UGC - Autonomous Institute
Accredited by NBA & NAAC with 'A' Grade
Approved by AICTE
Permanently affiliated to JNTUH

AIML

QUESTION BANK

Course Title : COMPUTER ORIENTED **ST**ATISTICAL METHODS

Course Code : 23MA303

Regulation : NR23

Course Objectives: To learn The theory of Probability, and probability
distributions of single and multiple random variables. The sampling theory and
testing of hypothesis and making statistical inferences.

Course outcomes: After learning the contents of this paper the student must be able to

- 1. Apply the concepts of probability and distributions to some case studies.
- 2. Distinguish between discrete and continuous probability distributions.
- 3. Formulate and solve problems involving random variables and apply statistical methods for analyzing experimental data.
- 4. Apply the concept of estimation and testing of hypothesis to case studies.
- 5. Estimate the correlation and regression values for the given data.

<u>UNIT-I</u>
PROBABILITY, RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS

S.No		Questions	BT	CO		PO
		Part – A (Short Answer Question	ıs)			
1	Def	ine sample space.	L1	CO1		PO1
2	Def	ine pairwise independent events.	L1	CO1		PO2
3	Def	ine conditional probability.	L3	CO1		PO1
4	Stat	te addition theorem for two events.	L3	CO1		PO2
5	Wri	te mean formula for continuous variable.	L1	CO1		PO2
6		at is the probability that a card drawn at random n the pack of playing cards may be either a king or en.	L3	CO1		PO1
7	Giv	en that $f(x) = \frac{k}{2x}$, is a probability distribution for a	L3	CO1		PO1
	rand Find	dom variable X that can take values $x=0,1,2,3,4$.				
8	Wri f(x)	te the properties of probability density function .	CO1	CO1 PO1		
9		at is the probability for a leap year to have 52 ndays and 53 Sundays?	L2,L3	CO1		PO2
10		single throw with two dice find the probability of wing a sum 8.	L3	CO1		PO2
		Part – B (Long Answer Que	stions)			
11	a)	State and prove Bayes theorem.		.1	CO1	P01
	b)	Three machines A, B, C produce 40%,30%,30% the total number of items of factory. The percenta of defective items of these machines are 4%,2%,3 If an item is selected at random, which is found to defective. What is the probability that it is from 1) Machine A ii. Machine B iii. Machine C.	ges 3%. be	,L3	CO1	P02
12	a)	A sample of 4 items is selected at random from a be containing 12 items of which 5 are defective. Find expected number E of defective items.		,L4	CO1	PO1

	b)	Box A contains 5 red and 3 white marbles and box B contains 2 red and 6 white marbles. If a marble is drawn from each box, what is the probability that they are both of same colour.	L2,L4	CO1	PO2
13		A continuous random variable has the probability $\operatorname{density} \operatorname{function} f(x) = \begin{cases} kxe^{-\lambda x,forx \geq 0, \lambda > 0} \\ 0,otherwise \end{cases}$ Determine i. K ii. Mean iii. variance	L3,L4	CO1	PO1
14	a)	In a certain town 40% have brown hair, 25% have brown eyes and 15% have both brown hair and brown eyes, a person is selected at random from the town. i. If he has brown hair, what is the probability that he has brown eyes also? ii. If he has brown eyes, determine the probability that he does not have brown hair?	L3,L4	CO1	PO2
	b)	Three students A,B, and C are in a running race. A and B have the same probability of winning and each is twice as likely to win as C. find the probability that B or C wins.	L3,L4	CO1	PO2
15	a)	Two aeroplane's bomb a target in succession. The probability of each correctly scoring a hit is 0.3 and 0.2 respectively. The second will bomb only if the first misses the target. Find the probability that i. Target is hit ii. Both fails to score hits	L2,L4	CO1	PO1
	b)	Suppose a continuous random variable X has the probability density $f(x) = k(1 - x^2)$ for $0 < x < 1$ and $f(x)=0$ otherwise. Find i. k ii. Mean	L2,L4,L5	CO1	PO2
16		A random variable X has the following probability function	L3,L5	C01	PO1

