Tom M. Mitchell
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Inductive and Analytical Learning

Inductive learning Analytical learning
= Hypothesis fits data = Hypothesis fits domain the
= Statistical inference = Deductive inference
= Requires little prior knowledge = Learns from scarce data
= Syntactic inductive bias = Bias is domain theory
2
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What We Would Like

Inductive learning Analytical learning
i -
Plentiful data Perfect prior knowledge
No prior knowledge Scarce data

General purpose learning method:
= No domain theory — learn as well as inductive methods
= Perfect domain theory — learn as well as Prolog-EBG

= Accomodate arbitrary and unknown errors in domain
theory

= Accomodate arbitrary and unknown errors in training data

3
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Domain theory:
Cup « Stable, Liftable, Open Vessel
Stable <— BottomlIsFlat
Liftable <— Graspable, Light
Graspable <~ HasHandle
Open Vessel «— HasConcavity, ConcavityPointsUp

Training examples:

Q
~
-
[

Non-Cups
BottomlIsEFlat v, V
ConcavityPoints Up Vv
Expensive

Fragile
HandleOnlTop
HandleOnSide
HasConcavity
HasHandle

Light
MadeOtfCerammic
MadeOfPPapeoer
MadeOfStyrofoam

AN\
%%

v

NSNS S
B

S NSNS

SR R RS

NEES N A

S 8 ORSS
<

v
Vv
Vv

NONESS K%

- 00 ZzZ7ZzZz07070709090V79B97B907B90BZm  90ZzZzZzZzZz0zéz9m 0 0vgvVvVv0v0V0v v v v B B9B060ZzZzZzZ909m 9B B9590z0909m©©© 7
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KBANN

= KBANN (data D, domain theory B)

1. Create a feedforward network h equivalent to
B

2. Use BACKPROP totune htot D

T.Aparna, Assistant Professor, CSE,NRCM
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Expensive
BottomlIsFlat Stable
MadeOfCeramic
MadeOfStyrofoam
MadeOfPaper
HasHandle
HandleOnTop
HandleOnSide
Light

: OpenVessel
HasConcavity /.
ConcavityPoints Up

Fragile

Graspable Liftable Cup

T.Aparna, Assistant Professor, CSE,NRCM
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Creating Network Equivalent to
Domain Theory

Create one unit per horn clause rule (i.e., an AND unit)
= Connect unit inputs to corresponding clause antecedents

= For each non-negated antecedent, corresponding input
weight w <— W, where W is some constant

= For each negated antecedent, input weight w < -W

= Threshold weight w, <— -(n-.5)W, where n 1s number of
non-negated antecedents

Finally, add many additional connections with near-zero
weights

Liftable <— Graspable, —Heavy

T.Aparna, Assistant Professor, CSE,NRCM
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Result of refining the network

Expensive
BottomlIsFlat Stable
MadeOfCeramic
MadeOfStyrofoam
MadeOfPaper
HasHandle
HandleOnTop
HandleOnSide
Light

: Open-Vessel
Has C()’z('a Vi ’.‘, / I
ConcavityPointsUp

Fragile

—— Graspable =

-

Ll/fal)lt:’ Cup

Large positive weight
—_—— Large negative weight
Negligible weight

I.Apdrna, ASSIStant Froressor, Lot,NRKCIvI
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KBANN Results

Classifying promoter regions in DNA leave
one out testing:

= Backpropagation : error rate 8/106
= KBANN: 4/106

Similar improvements on other classification,
control tasks.
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Hypothesis space search in KBANN

Hypothesis Space

Hypotheses that
fit training data
/ equally well
Initial hypothesis

Jor KBANN
\

~=—— Initial hypothesis
Jor BACKPROPAGATION

10

T.Aparna, Assistant Professor, CSE,NRCM



= A T A A4

borame.cs.pusan.ac.kr Artificial Intelligence Laboratory

EBNN

Key 1dea:
= Previously learned approximate domain
theory

= Domain theory represented by collection of
neural networks

= Learn target function as another neural
network

11
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Explanation of

training example st Stable
in terms of
domain theory:
-
-
-
BottomisFlat =T
¢ um'ur.lyl/',.mn( Ip - l. Graspable Liftable Ciip
Expensive =1
Fragile =T~ -* -
HandleOnlTop -~ F 3
HandleOnSide =T [ Cp = T
HasConcavity < 4 1T - \
HasHandle =T \
Light =T
MadeOfCeramic =T ™ 0.8
MadeOfPaper = F
MadeOfStvrofoam - I/ . - ’
0.2 OpenVessel
-
L -
.
Training
/ derivatives
_//‘f
/,/
l arget network' BottomlIsFlat ¢ 7 “'“/‘!
ConcavityPolnisUp
Expensive Cup, .
Fragile rarger
HandleOnTop
HandleOnSide Lo Clip
HasConcavity
HasHandle
Light
MadeOfCeramic
MadeOfPaper
MadeOfStyrofoam

12
L
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Descent
) ) OA(z) Of(w) 2
F = > (f(z) — f(@:)* + p 7 ( Oxl  Owl ](l—l'i)

wh
A — f(@)]

C

,quE].

e f(x) is target function
e f(x) is neural net approximation to f(z)

e A(x) is domain theory approximation to f(x)

15
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./'(x)‘ )

7K
fix) | Z N
Jx9) / gy,
(x9 1 / \
Jxy r / \ .7 B
t 4 t - =
X1 X2 X3 X X
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1ypothesis Space Searc
EBNN

Hypothesis Space

Artificial Intelligence Laboratory

Hypotheses that
maximize fit to

data and prior
knowledge \&_

Hypotheses that
/ maximize fit to data

TANGENTPROP

Search BACKPROPAGATION

Search

15
- 0000000000000
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Search in FOCL

Cup ——

\
\
\\
Cup S~ HasHandle =
[2+.3-] ;\
\
\
\

Generared by the

_—— domain theory

Cup ———u— 1 HasHandle

[2+.3-] ‘
(&Y —— o rife you
e Fragile Cup ~ae— RBortomlisklar,
[2+.4—] Light,

HasConcavity,
ConcavityPointisUp

[(4+.2-]

Cup =  BonomlsFlar,
Light,
HasConcaviry,

ConcavitvPointsUp

HandleOnTop Cup = Bottomlsilaz,
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FOCL Results

Recognizing legal chess endgame positions:

= 30 positive, 30 negative examples
= FOIL : 86%

= FOCL : 94% (using domain theory with 76% accuracy)
NYNEX telephone network diagnosis

= 500 training examples
= FOIL : 90%

= FOCL : 98% (using domain theory with 95% accuracy)
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