iii. iv.	Variance P(X≥1)		
V.	$P(-2 \le X \le 2)$		

<u>UNIT-II</u> MATHEMATICAL EXPECTATIONS AND DISCRETE PROPABIBLITY DISTRIBUTIONS

S. No	Questions	BT	CO	PO
	Part – A (Short Answer Questions)			
1	Define expectation of a random variable X	L1	CO2	PO1
2	Define variance of a random variable X for discrete and	L1	CO2	PO1
	continuous cases.			
3	Let X be a random variable with density function (x^3)	L3	CO2	PO2
	$f(x) = \begin{cases} \frac{x}{2}, -1 < x < 2 \end{cases}$			
	$f(x) = \begin{cases} \frac{x^3}{3}, & -1 < x < 2\\ 0, & else \ where \end{cases}$			
	Find the expected value of $f(x)$.			
4	Let the random variable X represent the number of defective parts for a machine when 3 parts are sampled from a production line and tested. The following is the	L3	CO2	PO2
	probability distribution of X. $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			
	Calculate E(X)			
5	20% of item produced from a factory are defective. Find	L3	CO2	PO2
	the probability that in a sample of 5 chosen at random $P(1 \le x \le 4)$.			
6	If the probability of a defective bolt is 0.2 find the mean and variances of the number of successes.	L3	CO2	PO2
7	Define geometric distribution.	L1	CO2	PO1
8	If a random variable has a Poisson distribution such that $P(1) = P(2)$, find mean of the distribution.	L3	CO2	PO2
9	Using Poisson distribution, find the probability that the ace of spades will be drawn from a pack of well shuffled cards at least once in 104 consecutive trials.	L3	CO2	PO2
10	In 256 set of 12 tosses of a coin, in how many cases one can expect 8 heads and 4 tails.	L3	CO2	PO2
	Part – B (Long Answer Questions)		-1	l

11		Seven coins are tossed and the number of heads are noted. The experiment is repeated 128 times and the following distribution is obtained. Fit a Binomial Distribution to the following data assuming the coin is unbiased x 0 1 2 3 4 5 6 7	L3,L5	CO2	PO3
12	a)	Using recurrence formula find the probabilities when X=0,1,2,3,4 and 5, if the mean of Poisson distribution is 3.	L3,L5	CO2	PO3
	b)	If the probability that an individual suffers a bad reaction from a certain injection is 0.001, determine the probability that out of 2000 individuals i. Exactly 3 ii. More than 2 individuals iii. None iv. More than one individual suffers bad reaction	L3	CO2	PO2
13	a)	A die is tossed until 6 appears. Find the probability that it must be cast more than 5 times.	L1	CO2	PO1
	b)	A lot containing 7 components is sampled by a quality inspector. The lot contains 4 good components and 3 defective components. A sample of 3 items is taken by the inspector. Find the expected values of the number of good components in the sample.	L3	CO2	PO2
14		Out of 800 families with 5 children each, how many would you expect to have a. 3boys b. 5girls c. At least one boy d. Mean e. Variance	L3,L4,L5	CO2	PO3
15	a)	Derive variance of Poisson distribution	L1	CO2	PO1
	b)	A die is tossed until 6 appears. Find the probability that it must be cast more than 5 times.	L2	CO2	PO2
16	a)	If a Poisson Distribution is such that $\frac{3}{2}P(X=1) = P(X=3)$. Find i. $P(X \ge 1)$ ii. $P(X \le 3)$	L2	CO2	PO2
	b)	Calculate the variance of $g(X)=2X+3$, where X is a random variable with the following probability	L3	CO2	PO2

	distribution	1				
		X	0	1	2	3
		F(x)	1/4	1/8	1/2	1/8

<u>UNIT-III</u>

CONTINUOUS DISTRIBUTIONS AND SAMPLING AND FUNDAMENTAL SAMPLING DISTRIBUTIONS

S.I	No	Questions	BT	CO	PO
		Part – A (S <mark>hort Answer Question</mark> s)			
]	1	State the conditions under which Normal distribution is a limiting case of Binomial.	L1	CO3	PO1
2	2	If X is a Normal variate with mean 30 and standard deviation 5. find $P(26 \le X \le 40)$.	L2	CO3	PO2
3	3	Define Normal distribution.	L1	CO3	PO1
	4	Define statistic and parameter.	L1	CO3	PO1
-	5	Find the value of the finite population correction factor for n=10 and N=100.	L3	CO3	PO2
(6	How many different samples of size 2 can be chosen from a finite population of size 25.	L3	CO3	PO2
7	7	Write the test statistic for F-distribution	L1	CO3	PO1
8	8	The variance of a population is 2. The size of the sample	L3	CO3	PO2
	collected from the population is 169. What is the standard error of mean.		V .		
ç	9	Write test statistic for t- distribution for difference of mean.	L3	CO3	PO2
1	0	State central limit theorem.	L3	CO3	PO2
		Part – B (Long Answer Questions)			
11	a)	If X is a Normal variate with mean 30 and standard deviation 5. Find the probabilities that i. 26 \le X \le 40 ii. X \ge 45	L4,L5	CO3	PO3
	b)	If the masses of 300 students are normally distributed with mean 68 kgs and standard deviation 3kgs how many students have masses i. Greater than 72kgs ii. Less than or equal to 64 kgs	L2,SL3	CO3	PO3
12	a) b)	A sample of 26 bulbs gives a mean life of 990 hours with a standard deviation of 20 hours. The manufacturer claims that the mean of bulbs is 1000hrs. is the sample not up to standard The means of two random samples of sizes 9 and 7 are	L3	CO3	PO2 PO2
	<u>b)</u>	The means of two random samples of sizes 9 and / are	ட்		PU2

		196.42 and 198.82 respectively. The sum of the squares of			
		the deviations from the mean are 26.94 and 18.73			
		respectively. Can the sample be considered to have been			
		from the same normal population			
13	a)	Memory capacity of 10 students were tested before and	L4,L5	CO3	PO1
		after training	L3	CO3	PO2
		Before 12 14 11 8 7 10 3 0 5 6			
		After 15 16 10 7 5 12 10 2 3 8			
		Test whether the intensive training is useful at 5% level of			
		significance.			
14		In a normal distribution 7% of the items are under 35 and	L4,L5	CO3	PO1
		89% are under 63. Determine the mean and variance of the			
		distribution			
		A population consists of five numbers 2,3,6,8,11. Consider	L4,L2	CO3	PO2
15		all possible samples of size two which can be drawn with			
		replacement from this population. Find			
		i. The mean of the population.			
		ii. The standard deviation of the population.			
		iii. The mean of sampling distributions of means and			
		iv. The standard deviation of the sampling distributions of			
		means.			
16	a)	In one sample of 10 observations from a normal population	L3,L4	CO3	PO1
	_	the sum of the squares of the deviations of the sample			
		values from the sample mean is 102.4 and in other sample			
		of 12 observations from another normal population, the sum			
		of the squares of the deviations of the sample values from			
		the sample mean is 120.5. Examine whether the two normal			
		populations have the same variance.			
	b)	A random sample of 10 boys had the following I.Q's	L4	CO3	PO2
		70,120,110,101,83,88,95,98,107 and 100. Do these data			
		support the assumption of a population mean I'Q of 100.			

<u>UNIT-IV</u> ESTIMATION & TESTS OF HYPOTHESES AND STATISTICAL HYPOTHESES

S.No	Questions	BT	CO	PO
	Part – A (Short Answer Questions)			
1	Define Type-I.	L1	CO4	PO1
2	Define critical region.	L1	CO4	PO1
3	Explain Null and Alternative Hypothesis.	L4	CO4	PO1
4	Write Standard error formula for Method of Pooling in Proportions.	L1	CO4	PO1
5	The mean and standard deviation of a population are	L3	CO4	PO1

			d 14054 respected interval for the	-		, find 95%			
(6					p with an even d the test statistic	L3	CO4	PO1
,	7		$00, \bar{x} = 40, \mu =$ ce limits for the	nen find the 95%	L1	CO4	PO1		
;	8	Define ty	pe-II error.			6	L2,L3	CO4	PO1
9	9	find the t	= 1200, n_2 = est statistic values of large same	ie for di		$P_2 = 0.25 \text{ then}$ ce of two	L2	CO4	PO1
1	.0	Define L	evel o <mark>f Signifi</mark> c	ance.			L1	CO4	PO1
		<u> </u>	Part -	- B (Lor	ıg Ans	swer Questions)		I .	I
11	a)	less than calls a sa	10 mins to reac mple of 36 calls of 16 mins. Tes	ch its des s has a n	stinationean c	kes on the average on in emergency of 11 mins and the 0.05 level of	L3,L4	CO4	PO2
	b)	Explain t	_	ed in th	e proc	edure for testing of	f L2,L4,L5	CO4	PO3
12	a)	The mean pounds w 100 plots pounds w Assuming pounds, t	n yield of wheat with S.D 10 pour. In another diswith S.D 12 pour g that the S.D o	nds per trict the unds from f yield re is any	Acre for mean mean a sa in the region in signi	rom a sample of	L1,L4,L5	CO4	PO3
	b)	and from deviation sample te	their weights in	n kilogra and sho	ams, n wn bel		L3,L4	CO4	PO2
				Mean	S.D	Size of the sample			
			University A	55	10	400			
12	6)	A dia xxx	University B	57	15	100	1212	CO4	DO2
13	a)		this consistent			nese 3220 yielded a thesis that the die	L2,L3	CO4	PO3
	b)	Random	samples of 400	men an	d 600	women were asked	L3,L4	CO4	PO3

		whether they would like to have a flyover near their residence. 200 men and 325 women were in favor of the proposal. Test the hypothesis that proportions of men and women in favor of proposal are same at 5% level.			
14	a)	A cigarette manufacturing firm claims that its brand A line of cigarettes outsells its brand B by 8%. If it is found that 42 out of a sample of 200 smokers prefer brand A and 18 out of another sample of 100 smokers prefer brand B, test whether the 8% difference is a valid claim.	L3,L4	CO4	PO3
	b)	In two large populations, there are 30% and 25% respectively of fair-haired people. Is this difference likely to be hidden in samples of 1200 and 900 respectively from the two populations.	L3,L4	CO4	PO3
15	a)	It is claimed that a random sample of 49 tyres has a mean life of 15200kms. This sample was drawn from a population whose mean is 15150kms and a standard deviation 1200 kms. Test the significance at 0.05 level for H_1 : $\mu \neq 15200$	L1,L4	CO4	PO1
	b)	Explain Type-I and Type-II errors in detail with one example each.	L1,L4	CO4	PO1
16	a)	Write a short note on one-tailed and two-tailed tests.	L1,L3	CO4	PO2
	b)	In a sample of 1000 people in Telangana 540 are rice eaters and the rest are wheat eaters. Can we assume that both rice and wheat are equally popular in this state at 1% level of significance.	L3,L4	CO4	PO3

UNIT-V APPLIED STATISTICS

S.No	Questions	BT	CO	PO
	Part – A (Short Answer Questions)			
1	Define correlation and regression.	L1	CO5	PO1
2	Write a short note on types of correlation.	L1	CO5	PO1
3	Criticize the following: Regression coefficient of Y on X is 0.7 and that of X on Y is 3.2.	L2,L4	CO5	PO2
4	If θ is the angle between two regression lines and standard deviation of Y is twice the standard deviation of X and r=0.25, find tan θ .	L2,L3	CO5	PO1
5	From the following data calculate correlation coefficient and standard deviation of Y, given $b_{xy} = 0.85$, $b_{yx} = 0.89$ and $\sigma_x = 3$.	L2,L3	CO5	PO1
6	Find the regression line of X on Y and Yon X. given \overline{X} =	L2,L3	CO5	PO1

		$83.67, \overline{Y} = 88.42, b_{xy} = 0.795, b_{yx} = 0.59$											
7		Define regression.	L1	CO5	PO1								
8		Write the Normal equations for second degree polynomial.	L1	CO5	PO1								
9		Write the properties of correlation coefficient.	L1	CO5	PO1								
1	0	Give a short note on Karl Pearson's coefficient of correlation.	L1	CO5	PO1								
	Part – B (Long Answer Questions)												
11	a)	Psychological tests of Intelligence and of engineering ability were applied to 10 students. Here is a record of ungrouped data showing intelligence ratio (I.R) and Engineering ratio (E.R). Calculate the coefficient of correlation. A B C D E F G H I J I.R 105 104 102 101 100 99 98 96 93 92	L4,L5	CO5	PO3								
		E.R 101 103 100 98 95 96 104 92 97 94											
	b)	Following are the rank obtained by 10 students in two subjects' statistics and Mathematics. To what extent the knowledge of the students in two subjects is related. statistics 1 2 3 4 5 6 7 8 9 10 Mathematics 2 4 1 5 3 9 7 10 6 8	L4,L5	CO5	PO4								
12		Obtain the rank correlation coefficient for the following data	L4,L5	CO5	PO3								
		x 68 64 75 50 64 80 75 40 55 64 y 62 58 68 45 81 60 68 48 50 70											
13	a)	Calculate the regression equations of Y on X from the data given below, taking deviations from actual means of X and Y.	L3,L4	CO5	PO3								
		Price (Rs.) 10 12 13 12 16 15 Amount 40 38 43 45 37 43 Demanded Estimate the likely demand when the price is Rs.20.											
	b)	Calculate Karl Pearson's correlation coefficient for the following paired data. X 28 41 40 38 35 33 40 32 36 33 Y 23 34 33 34 30 26 28 31 36 38 What inference would you draw from the estimate.	L3	CO5	PO3								
14	a)	Using the method of least square determine the constants a and b such that $y = ae^{bx}$ fits the following data. $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	L2,L3	CO5	PO2								
	b)	From a sample of 200 pairs of observation the following quantities were calculated. $\sum X = 11.34, \sum Y = 20.78,$	L2,L3	CO5	PO2								

	From t	$\sum_{From the above data shows how to compute the coefficients of the state of th$									
		From the above data, show how to compute the coefficients of the equation $Y=a+bX$									
15		Calculate coefficient of correlation between the marks obtained by a									PO3
	batch o	of 100 students in									
		Marks in		Marks in Accountancy							
		Statistics	20-	30-	40-	50-	60-	Total			
			30	40	50	60	70				
		15-25	5	9	3	-	-	17			
		25-35		10	25	2	-	37			
		35-45		1	12	2		15			
		45-55			4	16	5	25			
		55-65				4	2	6			
		Total	5	20	44	24	7	100			
16	Fit a se	Fit a second-degree polynomial to the following data by the method									PO3
	of least	of least squares									
		x 10 12 15 23 10									
		X 10 12 15 23 10									

^{*} **Blooms Taxonomy Level (BT)** (L1 – Remembering; L2 – Understanding; L3 – Applying; L4 – Analyzing;

L5 – Evaluating; L6 – Creating)

Course Outcomes (CO)Program Outcomes (PO)

Prepared By: HOD

Y.SRI LAKSHMI DEVI ASSISTANT PROFESSOR MATHEMATICS, FME